1
|
Rodríguez‐Montaño R, Alarcón‐Sánchez MA, Lomelí‐Martínez SM, Martínez‐Bugarin CH, Heboyan A. Genetic Variants of the IL-23/IL-17 Axis and Its Association With Periodontal Disease: A Systematic Review. Immun Inflamm Dis 2025; 13:e70147. [PMID: 39887950 PMCID: PMC11783687 DOI: 10.1002/iid3.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The objective of this systematic review was to identify genetic variants of the IL-23, IL-17, IL-23R and IL-17R genes and isoforms and its possible association with increased development of periodontitis and peri-implantitis. METHODS A systematic review was prepared according to the guidelines, registered in the OSF database with the registration number: 10.17605/OSF. IO/X95ZC. The electronic search was performed in four databases: PubMed, Scopus, Web of Science, and Google Scholar from 1984 until March 15th, 2024. The JBI Critical Appraisal Checklist for Case-Control Studies was used to assess the quality of included studies. RESULTS Eighteen papers with a case-control design were those that ultimately met the eligibility criteria. A total of 3904 individuals (2315 with periodontitis and 90 with peri-implantitis), and 1589 healthy subjects) were studied. The age range of the study population was 14-70 years, with a mean age ± (SD) of 40.43 ± 6.33 years. A total of 28 genetic variants corresponding to the IL-17A (rs 2275913, rs 3819024, rs 10484879) IL-17F (rs 763780), IL-17R (rs 879576) and IL-23R (rs 11209026) genes were analyzed in this study. Six (33.3%) studies found an association between the IL-17A 197 G/A (rs 2275913) genetic variant and peri-implantitis and periodontitis. One study (5.5%) found an association between the IL-17A rs10484879 variant and peri-implantitis and periodontitis. CONCLUSION Six polymorphisms were evaluated, highlighting rs 2275913 of the cytokine IL-17A in patients with periodontitis or peri-implantitis. Only 50% of studies found an association despite having a small sample. This suggests that other factors such as the degree of disease, systemic diseases and ethnic groups studied may play a role.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Montaño
- Department of Health and Illness as an Individual and Collective ProcessUniversity Center of Tlajomulco, University of Guadalajara (CUTLAJO‐UdeG)Tlajomulco de ZuñigaMexico
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of GuadalajaraGuadalajaraMexico
| | - Mario Alberto Alarcón‐Sánchez
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of GuadalajaraGuadalajaraMexico
- Molecular Biology Department, University Center of Health SciencesUniversity of GuadalajaraGuadalajaraMexico
| | | | - Cristina Hermila Martínez‐Bugarin
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of GuadalajaraGuadalajaraMexico
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of Prosthodontics, Faculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
- Department of Prosthodontics, School of DentistryTehran University of Medical SciencesNorth Karegar StTehranIran
| |
Collapse
|
2
|
Kuchař M, Sloupenská K, Rašková Kafková L, Groza Y, Škarda J, Kosztyu P, Hlavničková M, Mierzwicka JM, Osička R, Petroková H, Walimbwa SI, Bharadwaj S, Černý J, Raška M, Malý P. Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis. Cell Commun Signal 2024; 22:469. [PMID: 39354587 PMCID: PMC11446014 DOI: 10.1186/s12964-024-01846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis. METHODS We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis. RESULTS We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A. CONCLUSIONS We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.
Collapse
Affiliation(s)
- Milan Kuchař
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jozef Škarda
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 708 00, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Marie Hlavničková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Stephen I Walimbwa
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
3
|
Groza Y, Lacina L, Kuchař M, Rašková Kafková L, Zachová K, Janoušková O, Osička R, Černý J, Petroková H, Mierzwicka JM, Panova N, Kosztyu P, Sloupenská K, Malý J, Škarda J, Raška M, Smetana K, Malý P. Small protein blockers of human IL-6 receptor alpha inhibit proliferation and migration of cancer cells. Cell Commun Signal 2024; 22:261. [PMID: 38715108 PMCID: PMC11075285 DOI: 10.1186/s12964-024-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.
Collapse
Affiliation(s)
- Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 12800, Czech Republic.
- Department of Dermatovenerology, 1st Faculty of Medicine, Charles University, U Nemocnice 2, Prague 2, 12000, Czech Republic.
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Kateřina Zachová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Olga Janoušková
- Centre of Nanomaterials and Biotechnologies, University of J. E. Purkyně in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem, 400 96, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna Maria Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Natalya Panova
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Jan Malý
- Centre of Nanomaterials and Biotechnologies, University of J. E. Purkyně in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem, 400 96, Czech Republic
| | - Jozef Škarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 12800, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
4
|
Plavec TV, Klemenčič K, Kuchař M, Malý P, Berlec A. Secretion and surface display of binders of IL-23/IL-17 cytokines and their receptors in Lactococcus lactis as a therapeutic approach against inflammation. Eur J Pharm Sci 2023; 190:106568. [PMID: 37619953 DOI: 10.1016/j.ejps.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine IL-23 activates the IL-23 receptor (IL-23R) and stimulates the differentiation of naïve T helper (Th) cells into a Th17 cell population that secretes inflammatory cytokines and chemokines. This IL-23/Th17 proinflammatory axis drives inflammation in Crohn's disease and ulcerative colitis and represents a therapeutic target of monoclonal antibodies. Non-immunoglobulin binding proteins based on the Streptococcus albumin-binding domain (ABD) provide a small protein alternative to monoclonal antibodies. They can be readily expressed in bacteria. Lactococcus lactis is a safe lactic acid bacterium that has previously been engineered as a vector for the delivery of recombinant therapeutic proteins to mucosal surfaces. Here, L. lactis was engineered to display or secrete ABD-variants against the IL-17 receptor (IL-17R). Its expression and functionality were confirmed with flow cytometry using specific antibody and recombinant IL-17R, respectively. In addition, L. lactis were engineered into multifunctional bacteria that simultaneously express two binders from pNBBX plasmid. First, binders of IL-17R were combined with binder of IL-17. Second, binders of IL-23R were combined with binders of IL-23. The dual functionality of the bacteria was confirmed by flow cytometry using corresponding targets, namely the recombinant receptors IL-17R and IL-23R or the p19 subunit of IL-23. Binding of IL-17 was confirmed by ELISA. With the latter, 97% of IL-17 was removed from solution by 2 × 109 recombinant bacteria. Moreover, multifunctional bacteria targeting IL-17/IL-17R prevented IL-17A-mediated activation of downstream signaling pathways in HEK-Blue IL-17 cell model. Thus, we have developed several multifunctional L. lactis capable of targeting multiple factors of the IL-23/Th17 proinflammatory axis. This represents a novel therapeutic strategy with synergistic potential for the treatment of intestinal inflammations.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana SI-1000, Slovenia
| | - Kaja Klemenčič
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, v. v. i., Průmyslová 595, Vestec 252 50, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, v. v. i., Průmyslová 595, Vestec 252 50, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
5
|
Lay CS, Isidro-Llobet A, Kilpatrick LE, Craggs PD, Hill SJ. Characterisation of IL-23 receptor antagonists and disease relevant mutants using fluorescent probes. Nat Commun 2023; 14:2882. [PMID: 37208328 PMCID: PMC10199020 DOI: 10.1038/s41467-023-38541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | | | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter D Craggs
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
- Crick-GSK Biomedical Linklabs, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
6
|
Dohnálek J, Skálová T. C-type lectin-(like) fold - Protein-protein interaction patterns and utilization. Biotechnol Adv 2022; 58:107944. [PMID: 35301089 DOI: 10.1016/j.biotechadv.2022.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
Abstract
The C-type lectin-like fold (CTL fold) is a building block of many proteins, including saccharide-binding lectins, natural killer cell receptors, macrophage mannose receptor, selectins, collectins, snake venoms and others. Some are important players in innate immunity and are involved in the first-line response to virally infected cells or cancer cells, some play a role in antimicrobial defense, and some are potential targets for fight against problems connected with allergies, obesity, and autoimmunity. The structure of a CTL domain typically contains two α-helices, two small β-sheets and a long surface loop, with two or three disulfide bridges stabilizing the structure. This small domain is often involved in interactions with a target molecule, however, utilizing varied parts of the domain surface, with or without structural modifications. More than 500 three-dimensional structures of CTL fold-containing proteins are available in the Protein Data Bank, including a significant number of complexes with their key interacting partners (protein:protein complexes). The amount of available structural data enables a detailed analysis of the rules of interaction patterns utilized in activation, inhibition, attachment and other pathways or functionalities. Interpretation of known CTL receptor structures and all other CTL-containing proteins and complexes with described three-dimensional structures, complemented with sequence/structure/interaction correlation analysis offers a comprehensive view of the rules of interaction patterns of the CTL fold. The results are of value for prediction of interaction behavior of so far not understood CTL-containing proteins and development of new protein binders based on this fold, with applications in biomedicine or biotechnologies. It follows from the available structural data that almost the whole surface of the CTL fold is utilized in protein:protein interactions, with the heaviest frequency of utilization in the canonical interaction region. The individual categories of interactions differ in the interface buildup strategy. The strongest CTL binders rely on interfaces with large interaction area, presence of hydrophobic core, or high surface complementarity. The typical interaction surfaces of the fold are not conserved in amino acid sequence and can be utilized in design of new binders for biotechnological applications.
Collapse
Affiliation(s)
- Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Průmyslová 595, 25250 Vestec, Czech Republic.
| | - Tereza Skálová
- Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Průmyslová 595, 25250 Vestec, Czech Republic
| |
Collapse
|
7
|
Lay CS, Bridges A, Goulding J, Briddon SJ, Soloviev Z, Craggs PD, Hill SJ. Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET. Cell Chem Biol 2022; 29:19-29.e6. [PMID: 34038748 PMCID: PMC8790524 DOI: 10.1016/j.chembiol.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defense against pathogens but is also implicated in the development of several autoimmune disorders. The IL-23 receptor has become a key target for drug discovery, but the exact mechanism of the receptor ligand interaction remains poorly understood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12Rβ1) and the heteromeric complex formed between them have been measured in living cells using NanoLuciferase-tagged full-length proteins. Here, we demonstrate that TAMRA-tagged IL-23 has a greater than 7-fold higher affinity for IL12Rβ1 than IL23R. However, in the presence of both receptor subunits, IL-23 affinity is increased more than three orders of magnitude to 27 pM. Furthermore, we show that IL-23 induces a potent change in the position of the N-terminal domains of the two receptor subunits, consistent with a conformational change in the heteromeric receptor structure.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK; Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Angela Bridges
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Joelle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Zoja Soloviev
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
8
|
Rodríguez‐Montaño R, Bernard‐Medina AG, Oregon‐Romero E, Martínez‐Rodríguez VMDC, Pita‐López ML, Gómez‐Meda BC, Guerrero‐Velázquez C. IL-23/IL-17 axis and soluble receptors isoforms sIL-23R and sIL-17RA in patients with rheumatoid arthritis-presenting periodontitis. J Clin Lab Anal 2021; 35:e23963. [PMID: 34403509 PMCID: PMC8418468 DOI: 10.1002/jcla.23963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/21/2021] [Accepted: 08/07/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) and periodontitis (P) are chronic inflammatory diseases characterized by joint and radiographic bone loss, respectively. IL-23 and IL-17 have an essential role in the immunopathogenesis of RA, and P. IL-23 stimulates Th17 cells through which produces IL-17, IL-21, and RANKL. IL-17 stimulates fibroblasts to produce RANKL, which initiates bone loss in the joints in RA and the periodontal tissue in periodontitis. The aim of this study was to determine the expression pattern of IL-23/IL-17 axis and soluble receptors isoforms sIL-23R and sIL-17RA of patients with RA presenting P (RAP). MATERIAL AND METHODS Healthy subjects (HS) (n = 42), patients with P (n = 40), RA (n = 20), and patients with RAP (n = 40) were included. Plasma samples were obtained to evaluate the IL-23, IL-17A, sIL-23R, and sIL-17RA by ELISA technique. A nonparametric Mann-Whitney U test was used to compare the differences between groups. A Chi-square was used to compare gender, grade and stage of periodontitis, and DAS28-ESR between the groups. Spearman's rank correlation coefficient was used to study the association between the molecules and clinical parameters. RESULTS IL-23 levels were increased in the RAP group, and lower sIL-23R levels were found in the RAP groups. However, IL-17A was lower in the P and RAP group but not in RA patients. RAP group showed a decrease IL-17A levels in advanced stages of the periodontal disease. CONCLUSION These results suggest that IL-23 and IL-17A tend to downregulate their expression patterns when patients present both rheumatoid arthritis and periodontitis.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Montaño
- Instituto de Investigación en OdontologíaDepartamento de Clínicas Odontológicas IntegralesCentro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
- Doctorado en Ciencias Biomédicas (Orientación Inmunología)Centro Universitario de Ciencias de la Salud. Universidad de GuadalajaraGuadalajaraMéxico
| | | | - Edith Oregon‐Romero
- Instituto de Investigación en Ciencias BiomédicasDepartamento de Biología Molecular y GenómicaCentro Universitario de Ciencias de la Salud. Universidad de GuadalajaraGuadalajaraMéxico
| | | | - María Luisa Pita‐López
- Centro de Investigación en Biología Molecular de las Enfermedades Crónicas (CIBIMEC)Departamento de Ciencias Básicas para la SaludCentro Universitario del Sur. Universidad de GuadalajaraGuadalajaraMéxico
| | - Belinda Claudia Gómez‐Meda
- Departamento de Biología Molecular y GenómicaInstituto de Genética Humana “Dr. Enrique Corona Rivera”Centro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
| | - Celia Guerrero‐Velázquez
- Instituto de Investigación en OdontologíaDepartamento de Clínicas Odontológicas IntegralesCentro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
| |
Collapse
|
9
|
Pham PN, Huličiak M, Biedermannová L, Černý J, Charnavets T, Fuertes G, Herynek Š, Kolářová L, Kolenko P, Pavlíček J, Zahradník J, Mikulecky P, Schneider B. Protein Binder (ProBi) as a New Class of Structurally Robust Non-Antibody Protein Scaffold for Directed Evolution. Viruses 2021; 13:v13020190. [PMID: 33514045 PMCID: PMC7911045 DOI: 10.3390/v13020190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Engineered small non-antibody protein scaffolds are a promising alternative to antibodies and are especially attractive for use in protein therapeutics and diagnostics. The advantages include smaller size and a more robust, single-domain structural framework with a defined binding surface amenable to mutation. This calls for a more systematic approach in designing new scaffolds suitable for use in one or more methods of directed evolution. We hereby describe a process based on an analysis of protein structures from the Protein Data Bank and their experimental examination. The candidate protein scaffolds were subjected to a thorough screening including computational evaluation of the mutability, and experimental determination of their expression yield in E. coli, solubility, and thermostability. In the next step, we examined several variants of the candidate scaffolds including their wild types and alanine mutants. We proved the applicability of this systematic procedure by selecting a monomeric single-domain human protein with a fold different from previously known scaffolds. The newly developed scaffold, called ProBi (Protein Binder), contains two independently mutable surface patches. We demonstrated its functionality by training it as a binder against human interleukin-10, a medically important cytokine. The procedure yielded scaffold-related variants with nanomolar affinity.
Collapse
|
10
|
Cell immunocapture microfluidic chip based on high-affinity recombinant protein binders. Biosens Bioelectron 2021; 172:112784. [PMID: 33161292 DOI: 10.1016/j.bios.2020.112784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Cell immunocapture microfluidic devices represent a rapidly developing field with many potential applications in medical diagnostics. The core of such approach lies in the cell binding to antibody coated surfaces through their surface receptors. Here we show, that the small recombinant protein binders (PBs) can be used for this purpose as well, with the advantage of their constructional flexibility, possibility of fusion with range of tags and cheap mass production. For this purpose, two different PBs derived from Albumin Binding Domain (ABDwt) of streptococcal protein G, so called REX and ARS ligands with proved high affinity and selectivity to the human interleukin-23 (IL-23R) and IL-17 receptor A were used. Four PBs variants recognizing two different epitopes on two different receptors and two PBs variants binding to the same epitope on one receptor but having different peptide spacer with Avitag sequence necessary for their immobilization on sensor surface were tested for cell-capture efficiency. The glass microfluidic Y-system with planar immunocapture channel working in so-called stop-flow dynamic regime was designed. Up to 60-74% immunocapture efficiency of model THP-1 cells on REX/ARS surfaces and practically no cell binding on control ABDwt surfaces was achieved. Moreover, the specific immunocapture of THP-1 cells from mixture with IL-17RA negative DU-145 cells was demonstrated. We discuss the role of the epitope, affinity and immobilization spacer of PBs as well as the influence of stop-flow dynamic regime on the effectivity of THP-1 cell immunocapture. Results can be further exploited in design of microfluidic devices for rare cells immunocapture.
Collapse
|
11
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
12
|
Sun C, Xia J. Treatment of psoriasis: janus kinases inhibitors and biologics for the interleukin-23/Th17 axis. Minerva Med 2020; 111:254-265. [PMID: 32166932 DOI: 10.23736/s0026-4806.20.06460-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With the discovery of the IL-23 / Th17 axis, the treatment of psoriasis has entered a new era. The aim of this study was to explore the progress of biologics and janus kinases (JAK) inhibitors targeting IL-23/Th17 axis in the treatment of psoriasis. review of English-language article was performed. Search terms included IL-17, IL-23, biologics, monoclonal antibodies, neutralizing antibodies, JAK, inhibitors, Psoriasis Area Severity Index and psoriasis. Data were selected from two phase 2 clinical trials; and nine phase 3 randomized, double-blind clinical trials; and other clinical trials. This review analyzes skin lesion clearance and major adverse reactions of 9 mAbs including mirikizumab and bimekizumab. At the same time, the research progress and prospects of three non-IgG small molecule biologics are analyzed too. This paper also compares the efficacy and limitations of biologics targeting the IL-23/Th17 axis with non-biologics acting on the JAK-signal transducer and activator of transcription pathway. The IL-17A/F inhibitors and non-IgG small molecule biologics that are being studied will bring a revolutionary development to the treatment of psoriasis. Topical application of JAK inhibitors can not only achieve the purpose of treating psoriasis, but also reduce the amounts of systemic medication, and reduces side effects. Each drug has its own indication, and the effect of the drug can be better achieved by selecting the indication for the drug.
Collapse
Affiliation(s)
- Chunlei Sun
- Department of Dermatology, The Second Affiliated Hospital of JiLin University, Changchun, China
| | - Jianxin Xia
- Department of Dermatology, The Second Affiliated Hospital of JiLin University, Changchun, China -
| |
Collapse
|
13
|
Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine 2020; 47:247-256. [PMID: 31544770 PMCID: PMC6796546 DOI: 10.1016/j.ebiom.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 01/26/2023] Open
Abstract
Background The development of an effective vaccine preventing HIV-1 infection is hindered by the enormous antigenic variability and unique biochemical and immunological properties of HIV-1 Env glycoprotein, the most promising target for HIV-1 neutralizing antibody. Functional studies of rare elite neutralizers led to the discovery of broadly neutralizing antibodies. Methods We employed a highly complex combinatorial protein library derived from a 5 kDa albumin-binding domain scaffold, fused with support protein of total 38 kDa, to screen for binders of broadly neutralizing antibody VRC01 paratope. The most specific binders were used for immunization of experimental mice to elicit Env-specific antibodies and to test their neutralization activity using a panel of HIV-1 clade C and B pseudoviruses. Findings Three most specific binders designated as VRA017, VRA019, and VRA177 exhibited high specificity to VRC01 antibody. Immunized mice produced Env-binding antibodies which neutralize eight of twelve HIV-1 Tier 2 pseudoviruses. Molecular modelling revealed a shape complementarity between VRA proteins and a part of VRC01 gp120 interacting surface. Interpretation This strategy based on the identification of protein replicas of broadly neutralizing antibody paratope represents a novel approach in HIV-1 vaccine development. This approach is not affected by low immunogenicity of neutralization-sensitive epitopes, variability, and unique biochemical properties of HIV-1 Env used as a crucial antigen in the majority of contemporary tested vaccines. Fund Czech Health Research Council 15-32198A, Ministry of Health, Czech Republic.
Collapse
|
14
|
Allen SJ, Lumb KJ. Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:253-303. [PMID: 32312425 DOI: 10.1016/bs.apcsb.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| |
Collapse
|
15
|
Petroková H, Mašek J, Kuchař M, Vítečková Wünschová A, Štikarová J, Bartheldyová E, Kulich P, Hubatka F, Kotouček J, Turánek Knotigová P, Vohlídalová E, Héžová R, Mašková E, Macaulay S, Dyr JE, Raška M, Mikulík R, Malý P, Turánek J. Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders. Pharmaceutics 2019; 11:pharmaceutics11120642. [PMID: 31810280 PMCID: PMC6955937 DOI: 10.3390/pharmaceutics11120642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Development of tools for direct thrombus imaging represents a key step for diagnosis and treatment of stroke. Nanoliposomal carriers of contrast agents and thrombolytics can be functionalized to target blood thrombi by small protein binders with selectivity for fibrin domains uniquely formed on insoluble fibrin. We employed a highly complex combinatorial library derived from scaffold of 46 amino acid albumin-binding domain (ABD) of streptococcal protein G, and ribosome display, to identify variants recognizing fibrin cloth in human thrombus. We constructed a recombinant target as a stretch of three identical fibrin fragments of 16 amino acid peptide of the Bβ chain fused to TolA protein. Ribosome display selection followed by large-scale Enzyme-Linked ImmunoSorbent Assay (ELISA) screening provided four protein variants preferentially binding to insoluble form of human fibrin. The most specific binder variant D7 was further modified by C-terminal FLAG/His-Tag or double His-tag for the attachment onto the surface of nanoliposomes via metallochelating bond. D7-His-nanoliposomes were tested using in vitro flow model of coronary artery and their binding to fibrin fibers was demonstrated by confocal and electron microscopy. Thus, we present here the concept of fibrin-targeted binders as a platform for functionalization of nanoliposomes in the development of advanced imaging tools and future theranostics.
Collapse
Affiliation(s)
- Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
| | - Andrea Vítečková Wünschová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Jana Štikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U nemocnice 2094/1, 128 20 Praha 2, Czech Republic; (J.Š.); (J.E.D.)
| | - Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - František Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Pavlína Turánek Knotigová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Eva Vohlídalová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Renata Héžová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Eliška Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Stuart Macaulay
- Malvern Instruments Ltd., Enigma Business Park, Grove Lane, Malvern WR14 1XZ, UK;
| | - Jan Evangelista Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U nemocnice 2094/1, 128 20 Praha 2, Czech Republic; (J.Š.); (J.E.D.)
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Robert Mikulík
- The International Clinical Research Center ICRC and Neurology Department of St. Anne’s University Hospital in Brno, Pekařská 53, 656 91 Brno, Czech Republic;
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
- Correspondence: (P.M.); (J.T.); Tel.: +420-325-873-763 (P.M.); +420-732-813-577 (J.T.)
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
- Correspondence: (P.M.); (J.T.); Tel.: +420-325-873-763 (P.M.); +420-732-813-577 (J.T.)
| |
Collapse
|
16
|
Engineered Lactococcus lactis Secreting IL-23 Receptor-Targeted REX Protein Blockers for Modulation of IL-23/Th17-Mediated Inflammation. Microorganisms 2019; 7:microorganisms7050152. [PMID: 31137908 PMCID: PMC6560508 DOI: 10.3390/microorganisms7050152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis, a probiotic bacterium of food origin, has recently been demonstrated as a suitable strain for the production and in vivo delivery of therapeutically important proteins into the gut. We aimed to engineer recombinant L. lactis cells producing/secreting REX binding proteins that have been described as IL-23 receptor (IL-23R) blockers and IL-23R antagonists suppressing the secretion of cytokine IL-17A, a pivotal step in the T-helper Th17-mediated pro-inflammatory cascade, as well as in the development of autoimmune diseases, including inflammatory bowel disease (IBD). To reach this goal, we introduced cDNA sequences coding for REX009, REX115, and REX125 proteins into plasmid vectors carrying a Usp45 secretion signal, a FLAG tag sequence consensus, and a LysM-containing cA surface anchor (AcmA), thus allowing cell-surface peptidoglycan anchoring. These plasmids, or their non-FLAG/non-AcmA versions, were introduced into L. lactis host cells, thus generating unique recombinant L. lactis-REX strains. We demonstrate that all three REX proteins are expressed in L. lactis cells and are efficiently displayed on the bacterial surface, as tested by flow cytometry using an anti-FLAG antibody conjugate. Upon 10-fold concentration of the conditioned media, a REX125 secretory variant can be detected by Western blotting. To confirm that the FLAG/non-FLAG REX proteins displayed by L. lactis retain their binding specificity, cell-surface interactions of REX proteins with an IL-23R-IgG chimera were demonstrated by flow cytometry. In addition, statistically significant binding of secreted REX009 and REX115 proteins to bacterially produced, soluble human IL-23R was confirmed by ELISA. We conclude that REX-secreting L. lactis strains were engineered that might serve as IL-23/IL-23R blockers in an experimentally induced mouse model of colitis.
Collapse
|
17
|
ABD-Derived Protein Blockers of Human IL-17 Receptor A as Non-IgG Alternatives for Modulation of IL-17-Dependent Pro-Inflammatory Axis. Int J Mol Sci 2018; 19:ijms19103089. [PMID: 30304852 PMCID: PMC6213189 DOI: 10.3390/ijms19103089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin 17 (IL-17) and its cognate receptor A (IL-17RA) play a crucial role in Th17 cells-mediated pro-inflammatory pathway and pathogenesis of several autoimmune disorders including psoriasis. IL-17 is mainly produced by activated Th-17 helper cells upon stimulation by IL-23 and, via binding to its receptors, mediates IL-17-driven cell signaling in keratinocytes. Hyper-proliferation of keratinocytes belongs to major clinical manifestations in psoriasis. To modulate IL-17-mediated inflammatory cascade, we generated a unique collection of IL-17RA-targeting protein binders that prevent from binding of human IL-17A cytokine to its cell-surface receptor. To this goal, we used a highly complex combinatorial library derived from scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived high-affinity ligands of human IL-17RA, called ARS binders. From 67 analyzed ABD variants, 7 different sequence families were identified. Representatives of these groups competed with human IL-17A for binding to recombinant IL-17RA receptor as well as to IL-17RA-Immunoglobulin G chimera, as tested in enzyme-linked immunosorbent assay (ELISA). Five ARS variants bound to IL-17RA-expressing THP-1 cells and blocked binding of human IL-17 cytokine to the cell surface, as tested by flow cytometry. Three variants exhibited high-affinity binding with a nanomolar Kd value to human keratinocyte HaCaT cells, as measured using Ligand Tracer Green Line. Upon IL-17-stimulated activation, ARS variants inhibited secretion of Gro-α (CXCL1) by normal human skin fibroblasts in vitro. Thus, we identified a novel class of inhibitory ligands that might serve as immunosuppressive IL-17RA-targeted non-IgG protein antagonists.
Collapse
|
18
|
Nguyen CT, Bloch Y, Składanowska K, Savvides SN, Adamopoulos IE. Pathophysiology and inhibition of IL-23 signaling in psoriatic arthritis: A molecular insight. Clin Immunol 2018; 206:15-22. [PMID: 30196070 DOI: 10.1016/j.clim.2018.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory arthritis of unknown etiology, and currently the cellular and molecular interactions that dictate its pathogenesis remain elusive. A role of the interleukin-23 (IL-23)/IL-23R (IL-23 receptor) interaction in the development of psoriasis and PsA is well established. As IL-23 regulates the differentiation and activation of innate and adaptive immunity, it pertains to a very complex pathophysiology involving a plethora of effectors and transducers. In this review, we will discuss recent advances on the cellular and molecular pathophysiological mechanisms that regulate the initiation and progression of PsA as well as new therapeutic approaches for IL-23/IL-23R targeted therapeutics.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, CA, USA
| | - Yehudi Bloch
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, Ghent 9052, Belgium; VIB Center for Inflammation Research, Technologiepark 927, Ghent 9052, Belgium
| | - Katarzyna Składanowska
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, Ghent 9052, Belgium; VIB Center for Inflammation Research, Technologiepark 927, Ghent 9052, Belgium
| | - Savvas N Savvides
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, Ghent 9052, Belgium; VIB Center for Inflammation Research, Technologiepark 927, Ghent 9052, Belgium
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, CA, USA; Shriners Hospitals for Children Northern California, Institute for Pediatric Regenerative Medicine, CA, USA.
| |
Collapse
|
19
|
Wang C, Wang L, Hu J, Li H, Kijlstra A, Yang P. Increased Expression of IL-23 Receptor (IL-23R) in Vogt-Koyanagi-Harada (VKH) Disease. Curr Eye Res 2018; 43:1369-1373. [PMID: 29877734 DOI: 10.1080/02713683.2018.1485952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Vogt-Koyanagi-Harada (VKH) disease is an autoimmune disease mediated by T cells that target melanocytes. It has been shown that IL-23 receptor (IL-23R) signaling promotes the generation of pathogenic T helper 17 cells. The aim of this study was designed to detect the possible role of IL-23R in VKH disease. METHODS Subjects were divided into an active and inactive VKH patient group and a normal control group. The IL-23R level in peripheral blood mononuclear cells (PBMCs) was measured by flow cytometry and real-time polymerase chain reaction. PBMCs were stimulated with serum from patients or controls to detect the influence of serum from VKH patients on IL-23R expression. RESULTS The IL-23R mRNA level was markedly increased in PBMCs from the active VKH patient group as compared to normal controls. Flow cytometry analysis showed that there was also an elevated IL-23R protein level in PBMCs in active VKH patients. The IL-23R protein level was higher in PBMCs obtained from healthy controls when they were cultured with serum from active VKH patient as compared to cell cultured with serum from normal controls. After the intraocular inflammation in VKH patients was controlled, the IL-23R gene expression returned back to normal levels. CONCLUSION Our study suggests that an elevated IL-23R level may participate in the development of VKH disease.
Collapse
Affiliation(s)
- Chaokui Wang
- a Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , The First Affiliated Hospital of Chongqing Medical University , Chongqing , P. R. China
| | - Luoziyi Wang
- a Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , The First Affiliated Hospital of Chongqing Medical University , Chongqing , P. R. China
| | - Jianping Hu
- a Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , The First Affiliated Hospital of Chongqing Medical University , Chongqing , P. R. China
| | - Hong Li
- a Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , The First Affiliated Hospital of Chongqing Medical University , Chongqing , P. R. China
| | - Aize Kijlstra
- b University Eye Clinic Maastricht , Maastricht , The Netherlands
| | - Peizeng Yang
- a Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute , The First Affiliated Hospital of Chongqing Medical University , Chongqing , P. R. China
| |
Collapse
|
20
|
p19-Targeting ILP Protein Blockers of IL-23/Th-17 Pro-Inflammatory Axis Displayed on Engineered Bacteria of Food Origin. Int J Mol Sci 2018; 19:ijms19071933. [PMID: 29966384 PMCID: PMC6073689 DOI: 10.3390/ijms19071933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
IL-23-mediated Th-17 cell activation and stimulation of IL-17-driven pro-inflammatory axis has been associated with autoimmunity disorders such as Inflammatory Bowel Disease (IBD) or Crohn’s Disease (CD). Recently we developed a unique class of IL-23-specific protein blockers, called ILP binding proteins that inhibit binding of IL-23 to its cognate cell-surface receptor (IL-23R) and exhibit immunosuppressive effect on human primary blood leukocytes ex vivo. In this study, we aimed to generate a recombinant Lactococcus lactis strain which could serve as in vivo producer/secretor of IL-23 protein blockers into the gut. To achieve this goal, we introduced ILP030, ILP317 and ILP323 cDNA sequences into expression plasmid vector containing USP45 secretion signal, FLAG sequence consensus and LysM-containing cA surface anchor (AcmA) ensuring cell-surface peptidoglycan anchoring. We demonstrate that all ILP variants are expressed in L. lactis cells, efficiently transported and secreted from the cell and displayed on the bacterial surface. The binding function of AcmA-immobilized ILP proteins is documented by interaction with a recombinant p19 protein, alpha subunit of human IL-23, which was assembled in the form of a fusion with Thioredoxin A. ILP317 variant exhibits the best binding to the human IL-23 cytokine, as demonstrated for particular L.lactis-ILP recombinant variants by Enzyme-Linked ImmunoSorbent Assay (ELISA). We conclude that novel recombinant ILP-secreting L. lactis strains were developed that might be useful for further in vivo studies of IL-23-mediated inflammation on animal model of experimentally-induced colitis.
Collapse
|
21
|
Křížová L, Kuchař M, Petroková H, Osička R, Hlavničková M, Pelák O, Černý J, Kalina T, Malý P. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity 2017; 50:102-113. [DOI: 10.1080/08916934.2016.1272598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lucie Křížová
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v. v. i, BIOCEV Research Center, Vestec, Czech Republic,
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v. v. i, BIOCEV Research Center, Vestec, Czech Republic,
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v. v. i, BIOCEV Research Center, Vestec, Czech Republic,
| | - Radim Osička
- Laboratory of Molecular Biology of the Bacterial Pathogens, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic,
| | - Marie Hlavničková
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v. v. i, BIOCEV Research Center, Vestec, Czech Republic,
| | - Ondřej Pelák
- CLIP, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic, and
| | - Jiří Černý
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Czech Academy of Sciences, v. v. i, BIOCEV Research Center, Vestec, Czech Republic
| | - Tomáš Kalina
- CLIP, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic, and
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v. v. i, BIOCEV Research Center, Vestec, Czech Republic,
| |
Collapse
|
22
|
Zadravec P, Marečková L, Petroková H, Hodnik V, Perišić Nanut M, Anderluh G, Štrukelj B, Malý P, Berlec A. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit. PLoS One 2016; 11:e0162625. [PMID: 27606705 PMCID: PMC5015993 DOI: 10.1371/journal.pone.0162625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023] Open
Abstract
Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine.
Collapse
Affiliation(s)
- Petra Zadravec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Lucie Marečková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
23
|
Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (PSP94). Protein Cell 2016; 6:774-9. [PMID: 26264490 PMCID: PMC4598320 DOI: 10.1007/s13238-015-0194-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Brod SA. Ingested (oral) anti-IL-12/23 inhibits EAE. J Neurol Sci 2015; 361:19-25. [PMID: 26810510 DOI: 10.1016/j.jns.2015.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Blocking the activity of IL-12/23 can inhibit autoimmune diseases such as psoriasis. OBJECTIVE We examined whether an antibody against IL-12/23, ustekinumab (UTZ) (Stelera®), used clinically in psoriasis would have similar anti-inflammatory effects in EAE after oral administration. DESIGN/METHODS B6 mice were immunized with MOG peptide 35-55 and gavaged with isotype IgG control or UTZ during ongoing disease. Splenocytes, CD4(+) T cells or macrophages/monocyte lineage cells (CD11b(+)) from control fed or UTZ fed mice were adoptively transferred into active MOG peptide 35-55 immunized recipient mice during ongoing disease. Actively fed and recipient mice were examined for disease inhibition, inflammation, and cytokine responses. RESULTS Ingested (oral) UTZ inhibited ongoing disease and decreased inflammation. Adoptively transferred cells from UTZ fed donors protected against actively induced disease and decreased inflammation. Oral UTZ decreased pro-inflammatory cytokines Th1-like cytokines IL-2, IL-12, IFN-γ, IL-17 (Teff) and TNF-α in UTZ fed mice and increased counter-regulatory cytokines IL-4, IL-10 and IL-13 in recipients of donor cells from UTZ fed mice. CONCLUSIONS Ingested (orally administered) UTZ can inhibit disease, CNS inflammation, decrease pro-inflammatory Th1-like and Th17 cytokines and increase Th2-like anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, Division of MS/Neuroimmunology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Cai JY, Li MJ. Interleukin 23 regulates the functions of human decidual immune cells during early pregnancy. Biochem Biophys Res Commun 2015; 469:340-4. [PMID: 26657845 DOI: 10.1016/j.bbrc.2015.11.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND This study investigated the effects of interleukin 23 (IL-23) on the production of cytokines (IL-1, IL-4, IL-10, and IL-17), the differentiation of Treg/Th17 and STAT3 (i.e., signal transducer and activator of transcription 3) in human decidual immune cells (DICs) during early pregnancy. METHODS DICs were treated with recombinant human IL-23 and an antibody against IL-23 subunit p19. The differentiation of Treg and Th17 cells was detected by flow cytometry. Levels of IL-23 receptor (IL-23R), STAT3, and phosphorylated STAT3 (pSTAT3) was examined by Western blot. The production of IL1, IL4, IL10, and IL-17 in DICs was measured by ELISA. RESULTS Exogenous recombinant human IL-23 significantly promoted the differentiation of Th17 cells from DICs, while anti-IL-23 antibody significantly promoted the differentiation of Treg cells from DICs. Consistent with the differentiation of Th17 and Tregs cells, levels of IL-1β and IL-17 correlated positively with IL-23 treatment, and anti-IL-23 antibody increased the secretion of IL-4 and IL-10 from DICs. Levels of pSTAT3, but not STAT3 or IL-23R, were significantly elevated by recombinant IL-23 treatment; anti-IL-23 antibody significantly decreased the levels of pSTAT3 and IL-23R in DICs. CONCLUSIONS IL-23 mediates the differentiation of Th17 and Treg cells and the production of associated cytokines in DICs. The potential mechanism likely involves the STAT3 pathway.
Collapse
Affiliation(s)
- Jun-Ying Cai
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China.
| | - Mu-Jun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China.
| |
Collapse
|
26
|
Vaisocherová H, Šípová H, Víšová I, Bocková M, Špringer T, Laura Ermini M, Song X, Krejčík Z, Chrastinová L, Pastva O, Pimková K, Dostálová Merkerová M, Dyr JE, Homola J. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens Bioelectron 2015; 70:226-31. [DOI: 10.1016/j.bios.2015.03.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
|
27
|
Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 2015; 33:408-18. [DOI: 10.1016/j.tibtech.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
|
28
|
Yadegar M, Hekmatimoghaddam SH, Nezami Saridar S, Jebali A. The viability of mouse spermatogonial germ cells on a novel scaffold, containing human serum albumin and calcium phosphate nanoparticles. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2015; 13:141-8. [PMID: 26000004 PMCID: PMC4426153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/08/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND In spermatogenesis, spermatogonial cells differentiate to the haploid gametes. It has been shown that spermatogenesis can be done at in vitro condition. In vitro spermatogenesis may provide an open window to treat male infertility. OBJECTIVE The aim of this study was to evaluate the effects of a novel scaffold containing human serum albumin (HSA)/tri calcium phosphate nanoparticles (TCP NPs) on the mouse spermatogonial cell line (SCL). MATERIALS AND METHODS First, TCP NPs were synthesized by reaction of calcium nitrate and diammonium phosphate at pH 13. Then, serial concentrations of TCP NPs were separately added to 500 mg/mL HSA, and incubated in the 100(o)C water for 30 min. In the next step, each scaffold was cut (2×2mm), placed into sterile well of microplate, and then incubated for 1, 2, and 3 days at 37(o)C with mouse SCL. After incubation, the cytotoxicity of the scaffolds was evaluated by different tests including 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) assay, vital staining, and cell counting. On the other hand, the release of TCP NPs and HSA from the scaffolds was measured. RESULTS Based on microscopic observation, the size of cavities for all scaffolds was near 200-500 µm, and the size of TCP NPs was near 50-100 nm. All toxicity tests showed that the increase of TCP concentration in the scaffold did not affect mouse SCL. It means that the percentage of cell viability, LDH release, vital cells, and cell quantity was 85%, 105%, 90%, and 110%, respectively. But, the increase of incubation time led to increase of LDH release (up to 115%) and cell count (up to 115%). Also, little decrease of cell viability and vital cells was seen when incubation time was increased. Here, no release of TCP NPs and HSA was seen after increase of TCP concentration and incubation time. CONCLUSION It can be concluded that the increase of TCP concentration in HSA/ TCP NPs scaffold does not lead to cytotoxicity. On the other hand, the increase of incubation time leads to increase of mouse SCL cell death. In this study, it was found that TCP NPs and HSA could not release from the scaffolds. In future, both proliferation and differentiation of mouse SCL on HSA/TCP NPs scaffold must be checked over more wide incubation times.
Collapse
Affiliation(s)
- Mona Yadegar
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | | | | - Ali Jebali
- Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Iran.
| |
Collapse
|
29
|
Schröder J, Moll JM, Baran P, Grötzinger J, Scheller J, Floss DM. Non-canonical interleukin 23 receptor complex assembly: p40 protein recruits interleukin 12 receptor β1 via site II and induces p19/interleukin 23 receptor interaction via site III. J Biol Chem 2014; 290:359-70. [PMID: 25371211 DOI: 10.1074/jbc.m114.617597] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
IL-23, composed of the cytokine subunit p19 and the soluble α receptor subunit p40, binds to a receptor complex consisting of the IL-23 receptor (IL-23R) and the IL-12 receptor β1 (IL-12Rβ1). Complex formation was hypothesized to follow the "site I-II-III" architectural paradigm, with site I of p19 being required for binding to p40, whereas sites II and III of p19 mediate binding to IL-12Rβ1 and IL-23R, respectively. Here we show that the binding mode of p19 to p40 and of p19 to IL-23R follow the canonical site I and III paradigm but that interaction of IL-23 to IL-12Rβ1 is independent of site II in p19. Instead, binding of IL-23 to the cytokine binding module of IL-12Rβ1 is mediated by domains 1 and 2 of p40 via corresponding site II amino acids of IL-12Rβ1. Moreover, domains 2 and 3 of p40 were sufficient for complex formation with p19 and to induce binding of p19 to IL-23R. The Fc-tagged fusion protein of p40_D2D3/p19 did, however, not act as a competitive IL-23 antagonist but, at higher concentrations, induced proliferation via IL-23R but independent of IL-12Rβ1. On the basis of our experimental validation, we propose a non-canonical topology of the IL-23·IL-23R·IL-12Rβ1 complex. Furthermore, our data help to explain why p40 is an antagonist of IL-23 and IL-12 signaling and show that site II of p19 is dispensable for IL-23 signaling.
Collapse
Affiliation(s)
- Jutta Schröder
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Paul Baran
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Joachim Grötzinger
- the Institute of Biochemistry, Medical Faculty, Christian Albrechts University, 24098 Kiel, Germany
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| | - Doreen M Floss
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany and
| |
Collapse
|