1
|
Wueppenhorst K, Alkassab AT, Beims H, Bischoff G, Ernst U, Friedrich E, Illies I, Janke M, Kehmstedt J, Kirchner WH, Odemer R, Erler S. Nurse honey bees filter fungicide residues to maintain larval health. Curr Biol 2024; 34:5570-5577.e11. [PMID: 39476835 DOI: 10.1016/j.cub.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024]
Abstract
Residues of plant protection products (PPPs) are frequently detected in bee matrices1,2,3,4,5,6 due to foraging bees collecting contaminated nectar and pollen, which they bring back to their hive. The collected material is further used by nurse bees to produce glandular secretions for feeding their larvae.7 Potential exposure to PPPs occurs through direct oral ingestion, contact during foraging, or interaction with contaminated hive material.8,9 Contaminants can pose health risks to adult worker bees,10,11 queens,12,13 drones (males),14 or larvae,15,16 potentially impacting colony health and productivity. However, residue concentrations can vary significantly between analyzed matrices, and potential accumulation or dilution steps have not been widely investigated. Although research has provided valuable insights into contamination risks, there remain gaps in our understanding of the entire pathway from field, via foragers, stored products, nurse bees, and finally to food jelly, i.e., royal, worker, and drone jelly, and the larvae, including all possible processing steps.17 We collected samples of bee-relevant matrices following the in-field spray application of the product Pictor Active, containing the fungicides boscalid and pyraclostrobin. The samples were analyzed for residues along this entire pathway. Fungicide residues were reduced by a factor of 8-80 from stored product to nurse bees' heads, suggesting a filtering function of nurse bees. Furthermore, detected residues in larval food jelly resulted from added pollen and not from nurse bee secretions. Calculated risk quotients were at least twice as low as the threshold values, suggesting a low risk to honey bee colonies from these fungicides at the tested application rate.
Collapse
Affiliation(s)
- Karoline Wueppenhorst
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zoological Institute, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Abdulrahim T Alkassab
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Hannes Beims
- Bezirk Oberbayern, Fachberatung für Imkerei, Prinzregentenstraße 14, 80538 München, Germany; Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Herzogin-Eleonore-Allee 5, 29221 Celle, Germany
| | - Gabriela Bischoff
- Julius Kühn-Institute, Institute for Bee Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Ulrich Ernst
- University of Hohenheim, State Institute of Bee Research, Erna-Hruschka-Weg 6, 70599 Stuttgart, Germany; University of Hohenheim, KomBioTa - Center for Biodiversity and Integrative Taxonomy, 70599 Stuttgart, Germany
| | - Elsa Friedrich
- University of Hohenheim, State Institute of Bee Research, Erna-Hruschka-Weg 6, 70599 Stuttgart, Germany
| | - Ingrid Illies
- Bavarian State Institute for Viticulture and Horticulture, Institute for Bee Research and Beekeeping, An der Steige 15, 97209 Veitshöchheim, Germany
| | - Martina Janke
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Herzogin-Eleonore-Allee 5, 29221 Celle, Germany
| | - Julia Kehmstedt
- Julius Kühn-Institute, Institute for Bee Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Wolfgang H Kirchner
- Ruhr-University-Bochum, Behavioral Biology and Biology Education, Universitätsstraße 150, 44780 Bochum, Germany
| | - Richard Odemer
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Silvio Erler
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zoological Institute, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| |
Collapse
|
2
|
Bixby M, French SK, Wizenberg SB, Jamieson A, Pepinelli M, Cunningham MM, Conflitti IM, Foster LJ, Zayed A, Guarna MM. Identifying and modeling the impact of neonicotinoid exposure on honey bee colony profit. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae227. [PMID: 39436769 DOI: 10.1093/jee/toae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Pollination by the European honey bee, Apis mellifera, is essential for the production of many crops, including highbush blueberries (Vaccinum corymbosum). To understand the impact of agrochemicals (specifically, neonicotinoids, a class of synthetic, neurotoxic insecticides) on these pollinators, we conducted a field study during the blueberry blooms of 2020 and 2021 in British Columbia (B.C.). Forty experimental honey bee colonies were placed in the Fraser Valley: half of the colonies were located within 1.5 km of highbush blueberry fields ("near" colonies) and half were located more than 1.5 km away ("far" colonies). We calculated risk quotients for these compounds using their chronic lethal dietary dose (LDD50) and median lethal concentration (LC50). Pesticide risk was similar between colonies located near and far from blueberry forage, suggesting that toxicity risks are regionally ubiquitous. Two systemic neonicotinoid insecticides, clothianidin and thiamethoxam, were found at quantities that exceeded chronic international levels of concern. We developed a profit model for a pollinating beekeeper in B.C. that was parameterized by: detected pesticide levels; lethal and sublethal bee health; and economic data. For colonies exposed to neonicotinoid pesticides in and out of the blueberry forage radii, there were economic consequences from colony mortality and sublethal effects such as a loss of honey production and compromised colony health. Further, replacing dead colonies with local bees was more profitable than replacing them with imported packages, illustrating that beekeeping management selection of local options can have a positive effect on overall profit.
Collapse
Affiliation(s)
- Miriam Bixby
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah K French
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Aidan Jamieson
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Morgan M Cunningham
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
| | | | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Maria Marta Guarna
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
| |
Collapse
|
3
|
Wizenberg SB, French SK, Newburn LR, Pepinelli M, Conflitti IM, Moubony M, Ritchie C, Jamieson A, Richardson RT, Travas A, Imrit MA, Chihata M, Higo H, Common J, Walsh EM, Bixby M, Guarna MM, Pernal SF, Hoover SE, Currie RW, Giovenazzo P, Guzman-Novoa E, Borges D, Foster LJ, Zayed A. Pollen foraging mediates exposure to dichotomous stressor syndromes in honey bees. PNAS NEXUS 2024; 3:pgae440. [PMID: 39434869 PMCID: PMC11491753 DOI: 10.1093/pnasnexus/pgae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024]
Abstract
Recent declines in the health of honey bee colonies used for crop pollination pose a considerable threat to global food security. Foraging by honey bee workers represents the primary route of exposure to a plethora of toxins and pathogens known to affect bee health, but it remains unclear how foraging preferences impact colony-level patterns of stressor exposure. Resolving this knowledge gap is crucial for enhancing the health of honey bees and the agricultural systems that rely on them for pollination. To address this, we carried out a national-scale experiment encompassing 456 Canadian honey bee colonies to first characterize pollen foraging preferences in relation to major crops and then explore how foraging behavior influences patterns of stressor exposure. We used a metagenetic approach to quantify honey bee dietary breadth and found that bees display distinct foraging preferences that vary substantially relative to crop type and proximity, and the breadth of foraging interactions can be used to predict the abundance and diversity of stressors a colony is exposed to. Foraging on diverse plant communities was associated with increased exposure to pathogens, while the opposite was associated with increased exposure to xenobiotics. Our work provides the first large-scale empirical evidence that pollen foraging behavior plays an influential role in determining exposure to dichotomous stressor syndromes in honey bees.
Collapse
Affiliation(s)
| | - Sarah K French
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Laura R Newburn
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mateus Pepinelli
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Ida M Conflitti
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mashaba Moubony
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Caroline Ritchie
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Aidan Jamieson
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | | - Anthea Travas
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | | - Matthew Chihata
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Heather Higo
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Julia Common
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Elizabeth M Walsh
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
| | - Miriam Bixby
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - M Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
- Department of Computer Science, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| | - Robert W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Pierre Giovenazzo
- Département de Biologie, Université Laval, Ville de Québec, QC, Canada G1V 0A6
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Daniel Borges
- Ontario Beekeepers’ Association, Technology Transfer Program, Guelph, ON, Canada N1H 6J2
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
4
|
Carlson EA, Melathopoulos A, Sagili R. The power to (detect) change: Can honey bee collected pollen be used to monitor pesticide residues in the landscape? PLoS One 2024; 19:e0309236. [PMID: 39325774 PMCID: PMC11426543 DOI: 10.1371/journal.pone.0309236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Analysis of trapped honey bee pollen for pesticide residues is the most widely used method of monitoring the amount of pesticide entering colonies and its change over time. In this study, we collected and analyzed pollen from 70 sites across four bee-pollinated crops over two years to characterize the variation in pesticide detection across sites, crops and at different periods during bloom. Hazard Quotient, HQ, is the most common way that pesticide residues are aggregated into a single pesticide hazard value in the current literature. Therefore, change in pesticide hazard (HQ) was quantified in composite pollen samples collected from pollen traps and in pollen color subsamples separated into pollen from the target crop being pollinated and pollen from other plant species. We used our estimates of the variation in HQ to calculate the number of sample location sites needed to detect a 5% annual change in HQ across all crops or within specific crops over a 5-year period. The number of sites required to be sampled varied by crop and year and ranged between 139 and 7194 sites, costing an estimated $129,548 and $3.35 million, respectively. The HQ values detectable for this cost would be 575 and 154. We identified additional factors that complicate the interpretation of the results as a way to evaluate changes in pest management practices at a state level. First, in all but one crop (meadowfoam), the pollen collected from outside the crop honey bee colonies were pollinating comprised a major percentage of the total pollen catch. Moreover, we found that when the overall quantity of pollen from different pollen sources was taken into account, differences in HQ among crops widened. We also found that while HQ estimates remain consistent across the bloom period for some crops, such as cherry, we observed large differences in other crops, notably meadowfoam. Overall, our results suggest the current practice of interpreting pesticides levels in pollen may come with limitations for agencies charged with improving pesticide stewardship due to the high variation associated with HQ values over time and across crops. Despite the limitations of HQ for detecting change in pesticide hazard, there remains a potential for HQ to provide feedback to regulators and scientists on field-realistic pesticide hazard within a landscape.
Collapse
Affiliation(s)
- Emily A Carlson
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Andony Melathopoulos
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Ramesh Sagili
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
5
|
Averill AL, Eitzer BD, Drummond FA. Pesticide Contamination in Native North American Crops, Part I-Development of a Baseline and Comparison of Honey Bee Exposure to Residues in Lowbush Blueberry and Cranberry. INSECTS 2024; 15:489. [PMID: 39057222 PMCID: PMC11277497 DOI: 10.3390/insects15070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
A pesticide exposure baseline for honey bees was compiled for two New England cropping systems, the native North American plant species consisting of lowbush blueberry (Vaccinium angustifolium Aiton) and cranberry (Vaccinium macrocarpon Aiton). More unique pesticide compounds were applied in blueberry than cranberry, but the numbers of pesticides discovered in trapped honey bee pollen were similar between the two crop systems. Not all pesticides found in pollen were the result of the applications reported by growers of either crop. When comparing residues, number of pesticides detected, total concentration, and risk quotient varied between the two crops. Also, blueberry was dominated by fungicides and miticides (varroacides) and cranberry was dominated by insecticides and herbicides. When comparing reported grower applications that were matched with detection in residues, the proportion of pesticide numbers, concentrations, and risk quotients varied by crop system and pesticide class. In most cases, pesticide residue concentrations were of low risk (low risk quotient) to honey bees in these crops. Estimation of decay rates of some of the most common pesticide residues under field conditions could aid growers in selection of less persistent compounds, together with safe application dates, prior to bringing in honey bees for pollination.
Collapse
Affiliation(s)
- Anne L. Averill
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA;
| | - Brian D. Eitzer
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA;
| | - Francis A. Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Cooperative Extension, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
6
|
French SK, Pepinelli M, Conflitti IM, Jamieson A, Higo H, Common J, Walsh EM, Bixby M, Guarna MM, Pernal SF, Hoover SE, Currie RW, Giovenazzo P, Guzman-Novoa E, Borges D, Foster LJ, Zayed A. Honey bee stressor networks are complex and dependent on crop and region. Curr Biol 2024; 34:1893-1903.e3. [PMID: 38636513 DOI: 10.1016/j.cub.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.
Collapse
Affiliation(s)
- Sarah K French
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Aidan Jamieson
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Heather Higo
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Julia Common
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Elizabeth M Walsh
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Miriam Bixby
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - M Marta Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada; University of Victoria, Department of Computer Science, 3800 Finnerty Road, Victoria, BC V8P5C2, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Shelley E Hoover
- University of Lethbridge, Department of Biological Sciences, 4401 University Drive, Lethbridge, AB T1K3M4, Canada
| | - Robert W Currie
- University of Manitoba, Department of Entomology, 12 Dafoe Road, Winnipeg, MB R3T2N2, Canada
| | - Pierre Giovenazzo
- Université Laval, Département de biologie, 1045, avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Ernesto Guzman-Novoa
- University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Daniel Borges
- Ontario Beekeepers' Association, Technology Transfer Program, 185-5420 Highway 6 North, Guelph, ON N1H6J2, Canada
| | - Leonard J Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada.
| |
Collapse
|
7
|
Knauer A, Naef C, Albrecht M. Pesticide hazard, floral resource availability and natural enemies interactively drive the fitness of bee species depending on their crop fidelity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171058. [PMID: 38378056 DOI: 10.1016/j.scitotenv.2024.171058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Affiliation(s)
- Anina Knauer
- Agroecology and Environment, Agroscope, Zürich, Switzerland.
| | - Carmen Naef
- Agroecology and Environment, Agroscope, Zürich, Switzerland
| | | |
Collapse
|
8
|
Encerrado-Manriquez AM, Pouv AK, Fine JD, Nicklisch SCT. Enhancing knowledge of chemical exposures and fate in honey bee hives: Insights from colony structure and interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170193. [PMID: 38278225 DOI: 10.1016/j.scitotenv.2024.170193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Honey bees are unintentionally exposed to a wide range of chemicals through various routes in their natural environment, yet research on the cumulative effects of multi-chemical and sublethal exposures on important caste members, including the queen bee and brood, is still in its infancy. The hive's social structure and food-sharing (trophallaxis) practices are important aspects to consider when identifying primary and secondary exposure pathways for residential hive members and possible chemical reservoirs within the colony. Secondary exposures may also occur through chemical transfer (maternal offloading) to the brood and by contact through possible chemical diffusion from wax cells to all hive members. The lack of research on peer-to-peer exposures to contaminants and their metabolites may be in part due to the limitations in sensitive analytical techniques for monitoring chemical fate and dispersion. Combined application of automated honey bee monitoring and modern chemical trace analysis techniques could offer rapid progress in quantifying chemical transfer and accumulation within the hive environment and developing effective mitigation strategies for toxic chemical co-exposures. To enhance the understanding of chemical fate and toxicity within the entire colony, it is crucial to consider both the intricate interactions among hive members and the potential synergistic effects arising from combinations of chemical and their metabolites.
Collapse
Affiliation(s)
| | - Amara K Pouv
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA; Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, 3026 Bee Biology Rd., Davis, CA 95616, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Bava R, Lupia C, Castagna F, Ruga S, Nucera S, Caminiti R, Bulotta RM, Naccari C, Carresi C, Musolino V, Statti G, Britti D, Mollace V, Palma E. Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees. Animals (Basel) 2024; 14:608. [PMID: 38396576 PMCID: PMC10886160 DOI: 10.3390/ani14040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Flupyradifurone (FLU) is a butenolide insecticide that has come onto the market relatively recently. It is used in agriculture to control aphids, psyllids, and whiteflies. Toxicity studies have decreed its low toxicity to honeybees. However, recent research has challenged these claims; oral exposure to the pesticide can lead to behavioral abnormalities and in the worst cases, lethal phenomena. Compounds with antioxidant activity, such as flavonoids and polyphenols, have been shown to protect against the toxic effects of pesticides. The aim of this research was to evaluate the possible protective effect of the bergamot polyphenolic fraction (BPF) against behavioral abnormalities and lethality induced by toxic doses of FLU orally administered to honeybees under laboratory conditions. Honeybees were assigned to experimental groups in which two toxic doses of FLU, 50 mg/L and 100 mg/L were administered. In other replicates, three doses (1, 2 and 5 mg/kg) of the bergamot polyphenolic fraction (BPF) were added to the above toxic doses. In the experimental groups intoxicated with FLU at the highest dose tested, all caged subjects (20 individuals) died within the second day of administration. The survival probability of the groups to which the BPF was added was compared to that of the groups to which only the toxic doses of FLU were administered. The mortality rate in the BPF groups was statistically lower (p < 0.05) than in the intoxicated groups; in addition, a lower percentage of individuals exhibited behavioral abnormalities. According to this research, the ingestion of the BPF attenuates the harmful effects of FLU. Further studies are needed before proposing BPF incorporation into the honeybees' diet, but there already seem to be beneficial effects associated with its intake.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Clara Naccari
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Vincenzo Musolino
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Vincenzo Mollace
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
11
|
Hester KP, Stoner KA, Eitzer BD, Koethe RW, Lehmann DM. Pesticide residues in honey bee (Apis mellifera) pollen collected in two ornamental plant nurseries in Connecticut: Implications for bee health and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122037. [PMID: 37348699 PMCID: PMC10732578 DOI: 10.1016/j.envpol.2023.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Honey bees (Apis mellifera L.) are one of the most important managed pollinators of agricultural crops. While potential effects of agricultural pesticides on honey bee health have been investigated in some settings, risks to honey bees associated with exposures occurring in the plant nursery setting have received little attention. We sought to identify and quantify pesticide levels present in honey bee-collected pollen harvested in two ornamental plant nurseries (i.e., Nursery A and Nursery B) in Connecticut. From June to September 2018, pollen was collected weekly from 8 colonies using bottom-mounted pollen traps. Fifty-five unique pesticides (including related metabolites) were detected: 24 insecticides, 20 fungicides, and 11 herbicides. Some of the pesticide contaminants detected in the pollen had not been applied by the nurseries, indicating that the honey bee colonies did not exclusively forage on pollen at their respective nursery. The average number of pesticides per sample was similar at both nurseries (i.e., 12.9 at Nursery A and 14.2 at Nursery B). To estimate the potential risk posed to honey bees from these samples, we utilized the USEPA's BeeREX tool to calculate risk quotients (RQs) for each pesticide within each sample. The median aggregate RQ for nurse bees was 0.003 at both nurseries, well below the acute risk level of concern (LOC) of ≥0.4. We also calculated RQs for larvae due to their increased sensitivity to certain pesticides. In total, 6 samples had larval RQs above the LOC (0.45-2.51), resulting from the organophosphate insecticide diazinon. Since 2015, the frequency and amount of diazinon detected in pollen increased at one of our study locations, potentially due to pressure to reduce the use of neonicotinoid insecticides. Overall, these data highlight the importance of considering all life stages when estimating potential risk to honey bee colonies from pesticide exposure.
Collapse
Affiliation(s)
- K P Hester
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - K A Stoner
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - B D Eitzer
- Retired, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - R W Koethe
- Region 1 Office, Land, Chemicals and Redevelopment Division, RCRA Waste, Underground Storage Tanks and Pesticides Section, U.S. Environmental Protection Agency, Boston, MA, 02109, USA
| | - D M Lehmann
- Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
12
|
Zioga E, White B, Stout JC. Pesticide mixtures detected in crop and non-target wild plant pollen and nectar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162971. [PMID: 36958551 DOI: 10.1016/j.scitotenv.2023.162971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of mass flowering entomophilous crops benefits from the presence of managed and wild pollinators, who visit flowers to forage on pollen and nectar. However, management of these crops typically includes application of pesticides, the presence of which may pose a hazard for pollinators foraging in an agricultural environment. To determine the levels of potential exposure to pesticides, their presence and concentration in pollen and nectar need assessing, both within and beyond the target crop plants. We selected ten pesticide compounds and one metabolite and analysed their occurrence in a crop (Brassica napus) and a wild plant (Rubus fruticosus agg.), which was flowering in field edges. Nectar and pollen from both plants were collected from five spring and five winter sown B. napus fields in Ireland, and were tested for pesticide residues, using QuEChERS and Liquid Chromatography tandem mass spectrometry (LC-MS/MS). Pesticide residues were detected in plant pollen and nectar of both plants. Most detections were from fields with no recorded application of the respective compounds in that year, but higher concentrations were observed in recently treated fields. Overall, more residues were detected in B. napus pollen and nectar than in the wild plant, and B. napus pollen had the highest mean concentration of residues. All matrices were contaminated with at least three compounds, and the most frequently detected compounds were fungicides. The most common compound mixture was comprised of the fungicides azoxystrobin, boscalid, and the neonicotinoid insecticide clothianidin, which was not recently applied on the fields. Our results indicate that persistent compounds like the neonicotinoids, should be continuously monitored for their presence and fate in the field environment. The toxicological evaluation of the compound mixtures identified in the present study should be performed, to determine their impacts on foraging insects that may be exposed to them.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Barascou L, Godeau U, Pioz M, Martin O, Sené D, Crauser D, Le Conte Y, Alaux C. Real-time monitoring of honeybee colony daily activity and bee loss rates can highlight the risk posed by a pesticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163928. [PMID: 37156377 DOI: 10.1016/j.scitotenv.2023.163928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Information on honeybee foraging performance and especially bee loss rates at the colony level are crucial for evaluating the magnitude of effects due to pesticide exposure, thereby ensuring that protection goals for honeybee colonies are met (i.e. threshold of acceptable effects). However, current methods for monitoring honeybee foraging activity and mortality are very approximate (visual records) or are time-limited and mostly based on single cohort analysis. We therefore assess the potential of bee counters, that enable a colony-level and continuous monitoring of bee flight activity and mortality, in pesticide risk assessment. After assessing the background activity and bee loss rates, we exposed colonies to two concentrations of sulfoxaflor (a neurotoxic insecticide) in sugar syrup: a concentration that was considered to be field realistic (0.59 μg/ml) and a higher concentration (2.36 μg/ml) representing a worst-case exposure scenario. We did not find any effect of the field-realistic concentration on flight activity and bee loss rates. However, a two-fold decrease in daily flight activity and a 10-fold increase in daily bee losses were detected in colonies exposed to the highest sulfoxaflor concentration as compared to before exposure. When compared to the theoretical trigger values associated with the specific protection goal of 7 % colony-size reduction, the observed fold changes in daily bee losses were often found to be at risk for colonies. In conclusion, the real-time and colony-level monitoring of bee loss rates, combined with threshold values indicating at which levels bee loss rates threaten the colony, have great potential for improving regulatory pesticide risk assessments for honeybees under field conditions.
Collapse
Affiliation(s)
| | | | | | - Olivier Martin
- INRAE, Biostatistique et processus Spatiaux, Avignon, France
| | - Deborah Sené
- INRAE, Abeilles et Environnement, Avignon, France
| | | | | | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| |
Collapse
|
14
|
Odemer R, Friedrich E, Illies I, Berg S, Pistorius J, Bischoff G. Potential Risk of Residues From Neonicotinoid-Treated Sugar Beet Flowering Weeds to Honey Bees (Apis mellifera L.). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1167-1177. [PMID: 36861216 DOI: 10.1002/etc.5602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In 2018 the European Union (EU) banned the three neonicotinoid insecticides imidacloprid, clothianidin (CLO), and thiamethoxam (TMX), but they can still be used if an EU Member State issues an emergency approval. Such an approval went into effect in 2021 for TMX-coated sugar beet seeds in Germany. Usually, this crop is harvested before flowering without exposing non-target organisms to the active ingredient or its metabolites. In addition to the approval, strict mitigation measures were imposed by the EU and the German federal states. One of the measures was to monitor the drilling of sugar beet and its impact on the environment. Hence we took residue samples from different bee and plant matrices and at different dates to fully map beet growth in the German states of Lower Saxony, Bavaria, and Baden-Württemberg. A total of four treated and three untreated plots were surveyed, resulting in 189 samples. Residue data were evaluated using the US Environmental Protection Agency BeeREX model to assess acute and chronic risk to honey bees from the samples, because oral toxicity data are widely available for both TMX and CLO. Within treated plots, we found no residues either in pools of nectar and honey crop samples (n = 24) or dead bee samples (n = 21). Although 13% of beebread and pollen samples and 88% of weed and sugar beet shoot samples were positive, the BeeREX model found no evidence of acute or chronic risk. We also detected neonicotinoid residues in the nesting material of the solitary bee Osmia bicornis, probably from contaminated soil of a treated plot. All control plots were free of residues. Currently, there are insufficient data on wild bee species to allow for an individual risk assessment. In terms of the future use of these highly potent insecticides, therefore, it must be ensured that all regulatory requirements are complied with to mitigate any unintentional exposure. Environ Toxicol Chem 2023;42:1167-1177. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Richard Odemer
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Elsa Friedrich
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Ingrid Illies
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, Veitshöchheim, Germany
| | - Stefan Berg
- Institute for Bee Research and Beekeeping, Bavarian State Institute for Viticulture and Horticulture, Veitshöchheim, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Gabriela Bischoff
- Institute for Bee Protection, Julius Kühn-Institut-Federal Research Centre for Cultivated Plants, Berlin, Germany
| |
Collapse
|
15
|
Barascou L, Sene D, Le Conte Y, Alaux C. Pesticide risk assessment: honeybee workers are not all equal regarding the risk posed by exposure to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90328-90337. [PMID: 35864404 DOI: 10.1007/s11356-022-21969-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Toxicological studies in honeybees have long shown that a single pesticide dose or concentration does not necessarily induce a single response. Inter-individual differences in pesticide sensitivity and/or the level of exposure (e.g., ingestion of pesticide-contaminated matrices) may explain this variability in risk posed by a pesticide. Therefore, to better inform pesticide risk assessment for honeybees, we studied the risk posed by pesticides to two behavioral castes, nurse, and forager bees, which are largely represented within colonies and which exhibit large differences in their physiological backgrounds. For that purpose, we determined the sensitivity of nurses and foragers to azoxystrobin (fungicide) and sulfoxaflor (insecticide) upon acute or chronic exposure. Azoxystrobin was found to be weakly toxic to both types of bees. However, foragers were more sensitive to sulfoxaflor than nurses upon acute and chronic exposure. This phenomenon was not explained by better sulfoxaflor metabolization in nurses, but rather by differences in body weight (nurses being 1.6 times heavier than foragers). Foragers consistently consumed more sugar syrup than nurses, and this increased consumption was even more pronounced with pesticide-contaminated syrup (at specific concentrations). Altogether, the stronger susceptibility and exposure of foragers to sulfoxaflor contributed to increases of 2 and tenfold for the acute and chronic risk quotients, respectively, compared to nurses. In conclusion, to increase the safety margin and avoid an under-estimation of the risk posed by insecticides to honeybees, we recommend systematically including forager bees in regulatory tests.
Collapse
Affiliation(s)
| | - Deborah Sene
- INRAE, Abeilles Et Environnement, Avignon, France
| | | | - Cedric Alaux
- INRAE, Abeilles Et Environnement, Avignon, France.
| |
Collapse
|
16
|
Zioga E, White B, Stout JC. Glyphosate used as desiccant contaminates plant pollen and nectar of non-target plant species. Heliyon 2022; 8:e12179. [PMID: 36531643 PMCID: PMC9755368 DOI: 10.1016/j.heliyon.2022.e12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Pesticide products containing glyphosate as a systemic active ingredient are some of the most extensively used herbicides worldwide. After spraying, residues have been found in nectar and pollen collected by bees foraging on treated plants. This dietary exposure to glyphosate could pose a hazard for flower-visiting animals including bees, and for the delivery of pollination services. Here, we evaluated whether glyphosate contaminates nectar and pollen of targeted crops and non-target wild plants. Oilseed rape was selected as focal crop species, and Rubus fruticosus growing in the hedgerows surrounding the crop was chosen as non-target plant species. Seven fields of oilseed rape, where a glyphosate-based product was applied, were chosen in east and southeast Ireland, and pollen and nectar were extracted from flowers sampled from the field at various intervals following glyphosate application. Pollen loads were taken from honeybees and bumblebees foraging on the crop at the same time. Glyphosate and aminomethylphosphonic acid (AMPA) residues were extracted using acidified methanol and their concentrations in the samples were determined by a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Glyphosate was detected in R. fruticosus nectar and pollen samples that were taken within a timeframe of two to seven days after the application on the crop as a desiccant. No glyphosate was detected when the application took place before or more than two months prior to our sampling in any of the evaluated matrices. The metabolite AMPA was not detected in any samples. To gain further insight into the potential extent of translocation within both plants and soil when a crop is desiccated using glyphosate before harvesting, and the potential impacts on bees, we recommend a longitudinal study of the presence and fate of glyphosate in non-target flowering plants growing nearby crop fields, over a period of several days after glyphosate application.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C. Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
17
|
Rondeau S, Baert N, McArt S, Raine NE. Quantifying exposure of bumblebee (Bombus spp.) queens to pesticide residues when hibernating in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119722. [PMID: 35809712 DOI: 10.1016/j.envpol.2022.119722] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pesticides is a major threat to bumblebee (Bombus spp.) health. In temperate regions, queens of many bumblebee species hibernate underground for several months, putting them at potentially high risk of exposure to soil contaminants. The extent to which bumblebees are exposed to residues in agricultural soils during hibernation is currently unknown, which limits our understanding of the full pesticide exposome for bumblebees throughout their lifecycle. To generate field exposure estimates for overwintering bumblebee queens to pesticide residues, we sampled soils from areas corresponding to suitable likely hibernation sites at six apple orchards and 13 diversified farms throughout Southern Ontario (Canada) in fall 2019-2020. Detectable levels of pesticides were found in 65 of 66 soil samples analysed for multi-pesticide residues (UPLC-MS/MS). A total of 53 active ingredients (AIs) were detected in soils, including 27 fungicides, 13 insecticides, and 13 herbicides. Overall, the frequency of detection, residue levels (median = 37.82 vs. 2.20 ng/g), and number of pesticides per sample (mean = 12 vs. 4 AIs) were highest for orchard soils compared to soils from diversified farms. Ninety-one percent of samples contained multiple residues (up to 29 different AIs per sample), including mixtures of insecticides and fungicides that might lead to synergistic effects. Our results suggest that when hibernating in agricultural areas, bumblebee queens are very likely to be exposed to a wide range of pesticide residues in soil, including potentially harmful levels of insecticides (e.g., cyantraniliprole up to 148.82 ng/g). Our study indicates the importance of empirically testing the potential effects of pesticide residues in soils for hibernating bumblebee queens, using field exposure data such as those generated here. The differences in potential exposure that we detected between cropping systems can also be used to better inform regulations that govern the use of agricultural pesticides, notably in apple orchards.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Ontario, Canada.
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Scott McArt
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
18
|
Rondeau S, Raine NE. Fungicides and bees: a review of exposure and risk. ENVIRONMENT INTERNATIONAL 2022; 165:107311. [PMID: 35714526 DOI: 10.1016/j.envint.2022.107311] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/03/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fungicides account for more than 35% of the global pesticide market and their use is predicted to increase in the future. While fungicides are commonly applied during bloom when bees are likely foraging on crops, whether real-world exposure to these chemicals - alone or in combination with other stressors - constitutes a threat to the health of bees is still the subject of great uncertainty. The first step in estimating the risks of exposure to fungicides for bees is to understand how and to what extent bees are exposed to these active ingredients. Here we review the current knowledge that exists about exposure to fungicides that bees experience in the field, and link quantitative data on exposure to acute and chronic risk of lethal endpoints for honey bees (Apis mellifera). From the 702 publications we screened, 76 studies contained quantitative data on residue detections in honey bee matrices, and a further 47 provided qualitative information about exposure for a range of bee taxa through various routes. We compiled data for 90 fungicides and metabolites that have been detected in honey, beebread, pollen, beeswax, and the bodies of honey bees. The risks posed to honey bees by fungicide residues was estimated through the EPA Risk Quotient (RQ) approach. Based on residue concentrations detected in honey and pollen/beebread, none of the reported fungicides exceeded the levels of concern (LOC) set by regulatory agencies for acute risk, while 3 and 12 fungicides exceeded the European Food Safety Authority (EFSA) chronic LOC for honey bees and wild bees, respectively. When considering exposure to all bees, fungicides of most concern include many broad-spectrum systemic fungicides, as well as the widely used broad-spectrum contact fungicide chlorothalonil. In addition to providing a detailed overview of the frequency and extent of fungicide residue detections in the bee environment, we identified important research gaps and suggest future directions to move towards a more comprehensive understanding and mitigation of the risks of exposure to fungicides for bees, including synergistic risks of co-exposure to fungicides and other pesticides or pathogens.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, 50 Stone Road East Guelph, Ontario N1G 2W1, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, 50 Stone Road East Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
19
|
Carlson EA, Melathopoulos A, Sagili R. The Value of Hazard Quotients in Honey Bee (Apis mellifera) Ecotoxicology: A Review. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.824992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estimates of pesticide application hazards have grown to be one of the most common methodologies for evaluating the impact of pest management practices on honey bees. Typically, hazards are estimated by calculating a Hazard Quotient (HQ), which is based on acute toxicity data for different pesticides and the quantity of those pesticides applied to a field or detected on bees and matrices associated with their hive (honey, wax, pollen, and/or bee bread). Although use of HQ is widespread, there have been few reviews of this methodology, particularly with focus on how effective this method is at predicting effects of pesticides on hives. We evaluated 36 relevant papers, containing calculations of HQ to estimate hazards to honey bees. We observed that HQ was primarily calculated using two different approaches: (1) from the concentration of pesticides in the food, hive, or tissues of honey bees or (2) using the field application rate of the active ingredient as the estimation of pesticide hazard. Within and between HQ calculation methods, thresholds vary widely with some HQ thresholds set below 1 and others set at 10,000. Based on our review we identify key weakness with current HQ methodology and how studies relate HQ to honey bee health endpoints. First, HQ thresholds from studies of pesticides in hives are not based on the same pesticide consumption models from the EPA, potentially overestimating the risk of impacts to colonies. Conversely, HQ estimates calculated from field application rates are not based on eco-toxicological estimates of field exposure, resulting in an overestimation of pesticide reaching colonies. We suggest it is for these reasons that there is poor correspondence between HQ and field-level honey bee health endpoints. Considering these challenges, HQ calculations should be used cautiously in future studies and more research should be dedicated to field level exposure models.
Collapse
|
20
|
McAfee A, Milone JP, Metz B, McDermott E, Foster LJ, Tarpy DR. Honey bee queen health is unaffected by contact exposure to pesticides commonly found in beeswax. Sci Rep 2021; 11:15151. [PMID: 34312437 PMCID: PMC8313582 DOI: 10.1038/s41598-021-94554-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
Honey bee queen health is crucial for colony health and productivity, and pesticides have been previously associated with queen loss and premature supersedure. Prior research has investigated the effects of indirect pesticide exposure on queens via workers, as well as direct effects on queens during development. However, as adults, queens are in constant contact with wax as they walk on comb and lay eggs; therefore, direct pesticide contact with adult queens is a relevant but seldom investigated exposure route. Here, we conducted laboratory and field experiments to investigate the impacts of topical pesticide exposure on adult queens. We tested six pesticides commonly found in wax: coumaphos, tau-fluvalinate, atrazine, 2,4-DMPF, chlorpyriphos, chlorothalonil, and a cocktail of all six, each administered at 1, 4, 8, 16, and 32 times the concentrations typically found in wax. We found no effect of any treatment on queen mass, sperm viability, or fat body protein expression. In a field trial testing queen topical exposure of a pesticide cocktail, we found no impact on egg-laying pattern, queen mass, emergence mass of daughter workers, and no proteins in the spermathecal fluid were differentially expressed. These experiments consistently show that pesticides commonly found in wax have no direct impact on queen performance, reproduction, or quality metrics at the doses tested. We suggest that previously reported associations between high levels of pesticide residues in wax and queen failure are most likely driven by indirect effects of worker exposure (either through wax or other hive products) on queen care or queen perception.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Joseph P Milone
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Bradley Metz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin McDermott
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|