1
|
Mao Y, Wu J, Song W, Zhao B, Zhao H, Cai Y, Wang J, Zhou M, Duan Y. Occurrence and Chemical Control Strategy of Wheat Brown Foot Rot Caused by Microdochium majus. PLANT DISEASE 2023; 107:3523-3530. [PMID: 37486274 DOI: 10.1094/pdis-02-23-0392-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Wheat brown foot rot (WBFR), caused by a variety of phytopathogenic fungi, is an important soilborne and seedborne disease of wheat. WBFR causes wheat lodging and seedling dieback, which seriously affect the yield and quality of wheat. In this study, 64 isolates of WBFR were isolated from different wheat fields in Yancheng city, Jiangsu Province, China. The internal transcribed spacer, elongation factor 1α, and RNA polymerase II subunit were amplified and the sequencing results of the fragments were analyzed with BLAST in NCBI. Through morphological and molecular identification, all of the isolates were identified as Microdochium majus. Verification by Koch's postulates confirmed that M. majus was the pathogen causing WBFR. The antifungal activities of fludioxonil and prochloraz against 64 isolates of M. majus were determined based on mycelial growth inhibition method. The results showed that fludioxonil and prochloraz had good antifungal activity against M. majus. The mean 50% effective concentration values of fludioxonil and prochloraz against M. majus were 0.2956 ± 0.1285 μg/ml and 0.0422 ± 0.0157 μg/ml, respectively. Control efficacy for seed-coating treatments conducted in a greenhouse indicated that M. majus severely damaged the normal growth of wheat, while seed coating with fludioxonil or prochloraz significantly reduced the disease incidence and improved the seedling survival rates. At fludioxonil doses of 7.5 g per 100 kg and prochloraz doses of 15 g per 100 kg, the incidence was reduced by 22.26 and 25.33%, seedling survival rates increased by 25.37 and 22.66%, and control efficacy reached 70.02 and 72.30%, respectively. These findings provide vital information for the accurate diagnosis and effective management of WBFR.
Collapse
Affiliation(s)
- Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute, Nanjing Agricultural University, Sanya 572025, China
| | - Jian Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wen Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoquan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huahua Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiang Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute, Nanjing Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Mattox CM, Dumelle MJ, McDonald BW, Gould MA, Olsen CJ, Braithwaite ET, Kowalewski AR. Iron Sulfate and Phosphorous Acid Affect Turfgrass Surface pH and Microdochium Patch Severity on Annual Bluegrass. PLANT DISEASE 2023; 107:3131-3138. [PMID: 37227436 DOI: 10.1094/pdis-08-22-1960-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microdochium patch is a turfgrass disease caused by the fungal pathogen Microdochium nivale. Iron sulfate heptahydrate (FeSO4•7H2O) and phosphorous acid (H3PO3) applications have previously been shown to suppress Microdochium patch on annual bluegrass putting greens when applied alone, although either disease suppression was inadequate or turfgrass quality was reduced from the applications. A field experiment was conducted in Corvallis, Oregon, U.S.A., to evaluate the combined effects of FeSO4•7H2O and H3PO3 on Microdochium patch suppression and annual bluegrass quality. The results of this work suggest that the addition of 3.7 kg H3PO3 ha-1 with 24 or 49 kg FeSO4•7H2O ha-1 applied every 2 weeks improved the suppression of Microdochium patch without substantially compromising turf quality, which occurred when 98 kg FeSO4•7H2O ha-1 was applied with or without H3PO3. Spray suspensions reduced the pH of the water carrier, therefore two additional growth chamber experiments were conducted to better understand the effects of these treatments on leaf surface pH and Microdochium patch suppression. On the application date in the first growth chamber experiment, at least a 19% leaf surface pH reduction was observed compared with the well water control when FeSO4•7H2O was applied alone. When 3.7 kg H3PO3 ha-1 was combined with FeSO4•7H2O, regardless of the rate, the leaf surface pH was reduced by at least 34%. The second growth chamber experiment determined that sulfuric acid (H2SO4) at a 0.5% spray solution rate was always in the group that produced the lowest annual bluegrass leaf surface pH, but did not suppress Microdochium patch. Together, these results suggest that while treatments decrease leaf surface pH, this decrease in pH is not responsible for the suppression of Microdochium patch.
Collapse
Affiliation(s)
- Clint M Mattox
- Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - Michael J Dumelle
- Department of Statistics, Oregon State University, Corvallis, OR 97331
| | - Brian W McDonald
- Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | | | - Conner J Olsen
- Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | | | - Alec R Kowalewski
- Department of Horticulture, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
3
|
Zhang X, Huang K, Zhang M, Jiang L, Wang Y, Feng J, Ma Z. Biochemical and genetic characterization of Botrytis cinerea laboratory mutants resistant to propamidine. PEST MANAGEMENT SCIENCE 2022; 78:5281-5292. [PMID: 36054525 DOI: 10.1002/ps.7150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Botrytis cinerea, the causal agent of gray mold, is one of the top 10 fungal pathogens in the world. Propamidine, an aromatic diamidine compound, exhibited both protective and therapeutic effects against B. cinerea. However, the resistance risk and mechanism of B. cinerea to propamidine are unclear. RESULTS Twelve high and stable resistant mutants were obtained from B. cinerea B05.10 by fungicide induction. Compared with the parental strain, the biological fitness of the mutants, including growth rate, spore germination, pathogenicity, and oxalic acid decreased significantly. There was no cross-resistance among propamidine and other commonly used fungicides, while the efficacy of propamidine against the resistance mutants declined. In addition, the cell membrane permeability, substance metabolism, and defense enzyme activities of the resistant mutants were significantly increased compared with the wild strain. Whole-genome sequencing of all resistant mutants found that there were 32 SNPs and nine InDels. Importantly, nine common single-point mutant genes in the exon region were found in all 12 resistant mutants, and these genes were related to multiple pathways in vivo, indicating that many factors contributed to the formation of propamidine resistance. CONCLUSION These data suggested the resistance risk of B. cinerea to propamidine was low to moderate and the mechanism of propamidine was different from that of the existing fungicides. These results will increase understanding of the resistance mechanism of propamidine and provide a critical basis for the rational design of pesticide molecules based on targets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuhuan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ke Huang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mengwei Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lin Jiang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yong Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Biopesticide Engineering & Technology Research Center, Northwest A & F University, Yangling, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Biopesticide Engineering & Technology Research Center, Northwest A & F University, Yangling, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Biopesticide Engineering & Technology Research Center, Northwest A & F University, Yangling, China
| |
Collapse
|
4
|
Song J, Wang Z, Zhang S, Wang Y, Liang Y, Dai Q, Huo Z, Xu K. The Toxicity of Salicylhydroxamic Acid and Its Effect on the Sensitivity of Ustilaginoidea virens to Azoxystrobin and Pyraclostrobin. J Fungi (Basel) 2022; 8:jof8111231. [PMID: 36422052 PMCID: PMC9692728 DOI: 10.3390/jof8111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Rice false smut (RFS) caused by Ustilaginoidea virens has been one of the most severe rice diseases. Fungicide-based chemical control is a significant measure to control RFS. In the sensitivity determination of quinone outside inhibitor (QoI) fungicide in vitro, salicylhydroxamic acid (SHAM) has been commonly added to artificial culture media in order to inhibit alternative oxidase of phytopathogenic fungi. However, some studies showed that artificial media should not include SHAM due to its toxicity. Whether SHAM should be added in the assay of U. virens sensitivity to QoI fungicide remains unknown. In this study, two appropriate media, potato sucrose agar (PSA) and minimal medium (MM), were selected to test SHAM toxicity and sensitivity of U. virens to azoxystrobin and pyraclostrobin. The mycelial growth and sensitivity to azoxystrobin and pyraclostrobin had no significant difference between on PSA and MM. SHAM could significantly inhibit mycelial growth, conidial germination, peroxidase (POD) and esterase activity of U. virens. Average effective concentration for inhibiting 50% (EC50) values of SHAM against mycelial growth of ten U. virens were 27.41 and 12.75 μg/mL on PSA and MM, respectively. The EC50 values of SHAM against conidial germination of isolates HWD and JS60 were 70.36 and 44.69 μg/mL, respectively. SHAM at 30 μg/mL significantly inhibited POD and esterase activity of isolates HWD and JS60, and even SHAM at 10 μg/mL significantly inhibited POD activity of isolate HWD. In addition, SHAM significantly reduced EC50 values and EC90 values of azoxystrobin and pyraclostrobin on both PSA and MM. Even in the presence of SHAM at 10 μg/mL, average EC50 values of ten U. virens isolates for azoxystrobin decreased 1.7-fold on PSA and 4.8-fold on MM, and for pyraclostrobin that decreased 2.8-fold on PSA and 4.8-fold on MM. Therefore, these results suggest that SHAM should not be included in artificial media in the assay of U. virens sensitivity to QoI fungicides.
Collapse
|
5
|
Song JH, Zhang SJ, Wang Y, Chen YT, Luo JF, Liang Y, Zhang HC, Dai QG, Xu K, Huo ZY. Baseline Sensitivity and Control Efficacy of Two Quinone Outside Inhibitor Fungicides, Azoxystrobin and Pyraclostrobin, Against Ustilaginoidea virens. PLANT DISEASE 2022; 106:2967-2973. [PMID: 35306849 DOI: 10.1094/pdis-12-21-2850-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice false smut caused by the filamentous fungus Ustilaginoidea virens is a devastating grain disease in rice. Fungicides have been an important measure for the control of this disease. In this study, baseline sensitivities of 179 isolates of U. virens to the quinone outside inhibitor (QoI) fungicides azoxystrobin and pyraclostrobin were established. The distribution of the 50% effective concentration (EC50) values of each fungicide was unimodal. The frequency distribution of logarithmically transformed EC50 values fit or fit closer to a normal distribution. The ranges of EC50 values for azoxystrobin and pyraclostrobin were 0.001 to 0.864 and 0.001 to 0.569 μg/ml, with means and standard errors of the mean values of 0.203 ± 0.012 and 0.079 ± 0.006 μg/ml, respectively. There was a statistically significant and moderately positive correlation (n = 100, r = 0.469, P = 0.001) in sensitivity between these two fungicides. No cross-resistance was found between azoxystrobin, pyraclostrobin, and carbendazim or sterol demethylation inhibitor fungicides. Each fungicide had a significantly higher mean preventive efficacy compared with its curative efficacy. Field assays showed that the control efficacy of pyraclostrobin against rice false smut was greater than that of azoxystrobin. Pyraclostrobin had the best control of rice false smut in three rice varieties, with the control efficacy ranging from 81.5 to 95.5%, whereas azoxystrobin decreased the disease index by 64.1 to 69.2% under the same conditions. These results provide us a reference point in the management of U. virens and future QoI fungicide resistance monitoring programs.
Collapse
Affiliation(s)
- Jie-Hui Song
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Si-Jie Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yun-Tong Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun-Fei Luo
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - You Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hong-Cheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Gen Dai
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ke Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhong-Yang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
6
|
Synthesis and Antifungal Activity of New butenolide Containing Methoxyacrylate Scaffold. Molecules 2022; 27:molecules27196541. [PMID: 36235077 PMCID: PMC9573425 DOI: 10.3390/molecules27196541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
In order to improve the antifungal activity of new butenolides containing oxime ether moiety, a series of new butenolide compounds containing methoxyacrylate scaffold were designed and synthesized, based on the previous reports. Their structures were characterized by 1H NMR, 13C NMR, HR-MS spectra, and X-ray diffraction analysis. The in vitro antifungal activities were evaluated by the mycelium growth rate method. The results showed that the inhibitory activities of these new compounds against Sclerotinia sclerotiorum were significantly improved, in comparison with that of the lead compound 3-8; the EC50 values of V-6 and VI-7 against S. sclerotiorum were 1.51 and 1.81 mg/L, nearly seven times that of 3-8 (EC50 10.62 mg/L). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation indicated that compound VI-3 had a significant impact on the structure and function of the hyphal cell of S. sclerotiorum mycelium and the positive control trifloxystrobin. Molecular simulation docking results indicated that the introduction of methoxyacrylate scaffold is beneficial to improving the antifungal activity of these compounds against S. sclerotiorum, which can be used as the lead for further structure optimization.
Collapse
|
7
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
8
|
Resistance mechanisms and fitness of pyraclostrobin-resistant isolates of Lasiodiplodia theobromae from mango orchards. PLoS One 2021; 16:e0253659. [PMID: 34161390 PMCID: PMC8221464 DOI: 10.1371/journal.pone.0253659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Background Stem-end rot, caused by Lasiodiplodia theobromae (Pat.) Griffon & Maubl is a serious postharvest disease in mango. In China, a high prevalence of the QoI fungicides resistance has been reported in the last decade. The study aimed to discuss factors determining rapid development of pyraclostrobin-resistance and its resistance mechanisms. Methods To determine the resistance stability and fitness of pyraclostrobin resistance in L. theobromae, three phenotypes of pyraclostrobin resistance were compared and analyzed for the EC50 values, mycelial growth, virulence and temperature sensitivity and osmotic stress sensitivity. The relative conductivity and enzyme activities of different phenotypes were compared under fungicide stress to explore possible biochemical mechanisms of pyraclostrobin resistance in L. theobromae. The Cytb gene sequences of different phenotypes were analysed. Results All isolates retained their original resistance phenotypes during the 10 subcultures on a fungicide-free PDA, factor of sensitivity change (FSC) was approximately equal to 1. The resistance-pyraclostrobin of the field isolates should be relatively stable. Two pyraclostrobin-resistant phenotypes shared similar mycelial growth, virulence and temperature sensitivity with pyraclostrobin-sensitive phenotype. After treated by pyraclostrobin, the relative conductivity of the sensitive phenotype was significantly increased. The time of Pyr-R and Pyr-HR reached the most conductivity was about 8–10 times than that of Pyr-S, the time for the maximum value appearance showed significant differences between sensitive and resistant phenotypes. The activities of Glutathione S-transferase (GST), catalase (CAT) and peroxidase (POD) of Pyr-HR were 1.78, 5.45 and 1.65 times respectively, significantly higher than that of Pyr-S after treated by 200 mg/l pyraclostrobin. Conclusion The results showed that the pyraclostrobin-resistant phenotypes displayed high fitness and high-risk. The nucleotide sequences were identical among all pyraclostrobin-resistant and -sensitive isolates. The pyraclostrobin resistance was not attributable to Cytb gene alterations, there may be some of other resistance mechanisms. Differential response of enzyme activity and cell membrane permeability were observed in resistant- and sensitive-isolates suggesting a mechanism of metabolic resistance.
Collapse
|
9
|
D'Ávila LS, De Filippi MCC, Café-Filho AC. Sensitivity of Pyricularia oryzae Populations to Fungicides Over a 26-Year Time Frame in Brazil. PLANT DISEASE 2021; 105:1771-1780. [PMID: 33135989 DOI: 10.1094/pdis-08-20-1806-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The long-term dynamics of fungicide resistance of the rice blast fungus Pyricularia oryzae was monitored by examining the reaction of the fungal field isolates, collected over a period of 26 years, to the active ingredients of commercially relevant fungicides. The in vitro sensitivity of all isolates was measured against quinone outside inhibitors (QoI), melanin biosynthesis inhibitors, and sterol demethylation inhibitor (DMI) fungicides, namely azoxystrobin (as a QoI), tricyclazole (as a melanin biosynthesis inhibitor), tebuconazole (as a DMI), and trifloxystrobin + tebuconazole (QoI + DMI). Over the 26-year collection period, a gradual rise in the EC50 estimates for mycelial growth sensitivity was observed for all fungicides, but most strikingly for azoxystrobin. A rise in conidial germination and appressorium formation was also noted, most markedly for azoxystrobin. Consistently, the earlier isolates were much more sensitive to the active ingredients than the more contemporary isolates. The sequencing of the amplified cyt b fragment distinguished two haplotypes, H1 and H2. Haplotype H1 (six isolates) contained the G to C transversion at codon 143 (resulting in change G143A), linked to the resistant phenotype QoI-R. Haplotype H2 (40 isolates), gathered the isolates sensitive to QoI. This work documents the gradual rise in the frequency of fungicide-resistant isolates in P. oryzae rice populations on a long-term basis.
Collapse
Affiliation(s)
- Leilane S D'Ávila
- Graduate Program in Plant Pathology, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Marta C Corsi De Filippi
- Graduate Program in Plant Pathology, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
- Embrapa Rice and Beans, 75375-000, Santo Antônio de Goiás, GO, Brazil
| | - Adalberto C Café-Filho
- Graduate Program in Plant Pathology, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
10
|
Ponomareva ML, Gorshkov VY, Ponomarev SN, Korzun V, Miedaner T. Snow mold of winter cereals: a complex disease and a challenge for resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:419-433. [PMID: 33221940 PMCID: PMC7843483 DOI: 10.1007/s00122-020-03725-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 05/28/2023]
Abstract
Snow mold resistance is a complex quantitative trait highly affected by environmental conditions during winter that must be addressed by resistance breeding. Snow mold resistance in winter cereals is an important trait for many countries in the Northern Hemisphere. The disease is caused by at least four complexes of soilborne fungi and oomycetes of which Microdochium nivale and M. majus are among the most common pathogens. They have a broad host range covering all winter and spring cereals and can basically affect all plant growth stages and organs. Their attack leads to a low germination rate, and/or pre- and post-emergence death of seedlings after winter and, depending on largely unknown environmental conditions, also to foot rot, leaf blight, and head blight. Resistance in winter wheat and triticale is governed by a multitude of quantitative trait loci (QTL) with mainly additive effects highly affected by genotype × environment interaction. Snow mold resistance interacts with winter hardiness in a complex way leading to a co-localization of resistance QTLs with QTLs/genes for freezing tolerance. In practical breeding, a multistep procedure is necessary with (1) freezing tolerance tests, (2) climate chamber tests for snow mold resistance, and (3) field tests in locations with and without regularly occurring snow cover. In the future, resistance sources should be genetically characterized also in rye by QTL mapping or genome-wide association studies. The development of genomic selection procedures should be prioritized in breeding research.
Collapse
Affiliation(s)
- Mira L Ponomareva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, Ul. Lobachevskogo 2/31, Kazan, 420111, Tatarstan, Russian Federation
| | - Vladimir Yu Gorshkov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, Ul. Lobachevskogo 2/31, Kazan, 420111, Tatarstan, Russian Federation
| | - Sergey N Ponomarev
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, Ul. Lobachevskogo 2/31, Kazan, 420111, Tatarstan, Russian Federation
| | - Viktor Korzun
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, Ul. Lobachevskogo 2/31, Kazan, 420111, Tatarstan, Russian Federation
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555, Einbeck, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
11
|
Gorshkov V, Osipova E, Ponomareva M, Ponomarev S, Gogoleva N, Petrova O, Gogoleva O, Meshcherov A, Balkin A, Vetchinkina E, Potapov K, Gogolev Y, Korzun V. Rye Snow Mold-Associated Microdochium nivale Strains Inhabiting a Common Area: Variability in Genetics, Morphotype, Extracellular Enzymatic Activities, and Virulence. J Fungi (Basel) 2020; 6:E335. [PMID: 33287447 PMCID: PMC7761817 DOI: 10.3390/jof6040335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Snow mold is a severe plant disease caused by psychrophilic or psychrotolerant fungi, of which Microdochium species are the most harmful. A clear understanding of Microdochium biology has many gaps; the pathocomplex and its dynamic are poorly characterized, virulence factors are unknown, genome sequences are not available, and the criteria of plant snow mold resistance are not elucidated. Our study aimed to identify comprehensive characteristics of a local community of snow mold-causing Microdochium species colonizing a particular crop culture. By using the next-generation sequencing (NGS) technique, we characterized fungal and bacterial communities of pink snow mold-affected winter rye (Secale cereale) plants within a given geographical location shortly after snowmelt. Twenty-one strains of M. nivale were isolated, classified on the basis of internal transcribed spacer 2 (ITS2) region, and characterized by morphology, synthesis of extracellular enzymes, and virulence. Several types of extracellular enzymatic activities, the level of which had no correlations with the degree of virulence, were revealed for Microdochium species for the first time. Our study shows that genetically and phenotypically diverse M. nivale strains simultaneously colonize winter rye plants within a common area, and each strain is likely to utilize its own, unique strategy to cause the disease using "a personal" pattern of extracellular enzymes.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Elena Osipova
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Mira Ponomareva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Sergey Ponomarev
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Natalia Gogoleva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Olga Petrova
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Olga Gogoleva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Azat Meshcherov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Alexander Balkin
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Elena Vetchinkina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Kim Potapov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Yuri Gogolev
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Viktor Korzun
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
12
|
Chugunova E, Gazizov A, Sazykina M, Akylbekov N, Gildebrant A, Sazykin I, Burilov A, Appazov N, Karchava S, Klimova M, Voloshina A, Sapunova A, Gumerova S, Khamatgalimov A, Gerasimova T, Dobrynin A, Gogoleva O, Gorshkov V. Design of Novel 4-Aminobenzofuroxans and Evaluation of Their Antimicrobial and Anticancer Activity. Int J Mol Sci 2020; 21:ijms21218292. [PMID: 33167439 PMCID: PMC7663979 DOI: 10.3390/ijms21218292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022] Open
Abstract
A series of novel 4-aminobenzofuroxan derivatives containing aromatic/aliphatic amines fragments was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan. The quantum chemistry calculations were performed to identify the factors affecting the regioselectivity of the reaction. The formation of 4-substituted isomer is favored both by its greater stability and the lower activation barrier. Antimicrobial activity of the obtained compounds has been evaluated and some of them were found to suppress effectively bacterial biofilm growth. Fungistatic activity of 4-aminobenzofuroxans were tested on two genetically distinct isolates of M. nivale. The effect of some benzofuroxan derivatives is likely to be more universal against different varieties of M. nivale compared with benzimidazole and carbendazim. Additionally, their anti-cancer activity in vitro has been tested. 4-aminofuroxans possessing aniline moiety showed a high selectivity towards MCF-7 and M-HeLa tumor cell lines. Moreover, they exhibit a significantly lower toxicity towards normal liver cells compared to Doxorubicin and Tamoxifen. Thus, benzofuroxans containing aromatic amines fragments in their structure are promising candidates for further development both as anti-cancer and anti-microbial agents.
Collapse
Affiliation(s)
- Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
- Correspondence: (E.C.); (A.G.); (N.A.); Tel.: +7-843-272-7324 (E.C.); +7-843-272-7324 (A.G.); +7-724-223-1041 (N.A.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
- Correspondence: (E.C.); (A.G.); (N.A.); Tel.: +7-843-272-7324 (E.C.); +7-843-272-7324 (A.G.); +7-724-223-1041 (N.A.)
| | - Marina Sazykina
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan;
- Correspondence: (E.C.); (A.G.); (N.A.); Tel.: +7-843-272-7324 (E.C.); +7-843-272-7324 (A.G.); +7-724-223-1041 (N.A.)
| | - Anastasiya Gildebrant
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Ivan Sazykin
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan;
- I. Zhakaev Kazakh Scientific Research Institute of Rice Growing, Kyzylorda 120008, Kazakhstan
| | - Shorena Karchava
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Maria Klimova
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Anastasia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Syumbelya Gumerova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Ayrat Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Alexey Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Olga Gogoleva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
| | - Vladimir Gorshkov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
| |
Collapse
|
13
|
Matsuzaki Y, Kiguchi S, Suemoto H, Iwahashi F. Antifungal activity of metyltetraprole against the existing QoI-resistant isolates of various plant pathogenic fungi: Metyltetraprole against QoI-R isolates. PEST MANAGEMENT SCIENCE 2020; 76:1743-1750. [PMID: 31769927 PMCID: PMC7204873 DOI: 10.1002/ps.5697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/31/2019] [Accepted: 11/22/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Metyltetraprole is a novel quinol oxidation site of Complex III inhibitor (QoI) fungicide that inhibits mitochondrial electron transport at the Qo site of the cytochrome bc1 complex. Previous reports have demonstrated that it is also active against the QoI-resistant (QoI-R) isolates of Zymoseptoria tritici and Pyrenophora teres with the mutations G143A and F129L in their cytochrome b gene, respectively. Further studies on cross-resistance between metyltetraprole and existing QoIs were performed using an increased number of isolates of Z. tritici, P. teres, Ramularia collo-cygni, Pyrenophora tritici-repentis, and several other plant pathogenic fungi. RESULTS Differences in the EC50 values between the wild-type and QoI-R isolates with the mutations G143A or F129L were always smaller for metyltetraprole compared to those for the existing QoIs, and they were never greater than five in terms of resistance factor. The 2-year field experiments showed that the metyltetraprole treatment did not increase the percentage of QoI-R isolates likely to harbor the G143A mutation in a Z. tritici population. CONCLUSION The unique behavior of metyltetraprole against the existing QoI-R isolates was confirmed for all tested pathogen species. Our results provide important information to establish a fungicide resistance management strategy using metyltetraprole in combination or alternation with other fungicides. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| | - So Kiguchi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| | - Haruka Suemoto
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| | - Fukumatsu Iwahashi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| |
Collapse
|
14
|
Matsuzaki Y, Watanabe S, Harada T, Iwahashi F. Pyridachlometyl has a novel anti-tubulin mode of action which could be useful in anti-resistance management. PEST MANAGEMENT SCIENCE 2020; 76:1393-1401. [PMID: 31622533 PMCID: PMC7065193 DOI: 10.1002/ps.5652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fungicide resistance is a growing problem affecting many crop pathogens owing to the low success rate in finding novel chemical classes of fungicides. Pyridachlometyl is a new fungicide that seems to belong to a new chemical class of tubulin polymerization promoters. RESULTS Pyridachlometyl exhibited potent antifungal activity against a broad range of fungal species belonging to the phyla Ascomycota and Basidiomycota. No cross-resistance was observed with other fungicide classes, such as ergosterol biosynthesis inhibitors, respiratory inhibitors, or tubulin polymerization inhibitors in Zymoseptoria tritici. Pyridachlometyl-resistant strains were obtainable by UV mutagenesis in Z. tritici and Penicillium digitatum. Mutations in tubulin-coding genes were found in all laboratory mutants but the patterns of mutation were distinct from that of tubulin polymerization inhibitors, such as benzimidazole fungicides. CONCLUSION Pyridachlometyl is a promising new tool for disease control. However, strict resistance management strategies should be recommended for the practical use of pyridachlometyl. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Satoshi Watanabe
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Toshiyuki Harada
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Fukumatsu Iwahashi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| |
Collapse
|
15
|
Feng Y, Huang Y, Zhan H, Bhatt P, Chen S. An Overview of Strobilurin Fungicide Degradation:Current Status and Future Perspective. Front Microbiol 2020; 11:389. [PMID: 32226423 PMCID: PMC7081128 DOI: 10.3389/fmicb.2020.00389] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/25/2020] [Indexed: 01/24/2023] Open
Abstract
Strobilurin fungicides have been widely used in agricultural fields for decades. These pesticides are designed to manage fungal pathogens, although their broad-spectrum mode of action also produces non-target impacts. Therefore, the removal of strobilurins from ecosystems has received much attention. Different remediation technologies have been developed to eliminate pesticide residues from soil/water environments, such as photodecomposition, ozonation, adsorption, incineration, and biodegradation. Compared with conventional methods, bioremediation is considered a cost-effective and ecofriendly approach for the removal of pesticide residues. Several strobilurin-degrading microbes and microbial communities have been reported to effectively utilize pesticide residues as a carbon and nitrogen source. The degradation pathways of strobilurins and the fate of several metabolites have been reported. Further in-depth studies based on molecular biology and genetics are needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of strobilurins. The present review summarizes recent progress in strobilurin degradation and comprehensively discusses the potential of strobilurin-degrading microorganisms in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| |
Collapse
|
16
|
Fotoukkiaii SM, Tan Z, Xue W, Wybouw N, Van Leeuwen T. Identification and characterization of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in the spider mite Tetranychus urticae. PEST MANAGEMENT SCIENCE 2020; 76:1154-1163. [PMID: 31599486 DOI: 10.1002/ps.5628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In spider mites, mutations in the mitochondrial cytochrome b Qo pocket have been reported to confer resistance to the Qo inhibitors bifenazate and acequinocyl. In this study, we surveyed populations of the two-spotted spider mite Tetranychus urticae for mutations in cytochrome b, linked newly discovered mutations with resistance and assessed potential pleiotropic fitness costs. RESULTS We identified two novel mutations in the Qo site: G132A (equivalent to G143A in fungi resistant to strobilurins) and G126S + A133T (previously reported to cause bifenazate and acequinocyl resistance in Panonychus citri). Two T. urticae strains carrying G132A were highly resistant to bifenazate but not acequinocyl, whereas a strain with G126S + A133T displayed high levels of acequinocyl resistance, but only moderate levels of bifenazate resistance. Bifenazate and acequinocyl resistance were inherited maternally, providing strong evidence for the involvement of these mutations in the resistance phenotype. Near isogenic lines carrying G132A revealed several fitness penalties in T. urticae; a lower net reproductive rate (R0 ), intrinsic rate of increase (rm) and finite rate of increase (LM); a higher doubling time (DT); and a more male-biased sex ratio. CONCLUSIONS Several lines of evidence were provided to support the causal role of newly discovered cytochrome b mutations in bifenazate and acequinocyl resistance. Because of the fitness costs associated with the G132A mutation, resistant T. urticae populations might be less competitive in a bifenazate-free environment, offering opportunities for resistance management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Fotoukkiaii
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Zoë Tan
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Wenxin Xue
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Gagkaeva TY, Orina AS, Gavrilova OP, Gogina NN. Evidence of Microdochium Fungi Associated with Cereal Grains in Russia. Microorganisms 2020; 8:E340. [PMID: 32121208 PMCID: PMC7143527 DOI: 10.3390/microorganisms8030340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
In total, 46 Microdochium strains from five different geographic regions of Russia were explored with respect to genetic diversity, morphology, and secondary metabolites. Based on the results of PCR, 59% and 28% of the strains were identified as M. nivale and M. majus, respectively. As a result of sequencing four genome regions, namely ITS, LSU, BTUB, and RPB2 (2778 bp), five genetically and phenotypically similar strains from Western Siberia were identified as M. seminicola, which, according to our findings, is the prevalent Microdochium species in this territory. This is the first record of M. seminicola in Russia. Attempts were made to distinguish between Microdochium species and to identify species-specific morphological characteristics in the anamorph and teleomorph stages and physiological properties. We examined the occurrence frequency of conidia with different numbers of septa in the strains of Microdochium. The predominance of three-septate macroconidia in M. majus was higher than that in M. nivale and typically exceeded 60% occurrence. Most M. majus and M. nivale strains formed walled protoperithecia on wheat stems. Only three strains of M. majus and one strain each of M. nivale and M. seminicola produced mature perithecia. The growth rate of M. seminicola strains was significantly lower on agar media at 5-25 °C than those of M. majus and M. nivale strains. Multimycotoxin analysis by HPLC-MS/MS revealed that the strains of three Microdochium species did not produce any toxic metabolites.
Collapse
Affiliation(s)
- Tatiana Yu. Gagkaeva
- All-Russian Institute of Plant Protection (VIZR), St.-Petersburg, 196608 Pushkin, Russia; (A.S.O.); (O.P.G.)
| | - Aleksandra S. Orina
- All-Russian Institute of Plant Protection (VIZR), St.-Petersburg, 196608 Pushkin, Russia; (A.S.O.); (O.P.G.)
| | - Olga P. Gavrilova
- All-Russian Institute of Plant Protection (VIZR), St.-Petersburg, 196608 Pushkin, Russia; (A.S.O.); (O.P.G.)
| | - Nadezhda N. Gogina
- All-Russian Scientific Research and Technological Institute of Poultry, Sergiev Posad, 141311, Moscow region, Russia;
| |
Collapse
|
18
|
Shi N, Ruan H, Gan L, Dai Y, Yang X, Du Y, Chen F. Evaluating the Sensitivities and Efficacies of Fungicides with Different Modes of Action Against Phomopsis asparagi. PLANT DISEASE 2020; 104:448-454. [PMID: 31801035 DOI: 10.1094/pdis-05-19-1040-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Asparagus stem blight caused by Phomopsis asparagi is a major hindrance to asparagus production worldwide. Currently, fungicides are used to manage the disease in commercial production, but resistance to common fungicides has emerged in the wild population. In the present study, 132 isolates of P. asparagi collected from different provinces in China were tested for sensitivities to pyraclostrobin, tebuconazole, and fluazinam. We also determined the efficacies of six fungicides against P. asparagi. The frequency distributions of EC50 values of the isolates tested were unimodal, but the curves for pyraclostrobin and tebuconazole had long right-hand tails. The mean EC50 values for pyraclostrobin, tebuconazole, and fluazinam were 0.0426 ± 0.0029, 0.6041 ± 0.0416, and 0.0314 ± 0.0013 μg/ml, respectively. In addition, the EC50 values for pyraclostrobin were very similar with or without salicylhydroxamic acid (SHAM), 20 μg/ml, indicating that SHAM is not needed to determine the sensitivity of P. asparagi to pyraclostrobin when using the mycelial growth inhibition assay. In greenhouse assays, Merivon (42.4% fluxapyroxad plus pyraclostrobin SC), Frown-cide (500 g/liter fluazinam SC), Cabrio (250 g/liter pyraclostrobin EC), and Nativo (75% trifloxystrobin plus tebuconazole WG) showed excellent preventive efficacy against P. asparagi. And these fungicides were more effective before inoculation than when they were applied after inoculation (P < 0.05). Therefore, these fungicides should be applied prior to infection to control stem blight. In field trials, Frown-cide, Merivon, Nativo, and Cabrio also performed good control effects, ranging from 75.2 to 86.0% in 2017 and 75.4 to 87.1% in 2018. We demonstrated that Frown-cide, Merivon, Nativo, and Cabrio had considerable potential to manage asparagus stem blight. In addition, rotations of these fungicides are essential for precluding or delaying the development of resistance and for controlling the disease.
Collapse
Affiliation(s)
- Niuniu Shi
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China, and Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Hongchun Ruan
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China, and Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Lin Gan
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China, and Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Yuli Dai
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China, and Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Xiujuan Yang
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China, and Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Yixin Du
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China, and Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Furu Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China, and Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| |
Collapse
|
19
|
Chen F, Tsuji SS, Li Y, Hu M, Bandeira MA, Câmara MPS, Michereff SJ, Schnabel G. Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:60-68. [PMID: 31836056 DOI: 10.1016/j.pestbp.2019.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/30/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Stem-end rot caused by Lasiodiplodia theobromae is one of the most devastating diseases of papaya in northeastern Brazil. It is most effectively controlled by applications of fungicides, including site-specific fungicides at risk for resistance development. This study investigated the molecular mechanisms of reduced sensitivity to the QoI fungicide azoxystrobin and resistance to the MBC fungicide thiophanate-methyl in L. theobromae from Brazilian orchards. The EC50 values for azoxystrobin in sixty-four isolates ranged from 0.36 μg/ml to 364.24 μg/ml and the frequency distribution of EC50 values formed a multimodal curve, indicating reduced sensitivity to azoxystrobin. In detached fruit assays reduced sensitive isolates were not controlled as effectively as sensitive isolates at lowest label rate. Partial fragments were obtained from target genes β-tubulin (751 bp) and Cytb (687 bp) of isolates resistant to thiophanate-methyl and reduced sensitivity to azoxystrobin. Sequence analysis of the β-tubulin fragment revealed a mutation corresponding to E198K in all thiophanate-methyl-resistant isolates, while reduced sensitivity to axoxystrobin was not attributable to Cytb gene alterations. The target gene-based mechanism conferring resistance to thiophanate-methyl will likely be stable even if selection pressure subsides. However, the mechanism conferring reduced sensitivity to azoxystrobin is not based on target gene modifications and thus may not be as stable as other genotypes with mutations in Cytb gene.
Collapse
Affiliation(s)
- Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Susan Satie Tsuji
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171, Brazil
| | - Yuan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | | | - Sami Jorge Michereff
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE 63130, Brazil
| | - Guido Schnabel
- Plant & Environmental Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
20
|
Liang H, Li J, Luo C, Li J, Zhu FX. Effects of SHAM on the Sensitivity of Sclerotinia sclerotiorum and Botrytis cinerea to QoI Fungicides. PLANT DISEASE 2019; 103:1884-1888. [PMID: 31161931 DOI: 10.1094/pdis-12-18-2142-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is a common practice to add salicylhydroxamic acid (SHAM) into artificial medium in the in vitro sensitivity assay of fungal phytopathogens to the quinone outside inhibitor (QoI) fungicides. The rationale for adding SHAM is to inhibit fungal alternative oxidase, which is presumed to be inhibited by secondary metabolites of plants. Therefore, the ideal characteristics of SHAM should be almost nontoxic to phytopathogens and have no significant effect on control efficacy of fungicides. However, this study showed that the average effective concentration for 50% inhibition (EC50) of mycelial growth values of SHAM were 97.5 and 401.4 μg/ml for Sclerotinia sclerotiorum and Botrytis cinerea, respectively. EC50 values of the three QoI fungicides azoxystrobin, kresoxim-methyl, and trifloxystrobin in the presence of SHAM at 20 and 80 μg/ml for S. sclerotiorum and B. cinerea, respectively, declined by 52.7 to 78.1% compared with those without SHAM. For the dicarboximide fungicide dimethachlone, the average EC50 values in the presence of SHAM declined by 18.2% (P = 0.008) for S. sclerotiorum and 35.9% (P = 0.012) for B. cinerea. Pot experiments showed that SHAM increased control efficacy of the three QoI fungicides against the two pathogens by 43 to 83%. For dimethachlone, SHAM increased control efficacy by 134% for S. sclerotiorum and 86% for B. cinerea. Biochemical studies showed that SHAM significantly inhibited peroxidase activity (P = 0.024) of B. cinerea and esterase activity (P = 0.015) of S. sclerotiorum. The strong inhibitions of SHAM per se on mycelial growth of B. cinerea and S. sclerotiorum and significant influences on the sensitivity of the two pathogens to both the QoI fungicides and dimethachlone as well as inhibitions on peroxidase and esterase indicate that SHAM should not be added in the in vitro assay of sensitivity to the QoI fungicides.
Collapse
Affiliation(s)
- Hongjie Liang
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- 2Potato Research Institute, Gansu Academy of Agricultural Sciences, Gansu 730070, China
| | - Jinli Li
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fu-Xing Zhu
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Barsottini MR, Pires BA, Vieira ML, Pereira JG, Costa PC, Sanitá J, Coradini A, Mello F, Marschalk C, Silva EM, Paschoal D, Figueira A, Rodrigues FH, Cordeiro AT, Miranda PC, Oliveira PS, Sforça ML, Carazzolle MF, Rocco SA, Pereira GA. Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens. PEST MANAGEMENT SCIENCE 2019; 75:1295-1303. [PMID: 30350447 DOI: 10.1002/ps.5243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches' broom disease (WBD) of cocoa (Theobroma cacao L.) and a threat to the chocolate industry. The membrane-bound enzyme alternative oxidase (AOX) is critical for M. perniciosa virulence and resistance to fungicides, which has also been observed in other phytopathogens. Notably AOX is an escape mechanism from strobilurins and other respiration inhibitors, making AOX a promising target for controlling WBD and other fungal diseases. RESULTS We present the first study aimed at developing novel fungal AOX inhibitors. N-Phenylbenzamide (NPD) derivatives were screened in the model yeast Pichia pastoris through oxygen consumption and growth measurements. The most promising AOX inhibitor (NPD 7j-41) was further characterized and displayed better activity than the classical AOX inhibitor SHAM in vitro against filamentous fugal phytopathogens, such as M. perniciosa, Sclerotinia sclerotiorum and Venturia pirina. We demonstrate that 7j-41 inhibits M. perniciosa spore germination and prevents WBD symptom appearance in infected plants. Finally, a structural model of P. pastoris AOX was created and used in ligand structure-activity relationships analyses. CONCLUSION We present novel fungal AOX inhibitors with antifungal activity against relevant phytopathogens. We envisage the development of novel antifungal agents to secure food production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mario Ro Barsottini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara A Pires
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Maria L Vieira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - José Gc Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cs Costa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Jaqueline Sanitá
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandro Coradini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fellipe Mello
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Cidnei Marschalk
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Eder M Silva
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Daniele Paschoal
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Fábio Hs Rodrigues
- School of Life Sciences, University of Warwick - Gibbet Hill Campus, Coventry, United Kingdom
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cml Miranda
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Paulo Sl Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maurício L Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marcelo F Carazzolle
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo Ag Pereira
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
22
|
Vielba-Fernández A, Bellón-Gómez D, Torés JA, de Vicente A, Pérez-García A, Fernández-Ortuño D. Heteroplasmy for the Cytochrome b Gene in Podosphaera xanthii and its Role in Resistance to QoI Fungicides in Spain. PLANT DISEASE 2018; 102:1599-1605. [PMID: 30673427 DOI: 10.1094/pdis-12-17-1987-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In Spain, management of the cucurbit powdery mildew pathogen Podosphaera xanthii is strongly dependent on chemicals such as quinone outside inhibitor (QoI) fungicides. In a previous report, widespread resistance to QoI fungicides in populations of P. xanthii in south-central Spain was documented, but the molecular mechanisms of resistance remained unclear. In this work, the role of the Rieske-FeS (risp) and the cytochrome b (cytb) gene mutations in QoI resistance of P. xanthii were examined. No point mutations in the risp gene were found in the three QoI-resistant isolates analyzed. For cytb, sequence analysis revealed the presence of a G143A substitution that occurs in many QoI-resistant fungi. This mutation was always detected in QoI-resistant isolates of P. xanthii; however, it was also detected in sensitive isolates. To better understand the role of heteroplasmy for cytb in QoI resistance of P. xanthii, an allele-specific quantitative PCR was developed to quantify the relative abundance of the G143 (sensitive) and A143 (resistant) alleles. High relative abundance of A143 allele (70%) was associated with isolates resistant to QoI fungicides; however, QoI-sensitive isolates also carried the mutated allele in frequencies ranged from 10 to 60%. Our data suggest that G143A mutation in cytb is the primary factor involved in QoI resistance of P. xanthii but the proportion of G143 and A143 alleles in an isolate may determine its QoI resistance level.
Collapse
Affiliation(s)
- Alejandra Vielba-Fernández
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa (Málaga), Spain
| | - Davinia Bellón-Gómez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa (Málaga), Spain
| | - Juan A Torés
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa (Málaga), Spain
| | - Antonio de Vicente
- IHSM-UMA-CSIC, Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Alejandro Pérez-García
- IHSM-UMA-CSIC, Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
23
|
Owati AS, Agindotan B, Pasche JS, Burrows M. The Detection and Characterization of QoI-Resistant Didymella rabiei Causing Ascochyta Blight of Chickpea in Montana. FRONTIERS IN PLANT SCIENCE 2017; 8:1165. [PMID: 28713416 PMCID: PMC5492765 DOI: 10.3389/fpls.2017.01165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/16/2017] [Indexed: 05/20/2023]
Abstract
Ascochyta blight (AB) of pulse crops (chickpea, field pea, and lentils) causes yield loss in Montana, where 1.2 million acres was planted to pulses in 2016. Pyraclostrobin and azoxystrobin, quinone outside inhibitor (QoI) fungicides, have been the choice of farmers for the management of AB in pulses. However, a G143A mutation in the cytochrome b gene has been reported to confer resistance to QoI fungicides. A total of 990 isolates of AB-causing fungi were isolated and screened for QoI resistance. Out of these, 10% were isolated from chickpea, 81% were isolated from field peas, and 9% isolated from lentil. These were from a survey of grower's fields and seed lots (chickpea = 17, field pea = 131, and lentil = 21) from 23 counties in Montana sent to the Regional Pulse Crop Diagnostic Laboratory, Bozeman, MT, United States for testing. Fungicide-resistant Didymella rabiei isolates were found in one chickpea seed lot each sent from Daniels, McCone and Valley Counties, MT, from seed produced in 2015 and 2016. Multiple alignment analysis of amino acid sequences showed a missense mutation that replaced the codon for amino acid 143 from GGT to GCT, introducing an amino acid change from glycine to alanine (G143A), which is reported to be associated with QoI resistance. Under greenhouse conditions, disease severity was significantly higher on pyraclostrobin-treated chickpea plants inoculated with QoI-resistant isolates of D. rabiei than sensitive isolates (p-value = 0.001). This indicates that where resistant isolates are located, fungicide failures may be observed in the field. D. rabiei-specific polymerase chain reaction primer sets and hydrolysis probes were developed to efficiently discriminate QoI- sensitive and - resistant isolates.
Collapse
Affiliation(s)
- Ayodeji S. Owati
- Department of Plant Sciences and Plant Pathology, Montana State University, BozemanMT, United States
| | - Bright Agindotan
- Department of Plant Sciences and Plant Pathology, Montana State University, BozemanMT, United States
| | - Julie S. Pasche
- Department of Plant Pathology, North Dakota State University, FargoND, United States
| | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, BozemanMT, United States
| |
Collapse
|
24
|
Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A. Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. PLANT DISEASE 2016; 100:10-24. [PMID: 30688570 DOI: 10.1094/pdis-05-15-0574-fe] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Whether modern agriculture without conventional pesticides will be possible or not is a matter of debate. The debate is meaningful within the context of rising health and environmental awareness on one hand, and the global challenge of feeding a steadily growing human population on the other. Conventional pesticide use has come under pressure in many countries, and some European Union (EU) Member States have adopted policies for risk reduction following Directive 2009/128/EC, the sustainable use of pesticides. Highly diverse crop production systems across Europe, having varied geographic and climatic conditions, increase the complexity of European crop protection. The economic competitiveness of European agriculture is challenged by the current legislation, which banned the use of many previously authorized pesticides that are still available and applied in other parts of the world. This challenge could place EU agricultural production at a disadvantage, so EU farmers are seeking help from the research community to foster and support integrated pest management (IPM). Ensuring stable crop yields and quality while reducing the reliance on pesticides is a challenge facing the farming community is today. Considering this, we focus on several diverse situations in European agriculture in general and in European crop protection in particular. We emphasize that the marked biophysical and socio-economic differences across Europe have led to a situation where a meaningful reduction in pesticide use can hardly be achieved. Nevertheless, improvements and/or adoption of the knowledge and technologies of IPM can still achieve large gains in pesticide reduction. In this overview, the current pest problems and their integrated management are discussed in the context of specific geographic regions of Europe, with a particular emphasis on reduced pesticide use. We conclude that there are opportunities for reduction in many parts of Europe without significant losses in crop yields.
Collapse
Affiliation(s)
| | - Silke Dachbrodt-Saaydeh
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Stahnsdorfer Damm 81, 14532 Kleinmachnow, Germany
| | - Per Kudsk
- Aarhus University, Department of Agroecology, Forsoegsvej 1, 4200 Slagelse 14 Denmark
| | - Antoine Messéan
- INRA, UAR 1240 Eco-Innov, BP 01, 78850 Thiverval-Grignon, France
| |
Collapse
|
25
|
Mallowa SO, Esker PD, Paul PA, Bradley CA, Chapara VR, Conley SP, Robertson AE. Effect of Maize Hybrid and Foliar Fungicides on Yield Under Low Foliar Disease Severity Conditions. PHYTOPATHOLOGY 2015; 105:1080-9. [PMID: 25760523 DOI: 10.1094/phyto-08-14-0210-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Foliar fungicide use in the U.S. Corn Belt increased in the last decade; however, questions persist pertaining to its value and sustainability. Multistate field trials were established from 2010 to 2012 in Illinois, Iowa, Ohio, and Wisconsin to examine how hybrid and foliar fungicide influenced disease intensity and yield. The experimental design was in a split-split plot with main plots consisting of hybrids varying in resistance to gray leaf spot (caused by Cercospora zeae-maydis) and northern corn leaf blight (caused by Setosphaera turcica), subplots corresponding to four application timings of the fungicide pyraclostrobin, and sub-subplots represented by inoculations with either C. zeae-maydis, S. turcica, or both at two vegetative growth stages. Fungicide application (VT/R1) significantly reduced total disease severity relative to the control in five of eight site-years (P<0.05). Disease was reduced by approximately 30% at Wisconsin in 2011, 20% at Illinois in 2010, 29% at Iowa in 2010, and 32 and 30% at Ohio in 2010 and 2012, respectively. These disease severities ranged from 0.2 to 0.3% in Wisconsin in 2011 to 16.7 to 22.1% in Illinois in 2010. The untreated control had significantly lower yield (P<0.05) than the fungicide-treated in three site-years. Fungicide application increased the yield by approximately 6% at Ohio in 2010, 5% at Wisconsin in 2010 and 6% in 2011. Yield differences ranged from 8,403 to 8,890 kg/ha in Wisconsin 2011 to 11,362 to 11,919 kg/ha in Wisconsin 2010. Results suggest susceptibility to disease and prevailing environment are important drivers of observed differences. Yield increases as a result of the physiological benefits of plant health benefits under low disease were not consistent.
Collapse
Affiliation(s)
- Sally O Mallowa
- First and seventh authors: Department of Plant Pathology and Microbiology, Iowa State University; second author: Escuela de Agronomía, Universidad de Costa Rica; third author: Department of Plant Pathology, Ohio State University; fourth and fifth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign; and sixth author: Department of Agronomy, University of Wisconsin
| | - Paul D Esker
- First and seventh authors: Department of Plant Pathology and Microbiology, Iowa State University; second author: Escuela de Agronomía, Universidad de Costa Rica; third author: Department of Plant Pathology, Ohio State University; fourth and fifth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign; and sixth author: Department of Agronomy, University of Wisconsin
| | - Pierce A Paul
- First and seventh authors: Department of Plant Pathology and Microbiology, Iowa State University; second author: Escuela de Agronomía, Universidad de Costa Rica; third author: Department of Plant Pathology, Ohio State University; fourth and fifth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign; and sixth author: Department of Agronomy, University of Wisconsin
| | - Carl A Bradley
- First and seventh authors: Department of Plant Pathology and Microbiology, Iowa State University; second author: Escuela de Agronomía, Universidad de Costa Rica; third author: Department of Plant Pathology, Ohio State University; fourth and fifth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign; and sixth author: Department of Agronomy, University of Wisconsin
| | - Venkata R Chapara
- First and seventh authors: Department of Plant Pathology and Microbiology, Iowa State University; second author: Escuela de Agronomía, Universidad de Costa Rica; third author: Department of Plant Pathology, Ohio State University; fourth and fifth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign; and sixth author: Department of Agronomy, University of Wisconsin
| | - Shawn P Conley
- First and seventh authors: Department of Plant Pathology and Microbiology, Iowa State University; second author: Escuela de Agronomía, Universidad de Costa Rica; third author: Department of Plant Pathology, Ohio State University; fourth and fifth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign; and sixth author: Department of Agronomy, University of Wisconsin
| | - Alison E Robertson
- First and seventh authors: Department of Plant Pathology and Microbiology, Iowa State University; second author: Escuela de Agronomía, Universidad de Costa Rica; third author: Department of Plant Pathology, Ohio State University; fourth and fifth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign; and sixth author: Department of Agronomy, University of Wisconsin
| |
Collapse
|
26
|
Grimmer MK, van den Bosch F, Powers SJ, Paveley ND. Fungicide resistance risk assessment based on traits associated with the rate of pathogen evolution. PEST MANAGEMENT SCIENCE 2015; 71:207-215. [PMID: 24664659 DOI: 10.1002/ps.3781] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/21/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND A new fungicide resistance risk assessment method is described, based on traits (of pathogens, fungicides and agronomic systems) that are associated with rapid or slow occurrence of resistance. Candidate traits tested for their predictive value were those for which there was a mechanistic rationale that they could be determinants of the rate of resistance evolution. RESULTS A dataset of 61 European cases of resistance against single-site-acting fungicides was assembled. For each case, the number of years from product introduction to first detection of resistance (the FDR time) was quantified - varying from 2 to 24 years. Short and long predicted FDR times represent high and low resistance risk respectively. Regression analysis identified traits that were statistically associated with FDR time. A model combining these traits explained 61% of the variation in FDR time. Validation showed that this predictive power was highly unlikely to have occurred by chance. CONCLUSION Unlike previous methods, trait-based risk assessment can be used to assess resistance risk for fungicides with new modes of action, when there is no prior knowledge of resistance behaviour. Risk predictions using the new method provide a more reliable basis for resistance management decisions. © 2014 Society of Chemical Industry.
Collapse
|
27
|
Synthesis and antifungal activity of novel α-alkoxyimino-(1H-benzoimidazol-2-yl)acetonitriles containing piperazine moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1853-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Zeun R, Scalliet G, Oostendorp M. Biological activity of sedaxane---a novel broad-spectrum fungicide for seed treatment. PEST MANAGEMENT SCIENCE 2013; 69:527-534. [PMID: 23044852 DOI: 10.1002/ps.3405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 07/02/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Sedaxane is a new broad-spectrum seed treatment fungicide developed by Syngenta Crop Protection for control of seed- and soil-borne diseases in a broad range of crops. Its physicochemical properties and activity spectrum have been optimised for use as a seed treatment providing both local and systemic protection of the seed and roots of target crops. RESULTS Sedaxane inhibits respiration by binding to the succinate dehydrogenase complex in the fungal mitochondrium. Its activity spectrum covers seed-borne fungi such as Ustilago nuda, Tilletia caries, Monographella nivalis and Pyrenophora graminea, as well as the soil-borne fungi Rhizoctonia solani, R. cerealis and Typhula incarnata. Under greenhouse conditions, sedaxane showed high levels and consistent protection against U. nuda, P. graminea and Rhizoctonia spp. Under field conditions, efficacy against Rhizoctonia spp. resulted in increased yield compared with the untreated check. Efficacy against snow mould has been shown under very high disease pressure conditions. The combination of sedaxane plus fludioxonil against snow mould can provide resistance management for sustainable use. CONCLUSIONS The broad spectrum and high level of activity in combination with excellent crop tolerance allow the use of sedaxane as a seed treatment in a wide variety of crops. It is a potential tool for precautionary resistance management when combined with other fungicides, especially against pathogens showing a potential for resistance development, such as M. nivalis.
Collapse
Affiliation(s)
- Ronald Zeun
- Syngenta AG, Crop Protection Research, Biology, Stein, Switzerland.
| | | | | |
Collapse
|
29
|
Synthesis and antifungal activity of novel 1-(1H-benzoimidazol-1-yl)propan-2-one oxime-ethers containing the morpholine moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0708-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Samuel S, Papayiannis LC, Leroch M, Veloukas T, Hahn M, Karaoglanidis GS. Evaluation of the incidence of the G143A mutation and cytb intron presence in the cytochrome bc-1 gene conferring QoI resistance in Botrytis cinerea populations from several hosts. PEST MANAGEMENT SCIENCE 2011; 67:1029-1036. [PMID: 21702077 DOI: 10.1002/ps.2226] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/29/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Previous studies have shown that resistance of Botrytis cinerea to QoI fungicides has been attributed to the G143A mutation in the cytochrome b (cytb) gene, while, in a part of the fungal population, an intron has been detected at codon 143 of the gene, preventing QoI resistance. During 2005-2009, 304 grey mould isolates were collected from strawberry, tomato, grape, kiwifruit, cucumber and apple in Greece and screened for resistance to pyraclostrobin and for the presence of the cytb intron, using a novel real-time TaqMan PCR assay developed in the present study. RESULTS QoI-resistant phenotypes existed only within the population collected from strawberries. All resistant isolates possessed the G143A mutation. Differences were observed in the genotypic structure of cytb. Individuals possessing the intron were found at high incidence in apple fruit and greenhouse-grown tomato and cucumber populations, whereas in the strawberry population the intron frequency was lower. Cultivation of QoI-resistant and QoI-sensitive isolates for ten culture cycles on artificial nutrient medium in the presence or absence of fungicide selection showed that QoI resistance was stable. CONCLUSIONS The results of the study suggest that a high risk for selection of QoI-resistant strains exists in crops heavily treated with QoIs, in spite of the widespread occurrence of the cytb intron in B. cinerea populations. The developed real-time TaqMan PCR constitutes a powerful tool to streamline detection of the mutation by reducing pre- and post-amplification manipulations, and can be used for rapid screening and quantification of QoI resistance.
Collapse
Affiliation(s)
- Stylianos Samuel
- Plant Pathology Laboratory, Faculty of Agriculture, Aristotelian University, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
31
|
Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 2010; 76:6615-30. [PMID: 20693447 DOI: 10.1128/aem.00931-10] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory inhibitors are among the fungicides most widely used for disease control on crops. Most are strobilurins and carboxamides, inhibiting the cytochrome b of mitochondrial complex III and the succinate dehydrogenase of mitochondrial complex II, respectively. A few years after the approval of these inhibitors for use on grapevines, field isolates of Botrytis cinerea, the causal agent of gray mold, resistant to one or both of these classes of fungicide were recovered in France and Germany. However, little was known about the mechanisms underlying this resistance in field populations of this fungus. Such knowledge could facilitate resistance risk assessment. The aim of this study was to investigate the mechanisms of resistance occurring in B. cinerea populations. Highly specific resistance to strobilurins was correlated with a single mutation of the cytb target gene. Changes in its intronic structure may also have occurred due to an evolutionary process controlling selection for resistance. Specific resistance to carboxamides was identified for six phenotypes, with various patterns of resistance levels and cross-resistance. Several mutations specific to B. cinerea were identified within the sdhB and sdhD genes encoding the iron-sulfur protein and an anchor protein of the succinate dehydrogenase complex. Another as-yet-uncharacterized mechanism of resistance was also recorded. In addition to target site resistance mechanisms, multidrug resistance, linked to the overexpression of membrane transporters, was identified in strains with low to moderate resistance to several respiratory inhibitors. This diversity of resistance mechanisms makes resistance management difficult and must be taken into account when developing strategies for Botrytis control.
Collapse
|