1
|
Bartling MT, Brandt A, Hollert H, Vilcinskas A. Current Insights into Sublethal Effects of Pesticides on Insects. Int J Mol Sci 2024; 25:6007. [PMID: 38892195 PMCID: PMC11173082 DOI: 10.3390/ijms25116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The effect of pesticides on insects is often discussed in terms of acute and chronic toxicity, but an important and often overlooked aspect is the impact of sublethal doses on insect physiology and behavior. Pesticides can influence various physiological parameters of insects, including the innate immune system, development, and reproduction, through a combination of direct effects on specific exposed tissues and the modification of behaviors that contribute to health and reproductive success. Such behaviors include mobility, feeding, oviposition, navigation, and the ability to detect pheromones. Pesticides also have a profound effect on insect learning and memory. The precise effects depend on many different factors, including the insect species, age, sex, caste, physiological condition, as well as the type and concentration of the active ingredients and the exposure route. More studies are needed to assess the effects of different active ingredients (and combinations thereof) on a wider range of species to understand how sublethal doses of pesticides can contribute to insect decline. This review reflects our current knowledge about sublethal effects of pesticides on insects and advancements in the development of innovative methods to detect them.
Collapse
Affiliation(s)
- Merle-Theresa Bartling
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Annely Brandt
- Bee Institute Kirchhain, Landesbetrieb Landwirtschaft Hessen, Erlenstr. 9, 35274 Kirchhain, Germany;
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany;
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
2
|
Du Q, Shan Y, Hu H, Wu C, Wang D, Song X, Ma Y, Xi J, Ren X, Ma X, Ma Y. Fitness effect and transcription profile reveal sublethal effect of nitenpyram on the predator Chrysopa pallens (Neuroptera: Chrysopidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22073. [PMID: 38288485 DOI: 10.1002/arch.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Although neonicotinoids are widely used and important insecticide, there are growing concerns about their effect on nontarget insects and other organisms. Moreover, the effects of nitenpyram (NIT), a second generation of neonicotinoid insecticides, on Chrysopa pallens are still unclear. Therefore, this study purposed to investigate the acute toxicity of NIT to C. pallens using the spotting method. To examine the potential effects of a sublethal dose of NIT (LD30 , 1.85 ng of active ingredient per insect) on C. pallens, we constructed the life tables and analyzed the transcriptome data. The life table results showed that the period of second instar larvae, adult pre-oviposition period and total pre-oviposition period were significantly prolonged after exposure to sublethal dose of NIT, but had no significant effects on the other instars, longevity, oviposition days, and fecundity. The population parameters, including the preadult survival rate, gross reproduction rate, net reproductive rate, the intrinsic rate of increase, and finite rate of increase, were not significantly affected, and only the mean generation time was significantly prolonged by NIT. Transcriptome analysis showed that there were 68 differentially expressed genes (DEGs), including 50 upregulated genes and 18 downregulated genes. Moreover, 13 DEGs related to heat shock protein, nose resistant to fluoxetine protein 6, and prophenoloxidas were upregulated. This study showed the potential effects of sublethal doses of NIT on C. pallens and provided a theoretical reference for the comprehensive application of chemical and biological control in integrated pest management.
Collapse
Affiliation(s)
- Qiankun Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongpan Shan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongyan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Changcai Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianpeng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yajie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianping Xi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangliang Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiaoyan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Yan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
3
|
Zhang JG, Shi W, Ma DD, Lu ZJ, Li SY, Long XB, Ying GG. Chronic Paternal/Maternal Exposure to Environmental Concentrations of Imidacloprid and Thiamethoxam Causes Intergenerational Toxicity in Zebrafish Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13384-13396. [PMID: 37651267 DOI: 10.1021/acs.est.3c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are ubiquitous in aquatic ecosystems. Their negative effects on parental fish are investigated while intergenerational effects at environmentally relevant concentrations remain unclear. In this study, F0 zebrafish exposed to IMI and THM (0, 50, and 500 ng L-1) for 144 days post-fertilization (dpf) was allowed to spawn with two modes (internal mating and cross-mating), resulting in four types of F1 generations to investigate the intergenerational effects. IMI and THM affected F0 zebrafish fecundity, gonadal development, sex hormone and VTG levels, with accumulations found in F0 muscles and ovaries. In F1 generation, paternal or maternal exposure to IMI and THM also influenced sex hormones levels and elevated the heart rate and spontaneous movement rate. LncRNA-mRNA network analysis revealed that cell cycle and oocyte meiosis-related pathways in IMI groups and steroid biosynthesis related pathways in THM groups were significantly enriched in F1 offspring. Similar transcriptional alterations of dmrt1, insl3, cdc20, ccnb1, dnd1, ddx4, cox4i1l, and cox5b2 were observed in gonads of F0 and F1 generations. The findings indicated that prolonged paternal or maternal exposure to IMI and THM could severely cause intergenerational toxicity, resulting in developmental toxicity and endocrine-disrupting effects in zebrafish offspring.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhang L, Lv H, Li X, Wan H, He S, Li J, Ma K. Sublethal effects of acetamiprid and afidopyropen on Harmonia axyridis: insights from transcriptomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115203. [PMID: 37406606 DOI: 10.1016/j.ecoenv.2023.115203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Evaluating the sublethal effects of insecticide is crucial for protecting and utilizing natural enemies. In this study, we determined the sublethal effects of acetamiprid and afidopyropen on Harmonia axyridis (Pallas) and explored the potential molecular mechanisms underlying these effects through transcriptomics analysis. The results showed that sublethal concentrations of acetamiprid significantly reduced the adult fecundity and longevity of F0H. axyridis and decreased the survival time and survival rate of the F1 generation. Sublethal concentrations of afidopyropen prolonged the developmental time of 4th instar larvae in the F0 generation. Additionally, acetamiprid and afidopyropen treatments significantly decreased the predation of H. axyridis. Furthermore, transcriptome sequencing analysis revealed that several P450 and UGT genes expressed differently when H. axyridis were exposed to sublethal concentrations of acetamiprid and afidopyropen, suggesting that the differential expression of detoxifying genes might be involved in the response and detoxification metabolism of acetamiprid and afidopyropen in H. axyridis. Our findings demonstrate that sublethal concentrations of acetamiprid adversely influences the development and predation of H. axyridis, while afidopyropen has limited effects on H. axyridis. These results are helpful for protecting and utilizing natural enemies and guiding the scientific use of pesticides in the field.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haixiang Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuchao Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Su Y, Ren X, Ma X, Wang D, Hu H, Song X, Cui J, Ma Y, Yao Y. Evaluation of the Toxicity and Sublethal Effects of Acetamiprid and Dinotefuran on the Predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). TOXICS 2022; 10:toxics10060309. [PMID: 35736917 PMCID: PMC9228657 DOI: 10.3390/toxics10060309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Neonicotinoid insecticides affect the physiology or behavior of insects, posing risks to non-target organisms. In this study, the effects of sublethal doses of two neonicotinoid insecticides, acetamiprid and dinotefuran, against Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) were determined and compared. The results showed that acetamiprid and dinotefuran at LD10 (8.18 ng a.i. per insect and 9.36 ng a.i. per insect, respectively) and LD30 (16.84 ng a.i. per insect and 15.01 ng a.i. per insect, respectively) significantly prolonged the larval stages and pupal stages (except acetamiprid LD10), compared to control. In addition, acetamiprid and dinotefuran at LD30 significantly prolonged the adult preoviposition period (APOP) and total preoviposition period (TPOP). In contrast, the two insecticides at LD10 and LD30 had no significant effect on the longevity, fecundity, reproductive days, preadult survival rate (%), intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ). These results provide a theoretical basis for the rational use of these two insecticides and the utilization and protection of C. pallens.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.M.); (Y.Y.)
| | - Yongsheng Yao
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- Correspondence: (Y.M.); (Y.Y.)
| |
Collapse
|
6
|
Gul H, Ullah F, Hafeez M, Tariq K, Desneux N, Gao X, Song D. Sublethal concentrations of clothianidin affect fecundity and key demographic parameters of the chive maggot, Bradysia odoriphaga. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1150-1160. [PMID: 34165677 DOI: 10.1007/s10646-021-02446-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Bradysia odoriphaga is a major insect pest that infests Chinese chive in northern China. Clothianidin is a second-generation neonicotinoid insecticide that is commonly used against B. odoriphaga. In this study, the effect of sublethal clothianidin concentrations (LC5 and LC10) on key biological characteristics of B. odoriphaga was investigated using an age-stage, two-sex life table method. Bioassays results showed that clothianidin exhibited high toxicity against B. odoriphaga with LC50 of 1.898 mg L-1 following 24 h exposure. The developmental duration of larvae was significantly increased when exposed to the LC5 (0.209 mg L-1) and LC10 (0.340 mg L-1) of clothianidin. No significant effects were observed on the pupal stage, adult pre-oviposition period (APOP), total pre-oviposition period (TPOP), and mean longevities of male and female. The oviposition period and fecundity of B. odoriphaga were reduced in clothianidin-treated groups. Moreover, key demographic parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0), were significantly decreased by the LC5 and LC10 of clothianidin, while no effects were noted on mean generation time (T). Overall, this study showed that sublethal concentrations of clothianidin have a detrimental effect on B. odoriphaga developmental period, fecundity, and life table parameters. Therefore, clothianidin has the potential to suppress the population of B. odoriphaga even at sublethal concentrations.
Collapse
Affiliation(s)
- Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Kaleem Tariq
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000, Nice, France
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Dai C, Ricupero M, Wang Z, Desneux N, Biondi A, Lu Y. Transgenerational Effects of a Neonicotinoid and a Novel Sulfoximine Insecticide on the Harlequin Ladybird. INSECTS 2021; 12:681. [PMID: 34442247 PMCID: PMC8396657 DOI: 10.3390/insects12080681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
The harlequin ladybird, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), is a generalist predator and an effective biocontrol agent of various insect pests that has been exploited for the control of aphid pests in the greenhouse and field. However, insecticides are widely used to control aphid pests worldwide and the potential non-target effects of sulfoxaflor and imidacloprid for controlling aphid pests towards this biocontrol agent are little known. Although both sulfoxaflor and imidacloprid act on nicotinic acetylcholine receptors of insects, sulfoxaflor has a novel chemical structure compared with neonicotinoids. We assessed the lethal, sublethal and transgenerational effects of sulfoxaflor and imidacloprid on H. axyridis simultaneously exposed via ingestion of contaminated prey and via residual contact on the host plant at LC20 and LC50 doses estimated for the cotton aphid. Imidacloprid significantly reduced the survival of H. axyridis adults compared to sulfoxaflor at the same lethal concentration against cotton aphid. Both concentrations of imidacloprid and sulfoxaflor reduced the proportion of ovipositing females, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, reduced the fecundity and fertility of the parental generation. In the progeny of imidacloprid- and sulfoxaflor-exposed parents, both tested LC50 concentrations significantly decreased the juvenile survival rate, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, prolonged the development time. Our findings provide evidence of the negative influence of imidacloprid and sulfoxaflor at low lethal concentrations on the harlequin ladybird and on the progeny of exposed individuals, i.e., transgenerational effects. Hence, these findings stress the importance of optimizing the applications of imidacloprid and sulfoxaflor for the control of aphid pests, aiming at preserving the biocontrol services provided by H. axyridis throughout the integrated pest management approach.
Collapse
Affiliation(s)
- Changchun Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
- Langfang Experimental Station of the Chinese Academy of Agricultural Sciences, Langfang 065005, China
| | - Michele Ricupero
- Department of Agriculture Food and Environment, University of Catania, 95123 Catania, Italy; (M.R.); (A.B.)
| | - Zequn Wang
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France;
| | - Antonio Biondi
- Department of Agriculture Food and Environment, University of Catania, 95123 Catania, Italy; (M.R.); (A.B.)
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
8
|
Wolz M, Schrader A, Müller C. Direct and delayed effects of exposure to a sublethal concentration of the insecticide λ-cyhalothrin on food consumption and reproduction of a leaf beetle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143381. [PMID: 33172643 DOI: 10.1016/j.scitotenv.2020.143381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic pollution such as the application of pesticides poses a major threat to many (non-target) organisms. However, little is known about the persistence of harmful effects or potential recovery in response to a period of exposure to a sublethal insecticide dose. Adults of the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), were either exposed to a sublethal concentration of the pyrethroid λ-cyhalothrin for two weeks or kept unexposed as control. During, immediately after and at a delayed time after the exposure, consumption and reproduction, i.e., number of eggs laid and hatching success, were assessed. In addition, long-term effects on unexposed offspring were investigated. Exposure to λ-cyhalothrin reduced the consumption during the insecticide exposure, but led to compensatory feeding in females at a delayed time after exposure. The reproductive output of females was impaired during and directly after λ-cyhalothrin exposure. At the delayed time point there was no clear evidence for a recovery, as the reproduction of heavier females was still negatively affected, while lighter females showed an enhanced reproduction. Persistent negative effects on unexposed offspring had been found when collected from parents directly after a λ-cyhalothrin exposure period. In contrast, in the present experiment neither negative effects on life-history traits nor on consumption were observed in unexposed offspring derived from parents at the delayed time after λ-cyhalothrin exposure. Moreover, eggs of offspring from insecticide-exposed parents showed a higher hatching success than those of offspring of unexposed parents, which may indicate transgenerational hormesis. Our results highlight that λ-cyhalothrin exposure has persistent negative effects on fitness parameters of the exposed generation. However, offspring may not be harmed if their parents had sufficient time to recover after such an insecticide exposure. Taken together, our study emphasises that the time-course of exposure to this anthropogenic pollution is crucial when determining the consequences on life-history.
Collapse
Affiliation(s)
- Marina Wolz
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany
| | - Alia Schrader
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany.
| |
Collapse
|
9
|
Pasini RA, Rakes M, Castilhos RV, Silva de Armas F, de Bastos Pazini J, Zantedeschi R, Grützmacher AD. Residual action of five insecticides on larvae and adults of the neotropical predators Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:44-56. [PMID: 33244676 DOI: 10.1007/s10646-020-02314-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to evaluate the residual action of five insecticides on larvae and adults of the predators Chrysoperla externa (Hagen) and Eriopis connexa (Germar). The insecticides gamma-cyhalothrin, imidacloprid+beta-cyfluthrin, methomyl, thiamethoxam, and thiamethoxam+lambda-cyhalothrin were sprayed in pod bean plants until the point of runoff. Weekly, at 3, 10, 17, 24, and 31 days, first instar larvae and adults of both predators were exposed to leaves containing dry residues of the insecticides. Based on the mortality observed throughout the bioassays, the insecticides were classified according to the scale of the residual effects proposed by the International Organization for Biological and Integrated Control (IOBC). Except for thiamethoxam+lambda-cyhalothrin, which was moderately persistent (class 3) to larvae of C. externa and E. connexa, all other tested insecticides were persistent (class 4) to larvae of both species. Gamma-cyhalothrin, imidacloprid + beta-cyfluthrin, and methomyl were persistent (class 4) to C. externa adults, while thiamethoxam was moderately persistent (class 3) and thiamethoxam + lambda-cyhalothrin was slightly persistent (class 2) to the adult stage. As for E. connexa adults, imidacloprid + beta-cyfluthrin and methomyl were persistent (class 4) and gamma-cyhalothrin, thiamethoxam, and thiamethoxam + lambda-cyhalothrin were moderately persistent (class 3). Thus, due to extended residual effect, these insecticides must be avoided when larvae and adults of both predators are active in the crop.
Collapse
Affiliation(s)
| | - Matheus Rakes
- Department of Plant Protection, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Rodolfo Vargas Castilhos
- Agricultural Research and Rural Extension Company of Santa Catarina (EPAGRI), Chapecó, Santa Catarina, Brazil
| | - Franciele Silva de Armas
- Department of Plant Protection, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Juliano de Bastos Pazini
- Department of Plant Protection, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Ronaldo Zantedeschi
- Department of Plant Protection, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | | |
Collapse
|
10
|
Dai C, Ricupero M, Puglisi R, Lu Y, Desneux N, Biondi A, Zappalà L. Can contamination by major systemic insecticides affect the voracity of the harlequin ladybird? CHEMOSPHERE 2020; 256:126986. [PMID: 32445995 DOI: 10.1016/j.chemosphere.2020.126986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Systemic neurotoxic insecticides are widely used to control aphid pests worldwide and their potential non-target effects on aphid predators are often unknown. Behavioral responses linked to biological control services are crucial when assessing the compatibility of chemicals with biocontrol organisms. This is particularly relevant for insecticides at low and sublethal concentrations. We studied the acute toxicity and the sublethal effect on the voracity of the generalist predator Harmonia axyridis (Coleoptera: Coccinellidae) caused by the exposure to three systemic insecticides routinely used against aphids. The tested insecticide concentrations were the Lethal Concentration 50% (LC50), 20% (LC20) and 1% (LC1) estimated for the target pest Aphis gossypii (Hemiptera: Aphididae) in a companion study. The survival and the voracity differed among the tested chemicals and concentrations, but only thiamethoxam at LC50 caused a significant predator mortality, and individuals that survived showed a reduced predation rate. The predators showed a density independent functional response after the exposure to most of the insecticide-concentration combinations, while an inverse density dependence of the prey consumption rate was observed for coccinellids exposed to sulfoxaflor and thiamethoxam at their lowest tested concentration. The estimated parameters, i.e., the attack rate and the prey handling time, were affected at higher concentrations by both imidacloprid and sulfoxaflor. These findings stress the importance of carefully evaluating side effects of insecticides at very low concentrations on beneficial arthropods in the risk assessment schemes for sustainable pest control programmes.
Collapse
Affiliation(s)
- Changchun Dai
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy; Chinese Academy of Agricultural Sciences, Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China; Northeast Agricultural University, College of Agriculture, Department of Plant Protection, Harbin, 150030, China
| | - Michele Ricupero
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy
| | - Roberto Puglisi
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy
| | - Yanhui Lu
- Chinese Academy of Agricultural Sciences, Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000, Nice, France
| | - Antonio Biondi
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy.
| | - Lucia Zappalà
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy
| |
Collapse
|
11
|
Ricupero M, Desneux N, Zappalà L, Biondi A. Target and non-target impact of systemic insecticides on a polyphagous aphid pest and its parasitoid. CHEMOSPHERE 2020; 247:125728. [PMID: 32069706 DOI: 10.1016/j.chemosphere.2019.125728] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Systemic insecticides are used to control agricultural pests globally and their non-target impact at non-lethal doses on beneficial arthropods has been recognized. We assessed the baseline toxicity of imidacloprid, thiamethoxam and sulfoxaflor-based insecticides on the polyphagous aphid pest, Aphis gossypii (Hemiptera: Aphididae), and their non-target effects on its main parasitoid, Aphidius colemani (Hymenoptera: Braconidae), evaluated by residual contact exposure to the median lethal (LC50), the low lethal (LC20) and the sublethal (LC1) concentrations of the three tested insecticides, earlier estimated for the target pest. The results showed that the LC50s for the aphid were 6.4 × 10-3, 5 × 10-3, 2.9 × 10-2 times lower compared to the label concentrations of imidacloprid, thiamethoxam and sulfoxaflor, respectively. LC50 of thiamethoxam caused the highest mortality rate on the parasitoid followed by sulfoxaflor, while imidacloprid had the lowest impact. No significant sublethal effects on reprodution were observed for A. colemani survived to the insecticide exposure. Our findings highlight the importance of case-specific evaluation to optimize pesticide applications in Integrated Pest Management packages taking into account the ecological services provided by biological control agents.
Collapse
Affiliation(s)
- Michele Ricupero
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy
| | - Nicolas Desneux
- Université Côte D'Azur, INRA (French National Institute for Agricultural Research), CNRS, UMR ISA, 06000, Nice, France
| | - Lucia Zappalà
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy.
| | - Antonio Biondi
- University of Catania, Department of Agriculture, Food and Environment, Catania, Italy
| |
Collapse
|
12
|
Resende-Silva GA, Joseph DA, Guedes RNC, Cutler GC. Impact of Imidacloprid Soil Drenching on Survival, Longevity, and Reproduction of the Zoophytophagous Predator Podisus maculiventris (Hemiptera: Pentatomidae: Asopinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:108-114. [PMID: 31675095 DOI: 10.1093/jee/toz283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Systemic insecticides when applied as seed treatments or soil drenches are often more toxicologically selective for natural enemies than target pests. This may not be the case, however, for omnivorous predators, which are at risk of extended exposure to systemically applied pesticides through ingestion while feeding on treated plants for nutrients or water. Such exposure may kill or have sublethal consequences for these natural enemies, compromising their role as biocontrol agents of agricultural pest species. The spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae: Asopinae), is an important zoophytophagous biocontrol agent (i.e., able to substitute zoophagy by phytophagy for survival) that may be exposed to systemic insecticides in many agricultural systems. We, therefore, examined effects on P. maculiventris following exposure to cabbage plants subject to soil-drench treatments with imidacloprid, a systemic neonicotinoid insecticide. Predator survival, development, body weight, and reproduction were recorded. Imidacloprid significantly affected nymph survival and adult emergence, but not duration of the nymphal period or adult body weight. At one-twentieth the recommended field rate for whitefly and aphid management, imidacloprid treatments reduced longevity, fecundity, and fertility of female predators. These findings demonstrate that soil treatments with systemic insecticide can negatively impact zoophytophagous natural enemies.
Collapse
Affiliation(s)
- Geverson A Resende-Silva
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Deney A Joseph
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | | | - G Christopher Cutler
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|