1
|
Daskou M, Mu W, Sharma M, Vasilopoulos H, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. ApoA-I mimetics reduce systemic and gut inflammation in chronic treated HIV. PLoS Pathog 2022; 18:e1010160. [PMID: 34995311 PMCID: PMC8740974 DOI: 10.1371/journal.ppat.1010160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William Mu
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hariclea Vasilopoulos
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rachel Heymans
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eleni Ritou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Philip Hamid
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Athanasios Kossyvakis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shubhendu Sen Roy
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Scott G. Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alan M. Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Mukherjee P, Chattopadhyay A, Grijalva V, Dorreh N, Lagishetty V, Jacobs JP, Clifford BL, Vallim T, Mack JJ, Navab M, Reddy ST, Fogelman AM. Oxidized phospholipids cause changes in jejunum mucus that induce dysbiosis and systemic inflammation. J Lipid Res 2022; 63:100153. [PMID: 34808192 PMCID: PMC8953663 DOI: 10.1016/j.jlr.2021.100153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | | | - Victor Grijalva
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA; UCLA Microbiome Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA; UCLA Microbiome Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; The Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System Los Angeles, Los Angeles, CA, USA
| | | | - Thomas Vallim
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA; Department of Biological Chemistry, Los Angeles, CA, USA
| | - Julia J Mack
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Theodoros K, Sharma M, Anton P, Hugo C, Ellen O, Hultgren NW, Ritou E, Williams DS, Orian S S, Srinivasa T R. The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence 2021; 12:2214-2227. [PMID: 34494942 PMCID: PMC8437485 DOI: 10.1080/21505594.2021.1964329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.
Collapse
Affiliation(s)
- Kelesidis Theodoros
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Madhav Sharma
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Petcherski Anton
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Cristelle Hugo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - O’Connor Ellen
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
| | - Nan W Hultgren
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Eleni Ritou
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David S Williams
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shirihai Orian S
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Reddy Srinivasa T
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Mu W, Sharma M, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Papesh J, Meriwether D, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. Apolipoprotein A-I mimetics attenuate macrophage activation in chronic treated HIV. AIDS 2021; 35:543-553. [PMID: 33306550 PMCID: PMC8010648 DOI: 10.1097/qad.0000000000002785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Despite antiretroviral therapy (ART), there is an unmet need for therapies to mitigate immune activation in HIV infection. The goal of this study is to determine whether the apoA-I mimetics 6F and 4F attenuate macrophage activation in chronic HIV. DESIGN Preclinical assessment of the in-vivo impact of Tg6F and the ex-vivo impact of apoA-I mimetics on biomarkers of immune activation and gut barrier dysfunction in treated HIV. METHODS We used two humanized murine models of HIV infection to determine the impact of oral Tg6F with ART (HIV+ART+Tg6F+) on innate immune activation (plasma human sCD14, sCD163) and gut barrier dysfunction [murine I-FABP, endotoxin (LPS), LPS-binding protein (LBP), murine sCD14]. We also used gut explants from 10 uninfected and 10 HIV-infected men on potent ART and no morbidity, to determine the impact of ex-vivo treatment with 4F for 72 h on secretion of sCD14, sCD163, and I-FABP from gut explants. RESULTS When compared with mice treated with ART alone (HIV+ART+), HIV+ART+Tg6F+ mice attenuated macrophage activation (h-sCD14, h-sCD163), gut barrier dysfunction (m-IFABP, LPS, LBP, and m-sCD14), plasma and gut tissue oxidized lipoproteins. The results were consistent with independent mouse models and ART regimens. Both 4F and 6F attenuated shedding of I-FABP and sCD14 from gut explants from HIV-infected and uninfected participants. CONCLUSION Given that gut barrier dysfunction and macrophage activation are contributors to comorbidities like cardiovascular disease in HIV, apoA-I mimetics should be tested as therapy for morbidity in chronic treated HIV.
Collapse
Affiliation(s)
- William Mu
- Division of Infectious Diseases
- Division of Hematology and Oncology
| | | | | | | | | | - Philip Hamid
- Division of Infectious Diseases
- Division of Hematology and Oncology
| | | | | | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - Arnab Chattopadhyay
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - Jeremy Papesh
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - David Meriwether
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | | | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- Department of Molecular and Medical Pharmacology
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
5
|
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol 2020; 73:158-168. [PMID: 33188891 DOI: 10.1016/j.semcancer.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Samuel C Delk
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029, Madrid, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Antoni M. Claret 167, 08025, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Ruffenach G, O'Connor E, Vaillancourt M, Hong J, Cao N, Sarji S, Moazeni S, Papesh J, Grijalva V, Cunningham CM, Shu L, Chattopadhyay A, Tiwari S, Mercier O, Perros F, Umar S, Yang X, Gomes AV, Fogelman AM, Reddy ST, Eghbali M. Oral 15-Hydroxyeicosatetraenoic Acid Induces Pulmonary Hypertension in Mice by Triggering T Cell-Dependent Endothelial Cell Apoptosis. Hypertension 2020; 76:985-996. [PMID: 32713273 DOI: 10.1161/hypertensionaha.120.14697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell-mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE-fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE-fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE-induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell-dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Ellen O'Connor
- Molecular Toxicology Interdepartmental Degree Program (E.O., S.T.R.)
| | - Mylène Vaillancourt
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Jason Hong
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
- Department of Medicine, Division of Pulmonary and Critical Care (J.H.)
| | - Nancy Cao
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Shervin Sarji
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Shayan Moazeni
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Jeremy Papesh
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Christine M Cunningham
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Le Shu
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California (L.S., X.Y.)
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Shuchita Tiwari
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA (S.T., A.V.G.)
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation (O.M.), Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Frédéric Perros
- andUMR-S 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (F.P.), Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Soban Umar
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California (L.S., X.Y.)
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA (S.T., A.V.G.)
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program (E.O., S.T.R.)
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Mansoureh Eghbali
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| |
Collapse
|
7
|
Mukherjee P, Chattopadhyay A, Fogelman AM. The role of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer. Curr Opin Lipidol 2019; 30:383-387. [PMID: 31356236 PMCID: PMC6953609 DOI: 10.1097/mol.0000000000000629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To discuss recent findings on the importance of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer. RECENT FINDINGS Integrin β7 natural gut intraepithelial T cells modulated metabolism and accelerated atherosclerosis in mice. Reducing the generation of lysophospholipids in the small intestine mimicked bariatric surgery and improved diabetes. Enterocyte-specific knockdown of stearoyl-CoA desaturase-1 significantly improved dyslipidemia in LDL receptor null (Ldlr) mice fed a Western diet. Adding a concentrate of tomatoes transgenic for the apolipoprotein A-I mimetic peptide 6F to the chow of wild-type mice altered lipid metabolism in the small intestine, preserved Notch signaling and reduced tumor burden in mouse models. The phospholipid-remodeling enzyme Lpcat3 regulated intestinal stem cells and progenitor cells by stimulating cholesterol biosynthesis; increasing cholesterol in the diet or through genetic manipulation promoted tumorigenesis in Apc mice. SUMMARY The small intestine is important for regulating metabolism and inflammation in animal models of both atherosclerosis and cancer.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
8
|
Su F, Spee C, Araujo E, Barron E, Wang M, Ghione C, Hinton DR, Nusinowitz S, Kannan R, Reddy ST, Farias-Eisner R. A Novel HDL-Mimetic Peptide HM-10/10 Protects RPE and Photoreceptors in Murine Models of Retinal Degeneration. Int J Mol Sci 2019; 20:ijms20194807. [PMID: 31569695 PMCID: PMC6801888 DOI: 10.3390/ijms20194807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 01/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD. Oxidative stress plays a key role in the development of AMD. We generated a chimeric high-density lipoprotein (HDL), mimetic peptide named HM-10/10, with anti-oxidant properties and investigated its potential for the treatment of retinal disease using cell culture and animal models of RPE and photoreceptor (PR) degeneration. Treatment with HM-10/10 peptide prevented human fetal RPE cell death caused by tert-Butyl hydroperoxide (tBH)-induced oxidative stress and sodium iodate (NaIO3), which causes RPE atrophy and is a model of geographic atrophy in mice. We also show that HM-10/10 peptide ameliorated photoreceptor cell death and significantly improved retinal function in a mouse model of N-methyl-N-nitrosourea (MNU)-induced PR degeneration. Our results demonstrate that HM-10/10 protects RPE and retina from oxidant injury and can serve as a potential therapeutic agent for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Feng Su
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Christine Spee
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Eduardo Araujo
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Eric Barron
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Mo Wang
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Caleb Ghione
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - David R Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA.
| | - Steven Nusinowitz
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ram Kannan
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Srinivasa T Reddy
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Obstetrics and Gynecology, School of Medicine, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
9
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
10
|
Meriwether D, Sulaiman D, Volpe C, Dorfman A, Grijalva V, Dorreh N, Solorzano-Vargas RS, Wang J, O’Connor E, Papesh J, Larauche M, Trost H, Palgunachari MN, Anantharamaiah G, Herschman HR, Martin MG, Fogelman AM, Reddy ST. Apolipoprotein A-I mimetics mitigate intestinal inflammation in COX2-dependent inflammatory bowel disease model. J Clin Invest 2019; 129:3670-3685. [PMID: 31184596 PMCID: PMC6715371 DOI: 10.1172/jci123700] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclooxygenase 2 (Cox2) total knockout and myeloid knockout (MKO) mice develop Crohn's-like intestinal inflammation when fed cholate-containing high fat diet (CCHF). We demonstrated that CCHF impaired intestinal barrier function and increased translocation of endotoxin, initiating TLR/MyD88-dependent inflammation in Cox2 KO but not WT mice. Cox2 MKO increased pro-inflammatory mediators in LPS-activated macrophages, and in the intestinal tissue and plasma upon CCHF challenge. Cox2 MKO also reduced inflammation resolving lipoxin A4 (LXA4) in intestinal tissue, while administration of an LXA4 analog rescued disease in Cox2 MKO mice fed CCHF. The apolipoprotein A-I (APOA1) mimetic 4F mitigated disease in both the Cox2 MKO/CCHF and piroxicam-accelerated Il10-/- models of inflammatory bowel disease (IBD) and reduced elevated levels of pro-inflammatory mediators in tissue and plasma. APOA1 mimetic Tg6F therapy was also effective in reducing intestinal inflammation in the Cox2 MKO/CCHF model. We further demonstrated that APOA1 mimetic peptides: i) inhibited LPS and oxidized 1-palmitoyl-2-arachidonoyl-sn-phosphatidylcholine (oxPAPC) dependent pro-inflammatory responses in human macrophages and intestinal epithelium; and ii) directly cleared pro-inflammatory lipids from mouse intestinal tissue and plasma. Our results support a causal role for pro-inflammatory and inflammation resolving lipids in IBD pathology and a translational potential for APOA1 mimetic peptides for the treatment of IBD.
Collapse
Affiliation(s)
- David Meriwether
- Department of Medicine, Division of Cardiology
- Department of Molecular and Medical Pharmacology
| | | | | | | | | | | | | | - Jifang Wang
- Department of Pediatrics, Division of Gastroenterology, and
| | | | | | - Muriel Larauche
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | - G.M. Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology
- Department of Molecular and Medical Pharmacology
- Molecular Toxicology Interdepartmental Degree Program
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
11
|
Henrich SE, Thaxton CS. An update on synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev Anticancer Ther 2019; 19:515-528. [DOI: 10.1080/14737140.2019.1624529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stephen E. Henrich
- Department of Urology, Simpson Querrey Institute for BioNanotechnology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - C. Shad Thaxton
- Department of Urology, Simpson Querrey Institute for BioNanotechnology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Mukherjee P, Hough G, Chattopadhyay A, Grijalva V, O'Connor EI, Meriwether D, Wagner A, Ntambi JM, Navab M, Reddy ST, Fogelman AM. Role of enterocyte stearoyl-Co-A desaturase-1 in LDLR-null mice. J Lipid Res 2018; 59:1818-1840. [PMID: 30139760 DOI: 10.1194/jlr.m083527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
After crossing floxed stearoyl-CoA desaturase-1 (Scd1 fl/fl) mice with LDL receptor-null (ldlr -/-) mice, and then Villin Cre (VilCre) mice, enterocyte Scd1 expression in Scd1 fl/fl/ldlr -/-/VilCre mice was reduced 70%. On Western diet (WD), Scd1 fl/fl/ldlr -/- mice gained more weight than Scd1 fl/fl/ldlr -/-/VilCre mice (P < 0.0023). On WD, jejunum levels of lysophosphatidylcholine (LysoPC) 18:1 and lysophosphatidic acid (LPA) 18:1 were significantly less in Scd1 fl/fl/ldlr -/-/VilCre compared with Scd1 fl/fl/ldlr -/- mice (P < 0.0004 and P < 0.026, respectively). On WD, Scd1 fl/fl/ldlr -/-/VilCre mice compared with Scd1 fl/fl/ldlr -/- mice had lower protein levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), toll-like receptor 4 (TLR4), and myeloid differentiation factor-88 (MyD88) in enterocytes and plasma, and less dyslipidemia and systemic inflammation. Adding a concentrate of tomatoes transgenic for the apoA-I mimetic peptide 6F (Tg6F) to WD resulted in reduced enterocyte protein levels of LBP, CD14, TLR4, and MyD88 in Scd1 fl/fl/ldlr -/- mice similar to that seen in Scd1 fl/fl/ldlr -/-/VilCre mice. Adding LysoPC 18:1 to WD did not reverse the effects of enterocyte Scd1 knockdown. Adding LysoPC 18:1 (but not LysoPC 18:0) to chow induced jejunum Scd1 expression and increased dyslipidemia and plasma serum amyloid A and interleukin 6 levels in Scd1 fl/fl/ldlr -/- mice, but not in Scd1 fl/fl/ldlr -/-/VilCre mice. We conclude that enterocyte Scd1 is partially responsible for LysoPC 18:1- and WD-induced dyslipidemia and inflammation in ldlr -/- mice.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Greg Hough
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Arnab Chattopadhyay
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Victor Grijalva
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Ellen Ines O'Connor
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - David Meriwether
- Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan Wagner
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mohamad Navab
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Srinivasa T Reddy
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095 .,Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095.,Departments of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan M Fogelman
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
13
|
Chattopadhyay A, Yang X, Mukherjee P, Sulaiman D, Fogelman HR, Grijalva V, Dubinett S, Wasler TC, Paul MK, Salehi-Rad R, Mack JJ, Iruela-Arispe ML, Navab M, Fogelman AM, Reddy ST. Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Sci Rep 2018; 8:9032. [PMID: 29899427 PMCID: PMC5998131 DOI: 10.1038/s41598-018-26755-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Having demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.06% of a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F). After four weeks, the number of lung tumors was significantly lower in Tg6F-fed mice. Gene expression array analyses of jejunum and lung identified Notch pathway genes significantly upregulated, whereas osteopontin (Spp1) was significantly downregulated by Tg6F in both jejunum and lung. In jejunum, Tg6F increased protein levels for Notch1, Notch2, Dll1, and Dll4. In lung, Tg6F increased protein levels for Notch1 and Dll4 and decreased Spp1. Tg6F reduced oxidized phospholipid levels (E06 immunoreactivity) and reduced 25-hydroxycholesterol (25-OHC) levels, which are known to inhibit Notch1 and induce Spp1, respectively. Notch pathway promotes anti-tumorigenic patrolling monocytes, while Spp1 facilitates pro-tumorigenic myeloid derived suppressor cells (MDSCs) formation. Tg6F-fed mice had higher numbers of patrolling monocytes in jejunum and in lung (p < 0.02), and lower plasma levels of Spp1 with reduced numbers of MDSCs in jejunum and in lung (p < 0.03). We conclude that Tg6F alters levels of specific oxidized lipids and 25-OHC to modulate Notch pathways and Spp1, which alter small intestine immune cells, leading to similar changes in lung that reduce tumor burden.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Xinying Yang
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Pallavi Mukherjee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Dawoud Sulaiman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA
| | - Hannah R Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Victor Grijalva
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Steven Dubinett
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Tonya C Wasler
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Manash K Paul
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Ramin Salehi-Rad
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Julia J Mack
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Srinivasa T Reddy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
| |
Collapse
|
14
|
Mukherjee P, Hough G, Chattopadhyay A, Navab M, Fogelman HR, Meriwether D, Williams K, Bensinger S, Moller T, Faull KF, Lusis AJ, Iruela-Arispe ML, Bostrom KI, Tontonoz P, Reddy ST, Fogelman AM. Transgenic tomatoes expressing the 6F peptide and ezetimibe prevent diet-induced increases of IFN-β and cholesterol 25-hydroxylase in jejunum. J Lipid Res 2017; 58:1636-1647. [PMID: 28592401 PMCID: PMC5538285 DOI: 10.1194/jlr.m076554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Feeding LDL receptor (LDLR)-null mice a Western diet (WD) increased the expression of IFN-β in jejunum as determined by quantitative RT-PCR (RT-qPCR), immunohistochemistry (IHC), and ELISA (all P < 0.0001). WD also increased the expression of cholesterol 25-hydroxylase (CH25H) as measured by RT-qPCR (P < 0.0001), IHC (P = 0.0019), and ELISA (P < 0.0001), resulting in increased levels of 25-hydroxycholesterol (25-OHC) in jejunum as determined by LC-MS/MS (P < 0.0001). Adding ezetimibe at 10 mg/kg/day or adding a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) at 0.06% by weight of diet substantially ameliorated these changes. Adding either ezetimibe or Tg6F to WD also ameliorated WD-induced changes in plasma lipids, serum amyloid A, and HDL cholesterol. Adding the same doses of ezetimibe and Tg6F together to WD (combined formulation) was generally more efficacious compared with adding either agent alone. Surprisingly, adding ezetimibe during the preparation of Tg6F, but before addition to WD, was more effective than the combined formulation for all parameters measured in jejunum (P = 0.0329 to P < 0.0001). We conclude the following: i) WD induces IFN-β, CH25H, and 25-OHC in jejunum; and ii) Tg6F and ezetimibe partially ameliorate WD-induced inflammation by preventing WD-induced increases in IFN-β, CH25H, and 25-OHC.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Greg Hough
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Arnab Chattopadhyay
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Mohamad Navab
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hannah R Fogelman
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - David Meriwether
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kevin Williams
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven Bensinger
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Travis Moller
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aldons J Lusis
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA
| | - Kristina I Bostrom
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Los Angeles, CA; Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Srinivasa T Reddy
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA; Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| | - Alan M Fogelman
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
15
|
Cedó L, García-León A, Baila-Rueda L, Santos D, Grijalva V, Martínez-Cignoni MR, Carbó JM, Metso J, López-Vilaró L, Zorzano A, Valledor AF, Cenarro A, Jauhiainen M, Lerma E, Fogelman AM, Reddy ST, Escolà-Gil JC, Blanco-Vaca F. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer. Sci Rep 2016; 6:36387. [PMID: 27808249 PMCID: PMC5093413 DOI: 10.1038/srep36387] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 11/24/2022] Open
Abstract
Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | | | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - David Santos
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Victor Grijalva
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Melanie Raquel Martínez-Cignoni
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Carbó
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Jari Metso
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, and Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Laura López-Vilaró
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,Departament de Patologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Annabel F Valledor
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, and Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Enrique Lerma
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,Departament de Patologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman HR, Hwang LH, Faull KF, Lusis AJ, Reddy ST, Fogelman AM. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res 2016; 57:832-47. [PMID: 26965826 DOI: 10.1194/jlr.m064352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Mouse chow supplemented with lysophosphatidylcholine with oleic acid at sn-1 and a hydroxyl group at sn-2 (LysoPC 18:1) increased LysoPC 18:1 in tissue of the jejunum of LDL receptor (LDLR)-null mice by 8.9 ± 1.7-fold compared with chow alone. Western diet (WD) contained dramatically less phosphatidylcholine 18:1 or LysoPC 18:1 compared with chow, but feeding WD increased LysoPC 18:1 in the jejunum by 7.5 ± 1.4-fold compared with chow. Feeding LysoPC 18:1 or feeding WD increased oxidized phospholipids in the jejunum by 5.2 ± 3.0-fold or 8.6 ± 2.2-fold, respectively, in LDLR-null mice (P < 0.0004), and 2.6 ± 1.5-fold or 2.4 ± 0.92-fold, respectively, in WT C57BL/6J mice (P < 0.0001). Adding 0.06% by weight of a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) decreased LysoPC 18:1 in the jejunum of LDLR-null mice on both diets (P < 0.0001), and prevented the increase in oxidized phospholipids in the jejunum in LDLR-null and WT mice on both diets (P < 0.008). Tg6F decreased inflammatory cells in the villi of the jejunum, decreased dyslipidemia, and decreased systemic inflammation in LDLR-null and WT mice on both diets. We conclude that Tg6F reduces diet-induced inflammation by reducing the content of unsaturated LysoPC and oxidized phospholipids in the jejunum of mice.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Mohamad Navab
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Greg Hough
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Victor Grijalva
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Pallavi Mukherjee
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Hannah R Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Lin H Hwang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Aldons J Lusis
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Srinivasa T Reddy
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Alan M Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| |
Collapse
|