1
|
Kato-Noguchi H, Kato M. Defense Molecules of the Invasive Plant Species Ageratum conyzoides. Molecules 2024; 29:4673. [PMID: 39407602 PMCID: PMC11478290 DOI: 10.3390/molecules29194673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ageratum conyzoides L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems. The life history traits of Ageratum conyzoides, such as its short life cycle, early reproductive maturity, prolific seed production, and high adaptive ability to various environmental conditions, may contribute to its naturalization and increasing population. Possible evidence of the molecules involved in the defense of Ageratum conyzoides against its natural enemies, such as herbivore insects and fungal pathogens, and the allelochemicals involved in its competitive ability against neighboring plant species has been accumulated in the literature. The volatiles, essential oils, extracts, residues, and/or rhizosphere soil of Ageratum conyzoides show insecticidal, fungicidal, nematocidal, and allelopathic activity. The pyrrolizidine alkaloids lycopsamine and echinatine, found in the species, are highly toxic and show insecticidal activity. Benzopyran derivatives precocenes I and II show inhibitory activity against insect juvenile hormone biosynthesis and trichothecene mycotoxin biosynthesis. A mixture of volatiles emitted from Ageratum conyzoides, such as β-caryophyllene, β-bisabolene, and β-farnesene, may work as herbivore-induced plant volatiles, which are involved in the indirect defense function against herbivore insects. Flavonoids, such as nobiletin, eupalestin, 5'-methoxynobiletin, 5,6,7,3',4',5'-hexamethoxyflavone, and 5,6,8,3,4',5'-hexamethoxyflavone, show inhibitory activity against the spore germination of pathogenic fungi. The benzoic acid and cinnamic acid derivatives found in the species, such as protocatechuic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid, may act as allelopathic agents, causing the germination and growth inhibition of competitive plant species. These molecules produced by Ageratum conyzoides may act as defense molecules against its natural enemies and as allelochemicals against neighboring plant species, and they may contribute to the naturalization of the increasing population of Ageratum conyzoides in new habitats as an invasive plant species. This article presents the first review focusing on the defense function and allelopathy of Ageratum conyzoides.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
2
|
Al-Qthanin R, Radwan AM, Donia AM, Abou-zied KA, Balah MA. Plant and soil characteristics affected by the allelopathic pathways of Avena fatua and Lolium temulentum weeds. Heliyon 2024; 10:e38007. [PMID: 39347387 PMCID: PMC11437849 DOI: 10.1016/j.heliyon.2024.e38007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
The potential of the most prevalent weeds should be characterized biologically and chemically in infected soil and crops for sustainable agriculture. Therefore, the allelopathic potential of Avena fatua L. and Lolium temulentum L. weeds were compared via leachates, root exudates, decayed residues in soil, and the decomposition in water pathways. Chemical measurements were taken on wheat (Triticum aestivum L.), and soil decomposed solution. Based on EC50, the allelopathic effect of leachates were higher in aboveground parts than in subterranean parts, influenced by plant parts and concentrations. The root exudates show EC50 by 655.9 μg. ml-1 for A. fatua and 625.66 μg. ml-1 for L. temulentumin the seedling biomass fresh weights of T. aestivum. The systematic inhibition by decayed residues was affected by plant types, concentration, and time and correlated with soil parameters and crop performance. The decomposition rate was higher under aerobic conditions than anaerobic conditions, with the inhibition pattern showing the reverse trend. These finding highlight the importance of environmental conditions in mediating allelopathic effects. The highest quantities of phenolic acids determined by LC-ES/MS in decomposed solutions were citric acid, with concentrations of 7.71 and 13.31 μg/ml in A. fatua under aerobic conditions, and coumaric acid, with concentrations of 9.21 and 16.99 μg/ml in L. temulentum under aerobic conditions. The allelopathic potentials of A. fatua and L. temulentum may play a crucial role in T. aestivum crop growth and soil parameters. In general weed residues can suppress crop growth and negatively affect soil parameters based on their quantity and type, therefore they should be managed carefully for sustainable crop production.
Collapse
Affiliation(s)
- Rahmah Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Prince Sultan Bin-Abdul-Aziz Center for Environment and Tourism Studies and Researches King Khalid University, Abha, Saudi Arabia
| | - Asmaa M. Radwan
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | | | | | - Mohamed A. Balah
- Plants Protection Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
3
|
Begum K, Hasan N, Shammi M. Selective biotic stressors' action on seed germination: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112156. [PMID: 38866107 DOI: 10.1016/j.plantsci.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
In the realm of plant biology and agriculture, seed germination serves as a fundamental process with far-reaching implications for crop production and environmental health. This comprehensive review seeks to unravel the intricate web of interactions between some biotic stressors and seed germination, addressing the pertinent issue of how these stressors influence seed germination. Different chemicals produced by interacting plants (different parts), fungi, bacteria, or insects can either promote or inhibit seed germination. Releasing chemicals that modulate signaling pathways and cellular processes significantly disrupt essential cellular functions. This disruption leads to diverse germination outcomes, introducing additional layers of complexity to this regulatory landscape. The chemicals perturb enzyme activity and membrane integrity, imposing unique challenges on the germination process. Understanding the mechanisms- how allelochemicals, mycotoxins, or bacterial toxins affect seed germination or the modes of action holds promise for more sustainable agricultural practices, enhanced pest control, and improved environmental outcomes. In sum, this review contributes to a fundamental exposition of the pivotal role of biotic stressors in shaping the germination of seeds.
Collapse
Affiliation(s)
- Kohinoor Begum
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Nazmul Hasan
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Fruit Science Laboratory, Saga University, Saga 840-8502, Japan.
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
4
|
Balah MA, Al-Andal A, Radwan AM, Donia AEM. Unveiling allelopathic dynamics and impacts of invasive Erigeron bonariensis and Bidens pilosa on plant communities and soil parameters. Sci Rep 2024; 14:10159. [PMID: 38698043 PMCID: PMC11065986 DOI: 10.1038/s41598-024-57552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.
Collapse
Affiliation(s)
- Mohamed A Balah
- Plant Protection Department, Desert Research Center, Cairo, Egypt.
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Asmaa M Radwan
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
5
|
Alemayehu Y, Chimdesa M, Yusuf Z. Allelopathic Effects of Lantana camara L. Leaf Aqueous Extracts on Germination and Seedling Growth of Capsicum annuum L. and Daucus carota L. SCIENTIFICA 2024; 2024:9557081. [PMID: 38962531 PMCID: PMC11221968 DOI: 10.1155/2024/9557081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/18/2024] [Indexed: 07/05/2024]
Abstract
Allelopathy is the chemical interactions between plants that might lead to either stimulation or inhibition of growth, community structure, and plant invasions. Lantana camara L. is a noxious invasive weed that negatively affects seed germination, seedling growth, and increases the mortality of the crop plant. The objective of this work was to assess allelopathic effect of L. camara leaf aqueous extract on germination and seedling growth of Capsicum annuum (pepper) and Daucus carota (carrot). The aqueous extract of Lantana leaf samples was used as a source of allelopathic effects. Data were collected for germination and seedling growth parameters. The result indicated that the highest concentration of the allelopathic extract (20 mg/L) has demonstrated significantly the highest germination inhibition rate GIR (60.00%), germination speed V (2.54 U/day) for D. carota as GIR (70.00%), mean germination time MGT (0.36 days), and GI (0.67%) for C. annuum seeds. The highest concentration of the allelopathic extract (20 mg/L) has recorded the highest plumule inhibition rate PIR (59.63%) and radical inhibition rate RIR (48.95%) for D. carota seeds, as well as PIR (27.47%) and RLR (79.49%) for C. annuum. The largest negative allelopathic index (-60.00% or allelopathic intensity of 60.00%) was recorded for D. carota seeds, whilst (-63.43% or allelopathic intensity of 63.43%) was recorded for C. annuum seed germination. For D. carota seed germination, the first principal component (PC1) has got high positive loads from GI (0.36), RLR (0.31), GR (0.34), allelopathic index AI (0.34), relative length of plumule RLP (0.24), and V (0.30). By contrast, PC1 for D. carota seed germination has got the highest negative component loads recorded by GIR (-0.34), PIR (-0.24), MGT (-0.35), and RIR (-0.31). In allelopathic effect on C. annum seed germination, the first principal component (PC1) has got high positive scores from relative length of radical RLR (0.31), RLP (0.33), germination rate GR (0.33), V (0.33), and AI (0.33). Likewise, the high negative component loads were recorded by GIR (-0.33), PIR (-0.33), RIR (-0.31), and MGT (-0.32). The result of the present study demonstrated that GIR, PIR, and RIR were directly related to negative allelopathic activity.
Collapse
Affiliation(s)
- Yiftusira Alemayehu
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Meseret Chimdesa
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Zekeria Yusuf
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| |
Collapse
|
6
|
Niazipoor G, AghaAlikhani M, Mokhtassi-Bidgoli A, Iriti M, Vitalini S. Phytochemical analysis and allelopathic potential of essential oil of yarrow ( Achillea spp.) ecotypes against redroot pigweed ( Amaranthus retroflexus L.). Heliyon 2024; 10:e26101. [PMID: 38390126 PMCID: PMC10881850 DOI: 10.1016/j.heliyon.2024.e26101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
This study will contribute to the knowledge of plant allelopathy and its application in weed management, as well as to the valuation of medicinal and neglected plant species. An allelopathy experiment was conducted to introduce Achillea spp. as an effective species on the red root pigweed (Amaranthus retroflexus L.). The allelopathic effect of dry material from the flower, leaf and stem of Tanacetum polycephalum L. and 9 Achillea spp. (Achillea santolina L., A. millefolium L., A. nobilis L., A. conferta DC., A. vermicularis Trin., A. beibersteinii Afan., A. talagonica Boiss., A. tenuifolia Lam., A. aleppica DC.) applied to the soil on the growth of redroot pigweed seedling was tested. Five different ratios of aerial dry material of different species as residues (at 0, 10, 20, 40, and 50 g kg-1 dry weight) were used in the pots. Achillea residual had a significant effect on the growth of redroot pigweed. Achillea vermicolaris and A. aleppica were the most effective species at stopping the growth of redroot pigweed, reducing its dry matter by 90% at 0.07 and 0.02 g kg-1 dry weight, respectively. Based on the results of GC/MS analyses, 152 different compounds were found in the essential oil of Achillea spp. The possible relationship between allelochemicals and seedling investigation by partial least squares regression between effective doses for controlling redroot pigweed and allelochemical compounds of Achillea species. Result showed that cis-Menth-2-en-1-ol, α-Terpinyl, propionate and Bornyl acetate had the most effect on inhibiting the growth of redroot pigweed. Our research revealed that the Achillea genus has a lot of potential as a bioherbicide. This means that its leftovers or mulch could be used as a good cover crop to control redroot pigweed.
Collapse
Affiliation(s)
- Gholamreza Niazipoor
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Majid AghaAlikhani
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Marcelo Iriti
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Science, Milan State University, Milan, 20133, Italy
| |
Collapse
|
7
|
Zhang Q, Li J, Chen H, Xuan X, Xu D, Wen Y. Mechanisms Underlying Allelopathic Disturbance of Herbicide Imazethapyr on Wheat and Its Neighboring Ryegrass ( Lolium perenne). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3445-3455. [PMID: 38325393 DOI: 10.1021/acs.jafc.3c09519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As representatives of allelopathy, weeds consistently coexist with crops, exhibiting mutual growth inhibition. At the same time, herbicides are usually employed to control weeds. However, few studies have investigated how herbicides will affect allelopathy between crops and their neighboring weeds. Our findings suggested that allelopathic-induced phenotypic variations in ryegrass were reduced in the presence of the herbicide imazethapyr (IM), consistent with the antioxidant system analysis results. Additionally, IM affected the levels of allelochemical hydroxamic acid (Hx) in both plants. Hydroponic experiments revealed that this impact was due to the accelerated transportation of Hx from wheat to ryegrass, driven by ryegrass-secreted jasmonic acid. This study holds paramount significance for comprehending the effects of herbicides on the allelopathic interactions between nontargeted crops and neighboring weeds, contributing to an enhanced understanding of herbicides on plant species interactions.
Collapse
Affiliation(s)
- Qiushui Zhang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Kato-Noguchi H. Isolation and identification of allelochemicals and their activities and functions. JOURNAL OF PESTICIDE SCIENCE 2024; 49:1-14. [PMID: 38450087 PMCID: PMC10912975 DOI: 10.1584/jpestics.d23-052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 03/08/2024]
Abstract
Allelopathy is the interaction between donor plants and receiver plants through allelochemicals. According to a great number of publications, allelopathy may be involved in several ecological aspects such as the formation of monospecific stands and sparse understory vegetation for certain plant species. Allelopathy also contributes to the naturalization of invasive plant species in introduced ranges. Autotoxicity is a particular type of allelopathy involving certain compounds. Many medicinal plants have been reported to show relatively high allelopathic activity. We selected plant species that show high allelopathic activity and isolated allelochemicals through the bioassay-guided purification process. More than 100 allelochemicals, including novel compounds have been identified in some medicinal and invasive plants, plants forming monospecific stands, plants with sparse understory vegetation, and plants showing autotoxicity. The allelopathic activity of benzoxazinones and related compounds was also determined.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| |
Collapse
|
9
|
Kato-Noguchi H, Takahashi Y, Tojo S, Teruya T. Isolation and Identification of Allelopathic Substances from Forsythia suspensa Leaves, and Their Metabolism and Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:575. [PMID: 38475422 DOI: 10.3390/plants13050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The fruit of Forsythia suspensa (Thunb.) Vahl has been used in traditional Chinese medicine as "Forsythiae fructus". The species is also grown in parks and gardens, and on streets and building lots, as an ornamental plant, but it requires pruning. In this study, the allelopathic activity and allelopathic substances in the leaves of pruned branches of F. suspensa were investigated to determine any potential application. The leaf extracts of F. suspensa showed growth inhibitory activity against three weed species; Echinochloa crus-galli, Lolium multiflorum, and Vulpia myuros. Two allelopathic substances in the extracts were isolated through the bioassay-guided purification process, and identified as (-)-matairesinol and (-)-arctigenin. (-)-Matairesinol and (-)-arctigenin, which showed significant growth inhibitory activity at concentrations greater than 0.3 mM in vitro. The inhibitory activity of (-)-arctigenin was greater than that of (-)-matairesinol. However, both compounds were more active than (+)-pinolesinol which is their precursor in the biosynthetic pathway. The investigation suggests that F. suspensa leaves are allelopathic, and (-)-matairesinol and (-)-arctigenin may contribute to the growth inhibitory activities. Therefore, the leaves of the pruned branches can be applied as a weed management strategy in some agricultural practices such as using the leaf extracts in a foliar spray and the leaves in a soil mixture, thereby reducing the dependency on synthetic herbicides in the crop cultivation and contributing to developing eco-friendly agriculture.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Yuga Takahashi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Shunya Tojo
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
10
|
Kato-Noguchi H, Kurniadie D. The Invasive Mechanisms of the Noxious Alien Plant Species Bidens pilosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:356. [PMID: 38337889 PMCID: PMC10857670 DOI: 10.3390/plants13030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Bidens pilosa L. is native to tropical America and has widely naturized from tropical to warm temperate regions in Europe, Africa, Asia, Australia, and North and South America. The species has infested a wide range of habitats such as grasslands, forests, wetlands, streamlines, coastal areas, pasture, plantations, agricultural fields, roadsides, and railway sides and has become a noxious invasive weed species. B. pilosa forms thick monospecific stands, quickly expands, and threatens the indigenous plant species and crop production. It is also involved in pathogen transmission as a vector. The species was reported to have (1) a high growth ability, producing several generations in a year; (2) a high achene production rate; (3) different biotypes of cypselae, differently germinating given the time and condition; (4) a high adaptative ability to various environmental conditions; (5) an ability to alter the microbial community, including mutualism with arbuscular mycorrhizal fungi; and (6) defense functions against natural enemies and allelopathy. The species produces several potential allelochemicals such as palmitic acid, p-coumaric acid, caffeic acid, ferulic acid, p-hydroxybenzoic acid, vanillic acid, salycilic acid, quercetin, α-pinene, and limonene and compounds involved in the defense functions such as 1-phenylhepta-1,3,5-trine, 5-phenyl-2-(1-propynyl)-thiophene, 5-actoxy-2-phenylethinyl-thiophene, and icthyothereol acetate. These characteristics of B. pilosa may contribute to the naturalization and invasiveness of the species in the introduced ranges. This is the first review article focusing on the invasive mechanisms of the species.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Denny Kurniadie
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Jawa Barat, Indonesia
| |
Collapse
|
11
|
Afzal MR, Naz M, Ullah R, Du D. Persistence of Root Exudates of Sorghum bicolor and Solidago canadensis: Impacts on Invasive and Native Species. PLANTS (BASEL, SWITZERLAND) 2023; 13:58. [PMID: 38202366 PMCID: PMC10781015 DOI: 10.3390/plants13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Root exudates of the invasive Solidago canadensis and the cereal crop Sorghum bicolor (L.) Moench cv. 'Hybridsorgo' were tested for allelopathic interactions against native and invasive plant species in a controlled environment. After the surface was sterilized, the seeds of two invasive species (Bromus sterilis and Veronica persica) and two native species (Youngia japonica and Rumex acetosa) were germinated and transplanted into the soil (1:1 mixture of coco peat and sand) that had been conditioned for one month by the cultivation of Solidago canadensis and Sorghum bicolor, both in combination or as unplanted controls. After an additional eight weeks of growth, morphometric measurements of the shoot and root, including foliar characteristics and above- and below-ground biomass accumulation, were performed. The results revealed significant inhibitory effects of root exudates released by Sorghum bicolor and Solidago canadensis on native species' productivity and physiology. The invasive species exhibited variable growth responses, with Veronica persica showing reduced shoot and root expansion, but Bromus sterilis revealed increased shoot and root biomass allocation and nutrition under the exudate treatments. Exudates from Solidago canadensis and Sorghum bicolor together showed synergistic negative effects on native species, while they promoted growth and nutrition in Veronica persica. Taken together, the differential species responses indicate that the tested native species were more sensitive to the allelopathic compounds than the invasive species, which is in line with the theory of novel weapons. The legacy effects of root exudates of both Sorghum bicolor and Solidago canadensis could promote invasive establishment through imposing allelochemical interference competition against native plant species. Understanding the specific allelopathic mechanisms may help with the development of integrated strategies for managing invasive species.
Collapse
Affiliation(s)
- Muhammad Rahil Afzal
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Raza Ullah
- Institute of Environmental and Agricultural Science, Faculty of Life Sciences, University of Okara, Okara 56130, Pakistan;
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Moh SM, Tojo S, Teruya T, Kato-Noguchi H. Allelopathic Activity of a Novel Compound, Two Known Sesquiterpenes, and a C 13Nor-Isopenoid from the Leave of Croton oblongifolius Roxb. for Weed Control. PLANTS (BASEL, SWITZERLAND) 2023; 12:3384. [PMID: 37836124 PMCID: PMC10574435 DOI: 10.3390/plants12193384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Investigation of allelopathic substances from herbal plants may lead to the development of allelochemical-based natural herbicides. Croton oblongifolius (Roxb.) is a well-known herbal plant with a long history of being used for traditional medicines and for being the source of a diverse range of bioactive compounds. This plant has been reported to have allelopathic potential; however, its allelopathic-related substances have not yet been described. Therefore, we conducted this investigation to explore the allelopathic substances from the leaves of C. oblongifolius. Aqueous methanol extracts of C. oblongifolius leaves exhibited significant growth inhibitory potential against four test plants (monocot barnyard grass and timothy, and dicot cress and lettuce). The leaf extracts were purified in various chromatographic steps and yielded four active compounds identified as (3R,6R,7E)-3-hydroxy-4-7-megastigmadien-9-one (I), 2-hydroxy alpinolide (a novel compound) (II), alpinolide (III), and epialpinolide (IV) via an analysis of the spectral data. These identified compounds significantly restricted the seedling growth of cress. The concentration necessary for 50% growth reduction of the cress seedlings varied from 0.15 to 0.24 mM for (3R,6R,7E)-3-hydroxy-4-7-megastigmadien-9-one, 0.04 to 0.11 mM for 2-hydroxy alpinolide, 0.07 to 0.12 mM for alpinolide, and 0.09 to 0.16 mM for epialpinolide. Therefore, the leaf extracts of C. oblongifolius and the characterized compounds have the potential to be used as weed-suppressive resources for natural weed control.
Collapse
Affiliation(s)
- Seinn Moh Moh
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Ehime, Japan
| | - Shunya Tojo
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan;
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Ehime, Japan
| |
Collapse
|
13
|
Kato-Noguchi H. The Impact and Invasive Mechanisms of Pueraria montana var. lobata, One of the World's Worst Alien Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3066. [PMID: 37687313 PMCID: PMC10490251 DOI: 10.3390/plants12173066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Pueraria montana var. lobata is native to East Asia, and was introduced to many countries due to its potential for multiple uses. This species escaped under the management conditions soon after its introduction, and became a harmful weed species. This species has been listed in the top 100 of the world's worst invasive alien species. P. montana stands expand quickly and threaten the native flora and fauna including microbiota. This species affects the concentration of carbon and nitrogen in soil and aquatic environments, and increases the amount of pollutants in the local atmosphere. Its infestation also causes serious economic losses on forestry and agriculture. Its characteristics of fast growth, thick canopy structure, enormous vegetative reproduction, and adaptative ability to the various environmental conditions may contribute to the invasiveness and naturalization of this species. The characteristics of P. montana regarding their defense functions against their natural enemies and pathogens, and allelopathy may also contribute to the invasiveness of this species. Potential allelochemicals such as xanthoxins, p-coumaric acid, caffeic acid, methyl caffeate and daidzein, and two isoflavones with anti-virus activity were identified in this species. In addition, fewer herbivore insects were found in the introduced ranges. These characteristics of P. montana may be involved in the invasive mechanisms of the species. This is the first review article focusing on the invasive mechanisms of this species.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| |
Collapse
|
14
|
Kato-Noguchi H. Invasive Mechanisms of One of the World's Worst Alien Plant Species Mimosa pigra and Its Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:1960. [PMID: 37653876 PMCID: PMC10221770 DOI: 10.3390/plants12101960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Mimosa pigra is native to Tropical America, and it has naturalized in many other countries especially in Australia, Eastern and Southern Africa and South Asia. The species is listed in the top 100 of the world's worst invasive alien species and is listed as Least Concern in the IUCN Red List of Threatened Species. M. pigra forms very large monospecific stands in a wet-dry tropical climate with conditions such as floodplains, riverbanks, grasslands, forests and agricultural fields. The stands expand quickly and threaten the native flora and fauna in the invasive ranges. Possible mechanisms of the invasion of the species have been investigated and accumulated in the literature. The characteristics of the life history such as the high reproduction and high growth rate, vigorous mutualism with rhizobia and arbuscular mycorrhizal fungi, very few natural enemies, and allelopathy, and certain secondary metabolites may contribute to the invasiveness and naturalization of M. pigra. Herbicide application, such as aerial spraying, foliar, cut-stump and soil treatments, is the primary control methods of M. pigra. The investigation of the natural enemies of M. pigra has been conducted in its native ranges since 1979, and biological control agents have been selected based on host specificity, rearing and availability. Mechanical control practices, such as hand weeding, bulldozing, chaining and fire, were also effective. However, the species often regrow from the remaining plant parts. Integration of multiple weed control practices may be more effective than any single practice. This is the first review article focusing on the invasive mechanism of M. pigra.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan
| |
Collapse
|
15
|
Hickman DT, Comont D, Rasmussen A, Birkett MA. Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecol Evol 2023; 13:e10018. [PMID: 37091561 PMCID: PMC10121234 DOI: 10.1002/ece3.10018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Allelopathy, that is, plant-plant inhibition via the release of secondary metabolites into the environment, has potential for the management of weeds by circumventing herbicide resistance. However, mechanisms underpinning allelopathy are notoriously difficult to elucidate, hindering real-world application either in the form of commercial bioherbicides or allelopathic crops. Such limited application is exemplified by evidence of limited knowledge of the potential benefits of allelopathy among end users. Here, we examine potential applications of this phenomenon, paying attention to novel approaches and influential factors requiring greater consideration, with the intention of improving the reputation and uptake of allelopathy. Avenues to facilitate more effective allelochemical discovery are also considered, with a view to stimulating the identification of new compounds and allelopathic species. Synthesis and Applications: We conclude that tackling increasing weed pressure on agricultural productivity would benefit from greater integration of the phenomenon of allelopathy, which in turn would be greatly served by a multi-disciplinary and exhaustive approach, not just through more effective isolation of the interactions involved, but also through greater consideration of factors which may influence them in the field, facilitating optimization of their benefits for weed management.
Collapse
Affiliation(s)
- Darwin T. Hickman
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - David Comont
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| | | | | |
Collapse
|
16
|
Ain Q, Mushtaq W, Shadab M, Siddiqui MB. Allelopathy: an alternative tool for sustainable agriculture. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:495-511. [PMID: 37187777 PMCID: PMC10172429 DOI: 10.1007/s12298-023-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Population increase, poverty, environmental degradation, and the use of synthetic herbicides are interdependent and closely linked and hence influence global food safety and stability of world agriculture. On the one hand, varied weeds, insects, and other pests have caused a tremendous loss in agricultural crop productivity annually. On the other hand, the use of synthetic insecticides, herbicides, fungicides, and other pesticides significantly disturbed the ecology of biotic communities in agricultural and natural ecosystems. Eventually, it destroyed the ecological balance in food chains. Interestingly, natural products released by the plants (allelochemicals) are secondary metabolites involved in ecological interactions and could be an important source of alternative agrochemicals. Mainly released by the plants as an outcome of acquaintances with other plants in their vicinity, these allelochemicals can also be used as eco-friendly substitutes for synthetic herbicides and other pesticides. Despite these facts, agrochemicals are either preferred over allelochemicals or the latter are not known in the direction of their use in achieving sustainability in agriculture. Given this, considering recent reports, this paper aims to: (1) emphasize allelochemicals; (2) overview the major biochemistry of allelochemicals; (3) critically discuss the role of allelopathy (and underlying major mechanisms) in the management of noxious weeds, insect pests, and major plant pathogens; and (4) enlighten the significant aspects so far not or least explored in the current context.
Collapse
Affiliation(s)
- Quratul Ain
- Allelopathy Laboratory, Botany Department, Aligarh Muslin University, Aligarh, 202002 India
| | - Waseem Mushtaq
- Laboratory of Chemistry of Natural Molecules, Agrobiotech Gembloux, Liege University, 5030 Gembloux, Belgium
| | - Mo Shadab
- Allelopathy Laboratory, Botany Department, Aligarh Muslin University, Aligarh, 202002 India
| | - M. B. Siddiqui
- Allelopathy Laboratory, Botany Department, Aligarh Muslin University, Aligarh, 202002 India
| |
Collapse
|
17
|
Kato-Noguchi H. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins (Basel) 2023; 15:toxins15040241. [PMID: 37104180 PMCID: PMC10140866 DOI: 10.3390/toxins15040241] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.
Collapse
|
18
|
Trinchera A, Warren Raffa D. Weeds: An Insidious Enemy or a Tool to Boost Mycorrhization in Cropping Systems? Microorganisms 2023; 11:microorganisms11020334. [PMID: 36838299 PMCID: PMC9967897 DOI: 10.3390/microorganisms11020334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Weeds have always been considered an insidious enemy, capable of reducing crop production. Conversely, the agroecological vision attributes a key role to the spontaneous flora in promoting plant diversity and belowground interactions, which may improve the ecological performance of agroecosystems. We summarized the literature on the weeds' arbuscular-mycorrhizae (AM) interaction and we analyzed evidence on the: (i) AM suppressive/selective effect on weed communities; (ii) effect of weeds on AM colonization, and (iii) positive role of AM-supporting weeds on forming shared mycorrhizal hyphal connections in agroecosystems. While some authors conceptualized AM as a weed control tool, others underlined their selective effect on weed communities. Recent studies suggest that AM-host weeds can participate in the development of a common mycorrhizal mycelial network (MMN) among different plants species. Nevertheless, direct evidence of the actual exchange of nutrients and C between coexisting plants through MMN in agroecosystems is missing. Although the effect of agricultural practices on plant community-AM interactions are complex, more conservative farming management seems to foster AM populations. Future studies should focus on: (i) field studies, (ii) weed communities and their traits, rather than on the most abundant species, and (iii) the use of advanced analytical techniques, able to monitor MMN development and functionality.
Collapse
|
19
|
Kato-Noguchi H, Kato M. Evolution of the Secondary Metabolites in Invasive Plant Species Chromolaena odorata for the Defense and Allelopathic Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030521. [PMID: 36771607 PMCID: PMC9919186 DOI: 10.3390/plants12030521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/09/2023]
Abstract
Chromolaena odorata (L.) R.M. King & H. Robinson is native to tropical America, and has naturalized in many other countries in tropical Asia, Austria, and West Africa. The species often forms dense thickets and reduces the native species diversity and population in the invasive ranges. The species is also considered as a noxious weed in agriculture fields, and listed in the 100 of the world's worst invasive alien species. The characteristics of its life-history such as the seed production rate, growth pattern, and adaptative ability to the environmental conditions may contribute to the invasiveness of the species. Possible evidence of the defense capacity against the natural enemy, and the allelopathic potential against the competitive plant species for C. odorata has been accumulated in the literature over three decades. The extracts, residues, and/or rhizosphere soil of C. odorata increased the mortality of various insects and parasitic nematodes, and decreased their population. The extracts, residues, and/or rhizosphere soil of C. odorata also inhibited the germination and growth of several plant species including the indigenous plant species in the invasive ranges of C. odorata. Toxic substances, pyrrolizidine alkaloids were found in the leaves and flowers of C. odorata. These pyrrolizidine alkaloids may work as the defense agents against the natural enemies. Several potential allelochemicals such as flavonoids, phenolic acids, and terpenoids were also found in the plant extracts of C. odorata. Some of these compounds may work as allelopathic agents of C. odorata and inhibit the germination and growth of the competitive plant species. These characteristics of C. odorata for the defense function against their natural enemies such as insects and parasitic nematodes, and allelopathic potential against the competitive native plant species may contribute to the invasiveness and naturalization of C. odorata in the new habitats as invasive plant species. However, it is necessary to determine the concentration of these allelochemicals in the neighboring environment of C. odorata such as the rhizosphere soil since allelochemicals are able to work only when they are released into the neighboring environment. It is the first review article focusing on the defense function and allelopathy of C. odorata.
Collapse
|
20
|
Kato-Noguchi H, Hamada Y, Kojima M, Kumagai S, Iwasaki A, Suenaga K. Allelopathic Substances of Osmanthus spp. for Developing Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:376. [PMID: 36679091 PMCID: PMC9861473 DOI: 10.3390/plants12020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Osmanthus fragrans Lour. has been cultivated for more than 2500 years because of the fragrance and color of the flowers. The flowers and roots have been used in tea, liquors, foods, and traditional Chinese medicine. The species contains more than 180 compounds including terpenoids, phenylpropanoids, polyphenols, flavonoids, and sterols. However, there has been limited information available on the allelopathic properties and allelopathic substances of O. fragrans. We investigated the allelopathy and allelopathic substances of O. fragrans and Osmanthus heterophyllus (G.Don) P.S. Green, as well as Osmanthus × fortunei Carrière, which is the hybrid species between O. fragrans and O. heterophyllus. The leaf extracts of O. fragrans, O. heterophyllus, and O. × fortunei suppressed the growth of cress (Lepidium sativum L.), alfalfa (Medicago sativa L.), Lolium multiflorum Lam., and Vulpia myuros (L.) C.C.Gmel with the extract concentration dependently. The extract of the hybrid species O. × fortune was the most active among the extracts. The main allelopathic substances of O. × fortunei and O. fragrans were isolated and identified as (+)-pinoresinol and 10-acetoxyligustroside, respectively. (+)-Pinoresinol was also found in the fallen leaves of O. × fortunei. Both compounds showed an allelopathic activity on the growth of cress and L. multiflorum. On the other hand, several allelopathic substances including (+)-pinoresinol may be involved in the allelopathy of O. heterophyllus. O. fragrans, O. heterophyllus, and O. × fortunei are evergreen trees. but their senescent leaves fall and cover the soil under the trees. It is possible that those allelopathic substances are liberated through the decomposition process of the leaves into their rhizosphere soil, and that they accumulate in the soil and provide a competitive advantage to the species through the inhibition of the growth of the neighboring competing plants. Therefore, the leaves of these Osmanthus species are allelopathic and potentially useful for weed management options in some agriculture settings to reduce commercial herbicide dependency for the developing sustainable agriculture systems.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Yuri Hamada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Misuzu Kojima
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Sanae Kumagai
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| |
Collapse
|
21
|
Kato-Noguchi H, Kato M. Allelopathy and Allelochemicals of Solidago canadensis L. and S. altissima L. for Their Naturalization. PLANTS (BASEL, SWITZERLAND) 2022; 11:3235. [PMID: 36501274 PMCID: PMC9738410 DOI: 10.3390/plants11233235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Solidago canadensis L. and Solidago altissima L. are native to North America and have naturalized many other continents including Europa and Asia. Their species is an aggressive colonizer and forms thick monospecific stands. The evidence of the allelopathy for S. canadensis and S. altissima has accumulated in the literature since the late 20th century. The root exudates, extracts, essential oil and rhizosphere soil of S. canadensis suppressed the germination, growth and the arbuscular mycorrhizal colonization of several plants, including native plant species. Allelochemicals such as fatty acids, terpenes, flavonoids, polyphenols and their related compounds were identified in the extracts and essential oil of S. canadensis. The concentrations of total phenolics, total flavonoids and total saponins in the rhizosphere soil of S. canadensis obtained from the invasive ranges were greater than those from the native ranges. Allelochemicals such as terpenes, flavonoids, polyacetylene and phenols were also identified in the extracts, essential oil and the rhizosphere soil in S. altissima. Among the identified allelochemicals of S. altissima, the cis-dehydromatricaria ester may be involved in the allelopathy considering its growth inhibitory activity and its concentration in the rhizosphere soil. Therefore, the allelopathy of S. canadensis and S. altissima may support their invasiveness, naturalization and formation of thick monospecific stands. This is the first review article focusing on the allelopathy of both of S. canadensis and S. altissima.
Collapse
|
22
|
Kato-Noguchi H. Allelopathy and Allelochemicals of Imperata cylindrica as an Invasive Plant Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192551. [PMID: 36235415 PMCID: PMC9573136 DOI: 10.3390/plants11192551] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 05/17/2023]
Abstract
Imperata cylindrica is native to Southeast Asia and East Africa and has become naturalized in humid tropics, subtropics and warmer temperate zones of the world. The species is one of the top ten worst weeds in the worlds and is listed among the world's top 100 worst invasive alien species. It is an aggressive colonizer and forms large monospecific stands in several countries. Possible evidence of the allelopathy of I. cylindrica has been accumulated in the literature over three decades. The extracts, leachates, root exudates, decomposing residues and rhizosphere soil of I. cylindrica were found to suppress the germination and growth of several plant species, including woody plant species, and to reduce their rhizobium nodulation and mycorrhizal colonization. Several allelochemicals, such as fatty acids, terpenoids, simple phenolics, benzoic acids, phenolic acids, phenolic aldehydes, phenylpropanoids, flavonoids, quinones and alkaloids, were also found in the extracts, leachates, root exudates and/or growth medium of I. cylindrica. These observations suggest that allelochemicals may be synthesized in I. cylindrica and released into the rhizosphere soil and surrounding environments either by the leachates, root exudation or decomposition process of plant parts, and certain allelochemicals may contribute to the alteration of the microbial community, including rhizobia and mycorrhizal fungi, suppressing the regeneration process of native plant species through the inhibition of their germination and growth. Therefore, the allelopathy of I. cylindrica may support its invasiveness, naturalization and formation of large monospecific stands. This is the first review article focusing on the allelopathy of I. cylindrica.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| |
Collapse
|
23
|
Wu HB, Ma LH, Li XM, Liu TT. Selective Phytotoxic Effects of Sesquiterpenoids from Sonchus arvensis as a Preliminary Approach for the Biocontrol of Two Problematic Weeds of Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9412-9420. [PMID: 35879021 DOI: 10.1021/acs.jafc.2c03462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The objective of this study is to find new selective allelochemicals for managing two problematic weeds redroot pigweed (Amaranthus retroflexus) and common lambsquarters (Chenopodium album) with minimal negative effects on wheat, thereby facilitating the development of eco-friendly botanical herbicide. Three new sesquiterpenoids, sonarvenolide A-C (1-3), and nine known sesquiterpenoids (4-12) were isolated from Sonchus arvensis. Compound 1 was a rare peroxide-substituted eudesmane-type sesquiterpenoid, and compound 3 was a rare iphionane-type sesquiterpenoid. Notably, compounds 1, 3, 4, 6-8, and 11 showed selectivity phytotoxic activity. In particular, compounds 1, 3, and 4 exhibited excellent germination inhibitory effect on A. retroflexus (IC50 = 32.0-129.0 μM), higher than that of the positive control triasulfuron (IC50 = 141.7 μM), and compound 4 showed excellent inhibition on C. album (IC50 = 82.0 μM), higher than that of triasulfuron (IC50 = 100.9 μM). In addition, compounds 1, 3, and 4 showed allelopathy to the growth of two weeds, which were more potent than or close to that of triasulfuron. Furthermore, these compounds were not toxic to wheat even at a high concentration (1000 μM). Structure-activity relationships (SARs) revealed that the presence of peroxides or the absence of hydroxyl at C-5 in the eudesmane-type sesquiterpenoids could strengthen the inhibitory activities. The discovery of selective allelochemicals provides not only a new choice to control two problematic weeds of wheat but also new natural lead compounds for herbicides.
Collapse
Affiliation(s)
- Hai-Bo Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China
| | - Lin-Hui Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China
| | - Xi-Meng Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China
| | - Ting-Ting Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
24
|
Kato-Noguchi H, Kurniadie D. Allelopathy and Allelochemicals of Leucaenaleucocephala as an Invasive Plant Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131672. [PMID: 35807624 PMCID: PMC9269122 DOI: 10.3390/plants11131672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 05/30/2023]
Abstract
Leucaena leucocephala (Lam.) de Wit is native to southern Mexico and Central America and is now naturalized in more than 130 countries. The spread of L. leucocephala is probably due to its multipurpose use such as fodder, timber, paper pulp, shade trees, and soil amendment. However, the species is listed in the world's 100 worst invasive alien species, and an aggressive colonizer. It forms dense monospecific stands and threatens native plant communities, especially in oceanic islands. Phytotoxic chemical interactions such as allelopathy have been reported to play an important role in the invasion of several invasive plant species. Possible evidence for allelopathy of L. leucocephala has also been accumulated in the literature over 30 years. The extracts, leachates, root exudates, litter, decomposing residues, and rhizosphere soil of L. leucocephala increased the mortality and suppressed the germination and growth of several plant species, including weeds and woody plants. Those observations suggest that L. leucocephala is allelopathic and contains certain allelochemicals. Those allelochemicals may release into the rhizosphere soil during decomposition process of the plant residues and root exudation. Several putative allelochemicals such as phenolic acids, flavonoids, and mimosine were identified in L. leucocephala. The species produces a large amount of mimosine and accumulates it in almost all parts of the plants, including leaves, stems, seeds, flowers, roots, and root nodules. The concentrations of mimosine in these parts were 0.11 to 6.4% of their dry weight. Mimosine showed growth inhibitory activity against several plant species, including some woody plants and invasive plants. Mimosine blocked cell division of protoplasts from Petunia hybrida hort. ex E. Vilm. between G1 and S phases, and disturbed the enzyme activity such as peroxidase, catalase, and IAA oxidase. Some of those identified compounds in L. leucocephala may be involved in its allelopathy. Therefore, the allelopathic property of L. leucocephala may support its invasive potential and formation of dense monospecific stands. However, the concentrations of mimosine, phenolic acids, and flavonoids in the vicinity of L. leucocephala, including its rhizosphere soil, have not yet been reported.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan
| | - Denny Kurniadie
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jl. Raya, Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia;
| |
Collapse
|
25
|
Ben-Abu Y, Itsko M. Metabolome dynamics during wheat domestication. Sci Rep 2022; 12:8532. [PMID: 35595776 PMCID: PMC9122938 DOI: 10.1038/s41598-022-11952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
One of the most important crops worldwide is wheat. Wheat domestication took place about 10,000 years ago. Not only that its wild progenitors have been discovered and phenotypically characterized, but their genomes were also sequenced and compared to modern wheat. While comparative genomics is essential to track genes that contribute to improvement in crop yield, comparative analyses of functional biological end-products, such as metabolites, are still lacking. With the advent of rigorous mass-spectrometry technologies, it is now possible to address that problem on a big-data scale. In attempt to reveal classes of metabolites, which are associated with wheat domestication, we analyzed the metabolomes of wheat kernel samples from various wheat lines. These wheat lines represented subspecies of tetraploid wheat along primary and secondary domestications, including wild emmer, domesticated emmer, landraces durum, and modern durum. We detected that the groups of plant metabolites such as plant-defense metabolites, antioxidants and plant hormones underwent significant changes during wheat domestication. Our data suggest that these metabolites may have contributed to the improvement in the agricultural fitness of wheat. Closer evaluation of specific metabolic pathways may result in the future in genetically-engineered high-yield crops.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, 79165, Sderot, Hof Ashkelon, Israel. .,Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30033, USA
| |
Collapse
|
26
|
Scavo A, Pandino G, Restuccia A, Caruso P, Lombardo S, Mauromicale G. Allelopathy in Durum Wheat Landraces as Affected by Genotype and Plant Part. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081021. [PMID: 35448748 PMCID: PMC9026900 DOI: 10.3390/plants11081021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 05/14/2023]
Abstract
Durum wheat is one of the largest cultivated crops across Mediterranean areas. The high demand for sustainable crop productions, especially concerning weed management, is driving the return to local landraces. In the present work, the in vitro allelopathic effects of the extracts of three durum wheat landraces ('Timilia', 'Russello' and 'Perciasacchi') and a modern variety ('Mongibello'), obtained from three different plant parts (ears, stems and roots), were tested on seed germination (G) and mean germination time (MGT) of Portulaca oleracea L. and Stellaria. media (L.) Vill., two weeds commonly infesting wheat fields. In addition, the total polyphenol (TPC) and total flavonoid (TFC) content of extracts was determined. All extracts reduced G and increased MGT in both weeds compared to the control. The magnitude of phytotoxicity was strongly affected by the influence of genotype, plant part and extract dilution. Overall, the landraces 'Timilia' and 'Russello' showed the highest allelopathic effects, ear extracts were the most active, and the maximum extract dilution induced higher phytotoxicity. Extracts' TPC and TFC corroborated these results. The findings obtained here encourage the use of local landraces as a source of allelochemicals and suggest that they could be left on soil surface or soil-incorporated after harvest for a possible weed control.
Collapse
Affiliation(s)
| | - Gaetano Pandino
- Correspondence: (G.P.); (S.L.); Tel.: +39-0954783449 (G.P.); +39-0954783421 (S.L.)
| | | | | | - Sara Lombardo
- Correspondence: (G.P.); (S.L.); Tel.: +39-0954783449 (G.P.); +39-0954783421 (S.L.)
| | | |
Collapse
|
27
|
Khamare Y, Chen J, Marble SC. Allelopathy and its application as a weed management tool: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1034649. [PMID: 36518508 PMCID: PMC9742440 DOI: 10.3389/fpls.2022.1034649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 05/06/2023]
Abstract
Weeds are a serious threat to crop production as they interfere with the crop growth and development and result in significant crop losses. Weeds actually cause yield loss higher than any other pest in crop production. As a result, synthetic herbicides have been widely used for weed management. Heavy usage of synthetic herbicides, however, has resulted in public concerns over the impact of herbicides on human health and the environment. Due to various environmental and health issues associated with synthetic herbicides, researchers have been exploring alternative environmentally friendly means of controlling weed. Among them, incorporating allelopathy as a tool in an integrated weed management plan could meaningfully bring down herbicide application. Allelopathy is a biological phenomenon of chemical interaction between plants, and this phenomenon has great potential to be used as an effective and environmentally friendly tool for weed management in field crops. In field crops, allelopathy can be applied through intercropping, crop rotation, cover crops, mulching and allelopathic water extracts to manage weeds. Accumulating evidence indicates that some plant species possess potent allelochemicals that have great potential to be the ecofriendly natural herbicides. This review is intended to provide an overview of several allelopathic species that release some form of the potent allelochemical with the potential of being used in conventional or organic agriculture. Further, the review also highlights potential ways allelopathy could be utilized in conventional or organic agriculture and identify future research needs and prospects. It is anticipated that the phenomenon of allelopathy will be further explored as a weed management tool, and it can be a part of a sustainable, ecological, and integrated weed management system.
Collapse
|
28
|
Kato-Noguchi H. Allelopathy of Knotweeds as Invasive Plants. PLANTS (BASEL, SWITZERLAND) 2021; 11:3. [PMID: 35009007 PMCID: PMC8747059 DOI: 10.3390/plants11010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Perennial herbaceous Fallopia is native to East Asia, and was introduced to Europe and North America in the 19th century as an ornamental plant. Fallopia has been spreading quickly and has naturalized in many countries. It is listed in the world's 100 worst alien species. Fallopia often forms dense monospecies stands through the interruption of the regeneration process of indigenous plant species. Allelopathy of Japanese knotweed (Fallopia japonica), giant knotweed (Fallopia sachalinensis), and Bohemian knotweed (Fallopia x bohemica) has been reported to play an essential role in its invasion. The exudate from their roots and/or rhizomes, and their plant residues inhibited the germination and growth of some other plant species. These knotweeds, which are non-mycorrhizal plants, also suppressed the abundance and species richness of arbuscular mycorrhizal fungi (AMF) in the rhizosphere soil. Such suppression was critical for most territorial plants to form the mutualism with AMF, which enhances the nutrient and water uptake, and the tolerance against pathogens and stress conditions. Several allelochemicals such as flavanols, stilbenes, and quinones were identified in the extracts, residues, and rhizosphere soil of the knotweeds. The accumulated evidence suggests that some of those allelochemicals in knotweeds may be released into the rhizosphere soil through the decomposition process of their plant parts, and the exudation from their rhizomes and roots. Those allelochemicals may inhibit the germination and growth of native plants, and suppress the mycorrhizal colonization of native plants, which provides the knotweeds with a competitive advantage, and interrupts the regeneration processes of native plants. Therefore, allelopathy of knotweeds may contribute to establishing their new habitats in the introduced ranges as invasive plant species. It is the first review article focusing on the allelopathy of knotweeds.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| |
Collapse
|
29
|
Physiological and Biochemical Responses of Ageratum conyzoides, Oryza sativa f. spontanea (Weedy Rice) and Cyperus iria to Parthenium hysterophorus Methanol Extract. PLANTS 2021; 10:plants10061205. [PMID: 34198474 PMCID: PMC8231805 DOI: 10.3390/plants10061205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
The current study was designed to investigate the effect of Parthenium hysterophorus L. methanol extract on Ageratum conyzoides L., Oryza sativa f. spontanea (weedy rice) and Cyperus iria L. in glasshouse condition. Here, Parthenium hysterophorus methanol extract at 20, 40, and 60 g L−1 concentrations was applied on the test species to examine their physiological and biochemical responses at 6, 24, 48 and 72 h after spraying (HAS). The phytotoxicity of P. hysterophorus was strong on A. conyzoides compared to weedy rice and Cyperus iria at different concentrations and exposure times. There was a reduction in photosynthesis rate, stomatal conductance, transpiration, chlorophyll content and carotenoid content when plants were treated with P. hysterophorus extract concentrations. Exposure to P. hysterophorus (60 g L−1) at 24 HAS increased malondialdehyde (MDA) and proline content by 152% and 130%, respectively, in A. conyzoides compared with control. The activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) were also increased in the presence of P. hysterophorus extract. Present findings confirm that the methanol extract of P. hysterophorus can disrupt the physiological and biochemical mechanism of target weeds and could be used as an alternative to chemical herbicides.
Collapse
|
30
|
Kato-Noguchi H, Kurniadie D. Allelopathy of Lantana camara as an Invasive Plant. PLANTS (BASEL, SWITZERLAND) 2021; 10:1028. [PMID: 34065417 PMCID: PMC8161263 DOI: 10.3390/plants10051028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Lantana camara L. (Verbenaceae) is native to tropical America and has been introduced into many other countries as an ornamental and hedge plant. The species has been spreading quickly and has naturalized in more than 60 countries as an invasive noxious weed. It is considered to be one of the world's 100 worst alien species. L. camara often forms dense monospecies stands through the interruption of the regeneration process of indigenous plant species. Allelopathy of L. camara has been reported to play a crucial role in its invasiveness. The extracts, essential oil, leachates, residues, and rhizosphere soil of L. camara suppressed the germination and growth of other plant species. Several allelochemicals, such as phenolic compounds, sesquiterpenes, triterpenes, and a flavonoid, were identified in the extracts, essential oil, residues, and rhizosphere soil of L. camara. The evidence also suggests that some of those allelochemicals in L. camara are probably released into the rhizosphere soil under the canopy and neighboring environments during the decomposition process of the residues and as leachates and volatile compounds from living plant parts of L. camara. The released allelochemicals may suppress the regeneration process of indigenous plant species by decreasing their germination and seedling growth and increasing their mortality. Therefore, the allelopathic property of L. camara may support its invasive potential and formation of dense monospecies stands.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Denny Kurniadie
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran Jl. Raya, Bandung Sumedang KM 21 Sumedang, Jawa Barat 45363, Indonesia;
| |
Collapse
|
31
|
Sang Y, Mejuto JC, Xiao J, Simal-Gandara J. Assessment of Glyphosate Impact on the Agrofood Ecosystem. PLANTS (BASEL, SWITZERLAND) 2021; 10:405. [PMID: 33672572 PMCID: PMC7924050 DOI: 10.3390/plants10020405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate herbicides cautiously in order to protect public health. This entails careful testing and risk assessment of available choices, and also educating farmers and users with mitigation strategies in ecosystem protection and sustainable development. The key to success in this endeavour is using scientific research on biological pest control, organic farming and regulatory control, etc., for new developments in food production and safety, and for environmental protection. Education and research is of paramount importance for food and nutrition security in the shadow of climate change, and their consequences in food production and consumption safety and sustainability. This review, therefore, diagnoses on the use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with the risk assessment on human health of glyphosate formulations through environment and dietary exposures based on the impact of glyphosate and its metabolite AMPA-(aminomethyl)phosphonic acid-on water and food. All this to setup further conclusions and recommendations on the regulated use of glyphosate and how to mitigate the adverse effects.
Collapse
Affiliation(s)
- Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Juan-Carlos Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
32
|
Evaluation of Dittrichia viscosa (L.) Greuter Dried Biomass for Weed Management. PLANTS 2021; 10:plants10010147. [PMID: 33445708 PMCID: PMC7828174 DOI: 10.3390/plants10010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Abstract
Dittrichia viscosa (L.) Greuter, a plant species common in the Mediterranean basin, produces several bioactive compounds, some of which have herbicidal effects. A number of greenhouse and field experiments were carried out in order to evaluate if these effects could be obtained also by using the whole plant biomass, to identify the efficacious doses, determine their effects on seed germination and weed emergence, and to evaluate influence of soil characteristics on biomass efficacy. The experiments carried out evidenced that: (i) the dried biomass completely hampers plant emergence when high doses (30–40 kg biomass m−3 of soil) are mixed into the soil, or delays it at a lower dose (10 kg m−3); (ii) the detrimental effects are not affected by soil type. The exploitation of the D. viscosa dried biomass appears to be a feasible option in weed management practices and its potential is discussed.
Collapse
|
33
|
Kato-Noguchi H. Involvement of Allelopathy in the Invasive Potential of Tithonia diversifolia. PLANTS 2020; 9:plants9060766. [PMID: 32575408 PMCID: PMC7356969 DOI: 10.3390/plants9060766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae) is native to Mexico and Central America. The species is spreading quickly and has naturalized in more than 70 countries. It has often been recorded as a harmful invasive plant that disturbs native plant communities. Phytotoxic chemical interactions such as allelopathy between invasive plants and native plants have been reported to play an important role in the invasion. Evidence for allelopathy of T. diversifolia has accumulated in the literature over 30 years. Thus, the objective of this review was to discuss the possible involvement of allelopathy in the invasive potential of T. diversifolia. The extracts, root exudates, and plant residues of T. diversifolia inhibited the germination and growth of other plant species. The soil water and soil collected from T. diversifolia fields also showed inhibitory growth effects. The decomposition rate of T. diversifolia residues in soil was reported to be high. Phytotoxic substances such as sesquiterpene lactones were isolated and identified in the extracts of T. diversifolia. Some phytotoxic substances in T. diversifolia may be released into the soil through the decomposition of the plant residues and the exudation from living tissues of T. diversifolia, including its root exudates, which act as allelopathic substances. Those allelopathic substances can inhibit the germination and growth of neighboring plants and may enhance the competitive ability of the plants, make them invasive.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| |
Collapse
|
34
|
Maver M, Miras-Moreno B, Lucini L, Trevisan M, Pii Y, Cesco S, Mimmo T. New insights in the allelopathic traits of different barley genotypes: Middle Eastern and Tibetan wild-relative accessions vs. cultivated modern barley. PLoS One 2020; 15:e0231976. [PMID: 32324789 PMCID: PMC7179892 DOI: 10.1371/journal.pone.0231976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/03/2020] [Indexed: 11/26/2022] Open
Abstract
The two alkaloids gramine and hordenine have been known for playing a role in the allelopathic ability in barley (Hordeum vulgare L.). These allelochemicals can be both found in leaves and roots in some barley cultivars whereas in others one seems to exclude the other. In this study eighteen accessions of barley from the Middle-East area, one accession from Tibet and the modern spring cultivar Barke, already used as parental donor in a nested associated mapping (NAM) population, were screened for their gramine, hordenine and N-methyltyramine (the direct precursor of hordenine) content in leaves, roots and exudates. Moreover, the toxicity of the three allelochemicals on root growth inhibition on lettuce (Lactuca sativa L.) was evaluated. Results of this study showed the preferential production of gramine and hordenine in leaves and roots, respectively, in the nineteen barley accessions. On the other hand, in the modern barley cultivar Barke, the highest content of hordenine in roots and the general lack of gramine suggests a favored biosynthesis of the former. Gramine was not detected in the root exudates. In additions, different metabolomic profiles were observed in wild relatives compared to modern barley genotypes. The results also showed the phytotoxic effects of the three compounds on root growth of lettuce seedlings, with a reduction in root length and an increase of root surface area and diameter. In conclusion, this study highlighted the impact of the domestication effects on the production and distribution of the two allelopathic alkaloids gramine and hordenine in barley.
Collapse
Affiliation(s)
- Mauro Maver
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- * E-mail:
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
35
|
Gerhards R, Schappert A. Advancing cover cropping in temperate integrated weed management. PEST MANAGEMENT SCIENCE 2020; 76:42-46. [PMID: 31595642 DOI: 10.1002/ps.5639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70-95% of weeds and volunteer crops in the fall-to-spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble-tillage operations and non-selective chemical weed control in the fall-to-spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roland Gerhards
- Department of Weed Science, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
36
|
Ida N, Iwasaki A, Teruya T, Suenaga K, Kato-Noguchi H. Tree Fern Cyathea lepifera May Survive by Its Phytotoxic Property. PLANTS (BASEL, SWITZERLAND) 2019; 9:plants9010046. [PMID: 31905660 PMCID: PMC7020143 DOI: 10.3390/plants9010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Cyatheaceae (tree ferns) appeared during the Jurassic period and some of the species still remain. Those species may have some morphological and/or physiological characteristics for survival. A tree fern was observed to suppress the growth of other ligneous plants in a tropical forest. It was assumed that the fern may release toxic substances into the forest floor, but those toxic substances have not yet been identified. Therefore, we investigated the phytotoxicity and phytotoxic substances of Cyathea lepifera (J. Sm. ex Hook.) Copel. An aqueous methanol extract of C. lepifera fronds inhibited the growth of roots and shoots of dicotyledonous garden cress (Lepidum sativum L.), lettuce (Lactuca sativa L.), and alfalfa (Medicago sativa L.), and monocotyledonous ryegrass (Lolium multiflorum Lam.), timothy (Phleum pratense L.), and barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.). The results suggest that C. lepifera fronds may have phytotoxicity and contain some phytotoxic substances. The extract was purified through several chromatographic steps during which inhibitory activity was monitored, and p-coumaric acid and (-)-3-hydroxy-β-ionone were isolated. Those compounds showed phytotoxic activity and may contribute to the phytotoxic effects caused by the C. lepifera fronds. The fronds fall and accumulate on the forest floor through defoliation, and the compounds may be released into the forest soils through the decomposition process of the fronds. The phytotoxic activities of the compounds may be partly responsible for the fern's survival.
Collapse
Affiliation(s)
- Noriyuki Ida
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan;
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; (A.I.); (K.S.)
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan;
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; (A.I.); (K.S.)
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan;
| |
Collapse
|
37
|
Zhao HH, Kong CH, Xu XH. Herbicidal efficacy and ecological safety of an allelochemical-based benzothiazine derivative. PEST MANAGEMENT SCIENCE 2019; 75:2690-2697. [PMID: 30773794 DOI: 10.1002/ps.5377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The development of allelochemical-based herbicides may be of particular value for weed management in cropping systems. However, the action of potential allelochemical-based herbicides on crop selectivity and ecotoxicology needs to be clarified before they can be introduced into cropping systems. RESULTS An allelochemical-based 3-(2-chloro-4-ethanesulfonyl)-benzoyl-hydroxy-2- methyl-2H-1,2-benzothiazine-1,1-dioxide, originating from the rice allelochemical tricin, was applied to a paddy system. The benzothiazine derivative could effectively control dominant weeds, while rice was not affected at rates of 75-100 g a.i. ha-1 . Furthermore, this target compound significantly inhibited the growth of all weeds tested with excellent selectivity for maize; however, it was not safe for soybean. The benzothiazine derivative had no toxic effects on zebrafish and earthworms. The benzothiazine derivative was rapidly degraded in soil with half-lives of 17.51-20.47 days. MiSeq-pyrosequencing revealed relative safety to soil microorganisms at 5 mg kg-1 of the benzothiazine derivative. CONCLUSION The allelochemical-based benzothiazine derivative at optimal application rates can be recommended to provide satisfactory control of paddy weeds. The benzothiazine derivative with excellent crop selectivity and ecological safety may be further developed for weed management in maize fields. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan-Huan Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiao-Hua Xu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
38
|
Ghimire BK, Ghimire B, Yu CY, Chung IM. Allelopathic and Autotoxic Effects of Medicago sativa-Derived Allelochemicals. PLANTS (BASEL, SWITZERLAND) 2019; 8:E233. [PMID: 31323838 PMCID: PMC6681227 DOI: 10.3390/plants8070233] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/23/2022]
Abstract
In this study, the allelopathic properties of Medicago sativa on different weeds were investigated under in vitro conditions. The compounds involved in the autotoxicity of M. sativa were analyzed using high-performance liquid chromatography. The extracts of all concentrations inhibited the growth of the calluses of Digitaria ciliaris, Chenopodium album, Amaranthus lividus, Portulaca oleracea, and Commelina communis. Six allelopathic compounds in alfalfa were identified and quantified, and the most predominant phenolic compounds were salicylic acid and p-hydroxybenzoic acid. Various concentrations (10-2, 10-3, and 10-5 M) of all the tested phenolic compounds exerted inhibitory effects on callus fresh weight. Rutin, salicylic acid, scopoletin, and quercetin significantly inhibited alfalfa seed germination. Of the seven identified saponins, medicagenic acid saponins exhibited the highest autotoxic effect and significantly lowered seed germination rate. Principal component analysis showed that the phenolic compounds and saponin composition significantly contributed to the different variables. The highly phytotoxic properties of the alfalfa-derived phenolic compounds and saponins indicate that these phytochemicals can be a potential source of bioherbicides.
Collapse
Affiliation(s)
| | - Balkrishna Ghimire
- Division of Plant Resources, Korea National Arboretum, Pocheon 11186, Korea
| | - Chang Yeon Yu
- Department of Agriculture Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul 05025, Korea.
| |
Collapse
|
39
|
Trinchera A, Ciaccia C, Testani E, Baratella V, Campanelli G, Leteo F, Canali S. Mycorrhiza-mediated interference between cover crop and weed in organic winter cereal agroecosystems: The mycorrhizal colonization intensity indicator. Ecol Evol 2019; 9:5593-5604. [PMID: 31160984 PMCID: PMC6540714 DOI: 10.1002/ece3.5125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
The mycorrhizal fungi are symbiotic organisms able to provide many benefits to crop production by supplying a set of ecosystem functions. A recent ecological approach based on the ability of the fungi community to influence plant-plant interactions by extraradical mycelium development may be applied to diversified, herbaceous agroecosystems. Our hypothesis is that the introduction of a winter cereal cover crop (CC) as arbuscular mycorrhizal fungi (AMF)-host plant in an organic rotation can boosts the AMF colonization of the other plants, influencing crop-weed interference. In a 4-years organic rotation, the effect of two winter cereal CC, rye and spelt, on weed density and AMF colonization was evaluated. The AMF extraradical mycelium on CC and weeds roots was observed by scanning electron microscopy analysis. By joining data of plant density and mycorrhization, we built the mycorrhizal colonization intensity of the Agroecosystem indicator (MA%). Both the CC were colonized by soil AMF, being the mycorrhizal colonization intensity (M%) affected by environmental conditions. Under CC, the weed density was reduced, due to the increase of the reciprocal competition in favor of CC, which benefited from mycorrhizal colonization and promoted the development of AMF extraradical mycelium. Even though non-host plants, some weed species showed an increased mycorrhizal colonization in presence of CC respect to the control. Under intense rainfall, the MA% was less sensitive to the CC introduction. On the opposite, under highly competitive conditions, both the CC boosted significantly the mycorrhization of coexistent plants in the agroecosystem. The proposed indicator measured the agroecological service provided by the considered CCs in promoting or inhibiting the overall AMF colonization of the studied agroecosystems, as affected by weed selection and growth: It informs about agroecosystem resilience and may be profitably applied to indicate the extent of the linkage of specific crop traits to agroecosystem services, contributing to further develop the functional biodiversity theory.
Collapse
Affiliation(s)
- Alessandra Trinchera
- CREA Research Centre for Agriculture and EnvironmentCouncil for Agricultural Research and EconomicsRomeItaly
| | - Corrado Ciaccia
- CREA Research Centre for Agriculture and EnvironmentCouncil for Agricultural Research and EconomicsRomeItaly
| | - Elena Testani
- CREA Research Centre for Agriculture and EnvironmentCouncil for Agricultural Research and EconomicsRomeItaly
| | - Valentina Baratella
- CREA Research Centre for Agriculture and EnvironmentCouncil for Agricultural Research and EconomicsRomeItaly
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental CropsCouncil for Agricultural Research and EconomicsMonsampolo del Tronto (AP)Italy
| | - Fabrizio Leteo
- CREA Research Centre for Vegetable and Ornamental CropsCouncil for Agricultural Research and EconomicsMonsampolo del Tronto (AP)Italy
| | - Stefano Canali
- CREA Research Centre for Agriculture and EnvironmentCouncil for Agricultural Research and EconomicsRomeItaly
| |
Collapse
|
40
|
Favaretto A, Cantrell CL, Fronczek FR, Duke SO, Wedge DE, Ali A, Scheffer-Basso SM. New Phytotoxic Cassane-like Diterpenoids from Eragrostis plana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1973-1981. [PMID: 30685966 DOI: 10.1021/acs.jafc.8b06832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eragrostis plana (Nees) is an allelopathic plant with invasive potential in South American pastures. To isolate and identify phytotoxic compounds from leaves and roots of E. plana, a bioassay-directed isolation of the bioactive constituents was performed. This is the first report on a new diterpene carbon skeleton, neocassane, and of three new neocassane diterpenes, neocassa-1,12(13),15-triene-3,14-dione, 1; 19-norneocassa-1,12(13),15-triene-3,14-dione, 2; and 14-hydroxyneocassa-1,12(17),15-triene-3-one, 3, identified from the roots. Compounds 1, 2, and 3 inhibited the growth of duckweed by 50% at concentrations of 109 ± 28, 200 ± 37, and 59 ± 15 μM, respectively. Compound 2 was fungicidal to Colletotrichum fragariae, Colletotrichum acutatum, and Colletotrichum gloeosporioides. The compounds identified here could explain the allelopathy of E. plana. The description of the newly discovered compounds, besides contributing to the chemical characterization of the species, may be the first step in the study of the potential of these compounds as bioherbicides.
Collapse
Affiliation(s)
- Adriana Favaretto
- Agronomy Graduate Program , University of Passo Fundo , Passo Fundo , Rio Grande do Sul 99052-900 , Brazil
| | - Charles L Cantrell
- Natural Products Utilization Research Unit , United States Department of Agriculture, USDA-ARS , University , Mississippi 38677 , United States
| | - Frank R Fronczek
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Stephen O Duke
- Natural Products Utilization Research Unit , United States Department of Agriculture, USDA-ARS , University , Mississippi 38677 , United States
| | - David E Wedge
- Natural Products Utilization Research Unit , United States Department of Agriculture, USDA-ARS , University , Mississippi 38677 , United States
| | - Abbas Ali
- National Center for Natural Products Research , The University of Mississippi , University , Mississippi 38677 , United States
| | - Simone M Scheffer-Basso
- Agronomy Graduate Program , University of Passo Fundo , Passo Fundo , Rio Grande do Sul 99052-900 , Brazil
| |
Collapse
|
41
|
Neve P. Gene drive systems: do they have a place in agricultural weed management? PEST MANAGEMENT SCIENCE 2018; 74:2671-2679. [PMID: 29999229 PMCID: PMC6282749 DOI: 10.1002/ps.5137] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 05/11/2023]
Abstract
There is a pressing need for novel control techniques in agricultural weed management. Direct genetic control of agricultural pests encompasses a range of techniques to introduce and spread novel, fitness-reducing genetic modifications through pest populations. Recently, the development of CRISPR-Cas9 gene editing has brought these approaches into sharper focus. Proof of concept for CRISPR-Cas9-based gene drives has been demonstrated for the control of disease-vectoring insects. This article considers whether and how gene drives may be applied in agricultural weed management, focusing on CRISPR-Cas9-based systems. Population-suppression drives might be employed to introduce and proliferate deleterious mutations that directly impact fitness and weediness, whereas population-sensitizing drives would seek to edit weed genomes so that populations are rendered more sensitive to subsequent management interventions. Technical challenges relating to plant transformation and gene editing in planta are considered, and the implementation of gene drives for timely and sustainable weed management is reviewed in the light of weed population biology. The technical, biological, practical and regulatory challenges remain significant. Modelling-based studies can inform how and if gene drives could be employed in weed populations. These studies are an essential first step towards determining the utility of gene drives for weed management. © 2018 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Paul Neve
- Biointeractions & Crop Protection DepartmentRothamsted Research, West CommonHertfordshireUK
| |
Collapse
|
42
|
Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, Wang P. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun 2018; 9:3867. [PMID: 30250243 PMCID: PMC6155373 DOI: 10.1038/s41467-018-06429-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/05/2018] [Indexed: 11/09/2022] Open
Abstract
Plant neighbor detection and response strategies are important mediators of interactions among species. Despite increasing knowledge of neighbor detection and response involving plant volatiles, less is known about how soil-borne signaling chemicals may act belowground in plant-plant interactions. Here, we experimentally demonstrate neighbor detection and allelopathic responses between wheat and 100 other plant species via belowground signaling. Wheat can detect both conspecific and heterospecific neighbors and responds by increasing allelochemical production. Furthermore, we show that (-)-loliolide and jasmonic acid are present in root exudates from a diverse range of species and are able to trigger allelochemical production in wheat. These findings suggest that root-secreted (-)-loliolide and jasmonic acid are involved in plant neighbor detection and allelochemical response and may be widespread mediators of belowground plant-plant interactions.
Collapse
Affiliation(s)
- Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China.
| | - Song-Zhu Zhang
- College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Yong-Hua Li
- College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhi-Chao Xia
- College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Xue-Fang Yang
- College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Peng Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China
| |
Collapse
|
43
|
Khanh TD, Anh LH, Nghia LT, Huu Trung K, Bich Hien P, Minh Trung D, Dang Xuan T. Allelopathic Responses of Rice Seedlings under Some Different Stresses. PLANTS (BASEL, SWITZERLAND) 2018; 7:E40. [PMID: 29738464 PMCID: PMC6027185 DOI: 10.3390/plants7020040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
Abstract
The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32) at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 μg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.
Collapse
Affiliation(s)
- Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong, Tu Liem, Hanoi 123000, Vietnam.
| | - La Hoang Anh
- Agricultural Genetics Institute, Pham Van Dong, Tu Liem, Hanoi 123000, Vietnam.
- Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan.
| | - La Tuan Nghia
- Plant Resource Center, An Khanh, Hoai Duc, Hanoi 152900, Vietnam.
| | - Khuat Huu Trung
- Agricultural Genetics Institute, Pham Van Dong, Tu Liem, Hanoi 123000, Vietnam.
| | - Pham Bich Hien
- Post Graduate Training Department, Vietnam Academy of Agricultural Sciences, Hanoi 128200, Vietnam.
| | - Do Minh Trung
- Institute of Biomedical and Pharmaceutical Applied Research Centre, Vietnam Military Medical University (VMMU), Hanoi 150000, Vietnam.
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan.
| |
Collapse
|
44
|
Scavo A, Restuccia A, Mauromicale G. Allelopathy: Principles and Basic Aspects for Agroecosystem Control. SUSTAINABLE AGRICULTURE REVIEWS 28 2018. [DOI: 10.1007/978-3-319-90309-5_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Rasche F, Blagodatskaya E, Emmerling C, Belz R, Musyoki MK, Zimmermann J, Martin K. A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems. Ecosphere 2017. [DOI: 10.1002/ecs2.2048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Evgenia Blagodatskaya
- Department of Soil Science of Temperate Ecosystems; Georg-August University Göttingen; 37077 Göttingen Germany
| | | | - Regina Belz
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Mary K. Musyoki
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Judith Zimmermann
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Konrad Martin
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| |
Collapse
|
46
|
Naji-Tabasi S, Razavi SMA. Functional properties and applications of basil seed gum: An overview. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Yang XF, Lei K, Kong CH, Xu XH. Effect of allelochemical tricin and its related benzothiazine derivative on photosynthetic performance of herbicide-resistant barnyardgrass. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:224-230. [PMID: 29183596 DOI: 10.1016/j.pestbp.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 05/25/2023]
Abstract
Despite increasing knowledge of allelochemicals as leads for new herbicides, relatively little is known about the mode of action of allelochemical-based herbicides on herbicide-resistant weeds. In this study, herbicidal activities of a series of allelochemical tricin-derived compounds were evaluated. Subsequently, a benzothiazine derivative 3-(2-chloro-4-methanesulfonyl)-benzoyl-hydroxy-2-methyl-2H-1,2-benzothiazine-1,1-dioxide with 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibiting activity was identified as a target compound on photosynthetic performance of penoxsulam-resistant versus -susceptible barnyardgrass (Echinochloa crus-galli). Regardless of barnyardgrass biotype, the benzothiazine derivative greatly affected chlorophyll fluorescence parameters (Fv/Fm, ETR1min and NPQ1min), reduced the chloroplast fluorescence levels and expression of HPPD gene. In particular, the benzothiazine derivative interfered with photosynthetic performance of resistant barnyardgrass more effectively than the allelochemical tricin itself. These results showed that the benzothiazine derivative effectively inhibited the growth of resistant barnyardgrass and its mode of action on photosynthesis system was similar to HPPD-inhibiting sulcotrione, making it an ideal lead compound for further development of allelochemical-based herbicide discovery.
Collapse
Affiliation(s)
- Xue-Fang Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kang Lei
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiao-Hua Xu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
|
49
|
Yang XF, Kong CH. Interference of allelopathic rice with paddy weeds at the root level. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:584-591. [PMID: 28218979 DOI: 10.1111/plb.12557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Despite increasing knowledge of the involvement of allelopathy in negative interactions among plants, relatively little is known about its action at the root level. This study aims to enhance understanding of interactions of roots between a crop and associated weeds via allelopathy. Based on a series of experiments with window rhizoboxes and root segregation methods, we examined root placement patterns and root interactions between allelopathic rice and major paddy weeds Cyperus difformis, Echinochloa crus-galli, Eclipta prostrata, Leptochloa chinensis and Oryza sativa (weedy rice). Allelopathic rice inhibited growth of paddy weed roots more than shoots regardless of species. Furthermore, allelopathic rice significantly reduced total root length, total root area, maximum root width and maximum root depth of paddy weeds, while the weeds adjusted horizontal and vertical placement of their roots in response to the presence of allelopathic rice. With the exception of O. sativa (weedy rice), root growth of weeds avoided expanding towards allelopathic rice. Compared with root contact, root segregation significantly increased inhibition of E. crus-galli, E. prostrata and L. chinensis through an increase in rice allelochemicals. In particular, their root exudates induced production of rice allelochemicals. However, similar results were not observed in C. difformis and O. sativa (weedy rice) with either root segregation or root exudate application. The results demonstrate that allelopathic rice interferes with paddy weeds by altering root placement patterns and root interactions. This is the first case of a root behavioural strategy in crop-weed allelopathic interaction.
Collapse
Affiliation(s)
- X-F Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - C-H Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Hunt ND, Hill JD, Liebman M. Reducing Freshwater Toxicity while Maintaining Weed Control, Profits, And Productivity: Effects of Increased Crop Rotation Diversity and Reduced Herbicide Usage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1707-1717. [PMID: 28112904 DOI: 10.1021/acs.est.6b04086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increasing crop rotation diversity while reducing herbicide applications may maintain effective weed control while reducing freshwater toxicity. To test this hypothesis, we applied the model USEtox 2.0 to data from a long-term Iowa field experiment that included three crop rotation systems: a 2-year corn-soybean sequence, a 3-year corn-soybean-oat/red clover sequence, and 4-year corn-soybean-oat/alfalfa-alfalfa sequence. Corn and soybean in each rotation were managed with conventional or low-herbicide regimes. Oat, red clover, and alfalfa were not treated with herbicides. Data from 2008-2015 showed that use of the low-herbicide regime reduced freshwater toxicity loads by 81-96%, and that use of the more diverse rotations reduced toxicity and system dependence on herbicides by 25-51%. Mean weed biomass in corn and soybean was <25 kg ha-1 in all rotation × herbicide combinations except the low-herbicide 3-year rotation, which contained ∼110 kg ha-1 of weed biomass. Corn and soybean yields and net returns were as high or higher for the 3- and 4-year rotations managed with the low-herbicide regime as for the conventional-herbicide 2-year rotation. These results indicate that certain forms of cropping system diversification and alternative weed management strategies can maintain yield, profit, and weed suppression while delivering enhanced environmental performance.
Collapse
Affiliation(s)
- Natalie D Hunt
- Department of Bioproducts and Biosystems Engineering, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Jason D Hill
- Department of Bioproducts and Biosystems Engineering, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Matt Liebman
- Department of Agronomy, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|