1
|
Ser-653-Asn substitution in the acetohydroxyacid synthase gene confers resistance in weedy rice to imidazolinone herbicides in Malaysia. PLoS One 2020; 15:e0227397. [PMID: 32925921 PMCID: PMC7489537 DOI: 10.1371/journal.pone.0227397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/15/2020] [Indexed: 11/20/2022] Open
Abstract
The continuous and sole dependence on imidazolinone (IMI) herbicides for weedy rice control has led to the evolution of herbicide resistance in weedy rice populations across various countries growing IMI herbicide-resistant rice (IMI-rice), including Malaysia. A comprehensive study was conducted to elucidate occurrence, level, and mechanisms endowing resistance to IMI herbicides in putative resistant (R) weedy rice populations collected from three local Malaysian IMI-rice fields. Seed bioassay and whole-plant dose-response experiments were conducted using commercial IMI herbicides. Based on the resistance index (RI) quantification in both experiments, the cross-resistance pattern of R and susceptible (S) weedy rice populations and control rice varieties (IMI-rice variety MR220CL2 and non-IMI-rice variety MR219) to imazapic and imazapyr was determined. A molecular investigation was carried out by comparing the acetohydroxyacid synthase (AHAS) gene sequences of the R and S populations and the MR220CL2 and MR219 varieties. The AHAS gene sequences of R weedy rice were identical to those of MR220CL2, exhibiting a Ser-653-Asn substitution, which was absent in MR219 and S plants. In vitro assays were conducted using analytical grade IMI herbicides of imazapic (99.3%) and imazapyr (99.6%) at seven different concentrations. The results demonstrated that the AHAS enzyme extracted from the R populations and MR220CL2 was less sensitive to IMI herbicides than that from S and MR219, further supporting that IMI herbicide resistance was conferred by target-site mutation. In conclusion, IMI resistance in the selected populations of Malaysian weedy rice could be attributed to a Ser-653-Asn mutation that reduced the sensitivity of the target site to IMI herbicides. To our knowledge, this study is the first to show the resistance mechanism in weedy rice from Malaysian rice fields.
Collapse
|
2
|
Zhang J, Kang Y, Valverde BE, Dai W, Song X, Qiang S. Feral rice from introgression of weedy rice genes into transgenic herbicide-resistant hybrid-rice progeny. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3855-3865. [PMID: 29873749 DOI: 10.1093/jxb/ery210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Pollen-mediated transgenic flow of herbicide resistance occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice has been underestimated and is poorly understood. In this study, two glufosinate-resistant transgenic rice varieties, hybrid rice (F1), and their succeeding generations (F2-F4) were planted for 3 years in field plots free of weedy rice adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants that were both glufosinate-resistant and had red-pericarp seed were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid cultivars. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of the glufosinate-resistant transgenic hybrid (the original female parent of the feral progeny) under monoculture common garden conditions. The hybrid rice progeny segregated into individuals of variable height and extended flowering. The hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96-1.65%) than their progenitors (0.07-0.98%). The results show that herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice, and their segregating pollen-receptive progeny pose a greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.
Collapse
Affiliation(s)
- Jingxu Zhang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Ye Kang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Bernal E Valverde
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
- Investigación y Desarrollo en Agricultura Tropical, S.A., Tambor, Alajuela, Costa Rica
| | - Weimin Dai
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Xiaoling Song
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory of Nanjing Agricultural University, Xuanwu District, Nanjing, China
| |
Collapse
|
3
|
He Q, Kim K, Park Y. Population genomics identifies the origin and signatures of selection of Korean weedy rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:357-366. [PMID: 27589078 PMCID: PMC5316921 DOI: 10.1111/pbi.12630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/25/2016] [Accepted: 08/21/2016] [Indexed: 05/25/2023]
Abstract
Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population-selective or -adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.
Collapse
Affiliation(s)
- Qiang He
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Kyu‐Won Kim
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Yong‐Jin Park
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
- Center for crop genetic resource and breeding (CCGRB)Kongju National UniversityCheonan31080Republic of Korea
| |
Collapse
|
4
|
Efficacy of insect-resistance Bt/CpTI transgenes in F 5 –F 7 generations of rice crop–weed hybrid progeny: implications for assessing ecological impact of transgene flow. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0885-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Liu Y, Qi X, Gealy DR, Olsen KM, Caicedo AL, Jia Y. QTL Analysis for Resistance to Blast Disease in U.S. Weedy Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:834-44. [PMID: 25761210 DOI: 10.1094/mpmi-12-14-0386-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Understanding the genetic architecture of adaptation is of great importance in evolutionary biology. U.S. weedy rice is well adapted to the local conditions in U.S. rice fields. Rice blast disease is one of the most destructive diseases of cultivated rice worldwide. However, information about resistance to blast in weedy rice is limited. Here, we evaluated the disease reactions of 60 U.S. weedy rice accessions with 14 blast races, and investigated the quantitative trait loci (QTL) associated with blast resistance in two major ecotypes of U.S. weedy rice. Our results revealed that U.S. weedy rice exhibited a broad resistance spectrum. Using genotyping by sequencing, we identified 28 resistance QTL in two U.S. weedy rice ecotypes. The resistance QTL with relatively large and small effects suggest that U.S. weedy rice groups have adapted to blast disease using two methods, both major resistance (R) genes and QTL. Three genomic loci shared by some of the resistance QTL indicated that these loci may contribute to no-race-specific resistance in weedy rice. Comparing with known blast disease R genes, we found that the R genes at these resistance QTL are novel, suggesting that U.S. weedy rice is a potential source of novel blast R genes for resistant breeding.
Collapse
Affiliation(s)
- Yan Liu
- 1 Rice Research and Extension Center, University of Arkansas, Stuttgart 72160, U.S.A
- 2 United States Department of Agriculture-Agricultural Research Service Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| | - Xinshuai Qi
- 3 Department of Biology, Washington University in St. Louis, St. Louis 63130-4899, U.S.A.; and
| | - Dave R Gealy
- 2 United States Department of Agriculture-Agricultural Research Service Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| | - Kenneth M Olsen
- 3 Department of Biology, Washington University in St. Louis, St. Louis 63130-4899, U.S.A.; and
| | - Ana L Caicedo
- 4 Biology Department, University of Massachusetts Amherst, 01003, U.S.A
| | - Yulin Jia
- 2 United States Department of Agriculture-Agricultural Research Service Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| |
Collapse
|
6
|
Zhang J, Lu Z, Dai W, Song X, Peng Y, Valverde BE, Qiang S. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice. Sci Rep 2015; 5:10591. [PMID: 26012494 PMCID: PMC4445040 DOI: 10.1038/srep10591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/20/2015] [Indexed: 11/09/2022] Open
Abstract
Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.
Collapse
Affiliation(s)
- Jingxu Zhang
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zuomei Lu
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Weimin Dai
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Xiaoling Song
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Yufa Peng
- Institute of Plant Protection, China Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193,China
| | - Bernal E Valverde
- 1] Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China [2] Faculty of Life Sciences, The University of Copenhagen, Hojebakkegaard Allé 13, Taastrup, DK-2630, Denmark
| | - Sheng Qiang
- Weed Research Laboratory of Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
7
|
Jia S, Yuan Q, Pei X, Wang F, Hu N, Yao K, Wang Z. Rice transgene flow: its patterns, model and risk management. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1259-1270. [PMID: 25431202 DOI: 10.1111/pbi.12306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Progress has been made in a 12 year's systemic study on the rice transgene flow including (i) with experiments conducted at multiple locations and years using up to 21 pollen recipients, we have elucidated the patterns of transgene flow to different types of rice. The frequency to male sterile lines is 10(1) and 10(3) higher than that to O. rufipogon and rice cultivars. Wind speed and direction are the key meteorological factors affecting rice transgene flow. (ii) A regional applicable rice gene flow model is established and used to predict the maximum threshold distances (MTDs) of gene flow during 30 years in 993 major rice producing counties of southern China. The MTD0.1% for rice cultivars is basically ≤5 m in the whole region, despite climate differs significantly at diverse locations and years. This figure is particularly valuable for the commercialization and regulation of transgenic rice. (iii) The long-term fate of transgene integrated into common wild rice was investigated. Results demonstrated that the F1 hybrids of transgenic rice/O. rufipogon gradually disappeared within 3-5 years, and the Bt or bar gene was not detectable in the mixed population, suggesting the O. rufipogon may possess a strong mechanism of exclusiveness for self-protection. (iv) The flowering time isolation and a 2-m-high cloth-screen protection were proved to be effective in reducing transgene flow. We have proposed to use a principle of classification and threshold management for different types of rice.
Collapse
Affiliation(s)
- Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Busconi M, Baldi G, Lorenzoni C, Fogher C. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:22-27. [PMID: 23590388 DOI: 10.1111/plb.12021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/30/2013] [Indexed: 06/02/2023]
Abstract
In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time.
Collapse
Affiliation(s)
- M Busconi
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| | - G Baldi
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| | - C Lorenzoni
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| | - C Fogher
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| |
Collapse
|
9
|
Busconi M, Rossi D, Lorenzoni C, Baldi G, Fogher C. Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:751-759. [PMID: 22443148 DOI: 10.1111/j.1438-8677.2012.00570.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The weedy relative of cultivated rice, red rice, can invade and severely infest rice fields, as reported by rice farmers throughout the world. Because of its close genetic relationship to commercial rice, red rice has proven difficult to control. Clearfield (Cl) varieties, which are resistant to the inhibiting herbicides in the chemical group AHAS (acetohydroxyacid synthase), provide a highly efficient opportunity to control red rice infestations. In order to reduce the risk of herbicide resistance spreading from cultivated rice to red rice, stewardship guidelines are regularly released. In Italy, the cultivation of Cl cultivars started in 2006. In 2010, surveillance of the possible escape of herbicide resistance was carried out; 168 red rice plants were sampled in 16 fields from six locations containing Cl and traditional cultivars. A first subsample of 119 plants was analysed after herbicide treatment and the resistance was found in 62 plants. Of these 119 plants, 78 plants were randomly selected and analysed at the level of the AHAS gene to search for the Cl mutation determining the resistant genotype: the Cl mutation was present in all the resistant plants. Nuclear and chloroplast microsatellite markers revealed a high correlation between genetic similarity and herbicide resistance. The results clearly show that Cl herbicide-resistant red rice plants are present in the field, having genetic relationships with the Cl variety. Finding plants homozygous for the mutation suggests that the crossing event occurred relatively recently and that these plants are in the F2 or later generations. These observations raise the possibility that Cl red rice is already within the cultivated rice seed supply.
Collapse
Affiliation(s)
- M Busconi
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - D Rossi
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - C Lorenzoni
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - G Baldi
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - C Fogher
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
10
|
Zuo J, Zhang L, Song X, Dai W, Qiang S. Innate factors causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes. PEST MANAGEMENT SCIENCE 2011; 67:677-690. [PMID: 21337674 DOI: 10.1002/ps.2108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/22/2010] [Accepted: 11/05/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The compatibility and outcrossing rates between transgenic rice and weedy rice biotypes have been studied in some previous cases. However, few studies have addressed the reasons for these differences. The present study compared the compatibility and outcrossing rates between transgenic rice and selected weedy rice biotypes using manual and natural crossing experiments to elucidate the key innate factors causing the different outcrossing rates. RESULTS Hybrid seed sets from manual crossing between transgenic rice and weedy rice varied from 31.8 to 82.7%, which correlated directly with genetic compatibility. Moreover, the significant differences in the quantity of germinated donor pollens and pollen tubes entering the weedy rice ovule directly contributed to the different seed sets. The natural outcrossing rates varied from 0 to 6.66‰. The duration of flowering overlap was the key factor influencing natural outcrossing. Plant and panicle height also affected outcrossing success. CONCLUSION From this study, it is concluded that the likelihood of gene flow between transgenic rice and weedy rice biotypes is primarily determined by floral synchronisation and secondarily influenced by genetic compatibility and some morphological characteristics.
Collapse
Affiliation(s)
- Jiao Zuo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
11
|
Khoa NĐ, Thuy PTH, Thuy TTT, Collinge DB, Jørgensen HJL. Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases. PHYTOPATHOLOGY 2011; 101:231-240. [PMID: 20839964 DOI: 10.1094/phyto-04-10-0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sheath blight caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a major cause of crop loss in intensive rice production systems. No economically viable control methods have been developed. We screened aqueous extracts of common herbal plants that could reduce sheath blight lesions and found that foliar spraying and seed soaking application of extracts of either fresh or dried leaves of Chromolaena odorata gave up to 68% reduction in sheath blight lesion lengths under controlled and semi-field conditions. The observed reductions were not dependent on growth conditions of C. odorata and rice cultivar. The effect was observed until 21 days after inoculation and was not dependent on microbial activity. Under semi-field conditions, extracts also reduced severity of other important rice diseases, i.e., blast (Pyricularia oryzae) using foliar spray (up to 45%), brown spot (Bipolaris oryzae) using seed treatment (up to 57%), and bacterial blight (Xanthomonas oryzae pv. oryzae) using both application methods (up to 50%).
Collapse
Affiliation(s)
- Nguyen Đac Khoa
- Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
12
|
Statement on a scientific publication on vertical gene flow in rice and its potential ecological consequences by Lu & Yang (2009). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|