1
|
Ithaí Ángeles-López Y, José Martínez-Cano D, Villa-Ruano N. What Do We Know About Capsicum Volatilome? Chem Biodivers 2024:e202401444. [PMID: 39422289 DOI: 10.1002/cbdv.202401444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
The Capsicum genus includes several cultivated species that release complex blends of volatile organic compounds (VOCs) associated with their unique aroma. These VOCs are essential info-chemicals in ecological interactions. In this review, we describe how the volatilomic profiling naturally varies based on specific plant organs and genotypes as well as how non-beneficial organisms affect VOCs biosynthesis and accumulation in pepper plants. Also, we show evidence about VOCs variation under the pressure of different abiotic factors such as water stress, soil type and nutrient availability. The contribution of specific metabolic pathways and gene expression related to the biosynthesis of particular VOCs is addressed. We highlighted the utility of VOCs as chemical markers for quality control in the food industry, breeding programs to generate resistant plants and to improve aroma innovation. Herein we present a database containing 2734 VOCs, revealing 113 as the basic core of the volatilome from five Capsicum species.
Collapse
Affiliation(s)
- Yesenia Ithaí Ángeles-López
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel C.P., 72570, Puebla, México
| | - David José Martínez-Cano
- Colegio de la Frontera Sur, Departamento de Ciencias de la Sustentabilidad, Unidad Tapachula., Carretera Antiguo Aeropuerto km 2.5, 30700, Tapachula, Chiapas, México
| | - Nemesio Villa-Ruano
- CONAHCYT - Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel C.P,., 72570, Puebla, México
| |
Collapse
|
2
|
Hou XQ, Jia Z, Zhang DD, Wang G. Odorant receptor orthologues from moths display conserved responses to cis-jasmone. INSECT SCIENCE 2024; 31:1107-1120. [PMID: 38009986 DOI: 10.1111/1744-7917.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
In insects, the odorant receptor (OR) multigene family evolves by the birth-and-death evolutionary model, according to which the OR repertoire of each species has undergone specific gene gains and losses depending on their chemical environment, resulting in taxon-specific OR lineage radiations with different sizes in the phylogenetic trees. Despite the general divergence in the gene family across different insect orders, the ORs in moths seem to be genetically conserved across species, clustered into 23 major clades containing multiple orthologous groups with single-copy gene from each species. We hypothesized that ORs in these orthologous groups are tuned to ecologically important compounds and functionally conserved. cis-Jasmone is one of the compounds that not only primes the plant defense of neighboring receiver plants, but also functions as a behavior regulator to various insects. To test our hypothesis, using Xenopus oocyte recordings, we functionally assayed the orthologues of BmorOR56, which has been characterized as a specific receptor for cis-jasmone. Our results showed highly conserved response specificity of the BmorOR56 orthologues, with all receptors within this group exclusively responding to cis-jasmone. This is supported by the dN/dS analysis, showing that strong purifying selection is acting on this group. Moreover, molecular docking showed that the ligand binding pockets of BmorOR56 orthologues to cis-jasmone are similar. Taken together, our results suggest the high conservation of OR for ecologically important compounds across Heterocera.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Zhongqiang Jia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
4
|
Luo C, Qiu J, Zhang Y, Li M, Liu P. Jasmonates Coordinate Secondary with Primary Metabolism. Metabolites 2023; 13:1008. [PMID: 37755288 PMCID: PMC10648981 DOI: 10.3390/metabo13091008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Jasmonates (JAs), including jasmonic acid (JA), its precursor 12-oxo-phytodienoic acid (OPDA) and its derivatives jasmonoyl-isoleucine (JA-Ile), methyl jasmonate (MeJA), cis-jasmone (CJ) and other oxylipins, are important in the regulation of a range of ecological interactions of plants with their abiotic and particularly their biotic environments. Plant secondary/specialized metabolites play critical roles in implementing these ecological functions of JAs. Pathway and transcriptional regulation analyses have established a central role of JA-Ile-mediated core signaling in promoting the biosynthesis of a great diversity of secondary metabolites. Here, we summarized the advances in JAs-induced secondary metabolites, particularly in secondary metabolites induced by OPDA and volatile organic compounds (VOCs) induced by CJ through signaling independent of JA-Ile. The roles of JAs in integrating and coordinating the primary and secondary metabolism, thereby orchestrating plant growth-defense tradeoffs, were highlighted and discussed. Finally, we provided perspectives on the improvement of the adaptability and resilience of plants to changing environments and the production of valuable phytochemicals by exploiting JAs-regulated secondary metabolites.
Collapse
Affiliation(s)
- Chen Luo
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Qiu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Pan Y, Wang Z, Zhao SW, Wang X, Li YS, Liu JN, Wang S, Xi JH. The herbivore-induced plant volatile tetradecane enhances plant resistance to Holotrichia parallela larvae in maize roots. PEST MANAGEMENT SCIENCE 2022; 78:550-560. [PMID: 34585511 DOI: 10.1002/ps.6660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Many herbivore-induced volatiles have been proven to act as signaling compounds to regulate nearby plant defense responses. However, the precise roles of key volatiles produced by maize roots after Holotrichia parallela larva feeding remain largely unknown. RESULTS We investigated changes in phytohormones and volatiles in maize roots after H. parallela larval infestation. Marked increases in the phytohormone jasmonic acid (JA) and the volatiles jasmone and tetradecane were induced by herbivores, whereas the salicylic acid content decreased. In addition, pre-exposure to tetradecane markedly increased the levels of the stress hormone JA, its precursors and derivatives, and related gene expression. In addition, pre-exposure altered the production of defensive benzoxazinoid secondary metabolites, resulting in increased plant resistance to H. parallela larvae. Plants pre-exposed to jasmone did not differ from control plants. In addition, bioassays showed that H. parallela larval growth was suppressed by feeding maize roots after pre-exposure to tetradecane. CONCLUSION These results demonstrate that tetradecane may function as a potent defense induction signal that prepares neighboring plants for incoming attacks. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun, China
| | - Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Yun-Shuo Li
- College of Plant Science, Jilin University, Changchun, China
| | - Jia-Nan Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
R HN, K P, S PM, M B, R UN. Simultaneous determination of 34 chemical pesticides in red chili using gas chromatography‐tandem mass spectrometer. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202000068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Harischandra Naik R
- Pesticide Residue and Food Quality Analysis Laboratory University of Agricultural Sciences Raichur Karnataka India
| | - Pavankumar K
- Pesticide Residue and Food Quality Analysis Laboratory University of Agricultural Sciences Raichur Karnataka India
| | - Pallavi M S
- Pesticide Residue and Food Quality Analysis Laboratory University of Agricultural Sciences Raichur Karnataka India
| | - Bheemanna M
- Pesticide Residue and Food Quality Analysis Laboratory University of Agricultural Sciences Raichur Karnataka India
| | - Udaykumar Nidoni R
- Pesticide Residue and Food Quality Analysis Laboratory University of Agricultural Sciences Raichur Karnataka India
| |
Collapse
|
7
|
Ali J, Covaci AD, Roberts JM, Sobhy IS, Kirk WDJ, Bruce TJA. Effects of cis-Jasmone Treatment of Brassicas on Interactions With Myzus persicae Aphids and Their Parasitoid Diaeretiella rapae. FRONTIERS IN PLANT SCIENCE 2021; 12:711896. [PMID: 34659285 PMCID: PMC8517453 DOI: 10.3389/fpls.2021.711896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
There is a need to develop new ways of protecting plants against aphid attack. Here, we investigated the effect of a plant defence activator, cis-jasmone (CJ), in a range of cultivars of Brassica napus, Brassica rapa and Brassica oleracea. Plants were sprayed with cis-jasmone or blank formulation and then tested with peach potato aphids (Myzus persicae Sulzer) (Hemiptera: Aphididae) and their parasitoid Diaeretiella rapae (M'Intosh) (Hymenoptera: Braconidae). CJ treated plants had significantly lower aphid settlement than control plants in a settlement bioassay. Conversely, in a foraging bioassay, D. rapae parasitoids spent a significantly longer time foraging on CJ treated plants. Our results reveal that CJ treatment makes plants less attractive to and less suitable for M. persicae but more attractive to D. rapae in a range of brassica cultivars. It is likely that these effects are due to changes in volatile emission indicating activation of defence and presence of conspecific competitors to aphids but presence of prey to parasitoids. Increases in volatile emission were found in CJ induced plants but varied with genotype. Among the synthetic volatile compounds that were induced in the headspace of CJ treated brassica cultivars, methyl isothiocyanate, methyl salicylate and cis-jasmone were most repellent to aphids. These results build on earlier studies in Arabidopsis and show that tritrophic interactions are influenced by CJ in a wide range of brassica germplasm. The implication is that CJ is a promising treatment that could be used in brassica crops as part of an integrated pest management system.
Collapse
Affiliation(s)
- Jamin Ali
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Anca D. Covaci
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Joe M. Roberts
- Agriculture and Environment Department, Centre for Integrated Pest Management, Harper Adams University, Newport, United Kingdom
| | - Islam S. Sobhy
- School of Life Sciences, Keele University, Keele, United Kingdom
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | | | - Toby J. A. Bruce
- School of Life Sciences, Keele University, Keele, United Kingdom
- *Correspondence: Toby J. A. Bruce
| |
Collapse
|
8
|
Sobhy IS, Caulfield JC, Pickett JA, Birkett MA. Sensing the Danger Signals: cis-Jasmone Reduces Aphid Performance on Potato and Modulates the Magnitude of Released Volatiles. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
9
|
Sun YL, Dong JF, Ning C, Ding PP, Huang LQ, Sun JG, Wang CZ. An odorant receptor mediates the attractiveness of cis-jasmone to Campoletis chlorideae, the endoparasitoid of Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2019; 28:23-34. [PMID: 30058747 DOI: 10.1111/imb.12523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parasitic wasps rely on olfaction to locate their hosts in complex chemical environments. Odorant receptors (ORs) function together with well-conserved odorant coreceptors (ORcos) to determine the sensitivity and specificity of olfactory reception. Campoletis chlorideae (Hymenoptera: Ichneunmonidae) is a solitary larval endoparasitoid of the cotton bollworm, Helicoverpa armigera, and some other noctuid species. To understand the molecular basis of C. chlorideae's olfactory reception, we sequenced the transcriptome of adult male and female heads (including antennae) and identified 211 OR transcripts, with 95 being putatively full length. The tissue expression profiles, as assessed by reverse-transcription PCR, showed that seven ORs were expressed only or more highly in female antennae. Their functions were analysed using the Xenopu slaevis oocyte expression system and two-electrode voltage-clamp recordings. CchlOR62 was tuned to cis-jasmone, which was attractive to female C. chlorideae adults and H. armigera larvae in the subsequent behavioural assays. Further bioassays using caged plants showed that the parasitism rate of H. armigera larvae by C. chlorideae on cis-jasmone-treated tobacco plants was higher than on the control plants. Thus, cis-jasmone appears to be an important infochemical involved in the interactions of plants, H. armigera and C. chlorideae, and CchlOR62 mediates the attractiveness of cis-jasmone to C. chlorideae.
Collapse
Affiliation(s)
- Y-L Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - J-F Dong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Forestry College, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - C Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - P-P Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L-Q Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - J-G Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Biology and Food Engineering College, Anyang Institute of Technology, Anyang, Henan Province, China
| | - C-Z Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Sobhy IS, Bruce TJ, Turlings TC. Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars. PEST MANAGEMENT SCIENCE 2018; 74:966-977. [PMID: 29155489 DOI: 10.1002/ps.4796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the application of the inducers benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) and laminarin (β-1,3-glucan) is known to enhance the attractiveness of caterpillar-damaged cotton and maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea (Vigna unguiculata var. unguiculata) with these inducers and studied the effects on HI-VOC emissions and the attraction of three generalist endoparasitoids. RESULTS After the inducers had been applied and the plants subjected to either real or mimicked herbivory by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis rufiventris showed a strong preference for BTH-treated plants, whereas Cotesia females were strongly attracted to both BTH- and laminarin-treated plants with real or mimicked herbivory. Treated plants emitted more of certain HI-VOCs, but considerably less indole and linalool and less of several sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no significant effect on leaf consumption by the caterpillars. CONCLUSION Our findings confirm that treating cowpea plants with inducers can enhance their attractiveness to biological control agents. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Islam S Sobhy
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Plant Protection, Public Service Center of Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Toby Ja Bruce
- School of Life Sciences, Keele University, Keele, UK
| | - Ted Cj Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
11
|
Ben-Issa R, Gomez L, Gautier H. Companion Plants for Aphid Pest Management. INSECTS 2017; 8:E112. [PMID: 29053585 PMCID: PMC5746795 DOI: 10.3390/insects8040112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
Abstract
A potential strategy for controlling pests is through the use of "companion plants" within a crop system. This strategy has been used in several trials to fight against a major crop insect pest: the aphid. We reviewed the literature to highlight the major mechanisms by which a companion plant may act. Trials carried out under laboratory or field conditions revealed that companion plants operate through several mechanisms. A companion plant may be associated with a target crop for various reasons. Firstly, it can attract aphids and draw them away from their host plants. Secondly, it can alter the recognition of the host plant. This effect is mostly attributed to companion plant volatiles since they disturb the aphid host plant location, and additionally they may react chemically and physiologically with the host plant, making it an unsuitable host for aphids. Thirdly, it can attract natural enemies by providing shelter and food resources. In this review, the feasibility of using companion plants is discussed. We conclude that many factors need to be taken into account for a successful companion plant strategy. For the best long-term results, companion plant strategies have to be combined with other alternative approaches against aphids.
Collapse
Affiliation(s)
- Refka Ben-Issa
- Institut National de Recherche Agronomique (INRA), Plantes et Systèmes de Culture Horticoles (PSH), Avignon, 228 Route de l'Aérodrome, Domaine St Paul, Site Agroparc, CS 40 509, F84914, 84140 Avignon CEDEX 9, France.
| | - Laurent Gomez
- Institut National de Recherche Agronomique (INRA), Plantes et Systèmes de Culture Horticoles (PSH), Avignon, 228 Route de l'Aérodrome, Domaine St Paul, Site Agroparc, CS 40 509, F84914, 84140 Avignon CEDEX 9, France.
| | - Hélène Gautier
- Institut National de Recherche Agronomique (INRA), Plantes et Systèmes de Culture Horticoles (PSH), Avignon, 228 Route de l'Aérodrome, Domaine St Paul, Site Agroparc, CS 40 509, F84914, 84140 Avignon CEDEX 9, France.
| |
Collapse
|
12
|
Sobhy IS, Woodcock CM, Powers SJ, Caulfield JC, Pickett JA, Birkett MA. cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes. J Chem Ecol 2017; 43:39-52. [PMID: 28130741 PMCID: PMC5331074 DOI: 10.1007/s10886-016-0805-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/16/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-β-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-β-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling.
Collapse
Affiliation(s)
- Islam S Sobhy
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK.,Department of Plant Protection, Public Service Center of Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt.,Department of Microbial & Molecular Systems, KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Leuven, Belgium
| | | | - Stephen J Powers
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - John C Caulfield
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - John A Pickett
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - Michael A Birkett
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, Hertfordshire, UK.
| |
Collapse
|
13
|
Pickett JA, Khan ZR. Plant volatile-mediated signalling and its application in agriculture: successes and challenges. THE NEW PHYTOLOGIST 2016; 212:856-870. [PMID: 27874990 DOI: 10.1111/nph.14274] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 05/25/2023]
Abstract
856 I. 856 II. 857 III. 858 IV. 859 V. 860 VI. 862 VII. 863 VIII. 864 IX. 866 866 References 866 SUMMARY: The mediation of volatile secondary metabolites in signalling between plants and other organisms has long been seen as presenting opportunities for sustainable crop protection. Initially, exploitation of interactions between plants and other organisms, particularly insect pests, foundered because of difficulties in delivering, sustainably, the signal systems for crop protection. We now have mounting and, in some cases, clear practical evidence for successful delivery by companion cropping or next-generation genetic modification (GM). At the same time, the type of plant signalling being exploited has expanded to signalling from plants to organisms antagonistic to pests, and to plant stress-induced, or primed, plant-to-plant signalling for defence and growth stimulation.
Collapse
Affiliation(s)
- John A Pickett
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Zeyaur R Khan
- Push-Pull Programme, International Centre of Insect Physiology and Ecology, PO Box 30, Mbita, 40305, Kenya
| |
Collapse
|
14
|
Rasmann S, Turlings TC. Root signals that mediate mutualistic interactions in the rhizosphere. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:62-68. [PMID: 27393937 DOI: 10.1016/j.pbi.2016.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection.
Collapse
Affiliation(s)
- Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| | - Ted Cj Turlings
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
15
|
Giorgi A, Manzo A, Nanayakkara NNM, Giupponi L, Cocucci M, Panseri S. Effect of biotic and abiotic stresses on volatile emission of Achillea collina Becker ex Rchb. Nat Prod Res 2015; 29:1695-702. [PMID: 25564988 DOI: 10.1080/14786419.2014.997725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study describes the application of headspace solid-phase microextraction (HS-SPME)-gas chromatography/mass spectrometry (GC/MS) to characterise the volatile fingerprint changes of Achillea collina, induced by aphids' infestation, mechanical damage and jasmonic acid (JA) treatment. The volatile organic compound profiles of A. collina, Prunus persica and Pisum sativum infested by Myzus persicae were also compared. Several changes were observed between control, infested, mechanically damaged and JA-treated plants, and new inducible volatile organic compounds (IVOCs) were emitted in response to biotic or abiotic stresses. Some of these were in common for all stresses and other compounds were in common only for two types of stress. Conversely some IVOCs were emitted only in response to the specific stimuli. The results suggested that there were species-specific and common IVOCs emitted by A. collina, P. persica and P. sativum in response to M. persicae infestation. In conclusion, HS-SPME-GC/MS seems to be a reliable analytical approach to study in vivo plant reaction to external stimuli.
Collapse
Affiliation(s)
- Annamaria Giorgi
- a Centre for Applied Studies in the Sustainable Management and Protection of the Mountain Environment-Ge.S.Di.Mont, University of Milan , Via Morino 8, 25048 Edolo, Brescia , Italy
| | | | | | | | | | | |
Collapse
|
16
|
Gray S, Cilia M, Ghanim M. Circulative, "nonpropagative" virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 2014; 89:141-99. [PMID: 24751196 DOI: 10.1016/b978-0-12-800172-1.00004-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.
Collapse
Affiliation(s)
- Stewart Gray
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA.
| | - Michelle Cilia
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA; Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
17
|
Bingham G, Alptekin S, Delogu G, Gurkan O, Moores G. Synergistic manipulations of plant and insect defences. PEST MANAGEMENT SCIENCE 2014; 70:566-571. [PMID: 23653417 DOI: 10.1002/ps.3575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND It has been demonstrated previously that cis-jasmone acts as an elicitor of plant defence mechanism(s) by inducing secondary metabolism. It has also been demonstrated that temporal synergism can result in hypersensitive insect pests due to the inhibition of metabolic enzymes. RESULTS Laboratory bioassays demonstrated that pre-exposure of insects by piperonyl butoxide followed by cis-jasmone treatment of crops, reduced Aphis gossypii on cotton by 80% and Myzus persicae on sweet pepper by 90%. By microencapsulating the cis-jasmone and combining with piperonyl butoxide, Bemisia tabaci on tomatoes was reduced by 99%. A field trial with microencapsulated cis-jasmone combined with piperonyl butoxide resulted in a comparable reduction of whitefly egg numbers to that given by the registered rate of imidacloprid, with efficacy of 89% and 93%, respectively. CONCLUSIONS If insect defence enzymes are compromised by piperonyl butoxide whilst plant defence is primed by cis-jasmone, there are possibilities of an insecticide-free method of controlling insect pests. The success seems largely dependent upon the toxicity of the plants' secondary chemistry.
Collapse
Affiliation(s)
- Georgina Bingham
- Rothamsted Research Ltd, Harpenden, Herts, UK; Vestergaard Frandsen SA, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Pickett JA, Aradottír GI, Birkett MA, Bruce TJA, Hooper AM, Midega CAO, Jones HD, Matthes MC, Napier JA, Pittchar JO, Smart LE, Woodcock CM, Khan ZR. Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120281. [PMID: 24535389 DOI: 10.1098/rstb.2012.0281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To reduce the need for seasonal inputs, crop protection will have to be delivered via the seed and other planting material. Plant secondary metabolism can be harnessed for this purpose by new breeding technologies, genetic modification and companion cropping, the latter already on-farm in sub-Saharan Africa. Secondary metabolites offer the prospect of pest management as robust as that provided by current pesticides, for which many lead compounds were, or are currently deployed as, natural products. Evidence of success and promise is given for pest management in industrial and developing agriculture. Additionally, opportunities for solving wider problems of sustainable crop protection, and also production, are discussed.
Collapse
Affiliation(s)
- John A Pickett
- Rothamsted Research, , Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cao HH, Wang SH, Liu TX. Jasmonate- and salicylate-induced defenses in wheat affect host preference and probing behavior but not performance of the grain aphid, Sitobion avenae. INSECT SCIENCE 2014; 21:47-55. [PMID: 23956152 DOI: 10.1111/1744-7917.12023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2013] [Indexed: 05/07/2023]
Abstract
Jasmonate- and salicylate-mediated signaling pathways play significant roles in induced plant defenses, but there is no sufficient evidence for their roles in monocots against aphids. We exogenously applied methyl jasmonate (MeJA) and salicylic acid (SA) on wheat seedlings and examined biochemical responses in wheat and effects on the grain aphid, Sitobion avenae (Fab.). Application of MeJA significantly increased levels of wheat's polyphenol oxidase, peroxidase and proteinase inhibitor 1, 2 and 6 days after treatment. In two-choice tests, adult aphids preferred control wheat leaves to MeJA- or SA-treated leaves. Electrical penetration graph (EPG) recordings of aphid probing behavior revealed that on MeJA-treated plants, the duration of aphid's first probe was significantly shorter and number of probes was significantly higher than those on control plants. Also total duration of probing on MeJA-treated plants was significantly shorter than on control plants. Total duration of salivation period on SA-treated plants was significantly longer, while mean phloem ingestion period was significantly shorter than on control plants. However, no significant difference in total duration of phloem sap ingestion period was observed among treatments. The EPG data suggest that MeJA-dependent resistance factors might be due to feeding deterrents in mesophyll, whereas the SA-mediated resistance may be phloem-based. We did not observe any significant difference of MeJA and SA application on aphid development, daily fecundity, intrinsic growth rate and population growth. The results indicate that both MeJA- and SA-induced defenses in wheat deterred S. avenae colonization processes and feeding behavior, but had no significant effects on its performance.
Collapse
Affiliation(s)
- He-He Cao
- State Key Laboratory of Crop Stress Biology on the Arid Areas, and the Key Laboratory of Crop Pest Management on the Losses Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | |
Collapse
|
20
|
Pickett JA, Woodcock CM, Midega CAO, Khan ZR. Push-pull farming systems. Curr Opin Biotechnol 2014; 26:125-32. [PMID: 24445079 DOI: 10.1016/j.copbio.2013.12.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/16/2022]
Abstract
Farming systems for pest control, based on the stimulo-deterrent diversionary strategy or push-pull system, have become an important target for sustainable intensification of food production. A prominent example is push-pull developed in sub-Saharan Africa using a combination of companion plants delivering semiochemicals, as plant secondary metabolites, for smallholder farming cereal production, initially against lepidopterous stem borers. Opportunities are being developed for other regions and farming ecosystems. New semiochemical tools and delivery systems, including GM, are being incorporated to exploit further opportunities for mainstream arable farming systems. By delivering the push and pull effects as secondary metabolites, for example, (E)-4,8-dimethyl-1,3,7-nonatriene repelling pests and attracting beneficial insects, problems of high volatility and instability are overcome and compounds are produced when and where required.
Collapse
Affiliation(s)
- John A Pickett
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | - Charles A O Midega
- International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya
| | - Zeyaur R Khan
- International Centre of Insect Physiology and Ecology, PO Box 30772, Nairobi, Kenya
| |
Collapse
|
21
|
Abstract
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
Collapse
|
22
|
Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii glover. PLoS One 2013; 8:e73524. [PMID: 24073197 PMCID: PMC3779235 DOI: 10.1371/journal.pone.0073524] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/19/2013] [Indexed: 11/23/2022] Open
Abstract
Insects interact with their environment and respond to the changes in host plant conditions using semiochemicals. Such ecological interactions are facilitated by the olfactory sensilla and the use of olfactory recognition proteins. The cotton aphid Aphis gossypii can change its phenotype in response to ecological conditions. They reproduce mainly as wingless asexual morphs but develop wings to find mates or new plant hosts under the influence of environmental factors such as temperature, plant nutrition and population density. Two groups of small soluble proteins, odorant binding proteins (OBPs) and chemosensory proteins (CSPs) are believed to be involved in the initial biochemical recognition steps in semiochemical perception. However, the exact molecular roles that these proteins play in insect olfaction remain to be discovered. In this study, we compared the transcriptomes of three asexual developmental stages (wingless spring and summer morphs and winged adults) and characterised 9 OBP and 9 CSP genes. The gene structure analysis showed that the number and length of introns in these genes are much higher and this appears to be unique feature of aphid OBP and CSP genes in general. Another unique feature in aphids is a higher abundance of CSP transcripts than OBP transcripts, suggesting an important role of CSPs in aphid physiology and ecology. We showed that some of the transcripts are overexpressed in the antennae in comparison to the bodies and highly expressed in the winged aphids compared to wingless morphs, suggesting a role in host location. We examined the differential expression of these olfactory genes in ten aphid species and compared the expression profile with the RNA-seq analyses of 25 pea aphid transcriptome libraries hosted on AphidBase.
Collapse
|
23
|
|