1
|
Jeschke P. The continuing significance of chiral agrochemicals. PEST MANAGEMENT SCIENCE 2025. [PMID: 39821341 DOI: 10.1002/ps.8655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Chemical crop protection is one of the most cost-effective methods for agriculture, as crop failures can be prevented, and sustainable growth can be enabled regardless of the seasons. Agricultural production must be significantly increased in the future to meet the food needs of a growing world population. However, the continued loss of established active ingredients due to consumer perceptions, changing needs of farmers and ever-changing regulatory requirements is higher than annually new active ingredients introduced to the market. The development of innovative active ingredients is therefore essential to continuously improve the selectivity, efficacy and favorable environmental profile of agrochemicals. Molecules with stereogenic centers can be considered here, as they often have different properties than non-chiral molecules. Natural products and their congeners are still a valuable source of inspiration for chiral agrochemicals. However, only a few novel chiral agrochemicals are currently produced on an industrial scale as pure stereoisomers or in enriched form. As of 2018, around 43% of the 35 chiral products introduced to the market (herbicides, fungicides, insecticides, acaricides, and nematicides) contain one or more stereogenic centers in the molecule, and almost 69% of them have been marketed as racemic mixtures of enantiomers or stereoisomers. Surprisingly, the proportion of chiral agrochemicals is in the same order of magnitude as in the time frame from 2007 to 2017 with around 42%, respectively. This report therefore provides an overview of the continued importance of chiral agrochemicals brought to market in the last 6 years and describes the inherent related challenges of modern agrochemicals through the management of key aspects arising from innovative crop protection products. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peter Jeschke
- Heinrich-Heine-University Düsseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, Duesseldorf, Germany
| |
Collapse
|
2
|
Haywood J, Breese KJ, Jordi Muria-Gonzalez M, Bernath-Levin K, Waters M, Stubbs KA, Mylne JS. A Non-Volatile Pro-Dicamba Herbicide Inspired by Meclofenoxate. Chemistry 2025:e202404282. [PMID: 39779471 DOI: 10.1002/chem.202404282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Dicamba is a popular herbicide with rising use but is also notorious for volatility drift. Inspired by meclofenoxate, which we show to be highly herbicidal, we developed a derivative of dicamba with an ester-bond to 2-dimethylaminoethanol. It remained herbicidal but is non-volatile, entering plants intact and hydrolyzing inside leaves to dicamba and 2-dimethylaminoethanol. This pro-dicamba is compatible with the relatively novel dicamba monooxygenase tolerance technology, suggesting pro-dicamba might be a suitable, non-volatile replacement for dicamba.
Collapse
Affiliation(s)
- Joel Haywood
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth WA, 6102, Australia
| | - Karen J Breese
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - M Jordi Muria-Gonzalez
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth WA, 6102, Australia
| | - Kalia Bernath-Levin
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Mark Waters
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth WA, 6102, Australia
| |
Collapse
|
3
|
Janssen K, Kirchmair J, Proppe J. Relevance and Potential Applications of C2-Carboxylated 1,3-Azoles. ChemMedChem 2024; 19:e202400307. [PMID: 39022854 DOI: 10.1002/cmdc.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Carbon dioxide (CO2) is an economically viable and abundant carbon source that can be incorporated into compounds such as C2-carboxylated 1,3-azoles relevant to the pharmaceutical, cosmetics, and pesticide industries. Of the 2.4 million commercially available C2-unsubstituted 1,3-azole compounds, less than 1 % are currently purchasable as their C2-carboxylated derivatives, highlighting the substantial gap in compound availability. This availability gap leaves ample opportunities for exploring the synthetic accessibility and use of carboxylated azoles in bioactive compounds. In this study, we analyze and quantify the relevance of C2-carboxylated 1,3-azoles in small-molecule research. An analysis of molecular databases such as ZINC, ChEMBL, COSMOS, and DrugBank identified relevant C2-carboxylated 1,3-azoles as anticoagulant and aroma-giving compounds. Moreover, a pharmacophore analysis highlights promising pharmaceutical potential associated with C2-carboxylated 1,3-azoles, revealing the ATP-sensitive inward rectifier potassium channel 1 (KATP) and Kinesin-like protein KIF18 A as targets that can potentially be addressed with C2-carboxylated 1,3-azoles. Moreover, we identified several bioisosteres of C2-carboxylated 1,3-azoles. In conclusion, further exploration of the chemical space of C2-carboxylated 1,3-azoles is recommended to harness their full potential in drug discovery and related fields.
Collapse
Affiliation(s)
- Kerrin Janssen
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Johannes Kirchmair
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences and Department of Pharmaceutical Sciences, University of Vienna, 1090, Vienna, Austria
| | - Jonny Proppe
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Lamberth C. Oxime chemistry in crop protection. PEST MANAGEMENT SCIENCE 2024; 80:4163-4174. [PMID: 38804722 DOI: 10.1002/ps.8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
An overview is given on the significance of the oxime moiety in crop protection chemistry. This review focuses on the two most important aspects of agrochemical oximes, which are the occurrence and role of oxime groups in compounds with herbicidal, fungicidal and insecticidal activity, as well as the application of oxime derivatives as intermediates in the synthesis of crop protection agents not bearing any oxime function. Especially noteworthy is the fact, that in the synthesis of agrochemicals, oximes can be cyclized to isooxazoline, isoxazole, oxadiazole, oxazine, pyrrole, isothiazole and imidazole rings. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Research Chemistry, Stein, Switzerland
| |
Collapse
|
5
|
Xiao Y, Wang X, Li Z, Lei C, Wang S. Insecticidal potential and risk assessment of diamide pesticides against Spodoptera frugiperda in maize crops. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116682. [PMID: 39002380 DOI: 10.1016/j.ecoenv.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
The effectiveness, tolerance, and safety of pesticides must be established before their scientific or rational. This study evaluates the field control efficacy of broflanilide, tetraniliprole, and chlorantraniliprole in combating Spodoptera frugiperda in maize crops, as well as the resistance of S. frugiperda to these three diamide pesticides after exposure. By assessing field control efficiency, toxicity, effects on development and reproduction, and detoxification enzyme activity of these diamide pesticides on S. frugiperda, highlights broflanilide's significant insecticidal potential. A highly sensitive and efficient method using QuEChERS/HPLCMS/MS was developed to simultaneously detect residues of these three pesticides on maize. Initial concentrations of broflanilide, tetraniliprole, and chlorantraniliprole ranged from 2.13 to 4.02 mg/kg, with their respective half-lives varying between 1.23 and 1.51 days. Following foliar application, by the time of harvest, the terminal residue concentrations of these pesticides were all under 0.01 mg/kg. Chronic dietary intake risk assessments and cumulative chronic dietary exposure for three pesticides indicated that the general population's terminal residue concentration was within acceptable limits. Not only does this research provide valuable insights into field control efficiency, insecticidal effects, resistance, residues, and risk assessment results of broflanilide, tetraniliprole, and chlorantraniliprole on maize, but additionally, it also paves the way for setting suitable Maximum Residue Limits (MRLs) values based on pre-harvest interval values, rational dosage, and application frequency.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, PR China
| | - Xiaonan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, PR China
| | - Zhenyu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, PR China
| | - Chunmei Lei
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, PR China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, PR China.
| |
Collapse
|
6
|
Tsakireli D, Vandenhole M, Spiros A P, Riga M, Balabanidou V, De Rouck S, Ray J, Zimmer C, Talmann L, Van Leeuwen T, Vontas J. The cytochrome P450 subfamilies CYP392A and CYP392D are key players in acaricide metabolism in Tetranychusurticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106031. [PMID: 39277360 DOI: 10.1016/j.pestbp.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
The spider mite Tetranychus urticae is a major agricultural pest with a global distribution, extremely diverse host range and a remarkable ability to develop resistance to a wide variety of acaricides. P450 mono-oxygenases have been frequently associated with resistance development in this species. In particular enzymes of the CYP392A-subfamily were shown to metabolize a number of key acaricides, including abamectin, amitraz, fenpyroximate and the active metabolite of pyflubumide. However, transcriptomic studies comparing highly resistant and susceptible populations have often revealed high expression of members of the CYP392D-subfamily, but these have been only poorly studied. Here, we conducted a meta-analysis of gene expression data of 20 populations and identified two key enzymes of this family, CYP392D2 and CYP392D8, whose expression is associated with resistance. We subsequently functionally expressed these enzymes, together with CYP392A11 and CYP392A16 as known metabolizers, and compared their potential to accept a wide diversity of acaricides as substrate. This study overall confirms previous discovered substrates for CYP392A11 and CYP392A16, but also reveals unreported metabolic activity towards new acaricides. These include carbaryl, chlorpyrifos and etoxazole for CYP392A16 and carbaryl, chlorpyrifos and NNI-0711-NH pyflubumide for CYP392A11. For the newly studied CYP392D-family, we show that CYP392D2 metabolizes pyridaben, fenpyroximate, etoxazole and chlorpyrifos, while CYP392D8 metabolizes carbaryl, fenazaquin and tebufenpyrad. Last, we observed that both CYP392A- and CYP392D-subfamily enzymes activate chlorpyrifos to its corresponding oxon. Our study indicates that there is both overlap and specificity in the activity of A- and D-subfamily enzymes against acaricides and model substrates. With the recent advent of highly efficient CRISPR/Cas9 gene editing protocols in T. urticae, the way is now paved to conduct further genetic experiments revealing and quantifying the role of these enzymes in the resistance phenotype in field populations.
Collapse
Affiliation(s)
- Dimitra Tsakireli
- Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | | | - Maria Riga
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Vasilia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | - John Ray
- Syngenta Crop Protection, Berkshire RG42 6EY, Bracknell, United Kingdom.
| | - Christoph Zimmer
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland.
| | - Lea Talmann
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | - John Vontas
- Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| |
Collapse
|
7
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
8
|
Wang T, Shi X, Wu Z, Zhang J, Hao J, Liu P, Liu X. Carboxylesterase and Cytochrome P450 Confer Metabolic Resistance Simultaneously to Azoxystrobin and Some Other Fungicides in Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9680-9690. [PMID: 38634420 DOI: 10.1021/acs.jafc.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xin Shi
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Ma C, Tian L, Wang YE, Huo J, An Z, Sun S, Kou S, Wang W, Li Y, Zhang J, Chen L. Discovery of Novel Pyrazole Acyl Thiourea Skeleton Analogue as Potential Herbicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7727-7734. [PMID: 38530940 DOI: 10.1021/acs.jafc.3c08863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
To discover novel transketolase (TKL, EC 2.2.1.1) inhibitors with potential herbicidal applications, a series of pyrazole acyl thiourea derivatives were designed based on a previously obtained pyrazolamide acyl lead compound, employing a scaffold hopping strategy. The compounds were synthesized, their structures were characterized, and they were evaluated for herbicidal activities. The results indicate that 7a exhibited exceptional herbicidal activity against Digitaria sanguinalis and Amaranthus retroflexus at a dosage of 90 g ai/ha, using the foliar spray method in a greenhouse. This performance is comparable to that of commercial products, such as nicosulfuron and mesotrione. Moreover, 7a showed moderate growth inhibitory activity against the young root and stem of A. retroflexus at 200 mg/L in the small cup method, similar to that of nicosulfuron and mesotrione. Subsequent mode-of-action verification experiments revealed that 7a and 7e inhibited Setaria viridis TKL (SvTKL) enzyme activity, with IC50 values of 0.740 and 0.474 mg/L, respectively. Furthermore, they exhibited inhibitory effects on the Brassica napus acetohydroxyacid synthase enzyme activity. Molecular docking predicted potential interactions between these (7a and 7e) and SvTKL. A greenhouse experiment demonstrated that 7a exhibited favorable crop safety at 150 g ai/ha. Therefore, 7a is a promising herbicidal candidate that is worthy of further development.
Collapse
Affiliation(s)
- Chujian Ma
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Luyang Tian
- Bohai College, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Wenfei Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yaze Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
10
|
Duke SO, Pan Z, Bajsa-Hirschel J, Tamang P, Hammerschmidt R, Lorsbach BA, Sparks TC. Molecular Targets of Herbicides and Fungicides─Are There Useful Overlaps for Fungicide Discovery? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20532-20548. [PMID: 38100716 PMCID: PMC10755756 DOI: 10.1021/acs.jafc.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
New fungicide modes of action are needed for fungicide resistance management strategies. Several commercial herbicide targets found in fungi that are not utilized by commercial fungicides are discussed as possible fungicide molecular targets. These are acetyl CoA carboxylase, acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthase, phytoene desaturase, protoporphyrinogen oxidase, long-chain fatty acid synthase, dihydropteroate synthase, hydroxyphenyl pyruvate dioxygenase, and Ser/Thr protein phosphatase. Some of the inhibitors of these herbicide targets appear to be either good fungicides or good leads for new fungicides. For example, some acetolactate synthase and dihydropteroate inhibitors are excellent fungicides. There is evidence that some herbicides have indirect benefits to certain crops due to their effects on fungal crop pathogens. Using a pesticide with both herbicide and fungicide activities based on the same molecular target could reduce the total amount of pesticide used. The limitations of such a product are discussed.
Collapse
Affiliation(s)
- Stephen O. Duke
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University 38667, United States
| | - Zhiqiang Pan
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Joanna Bajsa-Hirschel
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Prabin Tamang
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Raymond Hammerschmidt
- Department
of Plant, Soil and Microbial Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Beth A. Lorsbach
- Nufarm, 4020 Aerial Center Parkway, Morrisville, North Carolina 27560, United States
| | | |
Collapse
|
11
|
Xia X, Wang Q, Gurr GM, Vasseur L, Han S, You M. Gut bacteria mediated adaptation of diamondback moth, Plutella xylostella, to secondary metabolites of host plants. mSystems 2023; 8:e0082623. [PMID: 37909778 PMCID: PMC10734469 DOI: 10.1128/msystems.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE In this study, we identify an important role of gut bacteria in mediating the adaptation of diamondback moth (DBM) to plant secondary metabolites. We demonstrate that kaempferol's presence in radish seedlings greatly reduces the fitness of DBM with depleted gut biota. Reinstatement of gut biota, particularly Enterobacter sp. EbPXG5, improved insect performance by degrading kaempferol. This bacterium was common in the larval gut of DBM, lining the epithelium as a protective film. Our work highlights the role of symbiotic bacteria in insect herbivore adaptation to plant defenses and provides a practical and mechanistic framework for developing a more comprehensive understanding of insect-gut microbe-host plant co-evolution.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Graham Centre, Charles Sturt University, Orange, New South Wales, Australia
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Gao H, Zang Y, Zhang Y, Zhao H, Ma W, Chen X, Wang J, Zhao D, Wang X, Huang Y, Zhang F. Transcriptome analysis revealed that short-term stress in Blattella germanica to β-cypermethrin can reshape the phenotype of resistance adaptation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105703. [PMID: 38072557 DOI: 10.1016/j.pestbp.2023.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
Previous studies on insect resistance have primarily focused on resistance monitoring and the molecular mechanisms involved, while overlooking the process of phenotype formation induced by insecticide stress. In this study, we compared the expression profiles of a beta-cypermethrin (β-CYP) resistant strain (R) and a susceptible strain (S) of Blattella germanica after β-CYP induction using transcriptome sequencing. In the short-term stress experiment, we identified a total of 792 and 622 differentially expressed genes (DEGs) in the S and R strains. Additionally, 893 DEGs were identified in the long-term adaptation experiment. To validate the RNA-Seq data, we performed qRT-PCR on eleven selected DEGs, and the results were consistent with the transcriptome sequencing data. These DEGs exhibited down-regulation in the short-term stress group and up-regulation in the long-term adaptation group. Among the validated DEGs, CUO8 and Cyp4g19 were identified and subjected to knockdown using RNA interference. Subsequent insecticide bioassays revealed that the mortality rate of cockroaches treated with β-CYP increased by 69.3% and 66.7% after silencing the CUO8 and Cyp4g19 genes (P<0.05). Furthermore, the silencing of CUO8 resulted in a significant thinning of the cuticle by 59.3% and 53.4% (P<0.05), as observed through transmission electron microscopy and eosin staining, in the S and R strains, respectively. Overall, our findings demonstrate that the phenotypic plasticity in response to short-term stress can reshape the adaptive mechanisms of genetic variation during prolonged exposure to insecticides. And the identified resistance-related genes, CUO8 and Cyp4g19, could serve as potential targets for controlling these pest populations.
Collapse
Affiliation(s)
- Huiyuan Gao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Yanan Zang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Yuting Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Haizheng Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Wenxiao Ma
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Xingyu Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Jingjing Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Dongqin Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250013, China
| | - Yanhong Huang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China.
| |
Collapse
|
13
|
Zhou C, Li Z, Qian X, Cheng J, Maienfisch P. Novel Acaricidal Silico-Containing Pyrazolyl Acrylonitrile Derivatives Identified through Rational Carbon-Silicon Bioisosteric Replacement Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18239-18249. [PMID: 37722018 DOI: 10.1021/acs.jafc.3c03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The identification of novel pyrazolyl acrylonitrile acaricides with improved properties is of great value for the control of phytophagous mites. A series of innovative silicon-containing pyrazolyl acrylonitriles were rationally designed by applying a bioisosteric carbon-silicon replacement strategy and prepared based on novel synthetic methodology. As a result of our research, we discovered compound A25 which possesses outstanding acaricidal activity. With an LC50 value of 0.062 mg/L, compound A25 was found to be 2.3-fold and 1.9-fold more potent than the commercial acaricides cyenopyrafen and cyetpyrafen, respectively. Enzymatic inhibitory assay indicated that the active principle M1 of compound A25 possesses an IC50 value of 2.32 μM against Tetranychus cinnabarinus SDH, which was about twofold superior compared to the active metabolites of cyenopyrafen (IC50 = 4.72 μM). Molecular docking study showed that the active metabolites 2 and 3 and their corresponding silicon counterparts form H-bonds and cation-π interaction with the residues of Trp165, Tyr433, and Arg279.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CreInSol MCB, Aegertenstrasse 21, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
14
|
Djoumbou-Feunang Y, Wilmot J, Kinney J, Chanda P, Yu P, Sader A, Sharifi M, Smith S, Ou J, Hu J, Shipp E, Tomandl D, Kumpatla SP. Cheminformatics and artificial intelligence for accelerating agrochemical discovery. Front Chem 2023; 11:1292027. [PMID: 38093816 PMCID: PMC10716421 DOI: 10.3389/fchem.2023.1292027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 10/17/2024] Open
Abstract
The global cost-benefit analysis of pesticide use during the last 30 years has been characterized by a significant increase during the period from 1990 to 2007 followed by a decline. This observation can be attributed to several factors including, but not limited to, pest resistance, lack of novelty with respect to modes of action or classes of chemistry, and regulatory action. Due to current and projected increases of the global population, it is evident that the demand for food, and consequently, the usage of pesticides to improve yields will increase. Addressing these challenges and needs while promoting new crop protection agents through an increasingly stringent regulatory landscape requires the development and integration of infrastructures for innovative, cost- and time-effective discovery and development of novel and sustainable molecules. Significant advances in artificial intelligence (AI) and cheminformatics over the last two decades have improved the decision-making power of research scientists in the discovery of bioactive molecules. AI- and cheminformatics-driven molecule discovery offers the opportunity of moving experiments from the greenhouse to a virtual environment where thousands to billions of molecules can be investigated at a rapid pace, providing unbiased hypothesis for lead generation, optimization, and effective suggestions for compound synthesis and testing. To date, this is illustrated to a far lesser extent in the publicly available agrochemical research literature compared to drug discovery. In this review, we provide an overview of the crop protection discovery pipeline and how traditional, cheminformatics, and AI technologies can help to address the needs and challenges of agrochemical discovery towards rapidly developing novel and more sustainable products.
Collapse
Affiliation(s)
| | - Jeremy Wilmot
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - John Kinney
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Pritam Chanda
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Pulan Yu
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - Avery Sader
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - Max Sharifi
- Corteva Agriscience, Regulatory and Stewardship, Indianapolis, IN, United States
| | - Scott Smith
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Junjun Ou
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - Jie Hu
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Elizabeth Shipp
- Corteva Agriscience UK Limited, Regulation Innovation Center, Abingdon, United Kingdom
| | | | | |
Collapse
|
15
|
N'Guessan R, Camara S, Rowland M, Ahoua Alou LP, Wolie RZ, Zoh MG, N'Guessan B, Tia IZ, Oumbouke WA, Thomas MB, Koffi AA. Attractive targeted sugar bait: the pyrrole insecticide chlorfenapyr and the anti-malarial pharmaceutical artemether-lumefantrine arrest Plasmodium falciparum development inside wild pyrethroid-resistant Anopheles gambiae s.s. mosquitoes. Malar J 2023; 22:344. [PMID: 37946208 PMCID: PMC10636997 DOI: 10.1186/s12936-023-04758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Attractive targeted sugar bait (ATSB) is a novel approach to vector control, offering an alternative mode of insecticide delivery via the insect alimentary canal, with potential to deliver a variety of compounds new to medical entomology and malaria control. Its potential to control mosquitoes was recently demonstrated in major field trials in Africa. The pyrrole chlorfenapyr is an insecticide new to malaria vector control, and through its unique mode of action-disruption of ATP mediated energy transfer in mitochondria-it may have direct action on energy transfer in the flight muscle cells of mosquitoes. It may also have potential to disrupt mitochondrial function in malarial parasites co-existing within the infected mosquito. However, little is known about the impact of such compounds on vector competence in mosquitoes responsible for malaria transmission. METHODS In this study, ATSBs containing chlorfenapyr insecticide and, as a positive control, the anti-malarial drugs artemether/lumefantrine (A/L) were compared for their effect on Plasmodium falciparum development in wild pyrethroid-resistant Anopheles gambiae sensu stricto (s.s.) and for their capacity to reduce vector competence. Female mosquitoes were exposed to ATSB containing either sublethal dose of chlorfenapyr (CFP: 0.025%) or concentrations of A/L ranging from 0.4/2.4 mg/ml to 2.4/14.4 mg/ml, either shortly before or after taking infective blood meals. The impact of their component compounds on the prevalence and intensity of P. falciparum infection were compared between treatments. RESULTS Both the prevalence and intensity of infection were significantly reduced in mosquitoes exposed to either A/L or chlorfenapyr, compared to unexposed negative control mosquitoes. The A/L dose (2.4/14.4 mg/ml) totally erased P. falciparum parasites: 0% prevalence of infection in female mosquitoes exposed compared to 62% of infection in negative controls (df = 1, χ2 = 31.23 p < 0.001). The dose of chlorfenapyr (0.025%) that killed < 20% females in ATSB showed a reduction in oocyte density of 95% per midgut (0.18/3.43 per midgut). CONCLUSION These results are evidence that chlorfenapyr, in addition to its direct killing effect on the vector, has the capacity to block Plasmodium transmission by interfering with oocyte development inside pyrethroid-resistant mosquitoes, and through this dual action may potentiate its impact under field conditions.
Collapse
Affiliation(s)
- Raphael N'Guessan
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire. Raphael.N'
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire. Raphael.N'
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK. Raphael.N'
| | - Soromane Camara
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire.
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Rosine Z Wolie
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Université Nangui Abrogoua, UFR Des Sciences de la Nature, Abidjan, Côte d'Ivoire
| | - Marius G Zoh
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Brou N'Guessan
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Innocent Z Tia
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Innovative Vector Control Consortium, IVCC, Liverpool, UK
| | - Matthew B Thomas
- Department of Entomology & Nematology, The University of Florida, Gainesville, FL, USA
| | - Alphonsine A Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| |
Collapse
|
16
|
Shao WB, Liao YM, Luo RS, Ji J, Xiao WL, Zhou X, Liu LW, Yang S. Discovery of novel phenothiazine derivatives as new agrochemical alternatives for treating plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:4231-4243. [PMID: 37345486 DOI: 10.1002/ps.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Plant viral diseases, namely 'plant cancer', are extremely difficult to control. Even worse, few antiviral agents can effectively control and totally block viral infection. There is an urgent need to explore and discover novel agrochemicals with high activity and a unique mode of action to manage these refractory diseases. RESULTS Forty-one new phenothiazine derivatives were prepared and their inhibitory activity against tobacco mosaic virus (TMV) was assessed. Compound A8 had the highest protective activity against TMV, with a half-maximal effective concentration (EC50 ) of 115.67 μg/mL, which was significantly better than that of the positive controls ningnanmycin (271.28 μg/mL) and ribavirin (557.47 μg/mL). Biochemical assays demonstrated that compound A8 could inhibit TMV replication by disrupting TMV self-assembly, but also enabled the tobacco plant to enhance its defense potency by increasing the activities of various defense enzymes. CONCLUSION In this study, novel phenothiazine derivatives were elaborately fabricated and showed remarkable anti-TMV behavior that possessed the dual-action mechanisms of inhibiting TMV assembly and invoking the defense responses of tobacco plants. Moreover, new agrochemical alternatives based on phenothiazine were assessed for their antiviral activities and showed extended agricultural application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan-Mei Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin Ji
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Yao G, Han S, Wen Y, Xiao Y, Zhao C, Xu H. Design, synthesis, insecticidal activities and translocation of amino acid-tralopyril conjugates as vectorizing agrochemicals. PEST MANAGEMENT SCIENCE 2023; 79:4018-4024. [PMID: 37278576 DOI: 10.1002/ps.7599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Conjugating amino acid moieties to active ingredients has been recognized as an effective method for improving the precise targeting of the active form to the specific site. Based on the vectorization strategy, a series of amino acid-tralopyril conjugates were designed and synthesized as novel proinsecticide candidates, with the potential capability of root uptake and translocation to the foliage of crops. RESULTS Bioassay results showed excellent insecticidal activities of some conjugates, in particular, the conjugates 6b, 6e, and 7e, against the diamondback moth (Plutella xylostella), with equivalent insecticidal activity to chlorfenapyr (CFP). Importantly, conjugate 6e exhibited significantly higher in vivo insecticidal activity against P. xylostella than CFP. Furthermore, the systemic test experiments with Brassica chinensis demonstrated that conjugates 6e and 7e could be transported to the leaves, in contrast to CFP, which remained in the root. CONCLUSION This study demonstrated the feasibility of amino acid fragment conjugation as a vectorization strategy for transporting non-systemic insecticides into the leaves of B. chinensis while maintaining in vivo insecticidal activity. The findings also provide insights for subsequent mechanism studies on the uptake and transport of amino acid-insecticide conjugates in plants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangkai Yao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shuo Han
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yingjie Wen
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuyan Xiao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Zhang X, Tang G, Zhou Z, Wang H, Li X, Yan G, Liu Y, Huang Y, Wang J, Cao Y. Fabrication of Enzyme-Responsive Prodrug Self-Assembly Based on Fluazinam for Reducing Toxicity to Aquatic Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12678-12687. [PMID: 37595273 DOI: 10.1021/acs.jafc.3c03762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Prodrug-based nanodrug delivery systems were drug formulations by covalently conjugating drugs with inversely polar groups via a cleavable bond to self-assemble into nanoparticles for efficient drug delivery. To improve the utilization efficiency of fluazinam (FZN), enzyme-responsive prodrugs were prepared by conjugating FZN with different alkyl aliphatic acids through a nucleophilic substitution reaction and subsequently self-assembled into nanoparticles (FZNP NPs) without using any harmful adjuvant. The obtained FZNP NPs exhibited excellent efficacies against Sclerotinia sclerotiorum as a result of improved physicochemical properties, including low surface tension, high retention, and enhanced photostability. The LC50 values of FZNP NPs toward zebrafish were 3-8 times that of FZN, which illustrated that the FZNP NPs reduced the detriments of FZN to the aquatic organisms while retaining good biological activity. Therefore, prodrug self-assembly technology would offer a potential method for improving the utilization efficiency of pesticides and lowering the risks to the ecological environment.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
19
|
Mattedi A, Sabbi E, Farda B, Djebaili R, Mitra D, Ercole C, Cacchio P, Del Gallo M, Pellegrini M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023; 11:1408. [PMID: 37374910 PMCID: PMC10304952 DOI: 10.3390/microorganisms11061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
With the expansion of the green products market and the worldwide policies and strategies directed toward a green revolution and ecological transition, the demand for innovative approaches is always on the rise. Among the sustainable agricultural approaches, microbial-based products are emerging over time as effective and feasible alternatives to agrochemicals. However, the production, formulation, and commercialization of some products can be challenging. Among the main challenges are the industrial production processes that ensure the quality of the product and its cost on the market. In the context of a circular economy, solid-state fermentation (SSF) might represent a smart approach to obtaining valuable products from waste and by-products. SSF enables the growth of various microorganisms on solid surfaces in the absence or near absence of free-flowing water. It is a valuable and practical method and is used in the food, pharmaceutical, energy, and chemical industries. Nevertheless, the application of this technology in the production of formulations useful in agriculture is still limited. This review summarizes the literature dealing with SSF agricultural applications and the future perspective of its use in sustainable agriculture. The survey showed good potential for SSF to produce biostimulants and biopesticides useful in agriculture.
Collapse
Affiliation(s)
- Alessandro Mattedi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Enrico Sabbi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj 733134, India;
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Paola Cacchio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| |
Collapse
|
20
|
Casey C, Köcher T, Champion C, Jandrasits K, Mosiolek M, Bonnot C, Dolan L. Reduced coenzyme Q synthesis confers non-target site resistance to the herbicide thaxtomin A. PLoS Genet 2023; 19:e1010423. [PMID: 36608112 PMCID: PMC9851558 DOI: 10.1371/journal.pgen.1010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/19/2023] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Herbicide resistance in weeds is a growing threat to global crop production. Non-target site resistance is problematic because a single resistance allele can confer tolerance to many herbicides (cross resistance), and it is often a polygenic trait so it can be difficult to identify the molecular mechanisms involved. Most characterized molecular mechanisms of non-target site resistance are caused by gain-of-function mutations in genes from a few key gene families-the mechanisms of resistance caused by loss-of-function mutations remain unclear. In this study, we first show that the mechanism of non-target site resistance to the herbicide thaxtomin A conferred by loss-of-function of the gene PAM16 is conserved in Marchantia polymorpha, validating its use as a model species with which to study non-target site resistance. To identify mechanisms of non-target site resistance caused by loss-of-function mutations, we generated 107 UV-B mutagenized M. polymorpha spores and screened for resistance to the herbicide thaxtomin A. We isolated 13 thaxtomin A-resistant mutants and found that 3 mutants carried candidate resistance-conferring SNPs in the MpRTN4IP1L gene. Mprtn4ip1l mutants are defective in coenzyme Q biosynthesis and accumulate higher levels of reactive oxygen species (ROS) than wild-type plants. Mutants are weakly resistant to thaxtomin A and cross resistant to isoxaben, suggesting that loss of MpRTN4IP1L function confers non-target site resistance. Mutants are also defective in thaxtomin A metabolism. We conclude that loss of MpRTN4IP1L function is a novel mechanism of non-target site herbicide resistance and propose that other mutations that increase ROS levels or decrease thaxtomin A metabolism could contribute to thaxtomin A resistance in the field.
Collapse
Affiliation(s)
- Chloe Casey
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Gregor Mendel Institute, Vienna, Austria
| | | | - Clément Champion
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | | | - Clémence Bonnot
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Liam Dolan
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Gregor Mendel Institute, Vienna, Austria
- * E-mail:
| |
Collapse
|
21
|
Roodt AP, Schaufelberger S, Schulz R. Aquatic-Terrestrial Insecticide Fluxes: Midges as Neonicotinoid Vectors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:60-70. [PMID: 36205389 DOI: 10.1002/etc.5495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Exposure of freshwater ecosystems to insecticides can negatively impact the development of emerging aquatic insects. These insects serve as an important nutritional subsidy for terrestrial insectivores. Changes in insect emergence phenology (i.e., emergence success and temporal pattern) or fluxes of insecticides retained by the emerging adults have the potential to negatively impact terrestrial food webs. These processes are influenced by contaminant toxicity, lipohilicity, or metabolic processes. The interplay between emergence phenology, contaminant retention through metamorphosis, and associated contaminant flux is not yet understood for current-use insecticides. In a microcosm study, we evaluated the impacts of a 24-h pulse exposure of one of three current-use insecticides, namely pirimicarb, indoxacarb, and thiacloprid, at two environmentally realistic concentration levels on the larval development and emergence of the nonbiting midge Chironomus riparius. In addition, we measured insecticide concentrations in the larvae and adults using ultrahigh performance liquid chromatography coupled to tandem mass spectrometry by electrospray ionization. Exposure to pirimicarb delayed larval development and emergence, and exposure to indoxacarb reduced emergence success. The neonicotinoid thiacloprid had the greatest impact by reducing larval survival and emergence success. At the same time, thiacloprid was the only insecticide measured in the adults with average concentrations of 10.3 and 37.3 ng/g after exposure at 0.1 and 4 µg/L, respectively. In addition, an approximate 30% higher survival to emergence after exposure to 0.1 µg/L relative to a 4-µg/L exposure resulted in a relatively higher flux of thiacloprid, from the aquatic to the terrestrial environment, at the lower exposure. Our experimental results help to explain the impacts of current-use insecticides on aquatic-terrestrial subsidy coupling and indicate the potential for widespread dietary exposure of terrestrial insectivores preying on emerging aquatic insects to the neonicotinoid thiacloprid. Environ Toxicol Chem 2023;42:60-70. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexis P Roodt
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau in der Pfalz, Germany
| | - Sonja Schaufelberger
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau in der Pfalz, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau in der Pfalz, Germany
| |
Collapse
|
22
|
Belakhov VV, Boikova IV, Krasnobaeva IL, Kolodyaznaya VA. Preparation and Insecticidal Activity of Organosulfur Derivatives of β-D-Ribofuranoside. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Yu H, Yang H, Chen L, Wang G, Zhao G, Wang X, Wu H, Shi X, Dong Y, Li B. Route Design and Development of Tetrachlorantraniliprole: Copper-Catalyzed Cyclization and One-Pot Preparation of Pyrazole Acid Chloride. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Haibo Yu
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Huibin Yang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Lin Chen
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Gang Wang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Guimin Zhao
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Xueling Wang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Hongfei Wu
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Xuegeng Shi
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Yan Dong
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| | - Bin Li
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co. Ltd., Shenyang 110021, P. R. China
| |
Collapse
|
24
|
Kim S, Yoon KA, Cho S, Lee J, Lim Y, Lee SH. Molecular and kinetic properties of three acetylcholinesterases in the Varroa mite, Varroa destructor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105277. [PMID: 36464382 DOI: 10.1016/j.pestbp.2022.105277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The Varroa mite, Varroa destructor, poses one of the most serious threats to honey bees worldwide. Although coumaphos, an anticholinesterase pesticide, is widely used for varroa mite control, little information is available on the properties of Varroa mite acetylcholinesterases (VdAChEs). In this study, three putative VdAChEs were annotated and named VdAChE1, VdAChE2, and VdAChE3. All VdAChEs possessed most of the functionally important signature domains, suggesting that they are catalytically active. Phylogenetic analysis revealed that VdAChE1 was clustered into a clade containing most arthropod AChE1s, whereas VdAChE2 and VdAChE3 formed a unique clade with other arachnid AChEs. VdAChE1 was determined to be membrane-anchored, but both VdAChE2 and VdAChE3 are soluble, as judged by electrophoresis in conjunction with western blotting. Tissue-specific transcription profiling revealed that VdAChE1 was most predominantly expressed in the synganglion. In contrast, VdAChE2 was most predominantly expressed in the legs and cuticle. VdAChE3 showed negligible expression levels in all the tissues examined. In a kinetic analysis using recombinant VdAChEs, VdAChE1 exhibited the highest catalytic efficiency, followed by VdAChE2 and VdAChE3. Inhibition experiments revealed that VdAChE1 was most sensitive to all tested inhibitors. Taken together, VdAChE1 appears to be the major synaptic enzyme with a more toxicological relevance, whereas VdAChE2 is involved in other noncatalytic functions, including chemical defense against xenobiotics. Current findings contribute to a more detailed understanding of the evolutionary and functional traits of VdAChEs and to the design of novel anticholinesterase varroacides.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - SuSie Cho
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joonhee Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngcheon Lim
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Tian Y, Huang Y, Zhang X, Tang G, Gao Y, Zhou Z, Li Y, Wang H, Yu X, Li X, Liu Y, Yan G, Wang J, Cao Y. Self-Assembled Nanoparticles of a Prodrug Conjugate Based on Pyrimethanil for Efficient Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11901-11910. [PMID: 36111893 DOI: 10.1021/acs.jafc.2c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembled nanotechnology is a promising strategy for improving the effective utilization of pesticides due to its distinct advantages. Herein, an amide-bonded prodrug conjugate based on pyrimethanil (PYR) and butyric acid (BA) was successfully synthesized by the nucleophilic substitution reaction and subsequently self-assembled into spherical nanoparticles (PB NPs) with an average size of 85 nm through the solvent exchange method without using any toxic adjuvant. The results showed that PB NPs based on PYR and BA had a synergistic antimicrobial activity against S. sclerotiorum on plant leaves due to good photostability, low volatilization, good surface activity, and improved retention. Additionally, PB NPs could be used by plant cells as nutrients to promote the growth of plants and thus reduced the toxicity of PYR to plant. Therefore, this prodrug conjugate self-assembly nanotechnology would provide a promising strategy for improving the effective utilization rates of pesticides and reducing their toxicities to plants.
Collapse
Affiliation(s)
- Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xueyang Yu
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing 100093, China
| |
Collapse
|
26
|
Zhou C, Wang X, Quan X, Cheng J, Li Z, Maienfisch P. Silicon-Containing Complex II Acaricides─Design, Synthesis, and Pharmacological Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11063-11074. [PMID: 35575634 DOI: 10.1021/acs.jafc.2c00804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioisosteric replacement has been proven to be a powerful strategy in life science research. In this review, general aspects of carbon-silicon bioisosteric substitution and its applications in pharmaceutical and crop protection research are described. Carbon and their silicon analogues possess similar intrinsic properties. Replacing carbon with silicon in pharmaceuticals and pesticides has shown to result in positive effects on efficacy and selectivity, physicochemical properties, and bioavailability and also to eliminate or improve human or environmental safety properties as well as to provide novelty and new intellectual property in many cases. Furthermore, the application of carbon-silicon substitution in the search for new complex II acaricides is highlighted. This research led to the discovery of sila-cyflumetofen 23a and other silicon-containing analogues of cyflumetofen that match or exceed the acaricidal activity of cyflumetofen. The molecular design strategy, synthetic aspects, biological activity, computational modeling work, and structure-activity relationships will be discussed.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiaocao Quan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol MCB, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
27
|
Wang Y, Kou S, Huo J, Sun S, Wang Y, Yang H, Zhao S, Tang L, Han L, Zhang J, Chen L. Design, Synthesis, and Evaluation of Novel 4-Chloropyrazole-Based Pyridines as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9327-9336. [PMID: 35856648 DOI: 10.1021/acs.jafc.2c02350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A rational molecular design approach was developed in our laboratory to guide the discovery of novel sterol biosynthesis inhibitors. Based on the application of bioactivities of heterocyclic rings and molecular docking targeting the sterol biosynthesis 14α-demethylase, a series of 4-chloropyrazole-based pyridine derivatives were rationally designed, synthesized, and characterized and their fungicidal activities were also evaluated. Bioassay results showed that 7e, 7f, and 7m exhibited commendable, diverse antifungal actions that are comparable to those of the positive controls imazalil and triadimefon. The active compounds' mode of action was further studied by microscopy observations, Q-PCR, and enzyme inhibition assay and discovered that target compounds affect fungal sterol biosynthesis via disturbing RcCYP51 enzyme system. These findings support that their fungicidal mode of action still targets the cytochrome P450-dependent 14α-demethylase as the molecular design did at first. The above results strongly suggest that our rational molecular design protocol is not only practical but also efficient.
Collapse
Affiliation(s)
- Ying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yanen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Hongwei Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiyong Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
28
|
Slavchev I, Ward JS, Rissanen K, Dobrikov GM, Simeonov S. Base-promoted direct amidation of esters: beyond the current scope and practical applications. RSC Adv 2022; 12:20555-20562. [PMID: 35919171 PMCID: PMC9284525 DOI: 10.1039/d2ra03524c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The base-promoted direct amidation of unactivated esters is among the most useful reactions for amide bond formation in contemporary organic chemistry. The intensive research in this area has led to the development of a number of new methods to achive this transformation. However, to date, the existing literature is more methodological and in many instances lacks practical directions. Therefore, the full potential of this transformation is yet to be revealed by broadening the substrate scope. In a search for new practical applications of the amidation reaction, herein we present a comprehensive study of a number of base-promoted direct amidations that encompass a wide range of amines and esters. Furthermore, we applied our findings in the synthesis of phosphoramidates and several industrially relevant products.
Collapse
Affiliation(s)
- Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 9 Sofia 1113 Bulgaria
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry Survontie 9 B 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry Survontie 9 B 40014 Jyväskylä Finland
| | - Georgi M Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 9 Sofia 1113 Bulgaria
| | - Svilen Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 9 Sofia 1113 Bulgaria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisbon Portugal
| |
Collapse
|
29
|
Khan AT, Mondal S. α-Sulfenylation between 4-Hydroxydithiocoumarin and 1,3-Dicarbonyl Compounds: A Key Precursor for the Synthesis of New Pyrazole Derivatives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractAn efficient synthetic protocol for the α-sulfenylation of 1,3-dicarbonyl compounds is reported through a cross dehydrogenative coupling reaction with 4-hydroxydithiocoumarins in the presence of 10 mol% KI and 1 equiv. TBHP in toluene under reflux conditions. Some of the products are utilized for the synthesis of substituted new pyrazole derivatives on reaction with phenylhydrazine in ethanol at room temperature. In addition, α-benzylation is also achieved on treatment with benzyl bromide using K2CO3/CH3CN under mild conditions. The salient features of the present protocol are good yields, mild reaction conditions, shorter reaction time, no byproducts were formed (sulfoxide/sulfone), and no deacylation occurs during the process. In the present protocol, 4-hydroxydithiocoumarin is converted into a suitable electrophile through a radical substitution pathway, which undergoes ultimately C–S bond formation with 1,3-dicarbonyl compounds by a nucleophilic substitution reaction.
Collapse
|
30
|
Wang B, Yang C, Jiang X, Wen Y, Tian Y, Zhao C, Xu H. Design of new glycosyl-O-fipronil conjugates with improved hydrolysis efficiency assisted by molecular simulations. PEST MANAGEMENT SCIENCE 2022; 78:2667-2678. [PMID: 35365912 DOI: 10.1002/ps.6898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In a previous study, we showed that two glycosyl-pesticide conjugates with a β-d-glucoside moiety, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl)-sulfinyl]-1H-pyrazol-5-yl}-2-aminoethyl-β-d-glucopyranoside (GOF) and N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazol-5-yl}-1-(2-triazolethyl-β-d-glucopyranoside)-1H-1,2,3-triazole-4-methanamine (GOTF), can move in the phloem and be hydrolyzed by β-glucosidase at different rates. Simulations were carried out to investigate differences in the hydrolysis process in GOF, GOTF and p-nitrophenyl β-d-glucopyranoside (pNPG). A new series of glycosyl-O-fipronil conjugates was then designed and synthesized based on the simulation results. The phloem mobilities of the new conjugates were examined using a Ricinus model, and their hydrolysis efficiencies based on β-glucosidase were determined. RESULTS New glycosyl-O-fipronil conjugates GOE2-6 were designed and synthesized. To reduce steric hindrance, the conjugating site of the glycone moiety was moved to the 4'-sulfonyl group on the pyrrole ring. As a result, the hydrolysis efficiencies of the new conjugates were significantly improved, with GOE4 having the highest hydrolysis efficiency. All five conjugates could be transported in Ricinus phloem sap, consistent with previously studied glycosyl-O-fipronil conjugates. The insecticidal activities of the conjugates were tested against Plutella xylostella. CONCLUSION A strategy for the development of new phloem-mobile pesticides was proposed: linking a glycosyl group to the existing pesticide structure with a linear alkyl connection approximately four carbons in length. The resultant conjugates feature not only good phloem mobility, but also potential high bioactivity due to the efficient release of active pesticide components under the action of glucosidase. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou, People's Republic of China
| | - Yingjie Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology (Ministry of Education), South China Agricultural University, Guangzhou, People's Republic of China
| | - Yongqing Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology (Ministry of Education), South China Agricultural University, Guangzhou, People's Republic of China
| | - Chen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology (Ministry of Education), South China Agricultural University, Guangzhou, People's Republic of China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology (Ministry of Education), South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
31
|
Duke SO, Dayan FE. The search for new herbicide mechanisms of action: Is there a 'holy grail'? PEST MANAGEMENT SCIENCE 2022; 78:1303-1313. [PMID: 34796620 DOI: 10.1002/ps.6726] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
New herbicide modes of action (MOAs) are in great demand because of the burgeoning evolution of resistance of weeds to existing commercial herbicides. This need has been exacerbated by the almost complete lack of introduction of herbicides with new MOAs for almost 40 years. There are many highly phytotoxic compounds with MOAs not represented by commercial herbicides, but neither these compounds nor structural analogues have been developed as herbicides for a variety of reasons. Natural products provide knowledge of many MOAs that are not being utilized by commercial herbicides. Other means of identifying new herbicide targets are discussed, including pharmaceutical target sites and metabolomic and proteomic information, as well as the use of artificial intelligence and machine learning to predict herbicidal compounds with new MOAs. Information about several newly discovered herbicidal compounds with new MOAs is summarized. The currently increased efforts of both established companies and start-up companies are likely to result in herbicides with new MOAs that can be used in herbicide resistance management within the next decade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
32
|
Affiliation(s)
- Peter Jeschke
- Bayer AG Research & Development, Crop Science Pest Control Chemistry Alfred-Nobel-Str. 50 40789 Monheim Germany
| |
Collapse
|
33
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
34
|
He Y, Zhang B, Wu Y, Ouyang J, Huang M, Lu S, Sun H, Zhang T. A pilot nationwide baseline survey on the concentrations of Neonicotinoid insecticides in tap water from China: Implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118117. [PMID: 34534832 DOI: 10.1016/j.envpol.2021.118117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids (NEOs) have become the most widely used insecticides in the world. However, information on the NEO concentrations in tap water based on nationwide surveys is limited in China. In this study, the levels of six NEOs were measured in tap water samples collected from 38 cities in China. Across all sampling locations, the overall frequency of detection for at least one NEO was 100%, indicating that NEOs are ubiquitous in tap water from China. Imidacloprid was the most abundant NEO (median: 7.59 ng/L), followed by (in decreasing order) clothianidin (5.46 ng/L), dinotefuran (4.55 ng/L), thiamethoxam (4.50 ng/L), acetamiprid (2.72 ng/L), and thiacloprid (0.38 ng/L). Significantly positive correlations (r = 0.655-0.902, p < 0.001) among all pairs of NEOs were observed, which showed that the sources of NEOs in tap water were common or related. Across all sampling locations, regional differences in concentrations (ΣNEOs; sum of six NEOs varied from 0.79 ng/L to 415 ng/L) were observed within China, showing an increasing trend from northern to southern China. Although the estimated daily intake of NEOs were much lower than the reference dose, the potential health risk of NEOs via tap water consumption should raise more public concern considering the high detection rates of NEOs in tap water.
Collapse
Affiliation(s)
- Yuan He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Yili Wu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Jiping Ouyang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China.
| |
Collapse
|
35
|
Krähmer H, Walter H, Jeschke P, Haaf K, Baur P, Evans R. What makes a molecule a pre- or a post-herbicide - how valuable are physicochemical parameters for their design? PEST MANAGEMENT SCIENCE 2021; 77:4863-4873. [PMID: 34176232 PMCID: PMC8519102 DOI: 10.1002/ps.6535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 05/26/2023]
Abstract
Pre-emergence herbicides are taken up by seeds before germination and by roots, hypocotyls, cotyledons, coleoptiles or leaves before emergence, whereas post-emergence herbicides are taken up primarily by foliage and stems. Most modern pre-emergence herbicides are lipophilic, but post-emergence herbicides may be lipophilic or hydrophilic. The metabolic conversion of herbicides to inactive or active metabolites after plant uptake is of major importance for some compound classes. Several herbicides are proherbicides as for example some acetyl-coenzyme A carboxylase (ACCase)-inhibitors. The physicochemical characteristics of proherbicides and herbicides are usually unrelated. A major role can be attributed to the site of action at a cellular level. A great number of herbicides such as photosystem II (PS II)-inhibitors, protoporphyrinogen oxidase (PPO)-inhibitors or carotenoid biosynthesis inhibitors require light for activity. Others, such as cellulose-biosynthesis and mitotic inhibitors seem to be primarily active in belowground organs. Several lipophilic barriers against the uptake of xenobiotics exist in aboveground and belowground plant parts. The relevance of these barriers needs, however, further clarification. Uptake and translocation models are valuable tools for the explanation of the potential movement of compounds. Many factors other than uptake and translocation have, however, to be considered for the design of herbicides. For post-emergence herbicides, ultraviolet (UV) light stability, stability in formulations, and mixability with other agrochemicals have to be kept in mind while, in addition to the aforementioned factors soil interaction plays a major role for pre-emergence herbicides. In our opinion, general physicochemical characteristics of pre- or post-emergence herbicides do, unfortunately not exist yet. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Peter Jeschke
- Research & Development, Crop Science, Pest Control ChemistryBayer AGMonheim am RheinGermany
| | - Klaus Haaf
- Research & Development, Crop Science, Weed Control ChemistryBayer AGFrankfurt am MainGermany
| | - Peter Baur
- CropPromotion AdviceSchondorf am AmmerseeGermany
| | | |
Collapse
|
36
|
Mari G, Corrieri M, De Crescentini L, Favi G, Santeusanio S, Mantellini F. FeCl
3
‐Catalyzed Formal [3+2] Cyclodimerization of 4‐Carbonyl‐1,2‐diaza‐1,3‐dienes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Matteo Corrieri
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
37
|
David MD. The potential of pro-insecticides for resistance management. PEST MANAGEMENT SCIENCE 2021; 77:3631-3636. [PMID: 33729660 DOI: 10.1002/ps.6369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Pro-insecticides have been a significant part of the insecticide market for decades. Bioactivation of such compounds is generally an enzyme-controlled process, in which the target insect metabolizes the pro-form into an active compound. This approach has several potential advantages, including improved bio-kinetic properties and safety profiles of the pro-insecticide relative to the active form. A less common advantage of pro-insecticides is increased activity on metabolically resistant strains. Specific cases in which a pro-insecticide demonstrates negative cross-resistance (NCR) on a metabolically resistant strain due to increased bioactivation of the pro-insecticide have been noted sporadically over the past 50+ years but have not been reviewed before. The purpose of this mini-review is to catalog the cases in which a pro-insecticide demonstrated improved activity on an insect strain resistant to a second insecticide via a metabolic mechanism. Cases are relatively rare, but where it does occur the mechanism of NCR is generally recognized as being due to the increased metabolic activity of the resistant strain. These observations can provide learnings with potential application for resistance management if the correct pro-insecticide is selected for a resistant strain which is better able to bioactivate it. A better understanding of the bioactivation of pro-insecticides by resistant insects could also aid in insecticide discovery, potentially leading to improved pro-insecticide design. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael D David
- BASF Global Insecticide Research, Research Triangle Park, NC, USA
| |
Collapse
|
38
|
Vectorizing Pro-Insecticide: Influence of Linker Length on Insecticidal Activity and Phloem Mobility of New Tralopyril Derivatives. Molecules 2021; 26:molecules26154570. [PMID: 34361721 PMCID: PMC8348000 DOI: 10.3390/molecules26154570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
To improve the proinsecticidal activity and phloem mobility of amino acid–tralopyril conjugates further, nine conjugates were designed and synthesized by introducing glutamic acid to tralopyril, and the length of the linker between glutamic acid and tralopyril ranged from 2 atoms to 10 atoms. The results of insecticidal activity against the third-instar larvae of P. xylostella showed that conjugates 42, 43, 44,and 45 (straight-chain containing 2–5 atoms) exhibited good insecticidal activity, and their LC50 values were 0.2397 ± 0.0366, 0.4413 ± 0.0647, 0.4400 ± 0.0624, and 0.4602 ± 0.0655 mM, respectively. The concentrations of conjugates 43–45 were higher than that of conjugate 42 in the phloem sap at 2 h, and conjugate 43 showed the highest concentration. The introduction of glutamic acid can improve phloem mobility. The in vivo metabolism of conjugates 42 and 43 was investigated in P. xylostella, and the parent compound tralopyril was detected at concentrations of 0.5950 and 0.3172 nmol/kg, respectively. According to the above results, conjugates 42 and 43 were potential phloem mobile pro-insecticide candidates.
Collapse
|
39
|
Iarocz LEB, Silva MS. Nuclear magnetic resonance chiral discrimination of fipronil and malathion agrochemicals: A case study. Chirality 2021; 33:528-534. [PMID: 34184332 DOI: 10.1002/chir.23336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/12/2022]
Abstract
The aim of the present study was to optimize a protocol for nuclear magnetic resonance (NMR) chiral discrimination to be used to determine the enantiomers ratio of agrochemicals. For this goal, the commercial agrochemicals fipronil and malathion were employed as active targets due the distinct physicochemical properties. We used the cyclodextrins to evaluate the chiral discrimination in aqueous media and chiral solvent agents to check in organic media. The fipronil chiral discrimination was accessed by β-CD in aqueous solution, although this procedure was ineffective for malathion due the low solubility. In organic media, the NMR chiral discrimination was successful for both agrochemicals and sensitive to dilution process. The NMR experiments explore very sensitive nuclei, for instance 1 H, 19 F, and 31 P, in a simple, practical and low residue experimental protocol.
Collapse
Affiliation(s)
- Lucas E B Iarocz
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas-UFPel, Capão do Leão, Brazil
| | - Márcio S Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas-UFPel, Capão do Leão, Brazil
| |
Collapse
|
40
|
Reduced proinsecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite Varroa destructor. Proc Natl Acad Sci U S A 2021; 118:2020380118. [PMID: 33547243 DOI: 10.1073/pnas.2020380118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Varroa destructor is one of the main problems in modern beekeeping. Highly selective acaricides with low toxicity to bees are used internationally to control this mite. One of the key acaricides is the organophosphorus (OP) proinsecticide coumaphos, that becomes toxic after enzymatic activation inside Varroa We show here that mites from the island Andros (AN-CR) exhibit high levels of coumaphos resistance. Resistance is not mediated by decreased coumaphos uptake, target-site resistance, or increased detoxification. Reduced proinsecticide activation by a cytochrome P450 enzyme was the main resistance mechanism, a powerful and rarely encountered evolutionary solution to insecticide selection pressure. After treatment with sublethal doses of [14C] coumaphos, susceptible mite extracts had substantial amounts of coroxon, the activated metabolite of coumaphos, while resistant mites had only trace amounts. This indicates a suppression of the P450 (CYP)-mediated activation step in the AN-CR mites. Bioassays with coroxon to bypass the activation step showed that resistance was dramatically reduced. There are 26 CYPs present in the V. destructor genome. Transcriptome analysis revealed overexpression in resistant mites of CYP4DP24 and underexpression of CYP3012A6 and CYP4EP4 RNA interference of CYP4EP4 in the susceptible population, to mimic underexpression seen in the resistant mites, prevented coumaphos activation and decreased coumaphos toxicity.
Collapse
|
41
|
Khrapova KO, Telezhkin AA, Volkov PA, Larina LI, Pavlov DV, Gusarova NK, Trofimov BA. Oxidative cross-coupling of secondary phosphine chalcogenides with amino alcohols and aminophenols: aspects of the reaction chemoselectivity. Org Biomol Chem 2021; 19:5098-5107. [PMID: 33861297 DOI: 10.1039/d1ob00287b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Secondary phosphine chalcogenides react with primary amino alcohols under mild conditions (room temperature, molar ratio of the initial reagents 1 : 1) in a CCl4/Et3N oxidizing system to chemoselectively deliver amides of chalcogenophosphinic acids with free OH groups. Under similar conditions, mono-cross-coupling between secondary phosphine chalcogenides and 1,2- or 1,3-aminophenols proceeds only with the participation of phenolic hydroxyl to give aminophenylchalcogenophosphinic O-esters. The yields of the synthesized functional amides or esters are 60-85%.
Collapse
Affiliation(s)
- Kseniya O Khrapova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Anton A Telezhkin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Pavel A Volkov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Lyudmila I Larina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Dmitry V Pavlov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Nina K Gusarova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russian Federation.
| |
Collapse
|
42
|
Synthetic approaches to the 2015-2018 new agrochemicals. Bioorg Med Chem 2021; 39:116162. [PMID: 33895705 DOI: 10.1016/j.bmc.2021.116162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
In this review, the synthesis of 33 agrochemicals that received an international standardization organization (ISO) name between January 2015 and December 2018 is described. The aim is to showcase the broad range and scope of reactions, reagents and intermediates used to discover and produce the latest active ingredients addressing the crop protection industry's needs.
Collapse
|
43
|
Negrel J, Klinguer A, Adrian M. In vitro inhibition of shikimate hydroxycinnamoyltransferase by acibenzolar acid, the first metabolite of the plant defence inducer acibenzolar-S-methyl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:119-127. [PMID: 33836466 DOI: 10.1016/j.plaphy.2021.03.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Acibenzolar acid, the first metabolite formed in planta from the defence inducer acibenzolar-S-methyl (ASM), has been shown to be an inhibitor of the enzyme shikimate hydroxycinnamoyltransferase (HST), extracted from grapevine or tobacco cell suspension cultures. Using a purified recombinant Arabidopsis thaliana HST, the inhibition was found to be competitive, acibenzolar acid binding reversibly to the shikimate binding site of the HST:p-coumaroyl-CoA complex, with a Ki value of 250 μM. The other hydroxycinnamoyltransferases tested in the course of this study, using either hydroxypalmitic acid, putrescine, tyramine, or quinic acid as acyl acceptors were not, or only slightly, inhibited by acibenzolar acid. To understand the specificity of the interaction of acibenzolar acid with HST, we analyzed the structure-activity relationship of a series of benzoic or acibenzolar acid analogues, tested either as AtHST substrates or as inhibitors. This analysis confirmed previously published data on the substrate flexibility of HST and demonstrated that both the carboxyl group and the thiadiazole moiety of acibenzolar acid are playing an important role in the interaction with the shikimate binding site. Acibenzolar acid, which cannot form an ester bond with p-coumaric acid, was however a less potent inhibitor than protocatechuic or 3-hydroxybenzoic acids, which are used as acyl acceptors by HST. Our results show that the interaction of acibenzolar acid with HST, which is probably directly linked to the substrate promiscuity of HST, is unlikely to play a direct role in the defence-inducing properties of ASM in plants.
Collapse
Affiliation(s)
- Jonathan Negrel
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche- Comté, F-21000 Dijon, France.
| |
Collapse
|
44
|
Beretta M, Rouchaud E, Nicolas L, Vors JP, Dröge T, Es-Sayed M, Beau JM, Norsikian S. N-Glycosylation with sulfoxide donors for the synthesis of peptidonucleosides. Org Biomol Chem 2021; 19:4285-4291. [PMID: 33885694 DOI: 10.1039/d1ob00493j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of glycopyranosyl nucleosides modified in the sugar moiety has been less frequently explored, notably because of the lack of a reliable method to glycosylate pyrimidine bases. Herein we report a solution in the context of the synthesis of peptidonucleosides. They were obtained after glycosylation of different pyrimidine nucleobases with glucopyranosyl donors carrying an azide group at the C4 position. A methodological study involving different anomeric leaving groups (acetate, phenylsulfoxide and ortho-hexynylbenzoate) showed that a sulfoxide donor in combination with trimethylsilyl triflate as the promoter led to the best yields.
Collapse
Affiliation(s)
- Margaux Beretta
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wright JS, Scott PJH, Steel PG. Iridium-Catalysed C-H Borylation of Heteroarenes: Balancing Steric and Electronic Regiocontrol. Angew Chem Int Ed Engl 2021; 60:2796-2821. [PMID: 32202024 PMCID: PMC7894576 DOI: 10.1002/anie.202001520] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The iridium-catalysed borylation of aromatic C-H bonds has become the preferred method for the synthesis of aromatic organoboron compounds. The reaction is highly efficient, tolerant of a broad range of substituents and can be applied to both carbocyclic and heterocyclic substrates. The regioselectivity of C-H activation is dominated by steric considerations and there have been considerable efforts to develop more selective processes for less constrained substrates. However, most of these have focused on benzenoid-type substrates and in contrast, heteroarenes remain much desired but more challenging substrates with the position and/or nature of the heteroatom(s) significantly affecting reactivity and regioselectivity. This review will survey the borylation of heteroarenes, focusing on the influence of steric and electronic effects on regiochemical outcome and, by linking to current mechanistic understandings, will provide insights to what is currently possible and where further developments are required.
Collapse
Affiliation(s)
- Jay S. Wright
- Department of ChemistryUniversity of DurhamScience Laboratories, South Road DurhamDurhamDH1 3LEUK
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Patrick G. Steel
- Department of ChemistryUniversity of DurhamScience Laboratories, South Road DurhamDurhamDH1 3LEUK
| |
Collapse
|
46
|
Kazmierczak JC, Cargnelutti R, Barcellos T, Silveira CC, Schumacher RF. Selective synthesis of α-organylthio esters and α-organylthio ketones from β-keto esters and sodium S-organyl sulfurothioates under basic conditions. Beilstein J Org Chem 2021; 17:234-244. [PMID: 33564334 PMCID: PMC7849251 DOI: 10.3762/bjoc.17.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 11/23/2022] Open
Abstract
We described herein a selective method to prepare α-organylthio esters and α-organylthio ketones by the reaction of β-keto esters with sodium S-benzyl sulfurothioate or sodium S-alkyl sulfurothioate (Bunte salts) under basic conditions in toluene as the solvent at 100 °C. When 4 equivalents of a base were used, a series of differently substituted α-thio esters were obtained with up to 90% yield. On the other hand, employing 2 equivalents of a base, α-thio ketones were achieved after 18 h under air. Furthermore, after a shorter reaction time, the isolation of keto-enol tautomers was possible, revealing them as significant intermediates for the mechanism elucidation.
Collapse
Affiliation(s)
- Jean C Kazmierczak
- Departamento de Química, CCNE, Universidade Federal de Santa Maria–UFSM, Santa Maria, 97105-900, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE, Universidade Federal de Santa Maria–UFSM, Santa Maria, 97105-900, RS, Brazil
| | - Thiago Barcellos
- Instituto de Biotecnologia Universidade de Caxias do Sul–UCS, Caxias do Sul, RS, Brazil
| | - Claudio C Silveira
- Departamento de Química, CCNE, Universidade Federal de Santa Maria–UFSM, Santa Maria, 97105-900, RS, Brazil
| | - Ricardo F Schumacher
- Departamento de Química, CCNE, Universidade Federal de Santa Maria–UFSM, Santa Maria, 97105-900, RS, Brazil
| |
Collapse
|
47
|
Shao X, Lai D, Xiao W, Yang W, Yan Y, Kuang S. The botanical eurycomanone is a potent growth regulator of the diamondback moth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111647. [PMID: 33396167 DOI: 10.1016/j.ecoenv.2020.111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Eurycomanone is a quassinoid compound that is derived from Eurycoma longifolia, and it is often used as an indicator to evaluate the active ingredients of Eurycoma longifolia. However, Eurycomanone has rarely been reported to have biological activity toward pests. In this study, we evaluated the antifeedant activity of eurycomanone against the diamondback moth(Plutella xylostella), with a non-selective AFC50(the concentration that corresponds to 50% antifeedant action) value and selective AFC50 of 17.5 mg/L and 14.2 mg/L, respectively, which were 2.1-fold (36.9 mg/L) and 2-fold (28.5 mg/L) lower than that of azadirachtin, respectively. In addition, eurycomanone was used to treat the roots of Brassica chinensis L. at a concentration of 100 µg/g for 72 h. The antifeedant index was found to reach 93% by tracking the leaves. After feeding with 20 µg/g eurycomanone, no pupae or eclosion were observed. To explore this mechanism, we used scanning electron microscopy to discover that eurycomanone could prevent the development of taste receptors on the maxillary palp of diamondback moth larvae. Additional electrophysiological measurements showed that eurycomanone exhibited excitatory action to the central taste neurons of diamondback moth and significantly inhibited the GABAA receptor current. Eurycomanone exhibited significant activity as an antifeedant, inhibited growth and excelled at systemic absorption.
Collapse
Affiliation(s)
- Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiqiang Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiqun Yang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China.
| | - Shizi Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
48
|
|
49
|
Jeschke P. Status and outlook for acaricide and insecticide discovery. PEST MANAGEMENT SCIENCE 2021; 77:64-76. [PMID: 32926594 PMCID: PMC7756306 DOI: 10.1002/ps.6084] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 05/03/2023]
Abstract
To guarantee sustainability and progress, the agrochemical industry is faced with several major challenges. Currently, loss of active ingredients due to consumer perception, changing grower needs and ever-changing regulatory requirements is far higher than the number being introduced into the market. Therefore, there is a need to develop new products that can provide improved efficacy, selectivity and favorable environmental profiles. Strategies to achieve these goals are the search for acaricides and insecticides with new modes of action, or the discovery of novel molecules with activity on the most attractive target sites having resistance breaking properties against pest species. In this context, the introduction of halogen atoms or asymmetric centers into an active ingredient remains an important tool to modulate their properties, but so too is the pro-pesticide concept. This review gives an overview of agrochemicals launched over the past 8 years, reflects new insights into known mechanisms of action, and describes the status and outlook for acaricide and insecticide discovery.
Collapse
Affiliation(s)
- Peter Jeschke
- Bayer AG, Research & Development, Crop SciencePest Control ChemistryMonheim am RheinGermany
| |
Collapse
|
50
|
Dimaano NG, Iwakami S. Cytochrome P450-mediated herbicide metabolism in plants: current understanding and prospects. PEST MANAGEMENT SCIENCE 2021; 77:22-32. [PMID: 32776423 DOI: 10.1002/ps.6040] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450s (P450s) have been at the center of herbicide metabolism research as a result of their ability to endow selectivity in crops and resistance in weeds. In the last 20 years, ≈30 P450s from diverse plant species have been revealed to possess herbicide-metabolizing function, some of which were demonstrated to play a key role in plant herbicide sensitivity. Recent research even demonstrated that some P450s from crops and weeds metabolize numerous herbicides from various chemical backbones, which highlights the importance of P450s in the current agricultural systems. However, due to the enormous number of plant P450s and the complexity of their function, expression and regulation, it remains a challenge to fully explore the potential of P450-mediated herbicide metabolism in crop improvement and herbicide resistance mitigation. Differences in the substrate specificity of each herbicide-metabolizing P450 are now evident. Comparisons of the substrate specificity and protein structures of P450s will be beneficial for the discovery of selective herbicides and may lead to the development of crops with higher herbicide tolerance by transgenics or genome-editing technologies. Furthermore, the knowledge will help design sound management strategies for weed resistance including the prediction of cross-resistance patterns. Overcoming the ambiguity of P450 function in plant xenobiotic pathways will unlock the full potential of this enzyme family in advancing global agriculture and food security. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Niña Gracel Dimaano
- College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Philippines
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|