1
|
Westbrook AS, DiTommaso A. Hybridization in agricultural weeds: A review from ecological, evolutionary, and management perspectives. AMERICAN JOURNAL OF BOTANY 2023; 110:e16258. [PMID: 38031455 DOI: 10.1002/ajb2.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Agricultural weeds frequently hybridize with each other or with related crop species. Some hybrid weeds exhibit heterosis (hybrid vigor), which may be stabilized through mechanisms like genome duplication or vegetative reproduction. Even when heterosis is not stabilized, hybridization events diversify weed gene pools and often enable adaptive introgression. Consequently, hybridization may promote weed evolution and exacerbate weed-crop competition. However, hybridization does not always increase weediness. Even when viable and fertile, hybrid weeds sometimes prove unsuccessful in crop fields. This review provides an overview of weed hybridization and its management implications. We describe intrinsic and extrinsic factors that influence hybrid fitness in agroecosystems. We also survey the rapidly growing literature on crop-weed hybridization and the link between hybridization and invasiveness. These topics are increasingly relevant in this era of genetic tools for crop improvement, intensive and simplified cropping systems, and globalized trade. The review concludes with suggested research priorities, including hybridization in the context of climate change, plant-insect interactions, and redesigned weed management programs. From a weed management perspective, hybridization is one of many reasons that researchers and land managers must diversify their weed control toolkits.
Collapse
Affiliation(s)
- Anna S Westbrook
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Antonio DiTommaso
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
He H, Shiragaki K, Tezuka T. Understanding and overcoming hybrid lethality in seed and seedling stages as barriers to hybridization and gene flow. FRONTIERS IN PLANT SCIENCE 2023; 14:1219417. [PMID: 37476165 PMCID: PMC10354522 DOI: 10.3389/fpls.2023.1219417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hybrid lethality is a type of reproductive isolation barrier observed in two developmental stages, hybrid embryos (hybrid seeds) and hybrid seedlings. Hybrid lethality has been reported in many plant species and limits distant hybridization breeding including interspecific and intergeneric hybridization, which increases genetic diversity and contributes to produce new germplasm for agricultural purposes. Recent studies have provided molecular and genetic evidence suggesting that underlying causes of hybrid lethality involve epistatic interaction of one or more loci, as hypothesized by the Bateson-Dobzhansky-Muller model, and effective ploidy or endosperm balance number. In this review, we focus on the similarities and differences between hybrid seed lethality and hybrid seedling lethality, as well as methods of recovering seed/seedling activity to circumvent hybrid lethality. Current knowledge summarized in our article will provides new insights into the mechanisms of hybrid lethality and effective methods for circumventing hybrid lethality.
Collapse
Affiliation(s)
- Hai He
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Kumpei Shiragaki
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Tezuka
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
3
|
Reducing Seed Shattering in Weedy Rice by Editing SH4 and qSH1 Genes: Implications in Environmental Biosafety and Weed Control through Transgene Mitigation. BIOLOGY 2022; 11:biology11121823. [PMID: 36552332 PMCID: PMC9776087 DOI: 10.3390/biology11121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mitigating the function of acquired transgenes in crop wild/weedy relatives can provide an ideal strategy to reduce the possible undesired environmental impacts of pollen-mediated transgene flow from genetically engineered (GE) crops. To explore a transgene mitigation system in rice, we edited the seed-shattering genes, SH4 and qSH1, using a weedy rice line ("C9") that originally had strong seed shattering. We also analyzed seed size-related traits, the total genomic transcriptomic data, and RT-qPCR expression of the SH4 or qSH1 gene-edited and SH4/qSH1 gene-edited weedy rice lines. Substantially reduced seed shattering was observed in all gene-edited weedy rice lines. The single gene-edited weedy rice lines, either the SH4 or qSH1 gene, did not show a consistent reduction in their seed size-related traits. In addition, reduced seed shattering was closely linked with the weakness and absence of abscission layers and reduced abscisic acid (ABA). Additionally, the genes closely associated with ABA biosynthesis and signaling transduction, as well as cell-wall hydrolysis, were downregulated in all gene-edited weedy rice lines. These findings facilitate our deep insights into the underlying mechanisms of reduced seed shattering in plants in the rice genus Oryza. In addition, such a mitigating technology also has practical applications for reducing the potential adverse environmental impacts caused by transgene flow and for managing the infestation of weedy rice by acquiring the mitigator from GE rice cultivars through natural gene flow.
Collapse
|
4
|
Zhu X, Zhaoyang Zhang, Bin Jia, Yuan Y. Current advances of biocontainment strategy in synthetic biology. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Alavez V, Cuervo-Robayo ÁP, Martínez-Meyer E, Wegier A. Eco-Geography of Feral Cotton: A Missing Piece in the Puzzle of Gene Flow Dynamics Among Members of Gossypium hirsutum Primary Gene Pool. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.653271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mexico is the center of origin and genetic diversity of upland cotton (Gossypium hirsutum L.), the most important source of natural fiber in the world. Currently, wild and domesticated populations (including genetically modified [GM] varieties) occur in this country and gene flow among them has shaped the species’ genetic diversity and structure, setting a complex and challenging scenario for its conservation. Moreover, recent gene flow from GM cultivars to wild Mexican cotton populations has been reported since 2011. In situ conservation of G. hirsutum requires knowledge about the extent of its geographic distribution, both wild and domesticated, as well as the possible routes and mechanisms that contribute to gene flow between the members of the species wild-to-domesticated continuum (i.e., the primary gene pool). However, little is known about the distribution of feral populations that could facilitate gene flow by acting as bridges. In this study, we analyzed the potential distribution of feral cotton based on an ecological niche modeling approach and discussed its implications in the light of the distribution of wild and domesticated cotton. Then, we examined the processes that could be leading to the escape of seeds from the cultivated fields. Our results indicate that the climatic suitability of feral plants in the environmental and geographic space is broad and overlaps with areas of wild cotton habitat and crop fields, suggesting a region that could bridge cultivated cotton and its wild relatives by allowing gene flow between them. This study provides information for management efforts focused on the conservation of wild populations, native landraces, and non-GM domesticated cotton at its center of origin and genetic diversity.
Collapse
|
6
|
Achary VMM, Sheri V, Manna M, Panditi V, Borphukan B, Ram B, Agarwal A, Fartyal D, Teotia D, Masakapalli SK, Agrawal PK, Reddy MK. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2504-2519. [PMID: 32516520 PMCID: PMC7680544 DOI: 10.1111/pbi.13428] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 05/15/2023]
Abstract
Glyphosate is a popular, systemic, broad-spectrum herbicide used in modern agriculture. Being a structural analog of phosphoenolpyruvate (PEP), it inhibits 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) which is responsible for the biosynthesis of aromatic amino acids and various aromatic secondary metabolites. Taking a lead from glyphosate-resistant weeds, two mutant variants of the rice EPSPS gene were developed by amino acid substitution (T173I + P177S; TIPS-OsEPSPS and G172A + T173I + P177S; GATIPS-OsEPSPS). These mutated EPSPS genes were overexpressed in rice under the control of either native EPSPS or constitutive promoters (maize ubiquitin [ZmUbi] promoter). The overexpression of TIPS-OsEPSPS under the control of the ZmUbi promoter resulted in higher tolerance to glyphosate (up to threefold of the recommended dose) without affecting the fitness and related agronomic traits of plants in both controlled and field conditions. Furthermore, such rice lines produced 17%-19% more grains compared to the wild type (WT) in the absence of glyphosate application and the phenylalanine and tryptophan contents in the transgenic seeds were found to be significantly higher in comparison with WT seeds. Our results also revealed that the native promoter guided expression of modified EPSPS genes did not significantly improve the glyphosate tolerance. The present study describing the introduction of a crop-specific TIPS mutation in class I aroA gene of rice and its overexpression have potential to substantially improve the yield and field level glyphosate tolerance in rice. This is the first report to observe that the EPSPS has role to play in improving grain yield of rice.
Collapse
Affiliation(s)
- V. Mohan Murali Achary
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Vijay Sheri
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Mrinalini Manna
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Varakumar Panditi
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Bhabesh Borphukan
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Babu Ram
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Aakrati Agarwal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Dhirendra Fartyal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Deepa Teotia
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | | | | | - Malireddy K. Reddy
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
7
|
Zhang L, Huo S, Cao Y, Xie X, Tan Y, Zhang Y, Zhao H, He P, Guo J, Xia Q, Zhou X, Long H, Guo A. A new isolation device for shortening gene flow distance in small-scale transgenic maize breeding. Sci Rep 2020; 10:15733. [PMID: 32978485 PMCID: PMC7519140 DOI: 10.1038/s41598-020-72805-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
The transmission of pollen is the main cause of maize gene flow. Under the compulsory labeling system for genetically modified (GM) products in China, isolation measures are crucial. At present, there is no effective isolation device for preventing and controlling the short-range flow of GM maize pollen. The purposes of the present experiments were to overcome the deficiencies of existing technology and to demonstrate a new isolation device for decreasing the gene flow distance of GM maize. The isolation device we invented was shown to be more robust than traditional isolation methods, and it can be disassembled and repeatedly reused. The most important point was that the frequency of gene flow could be greatly reduced using this device. When the distance from the isolation device was more than 1 m, the gene flow rate could be decreased to less than 1%, and when the distance from the isolation device was more than 10 m, the gene flow rate could be reduced to less than 0.1%. When the isolation device was adopted to isolate GM maize in conjunction with bagging the tassels of GM maize at the pollination stage, the gene flow could be controlled to less than 0.1% when the distance from the isolation device was more than 1 m. This device was, however, only applicable for small plots and can shorten the isolation distance of GM maize planting and improve the purity of seeds, all while meeting the needs of close isolation breeding. The use of this device represents a feasible method for risk prevention and control of GM crops.
Collapse
Affiliation(s)
- Lili Zhang
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Shanshan Huo
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Yang Cao
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Xiang Xie
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Yanhua Tan
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Yuliang Zhang
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Hui Zhao
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Pingping He
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Jingyuan Guo
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Qiyu Xia
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Xia Zhou
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Huan Long
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China
| | - Anping Guo
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, CATAS, Haikou, 571101, Hainan, China.
| |
Collapse
|
8
|
Meng WL, Zhao MJ, Yang XB, Zhang AX, Wang NN, Xu ZS, Ma J. Examination of Genomic and Transcriptomic Alterations in a Morphologically Stable Line, MU1, Generated by Intergeneric Pollination. Genes (Basel) 2020; 11:genes11020199. [PMID: 32075264 PMCID: PMC7073617 DOI: 10.3390/genes11020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Interspecific hybridization creates genetic variation useful for crop improvement. However, whether pollen from a different genus affects the genomic stability and/or transcriptome of the recipient species during intergeneric pollination has not been investigated. Here, we crossed japonica rice cv. Z12 with the maize accession B73 (pollen donor) and obtained a morphologically stable line, MU1, exhibiting moderate dwarfism, higher tiller number, and increased grain weight compared with Z12. To reveal the genetic basis of these morphological changes in MU1, we performed whole-genome resequencing of MU1 and Z12. Compared with Z12, MU1 showed 107,250 single nucleotide polymorphisms (SNPs) and 23,278 insertion/deletions (InDels). Additionally, 5'-upstream regulatory regions (5'UTRs) of 429 and 309 differentially expressed genes (DEGs) in MU1 contained SNPs and InDels, respectively, suggesting that a subset of these DEGs account for the variation in 5'UTRs. Transcriptome analysis revealed 2190 DEGs in MU1 compared with Z12. Genes up-regulated in MU1 were mainly involved in photosynthesis, generation of precursor metabolites, and energy and cellular biosynthetic processes; whereas those down-regulated in MU1 were involved in plant hormone signal transduction pathway and response to stimuli and stress processes. Quantitative PCR (qPCR) further identified the expression levels of the up- or down-regulated gene in plant hormone signal transduction pathway. The expression level changes of plant hormone signal transduction pathway may be significant for plant growth and development. These findings suggest that mutations caused by intergeneric pollination could be the important reason for changes of MU1 in agronomic traits.
Collapse
Affiliation(s)
- Wei-Long Meng
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Meng-Jie Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China;
| | - Xiang-Bo Yang
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, China;
| | - An-Xing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Ning-Ning Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Zhao-Shi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China;
- Correspondence: (Z.-S.X.); (J.M.)
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
- Correspondence: (Z.-S.X.); (J.M.)
| |
Collapse
|
9
|
Clark M, Maselko M. Transgene Biocontainment Strategies for Molecular Farming. FRONTIERS IN PLANT SCIENCE 2020; 11:210. [PMID: 32194598 PMCID: PMC7063990 DOI: 10.3389/fpls.2020.00210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
Advances in plant synthetic biology promise to introduce novel agricultural products in the near future. 'Molecular farms' will include crops engineered to produce medications, vaccines, biofuels, industrial enzymes, and other high value compounds. These crops have the potential to reduce costs while dramatically increasing scales of synthesis and provide new economic opportunities to farmers. Current transgenic crops may be considered safe given their long-standing use, however, some applications of molecular farming may pose risks to human health and the environment. Unwanted gene flow from engineered crops could potentially contaminate the food supply, and affect wildlife. There is also potential for unwanted gene flow into engineered crops which may alter their ability to produce compounds of interest. Here, we briefly discuss the applications of molecular farming and explore the various genetic and physical methods that can be used for transgene biocontainment. As yet, no technology can be applied to all crop species, such that a combination of approaches may be necessary. Effective biocontainment is needed to enable large scale molecular farming.
Collapse
Affiliation(s)
- Michael Clark
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Maciej Maselko
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
- *Correspondence: Maciej Maselko,
| |
Collapse
|
10
|
Zhang CJ, Yook MJ, Park HR, Lim SH, Kim JW, Nah G, Song HR, Jo BH, Roh KH, Park S, Kim DS. Assessment of potential environmental risks of transgene flow in smallholder farming systems in Asia: Brassica napus as a case study in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:688-695. [PMID: 29870945 DOI: 10.1016/j.scitotenv.2018.05.335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
The cultivation of genetically modified (GM) crops has raised many questions regarding their environmental risks, particularly about their ecological impact on non-target organisms, such as their closely-related relative species. Although evaluations of transgene flow from GM crops to their conventional crops has been conducted under large-scale farming system worldwide, in particular in North America and Australia, few studies have been conducted under smallholder farming systems in Asia with diverse crops in co-existence. A two-year field study was conducted to assess the potential environmental risks of gene flow from glufosinate-ammonium resistant (GR) Brassica napus to its conventional relatives, B. napus, B. juncea, and Raphanus sativus under simulated smallholder field conditions in Korea. Herbicide resistance and simple sequence repeat (SSR) markers were used to identify the hybrids. Hybridization frequency of B. napus × GR B. napus was 2.33% at a 2 m distance, which decreased to 0.007% at 75 m. For B. juncea, it was 0.076% at 2 m and decreased to 0.025% at 16 m. No gene flow was observed to R. sativus. The log-logistic model described hybridization frequency with increasing distance from GR B. napus to B. napus and B. juncea and predicted that the effective isolation distances for 0.01% gene flow from GR B. napus to B. napus and B. juncea were 122.5 and 23.7 m, respectively. Results suggest that long-distance gene flow from GR B. napus to B. napus and B. juncea is unlikely, but gene flow can potentially occur between adjacent fields where the smallholder farming systems exist.
Collapse
Affiliation(s)
- Chuan-Jie Zhang
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jung Yook
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae-Rim Park
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Hyun Lim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Won Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyoungju Nah
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae-Ryong Song
- Division of Conservation Ecology, Bureau of Ecological Conservation Research, National Institute of Ecology, Seocheon-gun, Choongnam 33657, Republic of Korea
| | - Beom-Ho Jo
- Division of Conservation Ecology, Bureau of Ecological Conservation Research, National Institute of Ecology, Seocheon-gun, Choongnam 33657, Republic of Korea
| | - Kyung Hee Roh
- Department of Agricultural Biotechnology, National Institute of Agricultural Academy, Rural Development Administration, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Suhyoung Park
- Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Do-Soon Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk M, Lawton-Rauh A, Malone JM, McElroy JS, Merotto A, Westra P, Preston C, Vila-Aiub MM, Busi R, Tranel PJ, Reinhardt C, Saski C, Beffa R, Neve P, Gaines TA. The power and potential of genomics in weed biology and management. PEST MANAGEMENT SCIENCE 2018; 74:2216-2225. [PMID: 29687580 DOI: 10.1002/ps.5048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 05/11/2023]
Abstract
There have been previous calls for, and efforts focused on, realizing the power and potential of weed genomics for better understanding of weeds. Sustained advances in genome sequencing and assembly technologies now make it possible for individual research groups to generate reference genomes for multiple weed species at reasonable costs. Here, we present the outcomes from several meetings, discussions, and workshops focused on establishing an International Weed Genomics Consortium (IWGC) for a coordinated international effort in weed genomics. We review the 'state of the art' in genomics and weed genomics, including technologies, applications, and on-going weed genome projects. We also report the outcomes from a workshop and a global survey of the weed science community to identify priority species, key biological questions, and weed management applications that can be addressed through greater availability of, and access to, genomic resources. Major focus areas include the evolution of herbicide resistance and weedy traits, the development of molecular diagnostics, and the identification of novel targets and approaches for weed management. There is increasing interest in, and need for, weed genomics, and the establishment of the IWGC will provide the necessary global platform for communication and coordination of weed genomics research. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | | | - Kateřina Hamouzová
- Department of Agroecology and Biometeorology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Marie Jasieniuk
- Department of Plant Sciences, University of California-Davis, Davis, CA, USA
| | - Amy Lawton-Rauh
- Department of Genetics and Biochemistry, 316 Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Jenna M Malone
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Christopher Preston
- School of Agriculture, Food & Wine, University of Adelaide, Glen Osmond, Australia
| | - Martin M Vila-Aiub
- Facultad de Agronomía, Departamento de Ecología, IFEVA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Carl Reinhardt
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Christopher Saski
- Clemson University Genomics and Computational Biology Laboratory, Clemson University, Clemson, SC, USA
| | - Roland Beffa
- Bayer AG, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Paul Neve
- Biointeractions & Crop Protection Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Ganie ZA, Jhala AJ. Modeling pollen-mediated gene flow from glyphosate-resistant to -susceptible giant ragweed (Ambrosia trifida L.) under field conditions. Sci Rep 2017; 7:17067. [PMID: 29213093 PMCID: PMC5719015 DOI: 10.1038/s41598-017-16737-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
A field experiment was conducted to quantify pollen mediated gene flow (PMGF) from glyphosate-resistant (GR) to glyphosate-susceptible (GS) giant ragweed under simulated field conditions using glyphosate resistance as a selective marker. Field experiments were conducted in a concentric design with the GR giant ragweed pollen source planted in the center and GS giant ragweed pollen receptors surrounding the center in eight directional blocks at specified distances (between 0.1 and 35 m in cardinal and ordinal directions; and additional 50 m for ordinal directions). Seeds of GS giant ragweed were harvested from the pollen receptor blocks and a total of 100,938 giant ragweed plants were screened with glyphosate applied at 2,520 g ae ha-1 and 16,813 plants confirmed resistant. The frequency of PMGF was fit to a double exponential decay model selected by information-theoretic criteria. The highest frequency of gene flow (0.43 to 0.60) was observed at ≤0.5 m from the pollen source and reduced rapidly with increasing distances; however, gene flow (0.03 to 0.04) was detected up to 50 m. The correlation between PMGF and wind parameters was inconsistent in magnitude, direction, and years.
Collapse
Affiliation(s)
- Zahoor A Ganie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68583, Nebraska, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68583, Nebraska, USA.
| |
Collapse
|
13
|
|
14
|
Gene Introgression in Weeds Depends on Initial Gene Location in the Crop: Brassica napus- Raphanus raphanistrum Model. Genetics 2017; 206:1361-1372. [PMID: 28533439 DOI: 10.1534/genetics.117.201715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/07/2017] [Indexed: 11/18/2022] Open
Abstract
The effect of gene location within a crop genome on its transfer to a weed genome remains an open question for gene flow assessment. To elucidate this question, we analyzed advanced generations of intergeneric hybrids, derived from an initial pollination of known oilseed rape varieties (Brassica napus, AACC, 2n = 38) by a local population of wild radish (Raphanus raphanistrum, RrRr, 2n = 18). After five generations of recurrent pollination, 307 G5 plants with a chromosome number similar to wild radish were genotyped using 105 B. napus specific markers well distributed along the chromosomes. They revealed that 49.8% of G5 plants carried at least one B. napus genomic region. According to the frequency of B. napus markers (0-28%), four classes were defined: Class 1 (near zero frequency), with 75 markers covering ∼70% of oilseed rape genome; Class 2 (low frequency), with 20 markers located on 11 genomic regions; Class 3 (high frequency), with eight markers on three genomic regions; and Class 4 (higher frequency), with two adjacent markers detected on A10. Therefore, some regions of the oilseed rape genome are more prone than others to be introgressed into wild radish. Inheritance and growth of plant progeny revealed that genomic regions of oilseed rape could be stably introduced into wild radish and variably impact the plant fitness (plant height and seed number). Our results pinpoint that novel technologies enabling the targeted insertion of transgenes should select genomic regions that are less likely to be introgressed into the weed genome, thereby reducing gene flow.
Collapse
|
15
|
Reduced weed seed shattering by silencing a cultivated rice gene: strategic mitigation for escaped transgenes. Transgenic Res 2017; 26:465-475. [PMID: 28526984 DOI: 10.1007/s11248-017-0016-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
Transgene flow form a genetically engineered (GE) crop to its wild relatives may result in unwanted environmental consequences. Mitigating transgenes via introducing a gene that is disadvantageous to wild relatives but beneficial to crops, and is tightly-linked with the target transgenes, may provide a promising solution to limit the spread of transgenes in wild/weedy populations. Here we demonstrate a novel system with significantly reduced seed shattering in crop-weed hybrid descendants by partially silenced expression of the seed-shattering gene SH4 in cultivated rice, using artificial microRNA and antisense RNA techniques. Accordingly, fewer seeds were found in the soil of the field plots where transgenic hybrid lineages were grown. However, no differences in productivity-related traits were detected between GE and non-GE cultivated rice. To silence seed-shattering genes provides a useful strategy to reduce the potential environmental impacts caused by transgene flow from commercial GE rice to weedy rice, in addition to the control of weedy rice.
Collapse
|
16
|
|
17
|
Sarangi D, Tyre AJ, Patterson EL, Gaines TA, Irmak S, Knezevic SZ, Lindquist JL, Jhala AJ. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes. Sci Rep 2017; 7:44913. [PMID: 28327669 PMCID: PMC5361169 DOI: 10.1038/srep44913] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States.
Collapse
Affiliation(s)
- Debalin Sarangi
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Andrew J. Tyre
- School of Natural Resources, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Eric L. Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Suat Irmak
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Stevan Z. Knezevic
- Northeast Research and Extension Center, Haskell Agricultural Laboratory, University of Nebraska–Lincoln, Concord, NE 68728, USA
| | - John L. Lindquist
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Amit J. Jhala
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
18
|
Lombardo F, Kuroki M, Yao S, Shimizu H, Ikegaya T, Kimizu M, Ohmori S, Akiyama T, Hayashi T, Yamaguchi T, Koike S, Yatou O, Yoshida H. The superwoman1-cleistogamy2 mutant is a novel resource for gene containment in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:97-106. [PMID: 27336225 PMCID: PMC5253472 DOI: 10.1111/pbi.12594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/09/2016] [Accepted: 06/18/2016] [Indexed: 05/31/2023]
Abstract
Outcrossing between cultivated plants and their related wild species may result in the loss of favourable agricultural traits in the progeny or escape of transgenes in the environment. Outcrossing can be physically prevented by using cleistogamous (i.e. closed-flower) plants. In rice, flower opening is dependent on the mechanical action of fleshy organs called lodicules, which are generally regarded as the grass petal equivalents. Lodicule identity and development are specified by the action of protein complexes involving the SPW1 and OsMADS2 transcription factors. In the superwoman1-cleistogamy1 (spw1-cls1) mutant, SPW1 is impaired for heterodimerization with OsMADS2 and consequently spw1-cls1 shows thin, ineffective lodicules. However, low temperatures help stabilise the mutated SPW1/OsMADS2 heterodimer and lodicule development is restored when spw1-cls1 is grown in a cold environment, resulting in the loss of the cleistogamous phenotype. To identify a novel, temperature-stable cleistogamous allele of SPW1, targeted and random mutations were introduced into the SPW1 sequence and their effects over SPW1/OsMADS2 dimer formation were assessed in yeast two-hybrid experiments. In parallel, a novel cleistogamous allele of SPW1 called spw1-cls2 was isolated from a forward genetic screen. In spw1-cls2, a mutation leading to a change of an amino acid involved in DNA binding by the transcription factor was identified. Fertility of spw1-cls2 is somewhat decreased under low temperatures but unlike for spw1-cls1, the cleistogamous phenotype is maintained, making the line a safer and valuable genetic resource for gene containment.
Collapse
Affiliation(s)
- Fabien Lombardo
- Division of Applied GeneticsInstitute of Agrobiological SciencesNational Agriculture and Food Research Organization (NARO)IbarakiJapan
| | - Makoto Kuroki
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
- Division of Rice ResearchInstitute of Crop ScienceNAROIbarakiJapan
| | - Shan‐Guo Yao
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
- Present address: Center for Genome BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Hiroyuki Shimizu
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
| | - Tomohito Ikegaya
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
| | - Mayumi Kimizu
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| | - Shinnosuke Ohmori
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| | - Takashi Akiyama
- Division of Applied GeneticsInstitute of Agrobiological SciencesNational Agriculture and Food Research Organization (NARO)IbarakiJapan
| | - Takami Hayashi
- Division of Crop Breeding ResearchHokkaido Agricultural Research CenterNAROHokkaidoJapan
- Division of Agro‐Production Technologies and Management ResearchTohoku Agricultural Research CenterNAROIwateJapan
| | - Tomoya Yamaguchi
- Division of Agro‐Production Technologies and Management ResearchTohoku Agricultural Research CenterNAROIwateJapan
- Present address: Agriculture, Forestry and Fisheries Research CouncilMinistry of Agriculture, Forestry and Fisheries of JapanTokyo100‐8950Japan
| | - Setsuo Koike
- Division of Agro‐Production Technologies and Management ResearchTohoku Agricultural Research CenterNAROIwateJapan
| | - Osamu Yatou
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| | - Hitoshi Yoshida
- Division of Applied GeneticsInstitute of Agrobiological SciencesNational Agriculture and Food Research Organization (NARO)IbarakiJapan
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNARONiigataJapan
| |
Collapse
|
19
|
Gressel J, Gassmann AJ, Owen MD. How well will stacked transgenic pest/herbicide resistances delay pests from evolving resistance? PEST MANAGEMENT SCIENCE 2017; 73:22-34. [PMID: 27598030 DOI: 10.1002/ps.4425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Resistance has evolved to single transgenic traits engineered into crops for arthropod and herbicide resistances, and can be expected to evolve to the more recently introduced pathogen resistances. Combining transgenes against the same target pest is being promoted as the solution to the problem. This solution will work if used pre-emptively, but where resistance has evolved to one member of a stack, resistance should easily evolve for the second gene in most cases. We propose and elaborate criteria that could be used to evaluate the value of stacked traits for pest resistance management. Stacked partners must: target the same pest species; be in a tandem construct to preclude segregation; be synchronously expressed in the same tissues; have similar tissue persistence; target pest species that are still susceptible to at least two stacked partners. Additionally, transgene products must not be degraded in the same manner, and there should be a lack of cross-resistance to stacked transgenes or to their products. With stacked herbicide resistance transgenes, both herbicides must be used and have the same persistence. If these criteria are followed, and integrated with other pest management practices, resistance may be considerably delayed. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
20
|
Mandel JR, Ramsey AJ, Iorizzo M, Simon PW. Patterns of Gene Flow between Crop and Wild Carrot, Daucus carota (Apiaceae) in the United States. PLoS One 2016; 11:e0161971. [PMID: 27603516 PMCID: PMC5014312 DOI: 10.1371/journal.pone.0161971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022] Open
Abstract
Studies of gene flow between crops and their wild relatives have implications for both management practices for cultivation and understanding the risk of transgene escape. These types of studies may also yield insight into population dynamics and the evolutionary consequences of gene flow for wild relatives of crop species. Moreover, the comparison of genetic markers with different modes of inheritance, or transmission, such as those of the nuclear and chloroplast genomes, can inform the relative risk of transgene escape via pollen versus seed. Here we investigate patterns of gene flow between crop and wild carrot, Daucus carota (Apiaceae) in two regions of the United States. We employed 15 nuclear simple sequence repeat (SSR) markers and one polymorphic chloroplast marker. Further, we utilized both conventional population genetic metrics along with Shannon diversity indices as the latter have been proposed to be more sensitive to allele frequency changes and differentiation. We found that populations in both regions that were proximal to crop fields showed lower levels of differentiation to the crops than populations that were located farther away. We also found that Shannon measures were more sensitive to differences in both genetic diversity and differentiation in our study. Finally, we found indirect evidence of paternal transmission of chloroplast DNA and accompanying lower than expected levels of chloroplast genetic structure amongst populations as might be expected if chloroplast DNA genes flow through both seed and pollen. Our findings of substantial gene flow for both nuclear and chloroplast markers demonstrate the efficiency of both pollen and seed to transfer genetic information amongst populations of carrot.
Collapse
Affiliation(s)
- Jennifer R. Mandel
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, United States of America
- W. Harry Feinstone Center for Genomic Research, The University of Memphis, Memphis, Tennessee, United States of America
- * E-mail:
| | - Adam J. Ramsey
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, United States of America
| | - Massimo Iorizzo
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, Kannapolis, North Carolina, United States of America
| | - Philipp W. Simon
- USDA-Agricultural Research Service, Vegetable Crops Unit, University of Wisconsin-Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
Xia H, Zhang H, Wang W, Yang X, Wang F, Su J, Xia H, Xu K, Cai X, Lu B. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment. Evol Appl 2016; 9:847-56. [PMID: 27468303 PMCID: PMC4947147 DOI: 10.1111/eva.12369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/22/2016] [Indexed: 11/27/2022] Open
Abstract
Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives.
Collapse
Affiliation(s)
- Hui Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Hongbin Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
| | - Wei Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
| | - Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
| | - Feng Wang
- Fujian Province Key Laboratory of Genetic Engineering for AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| | - Jun Su
- Fujian Province Key Laboratory of Genetic Engineering for AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| | - Hanbing Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
| | - Kai Xu
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
| | - Xingxing Cai
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
| | - Bao‐Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological EngineeringFudan UniversityShanghaiChina
| |
Collapse
|
22
|
Merotto A, Goulart ICGR, Nunes AL, Kalsing A, Markus C, Menezes VG, Wander AE. Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil. Evol Appl 2016; 9:837-46. [PMID: 27468302 PMCID: PMC4947146 DOI: 10.1111/eva.12387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/25/2016] [Indexed: 11/28/2022] Open
Abstract
Several studies have expressed concerns about the effects of gene flow from transgenic herbicide-resistant crops to their wild relatives, but no major problems have been observed. This review describes a case study in which what has been feared in transgenics regarding gene flow has actually changed biodiversity and people's lives. Nontransgenic imidazolinone-resistant rice (IMI-rice) cultivars increased the rice grain yield by 50% in southern Brazil. This increase was beneficial for life quality of the farmers and also improved the regional economy. However, weedy rice resistant to imidazolinone herbicides started to evolve three years after the first use of IMI-rice cultivars. Population genetic studies indicate that the herbicide-resistant weedy rice was mainly originated from gene flow from resistant cultivars and distributed by seed migration. The problems related with herbicide-resistant weedy rice increased the production costs of rice that forced farmers to sell or rent their land. Gene flow from cultivated rice to weedy rice has proven to be a large agricultural, economic, and social constraint in the use of herbicide-resistant technologies in rice. This problem must be taken into account for the development of new transgenic or nontransgenic rice technologies.
Collapse
Affiliation(s)
- Aldo Merotto
- Federal University of Rio Grande do Sul-UFRGS Porto Alegre RS Brazil
| | - Ives C G R Goulart
- Brasilian Agriculture Research Corporation-EMBRAPA Forestry Colombo PR Brazil
| | | | | | - Catarine Markus
- Federal University of Rio Grande do Sul-UFRGS Porto Alegre RS Brazil
| | | | - Alcido E Wander
- Brasilian Agriculture Research Corporation-EMBRAPA Rice and Beans Santo Antônio de Goias GO Brazil
| |
Collapse
|
23
|
Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. SUSTAINABILITY 2016. [DOI: 10.3390/su8050495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Sánchez MA, Cid P, Navarrete H, Aguirre C, Chacón G, Salazar E, Prieto H. Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:625-637. [PMID: 26052925 DOI: 10.1111/pbi.12408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen-mediated gene flow from GM crops and non-GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national-scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from 'very low' (1) to 'very high' (5)] was developed, showing medium OPs (3) for GM-native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape-Vitis vinifera GM-introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile.
Collapse
Affiliation(s)
- Miguel A Sánchez
- Asociación Gremial ChileBio CropLife, Providencia, Santiago, Chile
| | - Pablo Cid
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Humberto Navarrete
- Molecular Fruit Phytopathology Laboratory, Facultad Ciencias Agropecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Carlos Aguirre
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Gustavo Chacón
- Computer Sciences Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Erika Salazar
- Genetic Resources Unit and Germplasm Bank, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| |
Collapse
|
25
|
Duke SO. Summing up 2015. PEST MANAGEMENT SCIENCE 2016; 72:5-7. [PMID: 26769292 DOI: 10.1002/ps.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
26
|
Duke SO. Current and future status of the use of transgenes for pest management. PEST MANAGEMENT SCIENCE 2015; 71:643-644. [PMID: 25847501 DOI: 10.1002/ps.4002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
27
|
Duke SO. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. PEST MANAGEMENT SCIENCE 2015; 71:652-7. [PMID: 25052888 DOI: 10.1002/ps.3863] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 05/03/2023]
Abstract
Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Stephen O Duke
- USDA, ARS, Natural Products Utilization Research, Thad Cochran Research Center, University, MS, USA
| |
Collapse
|