1
|
Bjørklund G, Lysiuk R, Semenova Y, Lenchyk L, Dub N, Doşa MD, Hangan T. Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines. Curr Med Chem 2024; 31:393-409. [PMID: 36698239 DOI: 10.2174/0929867330666230125121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023]
Abstract
Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University , Astana, Kazakhstan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | | | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
2
|
Bidart JE, Pertino MW, Schmeda-Hirschmann G, Alché LE, Petrera E. Antiviral Effect of Natural and Semisynthetic Diterpenoids against Adenovirus Infection in vitro. PLANTA MEDICA 2023; 89:1001-1009. [PMID: 36940926 DOI: 10.1055/a-2058-3635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The emergence and re-emergence of viruses has highlighted the need to develop new broad-spectrum antivirals to mitigate human infections. Pursuing our search for new bioactive plant-derived molecules, we study several diterpene derivatives synthesized from jatropholones A and B and carnosic acid isolated from Jatropha isabellei and Rosmarinus officinalis, respectively. Here, we investigate the antiviral effect of the diterpenes against human adenovirus (HAdV-5) that causes several infections for which there is no approved antiviral therapy yet. Ten compounds are evaluated and none of them present cytotoxicity in A549 cells. Only compounds 2, 5 and 9 inhibit HAdV-5 replication in a concentration-dependent manner, without virucidal activity, whereas the antiviral action takes place after virus internalization. The expression of viral proteins E1A and Hexon is strongly inhibited by compounds 2 and 5 and, in a lesser degree, by compound 9. Since compounds 2, 5 and 9 prevent ERK activation, they might exert their antiviral action by interfering in the host cell functions required for virus replication. Besides, the compounds have an anti-inflammatory profile since they significantly inhibit the levels of IL-6 and IL-8 produced by THP-1 cells infected with HAdV-5 or with an adenoviral vector. In conclusion, diterpenes 2, 5 and 9 not only exert antiviral activity against adenovirus but also are able to restrain pro-inflammatory cytokines induced by the virus.
Collapse
Affiliation(s)
- Juan Esteban Bidart
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - Mariano Walter Pertino
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Laura Edith Alché
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Erina Petrera
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
4
|
Frejborg F, Kalke K, Hukkanen V. Current landscape in antiviral drug development against herpes simplex virus infections. SMART MEDICINE 2022; 1:e20220004. [PMID: 39188739 PMCID: PMC11235903 DOI: 10.1002/smmd.20220004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 08/28/2024]
Abstract
Herpes simplex viruses (HSV) are common human pathogens with a combined global seroprevalence of 90% in the adult population. HSV-1 causes orofacial herpes but can cause severe diseases, such as the potentially fatal herpes encephalitis and herpes keratitis, a prevalent cause of infectious blindness. The hallmark of HSV is lifelong latent infections and viral reactivations, leading to recurrent lesions or asymptomatic shedding. HSV-1 and HSV-2 can cause recurrent, painful, and socially limiting genital lesions, which predispose to human immunodeficiency virus infections, and can lead to neonatal herpes infections, a life-threatening condition for the newborn. Despite massive efforts, there is no vaccine against HSV, as both viruses share the capability to evade the antiviral defenses of human and to establish lifelong latency. Recurrent and primary HSV infections are treated with nucleoside analogs, but the treatments do not completely eliminate viral shedding and transmission. Drug-resistant HSV strains can emerge in relation to long-term prophylactic treatment. Such strains are likely to be resistant to other chemotherapies, justifying the development of novel antiviral treatments. The importance of developing new therapies against HSV has been recognized by the World Health Organization. In this review, we discuss the current approaches for developing novel antiviral therapies against HSV, such as small molecule inhibitors, biopharmaceuticals, natural products, gene editing, and oligonucleotide-based therapies. These approaches may have potential in the future to answer the unmet medical need. Furthermore, novel approaches are presented for potential eradication of latent HSV.
Collapse
Affiliation(s)
- Fanny Frejborg
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| | - Kiira Kalke
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| | - Veijo Hukkanen
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
5
|
Antiviral Active Compounds Derived from Natural Sources against Herpes Simplex Viruses. Viruses 2021; 13:v13071386. [PMID: 34372592 PMCID: PMC8310208 DOI: 10.3390/v13071386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex viruses (HSV) are ubiquitously distributed with a seroprevalence ranging up to 95% in the adult population. Refractory viral infections with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) represent a major global health issue. In particular, the increasing occurrence of resistance to conventional antiviral drugs make the therapy of such infections even more challenging. For instance, the frequent and long-term use of acyclovir and other nucleoside analogues targeting the viral DNA-polymerase enhance the development of resistant viruses. Particularly, the incidental increase of those strains in immunocompromised patients is alarming and represent a major health concern. Alternative treatment concepts are clearly needed. Natural products such as herbal medicines showed antiherpetic activity in vitro and in vivo and proved to be an excellent source for the discovery and isolation of novel antivirals. By this means, numerous plant-derived compounds with antiviral or antimicrobial activity could be isolated. Natural medicines and their ingredients are well-tolerated and could be a good alternative for treating herpes simplex virus infections. This review provides an overview of the recent status of natural sources such as plants, bacteria, fungi, and their ingredients with antiviral activity against herpes simplex viruses. Furthermore, we highlight the most potent herbal medicines and ingredients as promising candidates for clinical investigation and give an overview about the most important drug classes along with their potential antiviral mechanisms. The content of this review is based on articles that were published between 1996 and 2021.
Collapse
|
6
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
7
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review. Curr Drug Discov Technol 2020; 17:469-483. [PMID: 31309894 DOI: 10.2174/1570163816666190715114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections. METHODS A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: "myelitis", "encephalitis", "meningitis", "meningoencephalitis", "encephalomyelitis", "central nervous system", "brain", "spinal cord", "infection", "virus", "medicinal plants", and "biological compounds". RESULTS The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation. CONCLUSION Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
8
|
Álvarez DM, Castillo E, Duarte LF, Arriagada J, Corrales N, Farías MA, Henríquez A, Agurto-Muñoz C, González PA. Current Antivirals and Novel Botanical Molecules Interfering With Herpes Simplex Virus Infection. Front Microbiol 2020; 11:139. [PMID: 32117158 PMCID: PMC7026011 DOI: 10.3389/fmicb.2020.00139] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent within the human population and are characterized by lifelong infections and sporadic recurrences due to latent neuron infection. Upon reactivations, HSVs may manifest either, symptomatically or asymptomatically and be shed onto others through mucosae body fluids. Although, HSVs can produce severe disease in humans, such as life-threatening encephalitis and blindness, the most common symptoms are skin and mucosal lesions in the oro-facial and the genital areas. Nucleoside analogs with antiviral activity can prevent severe HSV infection, yet they are not very effective for treating skin manifestations produced by these viruses, as they only reduce in a few days at most the duration of lesions. Additionally, HSV variants that are resistant to these antivirals may arise, especially in immunosuppressed individuals. Thus, new antivirals that can reduce the severity and duration of these cutaneous manifestations would certainly be welcome. Here, we review currently available anti-herpetic therapies, novel molecules being assessed in clinical trials and new botanical compounds reported in the last 20 years with antiviral activities against HSVs that might represent future treatments against these viruses.
Collapse
Affiliation(s)
- Diana M. Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefanía Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Arriagada
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adolfo Henríquez
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Cristian Agurto-Muñoz
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Asai D, Nakashima H. Pathogenic Viruses Commonly Present in the Oral Cavity and Relevant Antiviral Compounds Derived from Natural Products. MEDICINES 2018; 5:medicines5040120. [PMID: 30424484 PMCID: PMC6313515 DOI: 10.3390/medicines5040120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Many viruses, such as human herpesviruses, may be present in the human oral cavity, but most are usually asymptomatic. However, if individuals become immunocompromised by age, illness, or as a side effect of therapy, these dormant viruses can be activated and produce a variety of pathological changes in the oral mucosa. Unfortunately, available treatments for viral infectious diseases are limited, because (1) there are diseases for which no treatment is available; (2) drug-resistant strains of virus may appear; (3) incomplete eradication of virus may lead to recurrence. Rational design strategies are widely used to optimize the potency and selectivity of drug candidates, but discovery of leads for new antiviral agents, especially leads with novel structures, still relies mostly on large-scale screening programs, and many hits are found among natural products, such as extracts of marine sponges, sea algae, plants, and arthropods. Here, we review representative viruses found in the human oral cavity and their effects, together with relevant antiviral compounds derived from natural products. We also highlight some recent emerging pharmaceutical technologies with potential to deliver antivirals more effectively for disease prevention and therapy.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan.
| |
Collapse
|
10
|
|
11
|
Ganjhu RK, Mudgal PP, Maity H, Dowarha D, Devadiga S, Nag S, Arunkumar G. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease 2015; 26:225-36. [PMID: 26645032 PMCID: PMC4663710 DOI: 10.1007/s13337-015-0276-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022] Open
Abstract
Herbal plants, plant preparations and phytoconstituents have proved useful in attenuating infectious conditions and were the only remedies available, till the advent of antibiotics (many being of plant origin themselves). Among infectious diseases, viral diseases in particular, remain the leading cause of death in humans globally. A variety of phytoconstituents derived from medicinal herbs have been extensively studied for antiviral activity. Based on this rationale, an online search was performed, which helped to identify a large number of plant species harboring antiviral molecules. These herbal sources have been reported individually or in combinations across a large number of citations studied. Activities against rabies virus, Human immunodeficiency virus, Chandipura virus, Japanese Encephalitis Virus, Enterovirus, Influenza A/H1N1 and other influenza viruses were discovered during the literature search. This review includes all such plant species exhibiting antiviral properties. The review also encompasses composition and methodologies of preparing various antiviral formulations around the globe. An elaborate section on the formulations filed for patent registration, along with non-patented formulations, has also been included in this article. To conclude, herbal sources provide researchers enormous scope to explore and bring out viable alternatives against viral diseases, considering non-availability of suitable drug candidates and increasing resistance to existing drug molecules for many emerging and re-emerging viral diseases.
Collapse
Affiliation(s)
- Rajesh Kumar Ganjhu
- Department of Virus Research (Manipal Centre for Virus Research), Manipal University, Manipal, Karnataka 576104 India
| | - Piya Paul Mudgal
- Department of Virus Research (Manipal Centre for Virus Research), Manipal University, Manipal, Karnataka 576104 India
| | - Hindol Maity
- Department of Virus Research (Manipal Centre for Virus Research), Manipal University, Manipal, Karnataka 576104 India
| | - Deepu Dowarha
- Department of Virus Research (Manipal Centre for Virus Research), Manipal University, Manipal, Karnataka 576104 India
| | - Santhosha Devadiga
- Department of Virus Research (Manipal Centre for Virus Research), Manipal University, Manipal, Karnataka 576104 India
| | - Snehlata Nag
- Department of Zoology, Ranchi University, Ranchi, Jharkhand 834001 India
| | - Govindakarnavar Arunkumar
- Department of Virus Research (Manipal Centre for Virus Research), Manipal University, Manipal, Karnataka 576104 India
| |
Collapse
|
12
|
Ibrar M, Rauf A, Ben Hadda T, Mubarak MS, Patel S. Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:335-346. [PMID: 25952168 DOI: 10.1016/j.jep.2015.04.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
STUDY OBJECTIVE Ethnobotanical knowledge is proving to be invaluable for drug discovery in the wake of effective prospecting from biodiversity. On the other hand, the escalating human pressure is threatening the endogenous flora. Situated at the foothill of the Himalayas, Pakistan boasts of rich floristic distribution. However, many lush yet imperiled regions of this country has never been explored. It inspired us to evaluate and document the taxonomic composition, significance of medicinal plants and associated traditional knowledge in the District of Malakand, Khyber Pakhtunkhwa Province. MATERIALS AND METHODS Vegetation growing in Malakand pass hills, Pakistan was studied and data were collected using an open-ended questionnaire, in addition to interviewing the local elderly, knowledgeable persons, and herbal practitioners. Relative Frequency Citation (RFC) and Use Value (UV) of the medicinal plants were calculated and their correlation was determined by Pearson correlation coefficient. RESULTS This study encompasses 92 plant species belonging to 56 families thriving in the study area. The information gathered includes ethnobotanical inventory and their pharmacological uses. Quantitative analysis throws light on the consistence of RFC and UV. Asteraceae and Lamiaceae were the most abundant families represented by 6 species each. Shoots were the most used parts (23.6%) and wound healing (7.91%) was the most common therapeutic use. CONCLUSION The result obtained from the study implies that local inhabitants rely on these plants for their medicinal requirements. Also, the statistics reveal that, the vegetation can be assessed for potential drug leads. However, urban expansion is threatening the existence of indigenous flora and old generation with ancient herbal wisdom is perishing. So, it appears imperative to preserve the traditional knowledge. This survey is expected to contribute to the discovery of novel bioactive constituents, stimulate conservation efforts of the perturbed flora and promote sustainable exploitation of the medicinal bounty.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Abdur Rauf
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| | - Taibi Ben Hadda
- Laboratoire Chimie Matériaux, FSO, Université Mohammed Ier, Oujda 60000, Morocco
| | | | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| |
Collapse
|
13
|
Hassan STS, Masarčíková R, Berchová K. Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol 2015; 67:1325-36. [DOI: 10.1111/jphp.12436] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/12/2015] [Indexed: 01/07/2023]
Abstract
Abstract
Objectives
In this review, we highlight and summarise the most promising extracts, fractions and pure compounds as potential anti-herpes simplex virus (HSV) agents derived from microorganisms, marine organisms, fungi, animals and plants. The role of natural products in the development of anti-HSV drugs will be discussed.
Key findings
Herpes simplex viruses (HSV-1 and -2) are common human pathogens that remain a serious threat to human health. In recent years, a great interest has been devoted to the search for integrated management of HSV infections. Acyclovir and related nucleoside analogues have been licensed for the therapy that target viral DNA polymerase. Although these drugs are currently effective against HSV infections, the intensive use of these drugs has led to the problem of drug-resistant strains. Therefore, the search for new sources to develop new antiherpetic agents has gained major priority to overcome the problem.
Summary
Natural products as potential, new anti-HSV drugs provide several advantages such as reduced side effects, less resistance, low toxicity and various mechanisms of action. This paper aims to provide an overview of natural products that possess antiviral activity against HSV.
Collapse
Affiliation(s)
- Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Radka Masarčíková
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Kateřina Berchová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
14
|
Galani BRT, Sahuc ME, Njayou FN, Deloison G, Mkounga P, Feudjou WF, Brodin P, Rouillé Y, Nkengfack AE, Moundipa PF, Séron K. Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro. Front Microbiol 2015; 6:488. [PMID: 26029203 PMCID: PMC4432692 DOI: 10.3389/fmicb.2015.00488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
According to some recent studies, Cameroon is one of the sub-Saharan African countries most affected by hepatitis C, with low access to the standard therapy based on the combination of pegylated interferon and ribavirin. A first ethnobotanical survey, conducted in the Western region of Cameroon, reported the use of several medicinal plants in traditional medicine for the healing of liver-related disorders. Crude organic extracts of five plants surveyed were prepared and their effect against hepatitis C virus (HCV) infection investigated. The HCV JFH1 strain cell culture system HCVcc was used. The antiviral activity was quantified by immunofluorescent labeling of HCV E1 envelope protein at 30 h post-infection in the presence of the plant extracts. Active compounds were then tested in time course infection experiments. Dose-response and cellular toxicity assays were also determined. Three extracts, methanol extracts from roots of Trichilia dregeana, stems of Detarium microcarpum and leaves of Phragmanthera capitata, showed anti-HCV activity, with half-maximal inhibitory concentration of 16.16, 1.42, and 13.17 μg/mL, respectively. Huh-7 cells were incubated with the extracts for 72 h and it appears that T. dregeana extract is not toxic up to 200 μg/mL, D. microcarpum up to 100 μg/mL and P. capitata up to 800 μg/mL. All the three extracts showed a strong inhibition of HCV entry and no effect on replication or secretion. Taken together, these results showed that extracts from Cameroonian medicinal plants are promising sources of anti-HCV agents.
Collapse
Affiliation(s)
- Borris R T Galani
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon ; Department of Biological Sciences, Faculty of Science, University of Ngaoundéré Ngaoundéré, Cameroon
| | - Marie-Emmanuelle Sahuc
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Frederic N Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Gaspard Deloison
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Pierre Mkounga
- Laboratory of Physical Chemistry and Phytochemistry, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - William F Feudjou
- Laboratory of Physical Chemistry and Phytochemistry, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Priscille Brodin
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Yves Rouillé
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Augustin E Nkengfack
- Laboratory of Physical Chemistry and Phytochemistry, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Karin Séron
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| |
Collapse
|
15
|
Suazo PA, Tognarelli EI, Kalergis AM, González PA. Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease. Med Microbiol Immunol 2015; 204:161-76. [PMID: 25209142 PMCID: PMC7102243 DOI: 10.1007/s00430-014-0358-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
Infection with herpes simplex viruses is one of the most ancient diseases described to affect humans. Infection with these viruses produces vexing effects to the host, which frequently recur. Infection with herpes simplex viruses is lifelong, and currently there is no vaccine or drug to prevent or cure infection. Prevalence of herpes simplex virus 2 (HSV-2) infection varies significantly depending on the geographical region and nears 20% worldwide. Importantly, HSV-2 is the first cause of genital ulcers in the planet. HSV-2 affects approximately 500 million people around the globe and significantly increases the likelihood of acquiring the human immunodeficiency virus (HIV), as well as its shedding. Thus, controlling HSV-2 infection and spread is of public health concern. Here, we review the diseases produced by herpes simplex viruses, the factors that modulate HSV-2 infection, the relationship between HSV-2 and HIV and novel therapeutic and prophylactic microbicides/antivirals under development to prevent infection and pathological outcomes produced by this virus. We also review mutations associated with HSV-2 resistance to common antivirals.
Collapse
Affiliation(s)
- Paula A. Suazo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
| | - Eduardo I. Tognarelli
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM U1064, Nantes, France
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
| |
Collapse
|
16
|
Della Bona A, Nedel F. Evaluation of Melia azedarach Extracts Against Streptococcus mutans. J Med Food 2015; 18:259-63. [DOI: 10.1089/jmf.2013.0181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alvaro Della Bona
- Post-Graduate Program in Dentistry, Dental School, University of Passo Fundo, Passo Fundo, Brazil
| | - Fernanda Nedel
- Post-Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
17
|
Jin Q, Lee C, Woo Lee J, Yeon Choi J, Tae Hong J, Kim Y, Kyeong Lee M, Yeon Hwang B. Two NewC-secoLimonoids from the Fruit ofMelia azedarach. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201400045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Abstract
Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chan Hsu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Son M, Lee M, Sung GH, Lee T, Shin YS, Cho H, Lieberman PM, Kang H. Bioactive activities of natural products against herpesvirus infection. J Microbiol 2013; 51:545-51. [PMID: 24173639 DOI: 10.1007/s12275-013-3450-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022]
Abstract
More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.
Collapse
Affiliation(s)
- Myoungki Son
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, and Institute for Microorganisms, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Petrera E, Coto CE. Effect of the potent antiviral 1-cinnamoyl-3,11-dihydroxymeliacarpin on cytokine production by murine macrophages stimulated with HSV-2. Phytother Res 2013; 28:104-9. [PMID: 23512754 DOI: 10.1002/ptr.4974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/12/2022]
Abstract
The limonoid 1-cinnamoyl-3,11-dihydroxymeliacarpin (CDM) isolated from leaf extracts of Melia azedarach L, has potent antiherpetic effect in epithelial cells. Since Meliacine, the partially purified extract source of CDM, has therapeutic effect on murine genital herpes, the potential use of CDM as microbicide against herpetic infections was studied here. To determine the cytotoxic effect of CDM, the MTT assay and acridine orange staining of living cells were performed. The antiherpetic action of CDM was measured by plaque reduction assay, and the immunomodulatory effect was determined by measuring the cytokine production using a bioassay and ELISA method. The results presented here showed that CDM inhibited Herpes Simplex Virus type 2 (HSV-2) multiplication in Vero cells but did not affect its replication in macrophages which were not permissive to HSV infection. In macrophages, levels of TNF-α, IFN-γ, NO, IL-6 and IL-10 were increased by CDM used alone or in combination with HSV-2. Besides, CDM not only synergized TNF-α production combined with IFN-γ, but also prolonged its expression in time. Results indicate that CDM inhibits HSV-2 multiplication in epithelial cells and also increases cytokine production in macrophages, both important actions to the clearance of infecting virus in the mouse vagina.
Collapse
Affiliation(s)
- Erina Petrera
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | | |
Collapse
|
21
|
Zhong MG, Xiang YF, Qiu XX, Liu Z, Kitazato K, Wang YF. Natural products as a source of anti-herpes simplex virus agents. RSC Adv 2013. [DOI: 10.1039/c2ra21464d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Dhawan BN. Anti-Viral Activity of Indian Plants. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA. SECTION B 2012; 82:209-224. [PMID: 32226204 PMCID: PMC7099914 DOI: 10.1007/s40011-011-0016-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/14/2011] [Indexed: 11/28/2022]
Abstract
Plants continue to be a major source for new chemical entities to develop novel therapeutic agents. Large number of plants has been shown to be active in vitro against a variety of human pathogenic viruses or their near congeners. In several cases the active compounds have been isolated and characterized. Very few of them, however, have been investigated in detail in vivo or taken to the clinic. Pure compounds like andrographolide, curcumin and glycyrrhizic acid as well as extracts of Azadirachta indica have shown activity against several viruses and should be investigated further for their therapeutic potential. An analysis of available data from several hundred species indicates that antiviral activity is more likely to be found in plants belonging to certain families. It is necessary to screen more plants of these families which are available in India to obtain further leads.
Collapse
|
23
|
|