1
|
Souza VVD, Moreira DP, Braz-Mota S, Valente W, Cotta GC, Rodrigues MDS, Nóbrega RH, Corrêa RDS, Hoyos DCDM, Sanches EA, Val AL, Lacerda SMDSN. Simulated climate change and atrazine contamination can synergistically impair zebrafish testicular function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174173. [PMID: 38925398 DOI: 10.1016/j.scitotenv.2024.174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Davidson Peruci Moreira
- Laboratory of Ichthiohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | - Wanderson Valente
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Caldeira Cotta
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rebeca Dias Serafim Corrêa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eduardo Antônio Sanches
- Faculty of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Brazil
| | - Adalberto Luís Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | | |
Collapse
|
2
|
Höfer M, Schäfer M, Wang Y, Wink S, Xu S. Genetic Mechanism of Non-Targeted-Site Resistance to Diquat in Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:845. [PMID: 38592881 PMCID: PMC10975167 DOI: 10.3390/plants13060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Understanding non-target-site resistance (NTSR) to herbicides represents a pressing challenge as NTSR is widespread in many weeds. Using giant duckweed (Spirodela polyrhiza) as a model, we systematically investigated genetic and molecular mechanisms of diquat resistance, which can only be achieved via NTSR. Quantifying the diquat resistance of 138 genotypes, we revealed an 8.5-fold difference in resistance levels between the most resistant and most susceptible genotypes. Further experiments suggested that diquat uptake and antioxidant-related processes jointly contributed to diquat resistance in S. polyrhiza. Using a genome-wide association approach, we identified several candidate genes, including a homolog of dienelactone hydrolase, that are associated with diquat resistance in S. polyrhiza. Together, these results provide new insights into the mechanisms and evolution of NTSR in plants.
Collapse
Affiliation(s)
- Martin Höfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Martin Schäfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Yangzi Wang
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Samuel Wink
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Shuqing Xu
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| |
Collapse
|
3
|
Gupta S, Harkess A, Soble A, Van Etten M, Leebens-Mack J, Baucom RS. Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. THE NEW PHYTOLOGIST 2023; 238:1263-1277. [PMID: 36721257 DOI: 10.1111/nph.18782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide-resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by-product of genetic hitchhiking.
Collapse
Affiliation(s)
- Sonal Gupta
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Alex Harkess
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Anah Soble
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| | - Megan Van Etten
- Biology Department, Pennsylvania State University, Dunmore, PA, 18512, USA
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Regina S Baucom
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Steward KF, Refai M, Dyer WE, Copié V, Lachowiec J, Bothner B. Acute stress reduces population-level metabolic and proteomic variation. BMC Bioinformatics 2023; 24:87. [PMID: 36882728 PMCID: PMC9993721 DOI: 10.1186/s12859-023-05185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Variation in omics data due to intrinsic biological stochasticity is often viewed as a challenging and undesirable feature of complex systems analyses. In fact, numerous statistical methods are utilized to minimize the variation among biological replicates. RESULTS We demonstrate that the common statistics relative standard deviation (RSD) and coefficient of variation (CV), which are often used for quality control or part of a larger pipeline in omics analyses, can also be used as a metric of a physiological stress response. Using an approach we term Replicate Variation Analysis (RVA), we demonstrate that acute physiological stress leads to feature-wide canalization of CV profiles of metabolomes and proteomes across biological replicates. Canalization is the repression of variation between replicates, which increases phenotypic similarity. Multiple in-house mass spectrometry omics datasets in addition to publicly available data were analyzed to assess changes in CV profiles in plants, animals, and microorganisms. In addition, proteomics data sets were evaluated utilizing RVA to identify functionality of reduced CV proteins. CONCLUSIONS RVA provides a foundation for understanding omics level shifts that occur in response to cellular stress. This approach to data analysis helps characterize stress response and recovery, and could be deployed to detect populations under stress, monitor health status, and conduct environmental monitoring.
Collapse
Affiliation(s)
- Katherine F Steward
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Mohammed Refai
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - William E Dyer
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.,Thermal Biology Institute, Montana State University, Bozeman, USA
| | - Jennifer Lachowiec
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA. .,Thermal Biology Institute, Montana State University, Bozeman, USA.
| |
Collapse
|
5
|
Reinert S. Quantitative genetics of pleiotropy and its potential for plant sciences. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153784. [PMID: 35944292 DOI: 10.1016/j.jplph.2022.153784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stephan Reinert
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Division of Biochemistry, Biocomputing Lab, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
Comont D, MacGregor DR, Crook L, Hull R, Nguyen L, Freckleton RP, Childs DZ, Neve P. Dissecting weed adaptation: Fitness and trait correlations in herbicide-resistant Alopecurus myosuroides. PEST MANAGEMENT SCIENCE 2022; 78:3039-3050. [PMID: 35437938 PMCID: PMC9324217 DOI: 10.1002/ps.6930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Unravelling the genetic architecture of non-target-site resistance (NTSR) traits in weed populations can inform questions about the inheritance, trade-offs and fitness costs associated with these traits. Classical quantitative genetics approaches allow study of the genetic architecture of polygenic traits even where the genetic basis of adaptation remains unknown. These approaches have the potential to overcome some of the limitations of previous studies into the genetics and fitness of NTSR. RESULTS Using a quantitative genetic analysis of 400 pedigreed Alopecurus myosuroides seed families from nine field-collected populations, we found strong heritability for resistance to the acetolactate synthase and acetyl CoA carboxylase inhibitors (h2 = 0.731 and 0.938, respectively), and evidence for shared additive genetic variance for resistance to these two different herbicide modes of action, rg = 0.34 (survival), 0.38 (biomass). We find no evidence for genetic correlations between life-history traits and herbicide resistance, indicating that resistance to these two modes of action is not associated with large fitness costs in blackgrass. We do, however, demonstrate that phenotypic variation in plant flowering characteristics is heritable, h2 = 0.213 (flower height), 0.529 (flower head number), 0.449 (time to flowering) and 0.372 (time to seed shed), demonstrating the potential for adaptation to other nonchemical management practices (e.g. mowing of flowering heads) now being adopted for blackgrass control. CONCLUSION These results highlight that quantitative genetics can provide important insight into the inheritance and genetic architecture of NTSR, and can be used alongside emerging molecular techniques to better understand the evolutionary and fitness landscape of herbicide resistance. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David Comont
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Dana R MacGregor
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
- Department of BiosciencesUniversity of DurhamDurhamUK
| | - Laura Crook
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Richard Hull
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Lieselot Nguyen
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Robert P Freckleton
- Department of Animal and Plant SciencesUniversity of SheffieldSouth YorkshireUK
| | - Dylan Z Childs
- Department of Animal and Plant SciencesUniversity of SheffieldSouth YorkshireUK
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
- Department of Plant and Environmental Sciences, Section for Crop SciencesUniversity of CopenhagenTaastrupDenmark
| |
Collapse
|
7
|
Goggin DE, Cawthray GR, Busi R, Porri A, Beckie HJ. Enhanced production of water-soluble cinmethylin metabolites by Lolium rigidum populations with reduced cinmethylin sensitivity. PEST MANAGEMENT SCIENCE 2022; 78:3173-3182. [PMID: 35470951 PMCID: PMC9325456 DOI: 10.1002/ps.6947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cinmethylin, a pre-emergence herbicide inhibiting fatty acid thioesterase activity, has recently been introduced to Australian cereal cropping for the control of Lolium rigidum Gaud. (annual ryegrass). To date, there have been no confirmed cases of cinmethylin resistance identified in this species, but some populations exhibit reduced sensitivity to this herbicide. To explore the mechanism which contributes to reduced sensitivity of annual ryegrass to cinmethylin, the extent and nature of cinmethylin metabolism, using carbon-14 (14 C)-labelled herbicide, were analysed in three reduced-sensitivity annual ryegrass populations, alongside a susceptible population and cinmethylin-tolerant wheat as controls. RESULTS All samples showed the same metabolite profile, with the extent of production of a specific water-soluble metabolite being correlated to the level of herbicide sensitivity. Application of the cytochrome P450 inhibitor phorate caused a decrease in water-soluble metabolite production as well as seedling growth in the presence of cinmethylin, indicating that reduced cinmethylin sensitivity in annual ryegrass could be wholly or partially due to oxidative modification of cinmethylin. CONCLUSION Because annual ryegrass has the potential to metabolize cinmethylin in the same way as wheat, careful stewardship is required to ensure the longevity of this herbicide. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Danica E Goggin
- Australian Herbicide Resistance Initiative, School of Agriculture and EnvironmentUniversity of Western AustraliaPerthAustralia
| | - Gregory R Cawthray
- School of Biological SciencesUniversity of Western AustraliaPerthAustralia
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and EnvironmentUniversity of Western AustraliaPerthAustralia
| | | | - Hugh J Beckie
- Australian Herbicide Resistance Initiative, School of Agriculture and EnvironmentUniversity of Western AustraliaPerthAustralia
| |
Collapse
|
8
|
Concepcion JCT, Kaundun SS, Morris JA, Hutchings S, Strom SA, Lygin AV, Riechers DE. Resistance to a nonselective 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide via novel reduction-dehydration-glutathione conjugation in Amaranthus tuberculatus. THE NEW PHYTOLOGIST 2021; 232:2089-2105. [PMID: 34480751 PMCID: PMC9292532 DOI: 10.1111/nph.17708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 05/06/2023]
Abstract
Metabolic resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides is a threat in controlling waterhemp (Amaranthus tuberculatus) in the USA. We investigated resistance mechanisms to syncarpic acid-3 (SA3), a nonselective, noncommercial HPPD-inhibiting herbicide metabolically robust to Phase I oxidation, in multiple-herbicide-resistant (MHR) waterhemp populations (SIR and NEB) and HPPD inhibitor-sensitive populations (ACR and SEN). Dose-response experiments with SA3 provided ED50 -based resistant : sensitive ratios of at least 18-fold. Metabolism experiments quantifying parent SA3 remaining in excised leaves during a time course indicated MHR populations displayed faster rates of SA3 metabolism compared to HPPD inhibitor-sensitive populations. SA3 metabolites were identified via LC-MS-based untargeted metabolomics in whole plants. A Phase I metabolite, likely generated by cytochrome P450-mediated alkyl hydroxylation, was detected but was not associated with resistance. A Phase I metabolite consistent with ketone reduction followed by water elimination was detected, creating a putative α,β-unsaturated carbonyl resembling a Michael acceptor site. A Phase II glutathione-SA3 conjugate was associated with resistance. Our results revealed a novel reduction-dehydration-GSH conjugation detoxification mechanism. SA3 metabolism in MHR waterhemp is thus atypical compared to commercial HPPD-inhibiting herbicides. This previously uncharacterized detoxification mechanism presents a unique opportunity for future biorational design by blocking known sites of herbicide metabolism in weeds.
Collapse
Affiliation(s)
| | - Shiv S. Kaundun
- Herbicide BioscienceSyngentaJealott’s Hill International Research CentreBracknell,RG42 6EYUK
| | - James A. Morris
- Herbicide BioscienceSyngentaJealott’s Hill International Research CentreBracknell,RG42 6EYUK
| | - Sarah‐Jane Hutchings
- Herbicide BioscienceSyngentaJealott’s Hill International Research CentreBracknell,RG42 6EYUK
| | - Seth A. Strom
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Anatoli V. Lygin
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Dean E. Riechers
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
9
|
Kreiner JM, Tranel PJ, Weigel D, Stinchcombe JR, Wright SI. The genetic architecture and population genomic signatures of glyphosate resistance in Amaranthus tuberculatus. Mol Ecol 2021; 30:5373-5389. [PMID: 33853196 DOI: 10.1111/mec.15920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about the genetic basis of herbicide resistance has come from detailed investigations of monogenic adaptation at known target-sites, despite the increasingly recognized importance of polygenic resistance. Little work has been done to characterize the broader genomic basis of herbicide resistance, including the number and distribution of genes involved, their effect sizes, allele frequencies and signatures of selection. In this work, we implemented genome-wide association (GWA) and population genomic approaches to examine the genetic architecture of glyphosate (Round-up) resistance in the problematic agricultural weed Amaranthus tuberculatus. A GWA was able to correctly identify the known target-gene but statistically controlling for two causal target-site mechanisms revealed an additional 250 genes across all 16 chromosomes associated with non-target-site resistance (NTSR). The encoded proteins had functions that have been linked to NTSR, the most significant of which is response to chemicals, but also showed pleiotropic roles in reproduction and growth. Compared to an empirical null that accounts for complex population structure, the architecture of NTSR was enriched for large effect sizes and low allele frequencies, suggesting the role of pleiotropic constraints on its evolution. The enrichment of rare alleles also suggested that the genetic architecture of NTSR may be population-specific and heterogeneous across the range. Despite their rarity, we found signals of recent positive selection on NTSR-alleles by both window- and haplotype-based statistics, and an enrichment of amino acid changing variants. In our samples, genome-wide single nucleotide polymorphisms explain a comparable amount of the total variation in glyphosate resistance to monogenic mechanisms, even in a collection of individuals where 80% of resistant individuals have large-effect TSR mutations, indicating an underappreciated polygenic contribution to the evolution of herbicide resistance in weed populations.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Koffler Scientific Reserve, University of Toronto, King City, ON, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Belz RG, Sinkkonen A. Low glyphosate doses change reproduction and produce tolerant offspring in dense populations of Hordeum vulgare. PEST MANAGEMENT SCIENCE 2021; 77:4770-4784. [PMID: 34148282 DOI: 10.1002/ps.6522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low toxin doses that do not affect mean responses in plant populations can still change the growth of subpopulations. Studies covering vegetative stages ascribed fast-growing plants higher thresholds for growth stimulation and inhibition, compared with the rest of the population. We hypothesized that such selective effects also play a role after reproduction; that is, the offspring of glyphosate-treated tolerant, fast-growing phenotypes is more tolerant than the offspring of untreated plants. An experimental, high-density barley population was exposed to a range of glyphosate concentrations in the greenhouse, and reproduction and final growth were analyzed for selective effects. Therefore, F0, F1 treated and F1 non-treated offspring were re-exposed to glyphosate. RESULTS Low doses of glyphosate inhibited the growth and reproduction of slow-growing plants at concentrations that did not change the population mean. Concentrations that inhibited average-sized plants hormetically increased the biomass and seed yield of fast-growing plants. Compared with F0 and F1 non-treated offspring, F1-treated offspring from hormetically stimulated fast-growing plants were more glyphosate tolerant. Hence, a pesticide can shape the reproductive pattern of a plant population and alter offspring tolerance at concentrations that have no effect on average yield. CONCLUSIONS Toxin levels that do not change the population mean still alter the reproductive output of individuals. Sensitive phenotypes suffer, whereas the reproduction of tolerant phenotypes is boosted compared with toxin-free conditions. Because glyphosate is one of the leading herbicides in the world, tolerant phenotypes may benefit from current agricultural practices. If these results apply to other toxicants, low toxin doses may increase the fitness of tolerant phenotypes in a way not previously anticipated. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Regina G Belz
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Stuttgart, Germany
| | - Aki Sinkkonen
- University of Helsinki, Ecosystems and Environment Research Programme, Environmental Ecology Unit, Lahti, Finland
- Natural Resources Institute Finland (LUKE), Turku, Finland
| |
Collapse
|
11
|
Suzukawa AK, Bobadilla LK, Mallory-Smith C, Brunharo CACG. Non-target-Site Resistance in Lolium spp. Globally: A Review. FRONTIERS IN PLANT SCIENCE 2021; 11:609209. [PMID: 33552102 PMCID: PMC7862324 DOI: 10.3389/fpls.2020.609209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/07/2020] [Indexed: 05/10/2023]
Abstract
The Lolium genus encompasses many species that colonize a variety of disturbed and non-disturbed environments. Lolium perenne L. spp. perenne, L. perenne L. spp. multiflorum, and L. rigidum are of particular interest to weed scientists because of their ability to thrive in agricultural and non-agricultural areas. Herbicides are the main tool to control these weeds; however, Lolium spp. populations have evolved multiple- and cross-resistance to at least 14 herbicide mechanisms of action in more than 21 countries, with reports of multiple herbicide resistance to at least seven mechanisms of action in a single population. In this review, we summarize what is currently known about non-target-site resistance in Lolium spp. to acetyl CoA carboxylase, acetohydroxyacid synthase, microtubule assembly, photosystem II, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, very-long chain fatty acids, and photosystem I inhibitors. We suggest research topics that need to be addressed, as well as strategies to further our knowledge and uncover the mechanisms of non-target-site resistance in Lolium spp.
Collapse
Affiliation(s)
- Andréia K. Suzukawa
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Lucas K. Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Carol Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Caio A. C. G. Brunharo
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
12
|
Mollaee M, Matloob A, Mobli A, Thompson M, Chauhan BS. Response of glyphosate-resistant and susceptible biotypes of Echinochloa colona to low doses of glyphosate in different soil moisture conditions. PLoS One 2020; 15:e0233428. [PMID: 32433674 PMCID: PMC7239466 DOI: 10.1371/journal.pone.0233428] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/05/2020] [Indexed: 11/28/2022] Open
Abstract
To evaluate the hormetic effect of glyphosate on Echinochloa colona, two pot studies were done in the screenhouse at the Gatton Campus, the University of Queensland, Australia. Glyphosate was sprayed at the 3-4 leaf stage using different doses [(0, 5, 10, 20, 40, 80 and 800 g a.e. ha-1) and (0, 2.5, 5, 10, 20 and 800 g a.e. ha-1)] in the first and second study, respectively. In the second study, two soil moistures (adequately-watered and water-stressed), and two E. colona biotypes, glyphosate-resistant and glyphosate-susceptible, were included. In both studies, plants that were treated with glyphosate at 2.5-40 g ha-1 grew taller and produced more leaves, tillers, inflorescences and seeds than the control treatment. In the first study, 5 g ha-1 glyphosate resulted in the maximum aboveground biomass (increase of 34% to 118%) compared with the control treatment. In the second study, the adequately-watered and glyphosate low dose treatments caused an increase in all the measured growth parameters for both biotypes. For example, total dry biomass was increased by 64% and 54% at 5 g ha-1 in the adequately-watered treatments for the resistant and susceptible biotypes, respectively, compared with the control treatment. All measured traits tended to decrease with increasing water stress and the stimulative growth of low doses of glyphosate could not compensate for the water stress effect. The results of both studies showed a hormetic effect of low doses of glyphosate on E. colona biotypes and such growth stimulation was significant in the range of 5 to 10 g ha-1 glyphosate. Water availability was found to be effective in modulating the stimulatory outcomes of glyphosate-induced hormesis. No significant difference was observed between the resistant and susceptible biotypes for hormesis phenomenon. The study showed the importance of precise herbicide application for suppressing weed growth and herbicide resistance evolution.
Collapse
Affiliation(s)
- Mahboobeh Mollaee
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- The Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, Queensland, Australia
| | - Amar Matloob
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ahmadreza Mobli
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- The Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, Queensland, Australia
| | - Michael Thompson
- The Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, Queensland, Australia
| | - Bhagirath Singh Chauhan
- The Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
13
|
Beckie HJ. Herbicide Resistance in Plants. PLANTS 2020; 9:plants9040435. [PMID: 32244672 PMCID: PMC7238419 DOI: 10.3390/plants9040435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 01/06/2023]
Abstract
Herbicide resistance in weeds is perhaps the most prominent research area within the discipline of weed science today. Incidence, management challenges, and the cost of multiple-resistant weed populations are continually increasing worldwide. Crop cultivars with multiple herbicide-resistance traits are being rapidly adopted by growers and land managers to keep ahead of the weed resistance tsunami. This Special Issue of Plants comprises papers that describe the current status and future outlook of herbicide resistance research and development in weedy and domestic plants, with topics covering the full spectrum from resistance mechanisms to resistance management. The unifying framework for this Special issue, is the challenge initially posed to all of the contributors: what are the (potential) implications for herbicide resistance management?
Collapse
Affiliation(s)
- Hugh J Beckie
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
14
|
Vieira BC, Luck JD, Amundsen KL, Werle R, Gaines TA, Kruger GR. Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Sci Rep 2020; 10:2146. [PMID: 32034222 PMCID: PMC7005892 DOI: 10.1038/s41598-020-59126-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
While the introduction of herbicide tolerant crops provided growers new options to manage weeds, the widespread adoption of these herbicides increased the risk for herbicide spray drift to surrounding vegetation. The impact of herbicide drift in sensitive crops is extensively investigated, whereas scarce information is available on the consequences of herbicide drift in non-target plants. Weeds are often abundant in field margins and ditches surrounding agricultural landscapes. Repeated herbicide drift exposure to weeds could be detrimental to long-term management as numerous weeds evolved herbicide resistance following recurrent-selection with low herbicide rates. The objective of this study was to evaluate if glyphosate, 2,4-D, and dicamba spray drift could select Amaranthus spp. biotypes with reduced herbicide sensitivity. Palmer amaranth and waterhemp populations were recurrently exposed to herbicide drift in a wind tunnel study over two generations. Seeds from survival plants were used for the subsequent rounds of herbicide drift exposure. Progenies were subjected to herbicide dose-response studies following drift selection. Herbicide drift exposure rapidly selected for Amaranthus spp. biotypes with reduced herbicide sensitivity over two generations. Weed management programs should consider strategies to mitigate near-field spray drift and suppress the establishment of resistance-prone weeds on field borders and ditches in agricultural landscapes.
Collapse
Affiliation(s)
- Bruno C Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA.
| | - Joe D Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Keenan L Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Greg R Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| |
Collapse
|
15
|
Serra AA, Miqueau A, Ramel F, Couée I, Sulmon C, Gouesbet G. Species- and organ-specific responses of agri-environmental plants to residual agricultural pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133661. [PMID: 31756788 DOI: 10.1016/j.scitotenv.2019.133661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. The complex effects on plants are however difficult to apprehend. Plant communities of field margins, vegetative filter strips or rotational fallows are confronted with agricultural pollutants through residual soil contamination and/or through drift, run-off and leaching events that result from chemical applications. Exposure to xenobiotics and heavy metals causes biochemical, physiological and developmental effects. However, the range of doses, modalities of exposure, metabolization of contaminants into derived xenobiotics, and combinations of contaminants result in variable and multi-level effects. Understanding these complex plant-pollutant interactions cannot directly rely on toxicological or agronomical approaches that focus on the effects of field-rate pesticide applications. It must take into account exposure at root level, sublethal concentrations of bioactive compounds and functional biodiversity of the plant species that are affected. The present study deals with agri-environmental plant species of field margins, vegetative filter strips or rotational fallows in European agricultural landscapes. Root and shoot physiological and growth responses were compared under controlled conditions that were optimally adjusted for each plant species. Contrasted responses of growth inhibition, no adverse effect or growth enhancement depended on species, organ and nature of contaminant. However, all of the agricultural contaminants under study (pesticides, pesticide metabolites, heavy metals, polycyclic aromatic hydrocarbons) had significant effects under conditions of sublethal exposure on at least some of the plant species. The fungicide tebuconazole and polycyclic aromatic hydrocarbon fluoranthene, which gave highest levels of responses, induced both activation or inhibition effects, in different plant species or in different organs of the same plant species. These complex effects are discussed in terms of dynamics of agri-environmental plants and of ecological consequences of differential root-shoot growth under conditions of soil contamination.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Amélie Miqueau
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Fanny Ramel
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Cécile Sulmon
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
16
|
Shyam C, Jhala AJ, Kruger G, Jugulam M. Rapid metabolism increases the level of 2,4-D resistance at high temperature in common waterhemp (Amaranthus tuberculatus). Sci Rep 2019; 9:16695. [PMID: 31723191 PMCID: PMC6853974 DOI: 10.1038/s41598-019-53164-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022] Open
Abstract
Common waterhemp emerges throughout the crop growing season in the Midwestern United States, and as a result, the seedlings are exposed to a wide range of temperature regimes. Typically, 2,4-D is used in the Midwest to control winter annual broad-leaf weeds before planting soybean and in an early post-emergence application in corn and sorghum; however, the evolution of 2,4-D-resistant common waterhemp in several Midwestern states may limit the use of 2.4-D for controlling this problem weed. Moreover, temperature is one of the crucial factors affecting weed control efficacy of 2,4-D. This research investigated the effect of temperature on efficacy of 2,4-D to control 2,4-D susceptible (WHS) and -resistant (WHR) common waterhemp. Do se-response of WHS and WHR to 2,4-D was assessed at two temperature regimes, high (HT; 34/20 °C, d/n) and low (LT; 24/10 °C, d/n). Whole plant dose response study indicated an increased level of 2,4-D resistance in WHR at HT compared to LT. Additional investigation of the physiological mechanism of this response indicated that both WHS and WHR common waterhemp plants rapidly metabolized 14C 2,4-D at HT compared to LT. In conclusion, a rapid metabolism of 2,4-D conferred increased level of resistance to 2,4-D in WHR at HT. Therefore, application of 2,4-D when temperatures are cooler can improve control of 2,4-D resistant common waterhemp.
Collapse
Affiliation(s)
- Chandrima Shyam
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE, 68583, USA
| | - Greg Kruger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE, 68583, USA.,University of Nebraska-Lincoln, North Platte, NE, 69101, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, 1712 Claflin Road, Manhattan, KS, 66506, USA.
| |
Collapse
|
17
|
Rojano-Delgado AM, Portugal JM, Palma-Bautista C, Alcántara-de la Cruz R, Torra J, Alcántara E, De Prado R. Target site as the main mechanism of resistance to imazamox in a Euphorbia heterophylla biotype. Sci Rep 2019; 9:15423. [PMID: 31659241 PMCID: PMC6817884 DOI: 10.1038/s41598-019-51682-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Euphorbia heterophylla is a weed species that invades extensive crop areas in subtropical regions of Brazil. This species was previously controlled by imazamox, but the continuous use of this herbicide has selected for resistant biotypes. Two biotypes of E. heterophylla from southern Brazil, one resistant (R) and one susceptible (S) to imazamox, were compared. The resistance of the R biotype was confirmed by dose-response assays since it required 1250.2 g ai ha-1 to reduce the fresh weight by 50% versus 7.4 g ai ha-1 for the S biotype. The acetolactate synthase (ALS) enzyme activity was studied using ALS-inhibiting herbicides from five different chemical families. The R biotype required the highest concentrations to reduce this enzyme activity by 50%. A Ser653Asn mutation was found in the ALS gene of the R biotype. The experiments carried out showed that imazamox absorption and metabolism were not involved in resistance. However, greater 14C-imazamox root exudation was found in the R biotype (~70% of the total absorbed imazamox). Target site mutation in the ALS gene is the principal mechanism that explains the imazamox resistance of the R biotype, but root exudation seems to also contribute to the resistance of this biotype.
Collapse
Affiliation(s)
| | - João M Portugal
- Department of Biosciences, Valoriza-Research Center for Endogenous Resources Valorization, Polytechnic Institute of Beja, Beja, Portugal
| | | | | | - Joel Torra
- Department d'Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain
| | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
18
|
Gil-Monreal M, Giuntoli B, Zabalza A, Licausi F, Royuela M. ERF-VII transcription factors induce ethanol fermentation in response to amino acid biosynthesis-inhibiting herbicides. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5839-5851. [PMID: 31384925 PMCID: PMC6812701 DOI: 10.1093/jxb/erz355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Herbicides inhibiting either aromatic or branched-chain amino acid biosynthesis trigger similar physiological responses in plants, despite their different mechanism of action. Both types of herbicides are known to activate ethanol fermentation by inducing the expression of fermentative genes; however, the mechanism of such transcriptional regulation has not been investigated so far. In plants exposed to low-oxygen conditions, ethanol fermentation is transcriptionally controlled by the ethylene response factors-VII (ERF-VIIs), whose stability is controlled in an oxygen-dependent manner by the Cys-Arg branch of the N-degron pathway. In this study, we investigated the role of ERF-VIIs in the regulation of the ethanol fermentation pathway in herbicide-treated Arabidopsis plants grown under aerobic conditions. Our results demonstrate that these transcriptional regulators are stabilized in response to herbicide treatment and are required for ethanol fermentation in these conditions. We also observed that mutants with reduced fermentative potential exhibit higher sensitivity to herbicide treatments, thus revealing the existence of a mechanism that mimics oxygen deprivation to activate metabolic pathways that enhance herbicide tolerance. We speculate that this signaling pathway may represent a potential target in agriculture to affect tolerance to herbicides that inhibit amino acid biosynthesis.
Collapse
Affiliation(s)
- Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Beatrice Giuntoli
- Department of Biology, University of Pisa, Via Ghini, Pisa, Italy
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni, Pisa, Italy
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Francesco Licausi
- Department of Biology, University of Pisa, Via Ghini, Pisa, Italy
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni, Pisa, Italy
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
- Correspondence:
| |
Collapse
|
19
|
Vieira BC, Luck JD, Amundsen KL, Gaines TA, Werle R, Kruger GR. Response of Amaranthus spp. following exposure to sublethal herbicide rates via spray particle drift. PLoS One 2019; 14:e0220014. [PMID: 31318947 PMCID: PMC6638980 DOI: 10.1371/journal.pone.0220014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes.
Collapse
Affiliation(s)
- Bruno C. Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| | - Joe D. Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Keenan L. Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Greg R. Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| |
Collapse
|
20
|
Lygin AV, Kaundun SS, Morris JA, Mcindoe E, Hamilton AR, Riechers DE. Metabolic Pathway of Topramezone in Multiple-Resistant Waterhemp ( Amaranthus tuberculatus) Differs From Naturally Tolerant Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:1644. [PMID: 30519248 PMCID: PMC6258821 DOI: 10.3389/fpls.2018.01644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 05/08/2023]
Abstract
Waterhemp [Amaranthus tuberculatus (Moq.) Sauer] is a problematic dicot weed in maize, soybean, and cotton production in the United States. Waterhemp has evolved resistance to several commercial herbicides that inhibit the 4-hydroxyphenylpyruvate-dioxygenase (HPPD) enzyme in sensitive dicots, and research to date has shown that HPPD-inhibitor resistance is conferred by rapid oxidative metabolism of the parent compound in resistant populations. Mesotrione and tembotrione (both triketones) have been used exclusively to study HPPD-inhibitor resistance mechanisms in waterhemp and a related species, A. palmeri (S. Wats.), but the commercial HPPD inhibitor topramezone (a pyrazolone) has not been investigated from a mechanistic standpoint despite numerous reports of cross-resistance in the field and greenhouse. The first objective of our research was to determine if two multiple herbicide-resistant (MHR) waterhemp populations (named NEB and SIR) metabolize topramezone more rapidly than two HPPD inhibitor-sensitive waterhemp populations (named SEN and ACR). Our second objective was to determine if initial topramezone metabolite(s) detected in MHR waterhemp are qualitatively different than those formed in maize. An excised leaf assay and whole-plant study investigated initial rates of topramezone metabolism (<24 h) and identified topramezone metabolites at 48 hours after treatment (HAT), respectively, in the four waterhemp populations and maize. Results indicated both MHR waterhemp populations metabolized more topramezone than the sensitive (SEN) population at 6 HAT, while only the SIR population metabolized more topramezone than SEN at 24 HAT. Maize metabolized more topramezone than any waterhemp population at each time point examined. LC-MS analysis of topramezone metabolites at 48 HAT showed maize primarily formed desmethyl and benzoic acid metabolites, as expected based on published reports, whereas SIR formed two putative hydroxylated metabolites. Subsequent LC-MS/MS analyses identified both hydroxytopramezone metabolites in SIR as different hydroxylation products of the isoxazole ring, which were also present in maize 48 HAT but at very low levels. These results indicate that SIR initially metabolizes and detoxifies topramezone in a different manner than tolerant maize.
Collapse
Affiliation(s)
- Anatoli V. Lygin
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Shiv S. Kaundun
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - James A. Morris
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Eddie Mcindoe
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Andrea R. Hamilton
- Department of Chemistry, Truman State University, Kirksville, MO, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- *Correspondence: Dean E. Riechers,
| |
Collapse
|