1
|
Depetris MB, Muñiz Padilla E, Ayala F, Tuesca D, Breccia G. Resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides in Lolium multiflorum Lam. populations of Argentina. PEST MANAGEMENT SCIENCE 2024; 80:6600-6606. [PMID: 39221960 DOI: 10.1002/ps.8399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Italian ryegrass (Lolium multiflorum Lam.) is one of the most troublesome grass weeds in Argentina. The extensive and repetitive use of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has induced resistance in this weed species. The objectives of this study were to quantify the resistance levels to ACCase-inhibiting herbicides in two resistant populations and to identify the target-site mutations associated with their resistance. RESULTS Two resistant Italian ryegrass populations, Roldán and H2, were studied. Roldán was a suspected haloxyfop-resistant population, located in a wheat field from Santa Fe province with a history of ACCase-inhibiting herbicide use. The H2 population was obtained from the susceptible Hernandarias population (H0) after two cycles of selection with the herbicide quizalofop-ethyl. Whole-plant dose-response assays revealed that the resistant populations exhibited a high resistance to haloxyfop, with resistance factors (RF) exceeding 97-fold. Additionally, both populations showed a moderate resistance to pinoxaden (RF > 7), while maintaining susceptibility to clethodim. Partial chloroplastic ACCase sequences revealed isoleucine-to-asparagine substitution at position 2041 (Ile-2041-Asn) in both resistant populations. CONCLUSION This work provides a better understanding of cross-resistance to ACCase-inhibiting herbicides in L. multiflorum populations and represents the first report of the target-site mutation Ile-2041-Asn conferring resistance in populations from Argentina. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mara B Depetris
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR, UNR, CONICET), Zavalla, Argentina
| | - Esteban Muñiz Padilla
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Oro Verde, Argentina
| | - Fabián Ayala
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - Daniel Tuesca
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Gabriela Breccia
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR, UNR, CONICET), Zavalla, Argentina
| |
Collapse
|
2
|
Scutt JN, Willetts NJ, Fernandes Campos B, Oliver S, Hennessy A, Joyce PM, Hutchings SJ, le Goupil G, Linares Colombo W, Kaundun SS. Metproxybicyclone, a Novel Carbocyclic Aryl-dione Acetyl-CoA Carboxylase-Inhibiting Herbicide for the Management of Sensitive and Resistant Grass Weeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21380-21392. [PMID: 39311764 DOI: 10.1021/acs.jafc.4c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Postemergence control of grass weeds has become problematic due to the evolution of resistance to 5-enolpyruvylshikimate-3-phosphate synthase, acetyl-CoA carboxylase (ACCase), and acetolactate synthase-inhibiting herbicides. Herein we describe the invention and synthesis journey toward metproxybicyclone, the first commercial carbocyclic aryl-dione ACCase-inhibiting herbicide for the cost-effective management of grass weeds in dicotyledonous crops and in preplant burndown applications. Glasshouse and field experiments have shown that metproxybicyclone is safe for use on soybean, cotton, and sugar beet, among other crops. It is effective on a variety of key grass weeds including Eleusine indica, Digitaria insularis, Sorghum halepense, and Echinochloa crus-galli. Importantly, metproxybicyclone was more efficacious at killing resistant grass weed populations than current ACCase herbicides. Metproxybicyclone controlled the main ACCase target-site and nontarget site resistant mechanisms in characterized Lolium multiflorum and E. indica populations under glasshouse conditions. Excellent control of a broad resistance-causing D2078G target-site mutant E. indica population was also observed under field conditions.
Collapse
Affiliation(s)
- James Nicholas Scutt
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Nigel James Willetts
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Breno Fernandes Campos
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Sophie Oliver
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Alan Hennessy
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Philip Matthew Joyce
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Sarah-Jane Hutchings
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Gael le Goupil
- Syngenta Crop Protection AG, Rosentalstrasse 67, CH-4058 Basel, Switzerland
| | - Wendy Linares Colombo
- Syngenta Protecao de Cultivos Ltda, Av. Nacoes Unidas 17.007, Torre Sigma-13° andar, Sao Paulo, Sao Paulo 04730-300, Brazil
| | - Shiv Shankhar Kaundun
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| |
Collapse
|
3
|
Wang Z, Jiang M, Yin F, Wang M, Jiang J, Liao M, Cao H, Zhao N. Metabolism-Based Nontarget-Site Mechanism Is the Main Cause of a Four-Way Resistance in Shortawn Foxtail ( Alopecurus aequalis Sobol.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12014-12028. [PMID: 38748759 DOI: 10.1021/acs.jafc.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.
Collapse
Affiliation(s)
- Zilu Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Fan Yin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mali Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinfang Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ning Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Ribeiro VHV, Brunharo CA, Mallory-Smith C, Walenta DL, Barroso J. First report of target-site resistance to ACCase-inhibiting herbicides in Bromus tectorum L. PEST MANAGEMENT SCIENCE 2023; 79:4025-4033. [PMID: 37309712 DOI: 10.1002/ps.7607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND The prevalent and repeated use of acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides for Bromus tectorum L. control in fine fescue (Festuca L. spp) grown for seed has selected ACCase-resistant B. tectorum populations. The objectives of this study were to (1) evaluate the response of nine B. tectorum populations to the ACCase inhibitors clethodim, sethoxydim, fluazifop-P-butyl, and quizalofop-P-ethyl and the acetolactate synthase (ALS) inhibitor sulfosulfuron and (2) characterize the resistance mechanisms. RESULTS Bromus tectorum populations were confirmed to be resistant to the ACCase-inhibiting herbicides tested. The levels of resistance varied among the populations for clethodim (resistance ratio, RR = 5.1-14.5), sethoxydim (RR = 18.7-44.7), fluazifop-P-butyl (RR = 3.1-40.3), and quizalofop-P-ethyl (RR = 14.5-36). Molecular investigations revealed that the mutations Ile2041Thr and Gly2096Ala were the molecular basis of resistance to the ACCase-inhibiting herbicides. The Gly2096Ala mutation resulted in cross-resistance to the aryloxyphenoxypropionate (APP) herbicides fluazifop-P-butyl and quizalofop-P-ethyl, and the cyclohexanedione (CHD) herbicides clethodim, and sethoxydim, whereas Ile2041Thr mutation resulted in resistance only to the two APP herbicides. All B. tectorum populations were susceptible to sulfosulfuron (RR = 0.3-1.7). CONCLUSIONS This is the first report of target-site mutations conferring resistance to ACCase-inhibiting herbicides in B. tectorum. The results of this study suggest multiple evolutionary origins of resistance and contribute to understanding the patterns of cross-resistance to ACCase inhibitors associated with different mutations in B. tectorum. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Caio Acg Brunharo
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Carol Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, USA
| | - Darrin L Walenta
- Department of Crop and Soil Science, Oregon State University, La Grande, Oregon, USA
| | - Judit Barroso
- Department of Crop and Soil Science, Oregon State University, Adams, Oregon, USA
| |
Collapse
|
5
|
Kersten S, Rabanal FA, Herrmann J, Hess M, Kronenberg ZN, Schmid K, Weigel D. Deep haplotype analyses of target-site resistance locus ACCase in blackgrass enabled by pool-based amplicon sequencing. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1240-1253. [PMID: 36807472 PMCID: PMC10214753 DOI: 10.1111/pbi.14033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
Rapid adaptation of weeds to herbicide applications in agriculture through resistance development is a widespread phenomenon. In particular, the grass Alopecurus myosuroides is an extremely problematic weed in cereal crops with the potential to manifest resistance in only a few generations. Target-site resistances (TSRs), with their strong phenotypic response, play an important role in this rapid adaptive response. Recently, using PacBio's long-read amplicon sequencing technology in hundreds of individuals, we were able to decipher the genomic context in which TSR mutations occur. However, sequencing individual amplicons are costly and time-consuming, thus impractical to implement for other resistance loci or applications. Alternatively, pool-based approaches overcome these limitations and provide reliable allele frequencies, although at the expense of not preserving haplotype information. In this proof-of-concept study, we sequenced with PacBio High Fidelity (HiFi) reads long-range amplicons (13.2 kb), encompassing the entire ACCase gene in pools of over 100 individuals, and resolved them into haplotypes using the clustering algorithm PacBio amplicon analysis (pbaa), a new application for pools in plants and other organisms. From these amplicon pools, we were able to recover most haplotypes from previously sequenced individuals of the same population. In addition, we analysed new pools from a Germany-wide collection of A. myosuroides populations and found that TSR mutations originating from soft sweeps of independent origin were common. Forward-in-time simulations indicate that TSR haplotypes will persist for decades even at relatively low frequencies and without selection, highlighting the importance of accurate measurement of TSR haplotype prevalence for weed management.
Collapse
Affiliation(s)
- Sonja Kersten
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
- Department of Molecular BiologyMax Planck Institute for Biology TübingenTübingenGermany
| | - Fernando A. Rabanal
- Department of Molecular BiologyMax Planck Institute for Biology TübingenTübingenGermany
| | | | | | | | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
6
|
First Asp-2078-Gly Mutation Conferring Resistance to Different ACCase Inhibitors in a Polypogon fugax Population from China. Int J Mol Sci 2022; 24:ijms24010528. [PMID: 36613971 PMCID: PMC9820770 DOI: 10.3390/ijms24010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Asia minor bluegrass (Polypogon fugax) is a common and problematic weed throughout China. P. fugax that is often controlled by acetyl-CoA carboxylase (ACCase) inhibitors in canola fields. Herein, we confirmed a P. fugax population (R) showing resistance to all ACCase inhibitors tested with resistance indexes ranging from 5.4-18.4. We further investigated the resistance mechanisms of this R population. Molecular analyses revealed that an amino acid mutation (Asp-2078-Gly) was present in the R population by comparing ACCase gene sequences of the sensitive population (S). In addition, differences in susceptibility between the R and S population were unlikely to be related to herbicide metabolism. Furthermore, a new derived cleaved amplified polymorphic sequence (dCAPS) method was developed for detecting the Asp-2078-Gly mutation in P. fugax efficiently. We found that 93.75% of plants in the R population carried the Asp-2078-Gly mutation, and all the herbicide-resistant phenotype of this R population is inseparable from this mutation. This is the first report of cross resistance to ACCase inhibitors conferred by the Asp-2078-Gly target-site mutation in P. fugax. The research suggested the urgent need to improve the diversity of weed management practices to prevent the widespread evolution of herbicide resistance in P. fugax in China.
Collapse
|
7
|
Lan Y, Li W, Wei S, Huang H, Liu Z, Huang Z. Multiple resistance to ACCase- and ALS-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105127. [PMID: 35715065 DOI: 10.1016/j.pestbp.2022.105127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Two black-grass (Alopecurus myosuroides Huds.) populations (R2105 and R1027) that were suspected to be resistant to clodinafop-propargyl, an acetyl-CoAcarboxylase (ACCase) inhibitor, were found in winter wheat fields in China. Research was carried out to investigate whether resistance to clodinafop-propargyl was present and the molecular mechanism of herbicide resistance in these two populations. Dose-response assays confirmed high level resistance to clodinafop-propargyl in both R2105 and R1027 populations, with resistance indexes 25.1 and 22.1. ACCase gene sequence comparison revealed three amino acid mutations (Trp-1999-Leu, Ile-2041-Asn, or Asp-2078-Gly) in R2105 population and Ile-2041-Asn mutation in R1027 population. Sensitivity to other herbicides assays indicated that R2105 and R1027 populations were cross resistant to fenoxaprop-P-ethyl and multiple resistant to pyroxsulam and mesosulfuron-methyl. The ALS gene sequence analysis revealed that all resistant individuals in R2105 and R1027 populations had the Trp-574-Leu mutation. Applying malathion, significantly decreased the rate of metabolism of clodinafop-propargyl in both R2105 and R1027 populations. This is the first report of multiple resistance to ACCase- and ALS-inhibiting herbicides conferred by target-site mutations and enhanced metabolism in black-grass in China.
Collapse
Affiliation(s)
- Yuning Lan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyu Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shouhui Wei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjuan Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaofeng Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Ghanizadeh H, Buddenhagen CE, Harrington KC, Griffiths AG, Ngow Z. Pinoxaden resistance in Lolium perenne L. is due to both target-site and non-target-site mechanisms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105103. [PMID: 35715042 DOI: 10.1016/j.pestbp.2022.105103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Application of herbicides inhibiting acetyl CoA carboxylase (ACCase) has been one of the main strategies for selectively controlling grass weed species such as perennial ryegrass (Lolium perenne L.) in wheat and barley crops in New Zealand. In this study, we have confirmed and characterized resistance to pinoxaden, an ACCase-inhibiting herbicide, in a population of L. perenne. Dose-response experiments were conducted to assess the level of pinoxaden resistance, and based on the LD50 values, the studied population was 41.4-times more resistant to pinoxaden than a susceptible population. Application of malathion, an inhibitor of the cytochrome P450s, preceding pinoxaden treatment reduced the level of resistance to 9.7-fold. However, pre-treatment with the glutathione S-transferase (GST) inhibitor 4-chloro7- nitrobenzoxadiazole prior to pinoxaden treatment did not affect pinoxaden resistance. Partial sequencing of the ACCase gene revealed that the resistant population had an isoleucine to valine replacement at position 2041. These results suggest that both cytochrome P450-based and target-site mechanisms are jointly associated with this instance of pinoxaden resistance in L. perenne. The pinoxaden-resistant L. perenne individuals were also resistant to quizalofop-p-ethyl (108.6-fold), but they were susceptible to clethodim, which can, therefore, be used to manage this pinoxaden-resistant L. perenne. This is the first report of a L. perenne population in which a rare target-site mutation works in concert with enhanced cytochrome P-450 activity to confer pinoxaden resistance. Evolution of resistance to ACCase-inhibiting herbicides in this L. perenne population indicates that integrated weed management practices are required to prevent widespread resistance developing in New Zealand cereal crop systems.
Collapse
Affiliation(s)
- Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand.
| | | | - Kerry C Harrington
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andrew G Griffiths
- AgResearch Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | |
Collapse
|
9
|
Kaundun SS, Downes J, Jackson LV, Hutchings SJ, Mcindoe E. Impact of a Novel W2027L Mutation and Non-Target Site Resistance on Acetyl-CoA Carboxylase-Inhibiting Herbicides in a French Lolium multiflorum Population. Genes (Basel) 2021; 12:genes12111838. [PMID: 34828444 PMCID: PMC8620607 DOI: 10.3390/genes12111838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Herbicides that inhibit acetyl-CoA carboxylase (ACCase) are among the few remaining options for the post-emergence control of Lolium species in small grain cereal crops. Here, we determined the mechanism of resistance to ACCase herbicides in a Lolium multiflorum population (HGR) from France. A combined biological and molecular approach detected a novel W2027L ACCase mutation that affects aryloxyphenoxypropionate (FOP) but not cyclohexanedione (DIM) or phenylpyraxoline (DEN) subclasses of ACCase herbicides. Both the wild-type tryptophan and mutant leucine 2027-ACCase alleles could be positively detected in a single DNA-based-derived polymorphic amplified cleaved sequence (dPACS) assay that contained the targeted PCR product and a cocktail of two discriminating restriction enzymes. Additionally, we identified three well-characterised I1781L, I2041T, and D2078G ACCase target site resistance mutations as well as non-target site resistance in HGR. The non-target site component endowed high levels of resistance to FOP herbicides whilst partially impacting on the efficacy of pinoxaden and cycloxydim. This study adequately assessed the contribution of the W2027L mutation and non-target site mechanism in conferring resistance to ACCase herbicides in HGR. It also highlights the versatility and robustness of the dPACS method to simultaneously identify different resistance-causing alleles at a single ACCase codon.
Collapse
|
10
|
Vázquez-García JG, Torra J, Palma-Bautista C, Alcántara-de la Cruz R, Prado RD. Point Mutations and Cytochrome P450 Can Contribute to Resistance to ACCase-Inhibiting Herbicides in Three Phalaris Species. PLANTS 2021; 10:plants10081703. [PMID: 34451748 PMCID: PMC8401167 DOI: 10.3390/plants10081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022]
Abstract
Species of Phalaris have historically been controlled by acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides; however, overreliance on herbicides with this mechanism of action has resulted in the selection of resistant biotypes. The resistance to ACCase-inhibiting herbicides was characterized in Phalaris brachystachys, Phalaris minor, and Phalaris paradoxa samples collected from winter wheat fields in northern Iran. Three resistant (R) biotypes, one of each Phalaris species, presented high cross-resistance levels to diclofop-methyl, cycloxydim, and pinoxaden, which belong to the chemical families of aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and phenylpyrazolines (DENs), respectively. The metabolism of 14C-diclofop-methyl contributed to the resistance of the P. brachystachys R biotype, while no evidence of herbicide metabolism was found in P. minor or P. paradoxa. ACCase in vitro assays showed that the target sites were very sensitive to FOP, DIM, and DEN herbicides in the S biotypes of the three species, while the R Phalaris spp. biotypes presented different levels of resistance to these herbicides. ACCase gene sequencing confirmed that cross-resistance in Phalaris species was conferred by specific point mutations. Resistance in the P. brachystachys R biotype was due to target site and non-target-site resistance mechanisms, while in P. minor and P. paradoxa, only an altered target site was found.
Collapse
Affiliation(s)
- José G. Vázquez-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014 Córdoba, Spain;
- Correspondence: (J.G.V.-G.); (R.D.P.); Tel.: +34-95-721-8600 (R.D.P.)
| | - Joel Torra
- Department d’Hortofruticultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, 25198 Lleida, Spain;
| | - Candelario Palma-Bautista
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014 Córdoba, Spain;
| | - Ricardo Alcántara-de la Cruz
- Centro de Ciências da Natureza, Campus Lagoa do Sino, Universidade Federal de São Carlos, Buri 18290-000, Brazil;
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014 Córdoba, Spain;
- Correspondence: (J.G.V.-G.); (R.D.P.); Tel.: +34-95-721-8600 (R.D.P.)
| |
Collapse
|
11
|
Wang J, Peng Y, Chen W, Yu Q, Bai L, Pan L. The Ile-2041-Val mutation in the ACCase gene confers resistance to clodinafop-propargyl in American sloughgrass (Beckmannia syzigachne Steud). PEST MANAGEMENT SCIENCE 2021; 77:2425-2432. [PMID: 33432736 DOI: 10.1002/ps.6271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exploring the mechanisms of herbicide resistance in weeds is an important part of designing resistance management strategies and rationalizing herbicide use. Beckmannia syzigachne is one of the most important agricultural weeds in China. Long-term use of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has led to the evolution of herbicide resistance in B. syzigachne. ACCase-inhibiting herbicides comprise three chemical families: aryloxyphenoxypropionates (APPs), cyclohexanediones (CHDs) and phenylpyraxoline (DENs). RESULTS Based on whole-plant dose-response experiments, a B. syzigachne population (BS-R) was confirmed to be 12- and 20-fold resistant to the APP herbicides quizalofop-P-ethyl and clodinafop-propargyl, and 2.2-, 2.8- and 2.8-fold resistant to fenoxaprop-P-ethyl, the CHD herbicide sethoxydim and the PPZ herbicide pinoxaden, respectively, compared with its susceptible counterpart (BS-S). Resistance to clodinafop-propargyl in the BS-R population could not be reversed by the known cytochrome P450 (CYP450) inhibitor malathion and the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole. In addition, no difference in CYP450 and GST activity was confirmed between the BS-R and BS-S populations. ACCase gene sequencing revealed an Ile-2041-Val mutation in the BS-R population. A derived cleaved amplified polymorphic sequence marker was developed for rapid detection of the specific Ile-2041-Val mutation. Correlation quantification of resistance in homo- and hetero-resistant versus wild-type plants showed that resistance to clodinafop-propargyl in this population is conferred by the Ile-2041-Val mutation. CONCLUSION Unlike previous reports on the unique cross-resistance pattern conferred by the 2041 mutation, this study demonstrates that the Ile-2041-Val mutation in BS-R population confers resistance to certain ACCase-inhibiting APP, CHD and PPZ herbicides in B. syzigachne. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junzhi Wang
- Longping Branch, Graduate School of Hunan University, Changsha, 410125, China
| | - Yajun Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wen Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, 6009, Australia
| | - Lianyang Bai
- Longping Branch, Graduate School of Hunan University, Changsha, 410125, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| |
Collapse
|
12
|
Vázquez-García JG, Alcántara-de la Cruz R, Palma-Bautista C, Rojano-Delgado AM, Cruz-Hipólito HE, Torra J, Barro F, De Prado R. Accumulation of Target Gene Mutations Confers Multiple Resistance to ALS, ACCase, and EPSPS Inhibitors in Lolium Species in Chile. FRONTIERS IN PLANT SCIENCE 2020; 11:553948. [PMID: 33193482 PMCID: PMC7655540 DOI: 10.3389/fpls.2020.553948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Different Lolium species, common weeds in cereal fields and fruit orchards in Chile, were reported showing isolated resistance to the acetyl CoA carboxylase (ACCase), acetolactate synthase (ALS) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibiting herbicides in the late 1990s. The first case of multiple resistance to these herbicides was Lolium multiflorum found in spring barley in 2007. We hypothesized that other Lolium species may have evolved multiple resistance. In this study, we characterized the multiple resistance to glyphosate, diclofop-methyl and iodosulfuron-methyl-sodium in Lolium rigidum, Lolium perenne and Lolium multiflorum resistant (R) populations from Chile collected in cereal fields. Lolium spp. populations were confirmed by AFLP analysis to be L. rigidum, L. perenne and L. multiflorum. Dose-response assays confirmed multiple resistance to glyphosate, diclofop-methyl and iodosulfuron methyl-sodium in the three species. Enzyme activity assays (ACCase, ALS and EPSPS) suggested that the multiple resistance of the three Lolium spp. was caused by target site mechanisms, except the resistance to iodosulfuron in the R L. perenne population. The target site genes sequencing revealed that the R L. multiflorum population presented the Pro-106-Ser/Ala (EPSPS), Ile-2041-Asn++Asp-2078-Gly (ACCase), and Trp-574-Leu (ALS) mutations; and the R L. rigidum population had the Pro-106-Ser (EPSPS), Ile-1781-Leu+Asp-2078-Gly (ACCase) and Pro-197-Ser/Gln+Trp-574-Leu (ALS) mutations. Alternatively, the R L. perenne population showed only the Asp-2078-Gly (ACCase) mutation, while glyphosate resistance could be due to EPSPS gene amplification (no mutations but high basal enzyme activity), whereas iodosulfuron resistance presumably could involve non-target site resistance (NTSR) mechanisms. These results support that the accumulation of target site mutations confers multiple resistance to the ACCase, ALS and EPSPS inhibitors in L. multiflorum and L. rigidum from Chile, while in L. perenne, both target and NTSR could be present. Multiple resistance to three herbicide groups in three different species of the genus Lolium in South America represents a significant management challenge.
Collapse
Affiliation(s)
- José G. Vázquez-García
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| | | | | | | | - Hugo E. Cruz-Hipólito
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| | - Joel Torra
- Department d’Hortofruticultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture, CSIC (IAS-CSIC), Córdoba, Spain
| | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
13
|
Golmohammadzadeh S, Rojano-Delgado AM, Vázquez-García JG, Romano Y, Osuna MD, Gherekhloo J, De Prado R. Cross-resistance mechanisms to ACCase-inhibiting herbicides in short-spike canarygrass (Phalaris brachystachys). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:681-688. [PMID: 32353674 DOI: 10.1016/j.plaphy.2020.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Herbicides that inhibit acetyl-coenzyme A carboxylase (ACCase) are commonly used to control weedy grasses such as short-spike canarygrass (Phalaris brachystachys). Two resistant biotypes of P. brachystachys (R1 and R2) were found in different winter wheat fields in Iran. This study was done to confirm the suspected resistance observed in the field and to elucidate the resistance mechanisms involved. The results indicated that the both resistant biotypes showed cross-resistance to diclofop-methyl (DM), pinoxaden (PN) and cycloxydim (CD) herbicides. Based on the herbicide dose that inhibited 50% of the ACCase activity (I50), the ACCase activity of the resistant biotypes was less sensitive than the S biotype to DM, CD, and PN. No differences in translocation were detected between biotypes; most of the herbicide remained in the treated leaves. The 14C-DM metabolites were identified using thin-layer chromatography. Pre-treatment with the cytochrome P450 inhibitor ABT inhibited 14C-DM metabolism in the R1 biotype, indicating that metabolism is involved in the DM resistance in the R1 biotype. DNA sequencing studies found an Ile-1781-Thr change in both resistant biotypes, conferring cross-resistance to ACCase inhibitors. In general, in the R1 biotype which showed a higher level of resistance than that of the R2 biotype, cross-resistance was observed because of mutation and DM metabolism, while in the R2 biotype, the mutation confers resistance to ACCase-inhibiting herbicides. This is the first reported evidence of the mechanisms responsible for the resistance to ACCase herbicides in P. brachystachys. These results could be useful for improved management of resistant biotypes carrying similar mutations.
Collapse
Affiliation(s)
- Sajedeh Golmohammadzadeh
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Antonia M Rojano-Delgado
- Department of Agricultural Chemistry and Soil Science, University of Córdoba, 14014, Córdoba, Spain
| | - Jose G Vázquez-García
- Department of Agricultural Chemistry and Soil Science, University of Córdoba, 14014, Córdoba, Spain
| | - Yolanda Romano
- Center for Scientific and Technological Research of Extremadura (CICYTEX), 06187, Badajoz, Spain
| | - Maria D Osuna
- Center for Scientific and Technological Research of Extremadura (CICYTEX), 06187, Badajoz, Spain
| | - Javid Gherekhloo
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Rafael De Prado
- Department of Agricultural Chemistry and Soil Science, University of Córdoba, 14014, Córdoba, Spain.
| |
Collapse
|
14
|
Molecular characteristics of the first case of haloxyfop-resistant Poa annua. Sci Rep 2020; 10:4231. [PMID: 32144361 PMCID: PMC7060245 DOI: 10.1038/s41598-020-61104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
Haloxyfop is one of two acetyl-coenzyme A carboxylase (ACCase) inhibitors that is recommended for controlling Poa annua. We have characterised a population of P. annua that had developed resistance to haloxyfop. This resistant population was found to be almost 20 times less sensitive to haloxyfop than a susceptible population based on percentage survival of individuals in two dose-response experiments. However, the haloxyfop-resistant population was still susceptible to clethodim. Pre-treatment of resistant individuals with a cytochrome P450 inhibitor, malathion, did not change the sensitivity level of the resistant plants to haloxyfop, suggesting that a non-target site mechanism of resistance involving enhanced metabolism, was not responsible for this resistance in P. annua. Gene sequencing showed that a target site mutation at position 2041, which replaced isoleucine with threonine in the carboxyltransferase (CT) domain of the ACCase enzyme, was associated with resistance to haloxyfop in the resistant population. An evaluation of the 3-D structure of the CT domain suggested that, unlike Asn-2041, which is the most common mutation at this position reported to date, Thr-2041 does not change the conformational structure of the CT domain. This is the first study investigating the molecular mechanism involved with haloxyfop resistance in P. annua.
Collapse
|
15
|
Deng W, Cai J, Zhang J, Chen Y, Chen Y, Di Y, Yuan S. Molecular basis of resistance to ACCase-inhibiting herbicide cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:143-148. [PMID: 31378350 DOI: 10.1016/j.pestbp.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Chinese sprangletop (Leptochloa chinensis (L.) Nees) is one of the most troublesome grass weeds in rice in China. Seven suspected cyhalofop-butyl-resistant L. chinensis populations were collected from different rice fields with a history of cyhalofop-butyl use. The level of resistance and resistance mechanisms in seven populations were studied. Dose-response tests indicated that five populations (JS3, JS4, JS6, JS7 and JS8) had evolved high-level resistance (26.9 to 123.0-fold) to cyhalofop-butyl compared with the susceptible (S) population, and other two populations (JS2 and JS5) were still sensitive to the herbicide. Two acetyl-coenzyme A carboxylase (ACCase) genes were cloned from each population, and three different ACCase mutations (Ile-1781-Leu, Trp-1999-Cys, and Trp-2027-Cys) in ACCase2 gene were determined in different resistant (R) populations. In addition, no resistance-conferring mutations was detected in the R population (JS7), and ACCase gene expression was similar between the S and R populations. Thus, non-target-site resistance mechanisms may be involved in the JS7 population. Moreover, the patterns of cross-resistance of JS6 (Ile-1781-Leu), JS4 (Trp-1999-Cys), JS8 (Trp-2027-Cys), and JS7 (unknown resistance mechanisms) populations to other ACCase-inhibiting herbicides were determined. The JS6 and JS8 populations showed resistance to fenoxaprop-P-ethyl, metamifop, clethodim and pinoxaden, the JS4 population was resistant to fenoxaprop-P-ethyl, metamifop and pinoxaden, and the JS7 population had resistance only to fenoxaprop-P-ethyl and metamifop. These results indicated the diversity of the target-site mutations in ACCase gene of L. chinensis, and provide a better understanding of cross-resistance in L. chinensis, which would be helpful for the management of cyhalofop-butyl-resistant L. chinensis.
Collapse
Affiliation(s)
- Wei Deng
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou, China
| | - Jingxuan Cai
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou, China
| | - Jingyun Zhang
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou, China
| | - Yueyang Chen
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou, China
| | - Yongrui Chen
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou, China
| | - Yingjie Di
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou, China
| | - Shuzhong Yuan
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou, China.
| |
Collapse
|
16
|
Belz RG, Farooq MB, Wagner J. Does selective hormesis impact herbicide resistance evolution in weeds? ACCase-resistant populations of Alopecurus myosuroides Huds. as a case study. PEST MANAGEMENT SCIENCE 2018; 74:1880-1891. [PMID: 29446872 DOI: 10.1002/ps.4890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/21/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND A field-evolved herbicide-resistant weed population can represent a heterogeneous composite of subpopulations that differ in their susceptibility and responsiveness to herbicide hormesis. Variable hormesis responsiveness can result in selection for and against certain subpopulations under low herbicide doses, and this has the potential to contribute to the evolution of resistance. The relevance of this hypothesis at practical field rates was studied for two field-collected acetyl-coenzyme A carboxylase (ACCase) target-site resistant (TSR) biotypes of Alopecurus myosuroides Huds. (haplotype Leu1781) exposed to three ACCase inhibitors. Herbicide dose responses were evaluated at the population level and at different subpopulation levels after the dissection of individual plants by herbicide selection and genotyping. RESULTS The practical field rates of fenoxaprop-P were lower than the observed hormetic doses in the resistant subpopulation, whereas the field rates of clodinafop and cycloxydim stimulated the shoot biomass in different resistant subpopulations by 21-38% above that of the control. Because variable dose levels induced hormesis in the different subpopulations, the practical field rates showed a significant potential to selectively enhance parts of a resistant field population, but did not impact or adversely affect other parts of the population. CONCLUSION As a consequence of population heterogeneity, herbicide hormesis may impact resistance evolution in weeds at realistic use rates via the selective promotion of individual genotypes. However, the practical relevance of this phenomenon may be influenced by many factors, such as the herbicidal active ingredient used, as indicated in this study. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Regina G Belz
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Stuttgart, Germany
| | - Muhammad B Farooq
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Stuttgart, Germany
| | | |
Collapse
|
17
|
Yu J, Gao H, Pan L, Yao Z, Dong L. Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:306-311. [PMID: 29183606 DOI: 10.1016/j.pestbp.2016.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 06/07/2023]
Abstract
Chinese sprangletop (Leptochloa chinensis (L.) Nees) is a serious grass weed in rice paddies. In some areas, L. chinensis has become resistant to the herbicide cyhalofop-butyl because of its frequent and extensive use over the past five years. In this study, whole-plant dose-response assays were conducted, and a L. chinensis population (ZHYH) had a 75.8-fold resistance index to cyhalofop-butyl. Molecular analyses revealed that this resistance was attributed to a tryptophan (Trp)-2027-to-cysteine (Cys) substitution in the CT domain of the ACCase gene. To our knowledge, this is the first report revealing the mechanism underlying cyhalofop-butyl resistance in L. chinensis. Furthermore, a derived cleaved amplified polymorphic (dCAPS) assay was developed to rapidly detect the Trp-2027-Cys mutation. Of the 100 ZHYH plants analyzed, 52 were heterozygous mutants and 48 were susceptible homozygous plants. In addition, the cyhalofop-butyl-resistant L. chinensis was cross-resistant to aryloxyphenoxypropionate and phenylpyrazoline herbicides, but not to cyclohexanedione, acetolactate synthase-inhibiting, protoporphyrinogen oxidase, and urea herbicides, and had only slight resistance to the hormonal herbicide quinclorac.
Collapse
Affiliation(s)
- Jiaxing Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Haitao Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Lang Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | | | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China.
| |
Collapse
|
18
|
Colbach N, Chauvel B, Darmency H, Délye C, Le Corre V. Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study. PEST MANAGEMENT SCIENCE 2016; 72:1910-25. [PMID: 26751723 DOI: 10.1002/ps.4230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Managing herbicide-resistant weeds is becoming increasingly difficult. Here we adapted the weed dynamics model AlomySys to account for experimentally measured fitness costs linked to mutants of target-site resistance to acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides in Alopecurus myosuroides. We ran simulations to test how effectively cultural practices manage resistance. RESULTS Simulations of an oilseed rape/winter wheat/winter barley rotation showed that, when replacing one of the seven applied herbicides with an ACCase-inhibiting one, resistant mutants exceeded 1 plant m(-2) , with a probability of 40%, after an average of 18 years. This threshold was always exceeded when three or four ACCase-inhibiting herbicides were used, after an average of 8 and 6 years respectively. With reduced herbicide rates or suboptimal spraying conditions, resistance occurred 1-3 years earlier in 50% of simulations. Adding spring pea to the rotation or yearly mouldboard ploughing delayed resistance indefinitely in 90 and 60% of simulations respectively. Ploughing also modified the genetic composition of the resistant population by selecting a previously rare mutant that presented improved pre-emergent growth. The prevalence of the mutations was influenced more by their associated fitness cost or benefit than by the number of ACCase-inhibiting herbicides to which they conferred resistance. CONCLUSION Simulations allowed us to rank weed management practices and suggest that pleiotropic effects are extremely important for understanding the frequency of herbicide resistance in the population. © 2016 Society of Chemical Industry.
Collapse
|
19
|
Fernández P, Alcántara-de la Cruz R, Cruz-Hipólito H, Osuna MD, De Prado R. Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides. FRONTIERS IN PLANT SCIENCE 2016; 7:449. [PMID: 27148285 PMCID: PMC4826872 DOI: 10.3389/fpls.2016.00449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/22/2016] [Indexed: 05/25/2023]
Abstract
Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor) was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha(-1)) compared with the GR50 (1484.6 g ai ha(-1)) found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ) inhibiting herbicides. Both R and S biotypes had a similar (14)C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 h after treatment (HAT). The metabolism of (14)C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment). The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg.
Collapse
Affiliation(s)
- Pablo Fernández
- Department of Agricultural Chemistry and Edaphology, University of CordobaCordoba, Spain
| | | | | | - María D. Osuna
- Agrarian Research Center “Finca La Orden" ValdesequeraBadajoz, Spain
| | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of CordobaCordoba, Spain
| |
Collapse
|
20
|
Bi Y, Liu W, Guo W, Li L, Yuan G, Du L, Wang J. Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:22-27. [PMID: 26778430 DOI: 10.1016/j.pestbp.2015.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/12/2015] [Accepted: 07/10/2015] [Indexed: 06/05/2023]
Abstract
Fenoxaprop-P-ethyl-resistant Alopecurus japonicus has become a recurring problem in winter wheat fields in eastern China. Growers have resorted to using mesosulfuron-methyl, an acetolactate synthase (ALS)-inhibiting herbicide, to control this weed. A single A. japonicus population (AH-15) resistant to fenoxaprop-P-ethyl and mesosulfuron-methyl was found in Anhui Province, China. The results of whole-plant dose-response experiments showed that AH-15 has evolved high-level resistance to fenoxaprop-P-ethyl (95.96-fold) and mesosulfuron-methyl (39.87-fold). It was shown via molecular analysis that resistance to both fenoxaprop-P-ethyl and mesosulfuron-methyl was due to an amino acid substitution of Ile1781 to Leu in acetyl-CoA carboxylase (ACCase) and a substitution of Trp 574 to Leu in ALS, respectively. Whole-plant bioassays indicated that the AH-15 population was resistant to the ACCase herbicides clodinafop-propargyl, clethodim, sethoxydim and pinoxaden as well as the ALS herbicides pyroxsulam, flucarbazone-Na and imazethapyr, but susceptible to the ACCase herbicide haloxyfop-R-methyl. This work reports for the first time that A. japonicus has developed resistance to ACCase- and ALS-inhibiting herbicides due to target site mutations in the ACCase and ALS genes.
Collapse
Affiliation(s)
- Yaling Bi
- College of Agronomy, Anhui Science and Technology University, Anhui, Fengyang 233100, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China
| | - Wenlei Guo
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China
| | - Lingxu Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China; College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Shandong, Qingdao 266109, PR China
| | - Guohui Yuan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China
| | - Long Du
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong, Tai'an 271018, PR China.
| |
Collapse
|
21
|
Du L, Liu W, Yuan G, Guo W, Li Q, Wang J. Cross-resistance patterns to ACCase-inhibitors in American sloughgrass (Beckmannia syzigachne Steud.) homozygous for specific ACCase mutations. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:42-8. [PMID: 26778433 DOI: 10.1016/j.pestbp.2015.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 05/13/2023]
Abstract
American sloughgrass is a troublesome annual grass weed in winter wheat field rotated with rice in China. The overreliance on acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides has resulted in resistance evolution in this weed. In this study, the cross-resistance patterns to fenoxaprop-p-ethyl, clodinafop-propargyl, fluazifop-p-butyl, haloxyfop-p-methyl, sethoxydim, clethodim and pinoxaden were established using purified plants individually homozygous for specific mutant ACCase alleles. Results indicated that 1781Leu allele endows high-level resistance to APPs, CHDs and pinoxaden while confers moderate resistance to haloxyfop-p-methyl. The 2027Cys and 2041Asn alleles endow high-level resistance to APPs and pinoxaden and lower level resistance to CHDs. The 2078Gly allele confers high-level resistance to all herbicides tested in this study, however, moderate resistance to sethoxydim. The 2096Ala very likely endows high-level resistance to fluazifop-p-butyl, haloxyfop-p-methyl and moderate resistance to sethoxydim. In addition, one undefined resistance mechanism was involved in population SD-04.
Collapse
Affiliation(s)
- Long Du
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
| | - Guohui Yuan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
| | - Wenlei Guo
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
| | - Qi Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Shandong Tai'an 271018, PR China.
| |
Collapse
|
22
|
Ile-1781-Leu and Asp-2078-Gly Mutations in ACCase Gene, Endow Cross-resistance to APP, CHD, and PPZ in Phalaris minor from Mexico. Int J Mol Sci 2015; 16:21363-77. [PMID: 26370967 PMCID: PMC4613257 DOI: 10.3390/ijms160921363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/11/2015] [Accepted: 08/21/2015] [Indexed: 11/23/2022] Open
Abstract
Herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) are commonly used in Mexico to control weedy grasses such as little seed canarygrass (Phalaris minor). These herbicides are classified into three major families (ariloxyphenoxypropionates (APP), cyclohexanodiones (CHD), and, recently, phenylpyrazolines (PPZ)). In this work, the resistance to ACCase (APP, CHD, and PPZ) inhibiting herbicides was studied in a biotype of Phalaris minor (P. minor) from Mexico, by carrying out bioassays at the whole-plant level and investigating the mechanism behind this resistance. Dose-response and ACCase in vitro activity assays showed cross-resistance to all ACCase herbicides used. There was no difference in the absorption, translocation, and metabolism of the 14C-diclofop-methyl between the R and S biotypes. The PCR generated CT domain fragments of ACCase from the R biotype and an S reference were sequenced and compared. The Ile-1781-Leu and Asp-2078-Gly point mutations were identified. These mutations could explain the loss of affinity for ACCase by the ACCase-inhibing herbicides. This is the first report showing that this substitution confers resistance to APP, CHD, and PPZ herbicides in P. minor from Mexico. The mutations have been described previously only in a few cases; however, this is the first study reporting on a pattern of cross-resistance with these mutations in P. minor. The findings could be useful for better management of resistant biotypes carrying similar mutations.
Collapse
|
23
|
Vila-Aiub MM, Yu Q, Han H, Powles SB. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4711-8. [PMID: 26019257 PMCID: PMC4507778 DOI: 10.1093/jxb/erv248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed.
Collapse
Affiliation(s)
- Martin M Vila-Aiub
- Australian Herbicide Resistance Initiative (AHRI) - School of Plant Biology, University of Western Australia, WA, 6009, Australia IFEVA - CONICET - Facultad de Agronomía, Universidad de Buenos Aires (UBA), Buenos Aires, 1417, Argentina
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI) - School of Plant Biology, University of Western Australia, WA, 6009, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI) - School of Plant Biology, University of Western Australia, WA, 6009, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI) - School of Plant Biology, University of Western Australia, WA, 6009, Australia
| |
Collapse
|
24
|
Xu H, Li J, Zhang D, Cheng Y, Jiang Y, Dong L. Mutations at codon position 1999 of acetyl-CoA carboxylase confer resistance to ACCase-inhibiting herbicides in Japanese foxtail (Alopecurus japonicus). PEST MANAGEMENT SCIENCE 2014; 70:1894-1901. [PMID: 24497328 DOI: 10.1002/ps.3753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The intensive and global application of ACCase-inhibiting herbicides has resulted in the evolution of resistance in a growing number of grass weeds. Among the mutations implicated in conferring resistance, limited knowledge is available regarding mutations at codon position 1999. In addition, multiple copies of genes encoding plastidic ACCase have been ignored in previous studies of resistance in Alopecurus japonicus. RESULTS Dose-response tests indicated that the population JLGY-4 had evolved high-level resistance to fenoxaprop-P-ethyl. The carboxyltransferase domain of the ACCase gene in A. japonicus was sequenced and compared. Two loci encoding plastidic ACCase were isolated from both the resistant and sensitive populations. Simultaneously, two resistance-endowing mutations at codon position 1999 of ACCase were determined (W1999C and W1999L). Moreover, a molecular study was conducted to determine the mechanism of resistance to some ACCase-inhibiting herbicides. The W1999C mutation conferred resistance to fenoxaprop and moderate resistance to pinoxaden. The W1999L mutation conferred resistance to fenoxaprop. CONCLUSION This study revealed that A. japonicus had multiple copies of genes encoding plastidic ACCase, and each gene was able to carry its own mutation. It also established the clear importance of the W1999C and W1999L mutations in conferring resistance to ACCase-inhibiting herbicides.
Collapse
Affiliation(s)
- Hongle Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | | | | | | | | | | |
Collapse
|
25
|
Kraehmer H, van Almsick A, Beffa R, Dietrich H, Eckes P, Hacker E, Hain R, Strek HJ, Stuebler H, Willms L. Herbicides as weed control agents: state of the art: II. Recent achievements. PLANT PHYSIOLOGY 2014; 166:1132-48. [PMID: 25104721 PMCID: PMC4226375 DOI: 10.1104/pp.114.241992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
In response to changing market dynamics, the discovery of new herbicides has declined significantly over the past few decades and has only seen a modest upsurge in recent years. Nevertheless, the few introductions have proven to be interesting and have brought useful innovation to the market. In addition, herbicide-tolerant or herbicide-resistant crop technologies have allowed the use of existing nonselective herbicides to be extended into crops. An increasing and now major challenge is being posed by the inexorable increase in biotypes of weeds that are resistant to herbicides. This problem is now at a level that threatens future agricultural productivity and needs to be better understood. If herbicides are to remain sustainable, then it is a must that we adopt diversity in crop rotation and herbicide use as well as increase the use of nonchemical measures to control weeds. Nevertheless, despite the difficulties posed by resistant weeds and increased regulatory hurdles, new screening tools promise to provide an upsurge of potential herbicide leads. Our industry urgently needs to supply agriculture with new, effective resistance-breaking herbicides along with strategies to sustain their utility.
Collapse
Affiliation(s)
| | | | - Roland Beffa
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | | | - Peter Eckes
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | - Erwin Hacker
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | - Ruediger Hain
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | | | | | - Lothar Willms
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Kaundun SS. Resistance to acetyl-CoA carboxylase-inhibiting herbicides. PEST MANAGEMENT SCIENCE 2014; 70:1405-17. [PMID: 24700409 DOI: 10.1002/ps.3790] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/21/2014] [Accepted: 04/03/2014] [Indexed: 05/12/2023]
Abstract
Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies have shown that resistance generally evolves independently and can be conferred by target-site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The level of resistance depends on the herbicides, recommended field rates, weed species, plant growth stages, specific amino acid changes and the number of gene copies and mutant ACCase alleles. Non-target-site resistance, or in essence metabolic resistance, is prevalent, multigenic and favoured under low-dose selection. Metabolic resistance can be specific but also broad, affecting other modes of action. Some target-site and metabolic-resistant biotypes are characterised by a fitness penalty. However, the significance for resistance regression in the absence of ACCase herbicides is yet to be determined over a practical timeframe. More recently, a fitness benefit has been reported in some populations containing the I1781L mutation in terms of vegetative and reproductive outputs and delayed germination. Several DNA-based methods have been developed to detect known ACCase resistance mutations, unlike metabolic resistance, as the genes remain elusive to date. Therefore, confirmation of resistance is still carried out via whole-plant herbicide bioassays. A growing number of monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing the options for grass weed control. While the science of ACCase herbicide resistance has progressed significantly over the past 10 years, several avenues provided in the present review remain to be explored for a better understanding of resistance to this important mode of action.
Collapse
Affiliation(s)
- Shiv S Kaundun
- Syngenta, Jealott's Hill International Research Centre, Biological Sciences, Bracknell, Berkshire, UK
| |
Collapse
|
27
|
Cha TS, Najihah MG, Sahid IB, Chuah TS. Molecular basis for resistance to ACCase-inhibiting fluazifop in Eleusine indica from Malaysia. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 111:7-13. [PMID: 24861927 DOI: 10.1016/j.pestbp.2014.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 06/03/2023]
Abstract
Eleusine indica (goosegrass) populations resistant to fluazifop, an acetyl-CoA carboxylase (ACCase: EC6.4.1.2)-inhibiting herbicide, were found in several states in Malaysia. Dose-response assay indicated a resistance factor of 87.5, 62.5 and 150 for biotypes P2, P3 and P4, respectively. DNA sequencing and allele-specific PCR revealed that both biotypes P2 and P3 exhibit a single non-synonymous point mutation from TGG to TGC that leads to a well known Trp-2027-Cys mutation. Interestingly, the highly resistant biotype, P4, did not contain any of the known mutation except the newly discovered target point Asn-2097-Asp, which resulted from a nucleotide change in the codon AAT to GAT. ACCase gene expression was found differentially regulated in the susceptible biotype (P1) and highly resistant biotype P4 from 24 to 72h after treatment (HAT) when being treated with the recommended field rate (198gha(-1)) of fluazifop. However, the small and erratic differences of ACCase gene expression between biotype P1 and P4 does not support the 150-fold resistance in biotype P4. Therefore, the involvement of the target point Asn-2097-Asp and other non-target-site-based resistance mechanisms in the biotype P4 could not be ruled out.
Collapse
Affiliation(s)
- Thye San Cha
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| | - Mohamed Ghazani Najihah
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Ismail Bin Sahid
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Tse Seng Chuah
- School of Food Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
28
|
Xu H, Zhu X, Wang H, Li J, Dong L. Mechanism of resistance to fenoxaprop in Japanese foxtail (Alopecurus japonicus) from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:25-31. [PMID: 25149231 DOI: 10.1016/j.pestbp.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 06/03/2023]
Abstract
Japanese foxtail is one of the most common and troublesome weeds infesting cereal and oilseed rape fields in China. Repeated use during the last three decades of the ACCase-inhibiting herbicide fenoxaprop-P-ethyl to control this weed has resulted in the occurrence of resistance. Dose-response tests established that a population (AHFD-1) from eastern China had evolved high-level resistance to fenoxaprop-P-ethyl. Based on the resistance index, this resistant population of A. japonicus is 60.31-fold resistant to fenoxaprop-P-ethyl. Subsequently, only a tryptophan to cysteine substitution was identified to confer resistance to fenoxaprop-P-ethyl in this resistant population. ACCase activity tests further confirmed this substitution was linked to resistance. This is the first report of the occurrence of Trp-2027-Cys substitution of ACCase in A. japonicus. From whole-plant pot dose-response tests, we confirmed that this population conferred resistance to other APP herbicides, including clodinafop-propargyl, fluazifop-P-butyl, quizalofop-P-ethyl, haloxyfop-R-methyl, cyhalofop-butyl, metamifop, DEN herbicide pinoxaden, but not to CHD herbicides clethodim, sethoxydim. There was also no resistance observed to ALS-inhibiting herbicides sulfosulfuron, mesosulfuron-methyl, flucarbazone-sodium, pyroxsulam, Triazine herbicide prometryne and glyphosate. However, this resistant population was likely to confer slightly (or no) resistant to Urea herbicides chlortoluron and isoproturon.
Collapse
Affiliation(s)
- Hongle Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Xudong Zhu
- College of Science, Nanjing Agricultural University, Jiangsu Key Laboratory of Pesticide Science, Nanjing 210095, China
| | - Hongchun Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Jun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China.
| |
Collapse
|
29
|
Role of a novel I1781T mutation and other mechanisms in conferring resistance to acetyl-CoA carboxylase inhibiting herbicides in a black-grass population. PLoS One 2013; 8:e69568. [PMID: 23936046 PMCID: PMC3723891 DOI: 10.1371/journal.pone.0069568] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
Background Knowledge of the mechanisms of herbicide resistance is important for designing long term sustainable weed management strategies. Here, we have used an integrated biology and molecular approach to investigate the mechanisms of resistance to acetyl-CoA carboxylase inhibiting herbicides in a UK black-grass population (BG2). Methodology/Principal Findings Comparison between BG2 phenotypes using single discriminant rates of herbicides and genotypes based on ACCase gene sequencing showed that the I1781L, a novel I1781T, but not the W2027C mutations, were associated with resistance to cycloxydim. All plants were killed with clethodim and a few individuals containing the I1781L mutation were partially resistant to tepraloxydim. Whole plant dose response assays demonstrated that a single copy of the mutant T1781 allele conferred fourfold resistance levels to cycloxydim and clodinafop-propargyl. In contrast, the impact of the I1781T mutation was low (Rf = 1.6) and non-significant on pinoxaden. BG2 was also characterised by high levels of resistance, very likely non-target site based, to the two cereal selective herbicides clodinafop-propargyl and pinoxaden and not to the poorly metabolisable cyclohexanedione herbicides. Analysis of 480 plants from 40 cycloxydim resistant black grass populations from the UK using two very effective and high throughput dCAPS assays established for detecting any amino acid changes at the 1781 ACCase codon and for positively identifying the threonine residue, showed that the occurrence of the T1781 is extremely rare compared to the L1781 allele. Conclusion/Significance This study revealed a novel mutation at ACCase codon position 1781 and adequately assessed target site and non-target site mechanisms in conferring resistance to several ACCase herbicides in a black-grass population. It highlights that over time the level of suspected non-target site resistance to some cereal selective ACCase herbicides have in some instances surpassed that of target site resistance, including the one endowed by the most commonly encountered I1781L mutation.
Collapse
|
30
|
Marshall R, Hanley SJ, Hull R, Moss SR. The presence of two different target-site resistance mechanisms in individual plants of Alopecurus myosuroides Huds., identified using a quick molecular test for the characterisation of six ALS and seven ACCase SNPs. PEST MANAGEMENT SCIENCE 2013; 69:727-37. [PMID: 23165793 DOI: 10.1002/ps.3429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/31/2012] [Accepted: 10/17/2012] [Indexed: 05/13/2023]
Abstract
BACKGROUND Target-site resistance to ALS- and ACCase-inhibiting herbicides in the grass weed Alopecurus myosuroides is associated with well-characterised allelic variants encoding ALS- and ACCase-based resistance. The potential for combined ALS and ACCase resistance presents a threat to future control, given the extent to which these herbicides are used. The authors present a primer extension method for rapid detection of known resistance-conferring substitutions. RESULTS Individuals showing combined resistance to field-rate mesosulfuron + iodosulfuron and cycloxydim were identified in four field-collected populations, with proportions ranging from 30 to 100%. Genotyping with the SNaPshot primer extension kit showed the T197 and L574 ALS and L1781 ACCase isoforms to be associated with ALS and ACCase resistance whenever they occurred. CONCLUSION Combined ALS and ACCase target-site resistance threatens future control of A. myosuroides. The SNaPshot extension assay provides a reliable new multiplexable method for characterising known allelic variants of the ALS and ACCase genes of A. myosuroides. The method offers significant advantages over both CAPS/dCAPS and PASA in that full genotyping can be accomplished at any nucleotide position using a single extension primer.
Collapse
Affiliation(s)
- Ron Marshall
- AgroEcology Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | | | |
Collapse
|
31
|
Délye C, Menchari Y, Michel S, Cadet E, Le Corre V. A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. ANNALS OF BOTANY 2013; 111:681-91. [PMID: 23393095 PMCID: PMC3605953 DOI: 10.1093/aob/mct018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/18/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed's life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides. METHODS In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos. KEY RESULTS Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination. CONCLUSIONS Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.
Collapse
Affiliation(s)
- Christophe Délye
- Institut National de la Recherche Agronomique, UMR1347 Agroécologie, Dijon, France.
| | | | | | | | | |
Collapse
|
32
|
Jang S, Marjanovic J, Gornicki P. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds. THE NEW PHYTOLOGIST 2013; 197:1110-1116. [PMID: 23301879 DOI: 10.1111/nph.12117] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations.
Collapse
Affiliation(s)
- SoRi Jang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jasmina Marjanovic
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Piotr Gornicki
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
33
|
Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. PEST MANAGEMENT SCIENCE 2013; 69:176-87. [PMID: 22614948 DOI: 10.1002/ps.3318] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/24/2012] [Accepted: 03/15/2012] [Indexed: 05/08/2023]
Abstract
Non-target-site-based resistance (NTSR) can confer unpredictable cross-resistance to herbicides. However, the genetic determinants of NTSR remain poorly known. The current, urgent challenge for weed scientists is thus to elucidate the bases of NTSR so that detection tools are developed, the evolution of NTSR is understood, the efficacy of the shrinking herbicide portfolio is maintained and integrated weed management strategies, including fully effective herbicide applications, are designed and implemented. In this paper, the importance of NTSR in resistance to herbicides is underlined. The most likely way in which NTSR evolves-by accumulation of different mechanisms within individual plants-is described. The NTSR mechanisms, which can interfere with herbicide penetration, translocation and accumulation at the target site, and/or protect the plant against the consequences of herbicide action, are then reviewed. NTSR is a part of the plant stress response. As such, NTSR is a dynamic process unrolling over time that involves 'protectors' directly interfering with herbicide action, and also regulators controlling 'protector' expression. NTSR is thus a quantitative trait. On this basis, a three-step procedure is proposed, based on the use of the 'omics' (genomics, transcriptomics, proteomics or metabolomics), to unravel the genetic bases of NTSR.
Collapse
|
34
|
Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2012; 70:863-91. [PMID: 22869039 DOI: 10.1007/s00018-012-1096-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT), and biotin-carboxyl carrier protein components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC, or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC, and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes.
Collapse
|
35
|
Petit C, Pernin F, Heydel JM, Délye C. Validation of a set of reference genes to study response to herbicide stress in grasses. BMC Res Notes 2012; 5:18. [PMID: 22233533 PMCID: PMC3292489 DOI: 10.1186/1756-0500-5-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
Background Non-target-site based resistance to herbicides is a major threat to the chemical control of agronomically noxious weeds. This adaptive trait is endowed by differences in the expression of a number of genes in plants that are resistant or sensitive to herbicides. Quantification of the expression of such genes requires normalising qPCR data using reference genes with stable expression in the system studied as internal standards. The aim of this study was to validate reference genes in Alopecurus myosuroides, a grass (Poaceae) weed of economic and agronomic importance with no genomic resources. Results The stability of 11 candidate reference genes was assessed in plants resistant or sensitive to herbicides subjected or not to herbicide stress using the complementary statistical methods implemented by NormFinder, BestKeeper and geNorm. Ubiquitin, beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase were identified as the best reference genes. The reference gene set accuracy was confirmed by analysing the expression of the gene encoding acetyl-coenzyme A carboxylase, a major herbicide target enzyme, and of an herbicide-induced gene encoding a glutathione-S-transferase. Conclusions This is the first study describing a set of reference genes (ubiquitin, beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase) with a stable expression under herbicide stress in grasses. These genes are also candidate reference genes of choice for studies seeking to identify stress-responsive genes in grasses.
Collapse
Affiliation(s)
- Cécile Petit
- INRA, UMR1347 Agroécologie, 17 rue Sully, 21000 Dijon, France.
| | | | | | | |
Collapse
|
36
|
Kumari S, van der Hoorn RAL. A structural biology perspective on bioactive small molecules and their plant targets. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:480-8. [PMID: 21803639 DOI: 10.1016/j.pbi.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 05/08/2023]
Abstract
Structural biology efforts in recent years have generated numerous co-crystal structures of bioactive small molecules interacting with their plant targets. These studies include the targets of various phytohormones, pathogen-derived effectors, herbicides and other bioactive compounds. Here we discuss that this collection of structures contains excellent examples of nine collective observations: molecular glues, allostery, inhibitors, molecular mimicry, promiscuous binding sites, unexpected electron densities, natural selection at atomic resolution, and applications in structure-guided mutagenesis and small molecule design.
Collapse
Affiliation(s)
- Selva Kumari
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | |
Collapse
|
37
|
Scarabel L, Panozzo S, Varotto S, Sattin M. Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden-resistant Lolium spp. PEST MANAGEMENT SCIENCE 2011; 67:932-41. [PMID: 21413142 DOI: 10.1002/ps.2133] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 10/09/2010] [Accepted: 11/16/2010] [Indexed: 05/13/2023]
Abstract
BACKGROUND The repeated use of acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides to control grass weeds has selected for resistance in Lolium spp. populations in Italy. The efficacy of pinoxaden, a recently marketed phenylpyrazoline herbicide, is of concern where resistance to ACCase inhibitors has already been ascertained. ACCase mutations associated with pinoxaden resistance were investigated, and the cross-resistance pattern to clodinafop, haloxyfop, sethoxydim, clethodim and pinoxaden was established on homo/heterozygous plants for four mutant ACCase alleles. RESULTS Seven different mutant ACCase alleles (1781-Leu, 1999-Leu, 2041-Asn, 2041-Val, 2078-Gly, 2088-Arg and 2096-Ala) and 13 combinations with two types of mutation were detected in the pinoxaden-resistant plants. The 1781-Leu allele appears to confer a dominant resistance to pinoxaden, clodinafop, haloxyfop, sethoxydim and clethodim at 60 g AI ha(-1) . The 2041-Asn and 2041-Val alleles are associated with dominant or partially dominant resistance to FOPs, no substantial resistance to DIMs and a moderate resistance to pinoxaden. The 2088-Arg allele endows a partially dominant resistance to clodinafop, sethoxydim and most likely to pinoxaden. In addition, non-target-site resistance mechanisms seem to be involved in pinoxaden resistance. CONCLUSION Almost all the ACCase mutations selected in the field by other ACCase inhibitors are likely to confer resistance to pinoxaden. Although pinoxaden is sometimes able to control FOP-resistant populations, it should not be considered as a sustainable ACCase resistance management tool. The presence of non-ACCase-based resistance mechanisms that could confer resistance to herbicides with different modes of action further complicates the resistance management strategies.
Collapse
Affiliation(s)
- Laura Scarabel
- Istituto di Biologia Agroambientale e Forestale-CNR, Agripolis, Legnaro (PD), Italy.
| | | | | | | |
Collapse
|
38
|
Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc Natl Acad Sci U S A 2010; 107:22072-7. [PMID: 21135213 DOI: 10.1073/pnas.1012039107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and have been targeted for drug development against obesity, diabetes, and other diseases. The carboxyltransferase (CT) domain of this enzyme is the site of action for three different classes of herbicides, as represented by haloxyfop, tepraloxydim, and pinoxaden. Our earlier studies have demonstrated that haloxyfop and tepraloxydim bind in the CT active site at the interface of its dimer. However, the two compounds probe distinct regions of the dimer interface, sharing primarily only two common anchoring points of interaction with the enzyme. We report here the crystal structure of the CT domain of yeast ACC in complex with pinoxaden at 2.8-Å resolution. Despite their chemical diversity, pinoxaden has a similar binding mode as tepraloxydim and requires a small conformational change in the dimer interface for binding. Crystal structures of the CT domain in complex with all three classes of herbicides confirm the importance of the two anchoring points for herbicide binding. The structures also provide a foundation for understanding the molecular basis of the herbicide resistance mutations and cross resistance among the herbicides, as well as for the design and development of new inhibitors against plant and human ACCs.
Collapse
|
39
|
Délye C, Michel S, Bérard A, Chauvel B, Brunel D, Guillemin JP, Dessaint F, Le Corre V. Geographical variation in resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (black-grass). THE NEW PHYTOLOGIST 2010; 186:1005-1017. [PMID: 20345631 DOI: 10.1111/j.1469-8137.2010.03233.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*The geographical structure of resistance to herbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) was investigated in the weed Alopecurus myosuroides (black-grass) across its geographical range to gain insight into the process of plant adaptation in response to anthropogenic selective pressures occurring in agricultural ecosystems. *We analysed 297 populations distributed across six countries in A. myosuroides' main area of occupancy. The frequencies of plants resistant to two broadly used ACCase inhibitors and of seven mutant, resistant ACCase alleles were assessed using bioassays and genotyping, respectively. *Most of the resistance was not endowed by mutant ACCase alleles. Resistance and ACCase allele distribution patterns were characterized by mosaicism. The prevalence of resistance and of ACCase alleles differed among countries. *Resistance clearly evolved by redundant evolution of a set of resistance alleles or genes, most of which remain unidentified. Resistance in A. myosuroides was shaped by variation in the herbicide selective pressure at both the individual field level and the national level.
Collapse
Affiliation(s)
- Christophe Délye
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Séverine Michel
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Aurélie Bérard
- INRA, UR1279 Étude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique, Centre National de Génotypage, F-91000 Évry, France
| | - Bruno Chauvel
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Dominique Brunel
- INRA, UR1279 Étude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique, Centre National de Génotypage, F-91000 Évry, France
| | | | - Fabrice Dessaint
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Valérie Le Corre
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| |
Collapse
|
40
|
Petit C, Bay G, Pernin F, Délye C. Prevalence of cross- or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. PEST MANAGEMENT SCIENCE 2010; 66:168-77. [PMID: 19784963 DOI: 10.1002/ps.1851] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Repeated use of acetyl-CoA carboxylase (ACCase) inhibitors, especially fenoxaprop and clodinafop, since the late 1980s has selected for resistance in Alopecurus myosuroides Huds. (black-grass) in France. We investigated whether resistance to pinoxaden, a phenylpyrazoline ACCase inhibitor to be marketed in France, was present in French black-grass populations. We investigated pinoxaden resistance conferred by five mutant ACCase isoforms. Using 84 French black-grass field samples, we also compared the frequencies of other mechanisms endowing resistance to fenoxaprop, clodinafop or pinoxaden. RESULTS ACCase mutant isoforms Leu-1781, Gly-2078 and, likely, Cys-2027 conferred cross-resistance to pinoxaden, while isoform Asn-2041 possibly conferred moderate resistance. Other mechanisms of resistance to fenoxaprop, clodinafop and pinoxaden were detected in 99, 68 and 64% of the samples investigated, respectively. Cross- or multiple resistance to fenoxaprop or clodinafop and pinoxaden was not systematically observed, suggesting a diversity of mechanisms exist. CONCLUSION Pinoxaden resistance was observed before pinoxaden release in France. Only a fraction of the mechanisms endowing fenoxaprop or clodinafop resistance also confer pinoxaden resistance. Pinoxaden resistance was likely mostly selected for by ACCase inhibitors, and, in some cases, possibly by herbicides with other modes of action. This illustrates the necessity to use metabolisable herbicides cautiously where black-grass has evolved non-target-site-based resistance.
Collapse
Affiliation(s)
- Cécile Petit
- INRA, UMR 1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | | | | | | |
Collapse
|
41
|
Abstract
Modern herbicides make major contributions to global food production by easily removing weeds and substituting for destructive soil cultivation. However, persistent herbicide selection of huge weed numbers across vast areas can result in the rapid evolution of herbicide resistance. Herbicides target specific enzymes, and mutations are selected that confer resistance-endowing amino acid substitutions, decreasing herbicide binding. Where herbicides bind within an enzyme catalytic site very few mutations give resistance while conserving enzyme functionality. Where herbicides bind away from a catalytic site many resistance-endowing mutations may evolve. Increasingly, resistance evolves due to mechanisms limiting herbicide reaching target sites. Especially threatening are herbicide-degrading cytochrome P450 enzymes able to detoxify existing, new, and even herbicides yet to be discovered. Global weed species are accumulating resistance mechanisms, displaying multiple resistance across many herbicides and posing a great challenge to herbicide sustainability in world agriculture. Fascinating genetic issues associated with resistance evolution remain to be investigated, especially the possibility of herbicide stress unleashing epigenetic gene expression. Understanding resistance and building sustainable solutions to herbicide resistance evolution are necessary and worthy challenges.
Collapse
Affiliation(s)
- Stephen B Powles
- Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|