1
|
Emala CW, Saroya TK, Miao Y, Wang S, Sang S, DiMango EA. Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma. Pharmaceuticals (Basel) 2024; 17:1651. [PMID: 39770492 PMCID: PMC11728807 DOI: 10.3390/ph17121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objective: A significant number of individuals with asthma have poorly controlled daily symptoms and utilize dietary supplements such as ginger in a quest for improved symptom control; however, its effectiveness at improving the control of symptoms is unproven. We questioned whether low-dose oral ginger would improve subjective and objective measurements of asthma control in mild-to-moderate asthmatics. Methods: We performed a randomized, placebo-controlled, double-blinded study of a low dose (1 g twice daily) of a dietary supplement of ginger in 32 mild-to-moderate uncontrolled asthmatics over a 2-month trial period while maintaining daily conventional asthma therapies. The planned primary outcomes included an increased tolerance to inhaled methacholine and decreased concentrations of fractional excretion of exhaled nitric oxide (FeNO). Secondary planned outcomes included measurements of asthma control by the Asthma Control Test (ACT), a 2-week symptom recall test, and the Juniper mini Asthma Quality of Life Questionnaire (AQLQ), and blood eosinophils and asthma-associated cytokines. Results: Exhaled nitric oxide or blood eosinophils were not changed by oral ginger. However, three different measures of asthma symptom control were improved by the 28-day time point of oral ginger. Asthma-associated serum cytokines (IL-13 and IL-17A) were modulated by oral ginger. Conclusions: This is the first demonstration that a small daily dose of a dietary supplement of ginger may improve asthma symptoms and reduce inflammation in human asthmatics. These findings support the need for additional studies using larger doses of ginger in specific endotypes of asthmatics that may identify a novel therapeutic for asthma.
Collapse
Affiliation(s)
- Charles W. Emala
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, 628 W. 168th St. PH 505 Center, New York, NY 10032, USA
| | - Tarnjot K. Saroya
- Department of Medicine (Pulmonology, Allergy and Critical Care), Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yuqi Miao
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10027, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10027, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Emily A. DiMango
- Department of Medicine (Pulmonology, Allergy and Critical Care), Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
2
|
Wang ZZ, Li H, Maskey AR, Srivastava K, Liu C, Yang N, Xie T, Fu Z, Li J, Liu X, Sampson HA, Li XM. The Efficacy & Molecular Mechanisms of a Terpenoid Compound Ganoderic Acid C1 on Corticosteroid-Resistant Neutrophilic Airway Inflammation: In vivo and in vitro Validation. J Inflamm Res 2024; 17:2547-2561. [PMID: 38686360 PMCID: PMC11057679 DOI: 10.2147/jir.s433430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Neutrophil predominant airway inflammation is associated with severe and steroid-resistant asthma clusters. Previously, we reported efficacy of ASHMI, a three-herb TCM asthma formula in a steroid-resistant neutrophil-dominant murine asthma model and further identified Ganoderic Acid C1 (GAC1) as a key ASHMI active compound in vitro. The objective of this study is to investigate GAC1 effect on neutrophil-dominant, steroid-resistant asthma in a murine model. Methods In this study, Balb/c mice were systematically sensitized with ragweed (RW) and alum and intranasally challenged with ragweed. Unsensitized/PBS challenged mice served as normal controls. Post sensitization, mice were given 4 weeks of oral treatment with GAC1 or acute dexamethasone (Dex) treatment at 48 hours prior to challenge. Pulmonary cytokines were measured by ELISA, and lung sections were processed for histology by H&E staining. Furthermore, GAC1 effect on MUC5AC expression and on reactive oxygen species (ROS) production in human lung epithelial cell line (NCI-H292) was determined by qRT-PCR and ROS assay kit, respectively. Computational analysis was applied to select potential targets of GAC1 in steroid-resistant neutrophil-dominant asthma. Molecular docking was performed to predict binding modes between GAC1 and Dex with TNF-α. Results The result of the study showed that chronic GAC1 treatment, significantly reduced pulmonary inflammation (P < 0.01-0.001 vs Sham) and airway neutrophilia (P < 0.01 vs Sham), inhibited TNF-α, IL-4 and IL-5 levels (P < 0.05-0.001 vs Sham). Acute Dex treatment reduced eosinophilic inflammation and IL-4, IL-5 levels, but had no effect on neutrophilia and TNF-α production. GAC1 treated H292 cells showed decreased MUC5AC gene expression and production of ROS (P < 0.001 vs stimulated/untreated cells). Molecular docking results showed binding energy of complex GAC1-TNF was -10.8 kcal/mol. Discussion GAC1 may be a promising anti-asthma botanical drug for treatment of steroid-resistant asthma.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, People’s Republic of China
| | - Hang Li
- Central Lab, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People’s Republic of China
| | - Anish R Maskey
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| | - Kamal Srivastava
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- General Nutraceutical Technology, Elmsford, NY, USA
| | - Changda Liu
- Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nan Yang
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- General Nutraceutical Technology, Elmsford, NY, USA
| | - Taoyun Xie
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ziyi Fu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Junxiong Li
- Guangdong Province Hospital of Integrated Chinese and Western Medicine, Foshan, Guangdong, People’s Republic of China
| | - Xiaohong Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Hugh A Sampson
- Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- Department of Otolaryngology, Westchester Medical Center New York Medical College, Valhalla, NY, USA
| |
Collapse
|
3
|
Cao M, Zhan M, Jing H, Wang Z, Wang Y, Li X, Miao M. Network pharmacology and experimental evidence: MAPK signaling pathway is involved in the anti-asthma roles of Perilla frutescens leaf. Heliyon 2024; 10:e22971. [PMID: 38163225 PMCID: PMC10755271 DOI: 10.1016/j.heliyon.2023.e22971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Perilla frutescens (PF) leaf is a traditional Chinese medicine and food with beneficial effects on allergic asthma. We sought to elucidate the active compounds, the targets, and underlying mechanisms of PF leaf in the treatment of allergic asthma by using experimental pharmacology and network pharmacology. An OVA-allergic asthma murine model was constructed to evaluate the effect of PF leaf on allergic asthma. And the network pharmacology and western blotting were performed to evaluate its underlying mechanisms in allergic asthma. PF leaf treatment significantly improved the lung function of OVA model mice and mitigated lung injury by significantly reducing of OVA-specific immunoglobulin E in serum, and interleukin 4, interleukin 5 and tumor necrosis factor alpha in the bronchoalveolar lavage fluid. 50 core targets were screened based on 8 compounds (determined by high performance liquid chromatography) through compound-target- disease network. Furthermore, MAPK signaling pathway was identified as the pathway mediated by PF leaf with the most potential against allergic asthma. And the WB results showed that PF leaf could down-regulate the expression of p-ERK, p-JNK and p-p38, which was highly consistent with the predicted targets and pathway network. In conclusion, this study provides the evidence to support the molecular mechanisms of PF leaf on the treatment of allergic asthma using network pharmacology and in vivo experiments.
Collapse
Affiliation(s)
- Mingzhuo Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Mengling Zhan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Heyun Jing
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Zeqian Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Yuan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Xiumin Li
- Department of Microbiology and Immunology, and Otolaryngology, New York Medical College, Valhalla, NY, 10595, USA
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| |
Collapse
|
4
|
Kim SB, Ryu HY, Nam W, Lee SM, Jang MR, Kwak YG, Kang GI, Song KS, Lee JW. The Neuroprotective Effects of Dendropanax morbifera Water Extract on Scopolamine-Induced Memory Impairment in Mice. Int J Mol Sci 2023; 24:16444. [PMID: 38003650 PMCID: PMC10671129 DOI: 10.3390/ijms242216444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the neuroprotective effects of Dendropanax morbifera leaves and stems (DMLS) water extract on scopolamine (SCO)-induced memory impairment in mice. First, we conducted experiments to determine the protective effect of DMLS on neuronal cells. Treatment with DMLS showed a significant protective effect against neurotoxicity induced by Aβ(25-35) or H2O2. After confirming the neuroprotective effects of DMLS, we conducted animal studies. We administered DMLS orally at concentrations of 125, 250, and 375 mg/kg for 3 weeks. In the Y-maze test, SCO decreased spontaneous alternation, but treatment with DMLS or donepezil increased spontaneous alternation. In the Morris water-maze test, the SCO-treated group showed increased platform reach time and decreased swim time on the target platform. The passive avoidance task found that DMLS ingestion increased the recognition index in short-term memory. Furthermore, memory impairment induced by SCO reduced the ability to recognize novel objects. In the Novel Object Recognition test, recognition improved with DMLS or donepezil treatment. In the mouse brain, except for the cerebellum, acetylcholinesterase activity increased in the SCO group and decreased in the DMLS and donepezil groups. We measured catalase and malondialdehyde, which are indicators of antioxidant effectiveness, and found that oxidative stress increased with SCO but was mitigated by DMLS or donepezil treatment. Thus, our findings suggest that ingestion of DMLS restored memory impairment by protecting neuronal cells from Aβ(25-35) or H2O2-induced neurotoxicity, and by reducing oxidative stress.
Collapse
Affiliation(s)
- Sung Bae Kim
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Hyun Yeoul Ryu
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Woo Nam
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - So Min Lee
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Mi Ran Jang
- Huons Foodience Co., Ltd., Geumsan-gun 32724, Republic of Korea; (M.R.J.); (Y.G.K.)
| | - Youn Gil Kwak
- Huons Foodience Co., Ltd., Geumsan-gun 32724, Republic of Korea; (M.R.J.); (Y.G.K.)
| | - Gyoo Il Kang
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Kyung Seok Song
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Jae Won Lee
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| |
Collapse
|
5
|
Ramar MK, Henry LJK, Ramachandran S, Chidambaram K, Kandasamy R. Ziziphus mauritiana Lam attenuates inflammation via downregulating NFκB pathway in LPS-stimulated RAW 264.7 macrophages & OVA-induced airway inflammation in mice models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115445. [PMID: 35690340 DOI: 10.1016/j.jep.2022.115445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ziziphus mauritiana Lam leaves were utilized in treating asthma, diabetes, inflammation, and hepatic diseases in Indian traditional medicine. The leaves were used as an edible vegetables in rural parts of India. AIM OF THE STUDY The aim is to prove the anti-inflammatory activity of Ziziphus mauritiana Lam leaves against LPS-stimulated RAW 264.7 macrophages and OVA-induced airway inflammation in mice through its attenuation mechanism in the NFκB signalling pathway. MATERIALS AND METHODS Terpenoids present in MEZ were quantified using U(H)PLC analysis. MEZ at 50 and 100 μg/mL were tested against LPS stimulated RAW 264.7 macrophages. The concentration of NO, ROS, and cytokines was quantified from the cell culture supernatants. OVA-induced asthma in mice was adopted for screening airway inflammation. MEZ at 250 and 500 mg/kg was tested for airway hyperresponsiveness, leukocyte counting, pro-inflammatory cytokines (IL-4, IL-5, IL-13 and TNF-α), lung histopathology, and various inflammatory gene expressions in lungs for NFκB signalling pathway in asthma. RESULTS Terpenoids like betulin, betulinic acid, oleanolic acid, and ursolic acid were quantified from U(H)PLC analysis. MEZ at higher doses reduced the NO, ROS, and pro-inflammatory cytokines in LPS stimulated RAW 264.7 macrophages. MEZ at 500 mg/kg significantly reduced AHR and also decreased total and differential leukocytes. MEZ also reduced the expressions of ICAM, VCAM, and Muc5C genes. Histopathological analysis revealed MEZ significantly reduced the leukocyte infiltration and mucus hypersecretion in the lungs. MEZ suppressed lung inflammation by inhibition of p65 mediated IκB-α translocation in the NFκB signalling pathway. CONCLUSION From these findings, MEZ significantly reduced airway inflammation by inhibiting NFκB mediated inflammatory pathway. Hence, this study proved that Ziziphus mauritiana Lam has anti-asthmatic potential in Indian traditional medicine.
Collapse
Affiliation(s)
- Mohan Kumar Ramar
- Laboratory of Pulmonary Research, National Facility for Drug Development (NFDD), Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Linda Jeeva Kumari Henry
- Laboratory of Pulmonary Research, National Facility for Drug Development (NFDD), Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shiyamsundar Ramachandran
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology & Toxicology, School of Pharmacy, King Khalid University, Abha, 68589, Saudi Arabia
| | - Ruckmani Kandasamy
- Laboratory of Pulmonary Research, National Facility for Drug Development (NFDD), Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
6
|
Wang MC, Huang WC, Chen LC, Yeh KW, Lin CF, Liou CJ. Sophoraflavanone G from Sophora flavescens Ameliorates Allergic Airway Inflammation by Suppressing Th2 Response and Oxidative Stress in a Murine Asthma Model. Int J Mol Sci 2022; 23:ijms23116104. [PMID: 35682783 PMCID: PMC9181790 DOI: 10.3390/ijms23116104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR) and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory response in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms by decreasing airway-inflammation-related oxidative stress.
Collapse
Affiliation(s)
- Meng-Chun Wang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Correspondence: (C.-F.L.); (C.-J.L.); Tel.: +886-3-2118999 (ext. 5707) (C.-F.L.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: (C.-F.L.); (C.-J.L.); Tel.: +886-3-2118999 (ext. 5707) (C.-F.L.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| |
Collapse
|
7
|
Liu C, Cao M, Yang N, Reid-Adam J, Tversky J, Zhan J, Li XM. Time-dependent dual beneficial modulation of interferon-γ, interleukin 5, and Treg cytokines in asthma patient peripheral blood mononuclear cells by ganoderic acid B. Phytother Res 2022; 36:1231-1240. [PMID: 35112740 DOI: 10.1002/ptr.7266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/20/2021] [Accepted: 08/14/2021] [Indexed: 11/09/2022]
Abstract
Th2 cytokines play a dominant role in the pathogenesis of allergic asthma. Interferon gamma (IFN-γ), a Th1 cytokine, links to therapeutic mechanisms of allergic asthma. Interleukin (IL)-10, a regulatory cytokine, is involved in the induction of immune tolerance. We previously demonstrated that Anti-Asthma Simplified Herbal Medicine Intervention (ASHMI) suppressed Th2 and increased IFN-γ in patients with asthma and in animal models, but its bioactive compound is unknown. Ganoderic acid beta (GAB) was isolated from Ganoderma lucidum (one herb in ASHMI). Human peripheral blood mononuclear cells (PBMCs) from adult patients with asthma were cultured with GAB or dexamethasone (Dex) in the presence of environmental allergens. The cytokine levels of IL-10, IFN-γ, IL-5, transcription factors T-bet, Foxp-3, and GATA3 were measured. Following 3-day culture, GAB, but not Dex, significantly increased IL-10 and IFN-γ levels by allergic patients' PBMCs. Following 6-day treatment, GAB inhibited IL-5 production, but IL-10 and IFN-γ remained high. Dex suppressed production of all three cytokines. GAB suppressed GATA3 and maintained Foxp-3 and T-bet gene expression, while Dex significantly suppressed GATA3 and T-bet expression. GAB simultaneously increased IL-10, IFN-γ associated with induction of T-bet and Foxp3, while suppressing IL-5, which was associated with suppression of GATA3, demonstrating unique beneficial cytokine modulatory effect, which distinguishes from Dex's overall suppression.
Collapse
Affiliation(s)
- Changda Liu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingzhuo Cao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Nan Yang
- General Nutraceutical Technology LLC, Elmsford, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Jessica Reid-Adam
- Department of Pediatrics, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Jody Tversky
- The Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Xiu-Min Li
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Otolaryngology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
8
|
Active ingredients from Chinese medicine plants as therapeutic strategies for asthma: Overview and challenges. Biomed Pharmacother 2021; 137:111383. [PMID: 33761604 DOI: 10.1016/j.biopha.2021.111383] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Although considerable advance has been made in diagnosing and treating, asthma is still a serious public health challenge. Traditional Chinese medicine (TCM) is an effective therapy of complementary and alternative medicine. More and more scientific evidences support the use of TCM for asthma treatment, and active ingredients from Chinese medicine plants are becoming a hot issue. PURPOSE OF REVIEW To summarize the frontier knowledge on the function and underlying mechanisms of the active ingredients in asthma treatments and provide a fully integrated, reliable reference for exploring innovative treatments for asthma. METHODS The cited literature was obtained from the PubMed and CNIK databases (up to September 2020). Experimental studies on the active ingredients of Chinese medicine and their therapeutic mechanisms were identified. The key words used in the literature retrieval were "asthma" and "traditional Chinese medicine" or "Chinese herbal medicine". The literature on the active ingredients was then screened manually. RESULTS We summarized the effect of these active ingredients on asthma, primarily including the effect through which these ingredients can regulate the immunologic equilibrium mechanism by acting on a number of signalling pathways, such as Notch, JAK-STAT-MAPK, adiponectin-iNOS-NF-κB, PGD2-CRTH2, PI3K/AKT, Keap1-Nrf2/HO-1, T-bet/Gata-3 and Foxp3-RORγt, thereby regulating the progression of asthma. CONCLUSION The active ingredients from Chinese medicine have multilevel effects on asthma by regulating the immunologic equilibrium mechanism or signalling pathways, giving them great clinical value. However, the safety and functional mechanism of these ingredients still must be further determined.
Collapse
|
9
|
Cao M, Zhan M, Wang Z, Wang Z, Li XM, Miao M. Development of an Orally Bioavailable Isoliquiritigenin Self-Nanoemulsifying Drug Delivery System to Effectively Treat Ovalbumin-Induced Asthma. Int J Nanomedicine 2020; 15:8945-8961. [PMID: 33223829 PMCID: PMC7671486 DOI: 10.2147/ijn.s269982] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Isoliquiritigenin (ILQ), an important component of Anti-Asthma Herbal Medicine Intervention (ASHMI), had shown potent anti-asthma effect in vitro in our previous study. However, poor solubility and low bioavailability hindered in vivo application to treat asthma. This study was to develop a novel ILQ loaded self-nanoemulsifying drug delivery system (ILQ-SMEDDS) with enhanced bioavailability. Methods The optimized SMEDDS formulation was composed of ethyl oleate (oil phase), Tween 80 (surfactant) and PEG400 (co-surfactant) at a mass ratio of 3:6:1. The physiochemical properties of ILQ-SMEDDS, including drug content, globule size, zeta potential, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, were characterized. And the in vitro release profile, in situ intestinal absorption, in vivo pharmacokinetic parameters and the anti-asthma effect of ILQ suspension and ILQ-SMEDDS were evaluated. Results The ILQ-SMEDDS had an average globule size of 20.63 ± 1.95 nm with a polydispersity index (PDI) of 0.11 ± 0.03, and its zeta potential was −12.64 ± 2.12 mV. The cumulative release rate of ILQ from ILQ-SMEDDS to the simulated gastrointestinal tract was significantly higher than that of free ILQ suspension. And area under curve with ILQ-SMEDDS was found to be 3.95 times higher than that of ILQ suspension indicating improved bioavailability by SMEDDS. Although ILQ-SMEDDS showed a slight less effective inhibitory effect on eotaxin-1 in human lung fibroblast (HFL-1) cells than free ILQ, in an ovalbumin-induced asthma model, ILQ-SMEDDS exhibited more efficacy than ILQ suspension in improving asthma-associated inflammation, including eosinophil production, ovalbumin-specific immunoglobulin E (OVA-sIgE), interleukin 4 (IL 4), interleukin 5 (IL 5) and interferon-γ (IFN-γ). Even the low dose of ILQ-SMEDDS group (10 mg/kg) showed better anti-asthma effect than that of the ILQ suspension group (20 mg/kg). Conclusion Compared with ILQ suspension, ILQ-SMEDDS showed significantly improved bioavailability and anti-asthma effect, revealing its potential as a favorable pharmaceutical agent for treating asthma.
Collapse
Affiliation(s)
- Mingzhuo Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China
| | - Mengling Zhan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China
| | - Zheng Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China
| | - Zeqian Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China
| | - Xiu-Min Li
- Department of Microbiology and Immunology, and Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450058, People's Republic of China
| |
Collapse
|
10
|
Stockert K. Synopsis. ALLERGIEPRÄVENTION 2020. [PMCID: PMC7121829 DOI: 10.1007/978-3-662-58140-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Akute entzündliche Reaktionen bzw. der akute Infekt mit Restitutio ad integrum laufen in einer perfekt modulierten Kaskade ab, bei dem eine akute inflammatorische Einleitungsphase von einer antiinflammatorischen Phase und einer Entzündungsauflösungsphase abgelöst werden.
Collapse
|
11
|
Clyne A, Yang AWH, Li M, Fei Y, May BH. Traditional medicines for asthma in children and adults: A systematic review of placebo-controlled studies. Int J Clin Pract 2019; 73:e13433. [PMID: 31610072 DOI: 10.1111/ijcp.13433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Traditional medicines (TMs) adjunctive to conventional medications are widely used for asthma in east-Asia and have gained popularity in western countries. OBJECTIVE To assess the efficacy and safety of TMs for asthma in children and adults based on placebo-controlled trials in order to inform physicians and assist them in discussions with patients. METHODS Seventeen electronic databases were searched. Participants had acute or chronic asthma. Interventions included orally administered traditional medicines used in east-Asia. Outcomes included lung function, symptoms, quality of life, exacerbations, medication use and safety. RevMan 5.3 (random effect model) was used for meta-analysis. Baseline values were assessed for balance and asthma severity. Within-group changes were calculated to assess minimal clinically important difference (MCID). RESULTS Eighteen studies (2080 participants) were included. All combined TMs with conventional medicines. The single study of acute asthma (n = 300) showed an improvement. For chronic asthma, severity at baseline ranged from very mild to severe. When asthma was mild, significant differences in lung function (FEV1%, PEF/R) were not detectable. When participants had moderate and/or severe asthma at baseline improvements were more evident. For measures of lung function, improvements within the TM groups tended to be greater when the asthma was more severe. Some studies showed MCIDs. No serious adverse events or interactions were reported but safety data were incomplete. CONCLUSIONS The application of certain traditional herbal medicines used in east-Asia as adjuncts to conventional medications improved outcomes in acute and chronic asthma, but most evidence was based on single trials. Therefore, no single TM could be recommended. Effect sizes varied according to asthma severity at baseline. Future studies should consider baseline severity when enrolling participants.
Collapse
Affiliation(s)
- Allison Clyne
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Mingdi Li
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Yutong Fei
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang, China
| | - Brian H May
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Kim SB, Lee AY, Chun JM, Lee AR, Kim HS, Seo YS, Moon BC, Kwon BI. Anthriscus sylvestris root extract reduces allergic lung inflammation by regulating interferon regulatory factor 4-mediated Th2 cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:165-175. [PMID: 30552991 DOI: 10.1016/j.jep.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anthriscus sylvestris L. Hoffmann (AS) is a perennial plant that grows in Asia and Eastern Europe. Its dried root is used to treat conditions such as asthma, bronchitis, and cough. AIM OF THE STUDY The present study investigated the anti-inflammatory effects of whole AS extract (ASE) on allergic lung inflammation in vitro and in vivo as well as the underlying mechanisms. MATERIALS AND METHODS We used an ovalbumin (OVA)-induced asthma mouse model and in vitro primary T helper (Th)2 polarization system. Five groups of 8-week-old female C57BL/6 mice were divided into the following groups: saline control, or OVA-induced allergic asthma with vehicle, ASE (100 or 200 mg/kg), or dexamethasone (5 mg/kg) treatment for 7 days. RESULTS ASE attenuated mucus secretion in airway epithelial cells, inflammatory cell infiltration, eosinophilia, and Th2 cytokine levels in bronchoalveolar lavage fluid. Mice administered ASE showed reductions in the activated cluster of differentiation 4+ T cell population and GATA-binding protein-3 gene expression in the lung, and diminished Th2 cell differentiation and activation in vitro. Furthermore, ASE-treated mice showed decreased interleukin-6 and interferon regulatory factor (IRF)4 expression, with corresponding reductions in nitric oxide levels in the lungs of asthmatic mice and in stimulated RAW cells. CONCLUSION ASE exerts anti-asthmatic effects by inhibiting IRF4 expression and thereby suppressing Th2 cell activation.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - A Yeong Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Jin Mi Chun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - A Reum Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Hyo Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Yun Soo Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Bo-In Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
13
|
Liu L, Wang LP, He S, Ma Y. Immune Homeostasis: Effects of Chinese Herbal Formulae and Herb-Derived Compounds on Allergic Asthma in Different Experimental Models. Chin J Integr Med 2018; 24:390-398. [PMID: 29752613 DOI: 10.1007/s11655-018-2836-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Indexed: 12/18/2022]
Abstract
Allergic asthma is thought to arise from an imbalance of immune regulation, which is characterized by the production of large quantities of IgE antibodies by B cells and a decrease of the interferon-γ/interleukin-4 (Th1/Th2) ratio. Certain immunomodulatory components and Chinese herbal formulae have been used in traditional herbal medicine for thousands of years. However, there are few studies performing evidence-based Chinese medicine (CM) research on the mechanisms and effificacy of these drugs in allergic asthma. This review aims to explore the roles of Chinese herbal formulae and herb-derived compounds in experimental research models of allergic asthma. We screened published modern CM research results on the experimental effects of Chinese herbal formulae and herb-derived bioactive compounds for allergic asthma and their possible underlying mechanisms in English language articles from the PubMed and the Google Scholar databases with the keywords allergic asthma, experimental model and Chinese herbal medicine. We found 22 Chinese herb species and 31 herb-derived anti-asthmatic compounds as well as 12 Chinese herbal formulae which showed a reduction of airway hyperresponsiveness, allergen-specifific immunoglobulin E, inflflammatory cell infifiltration and a regulation of Th1 and Th2 cytokines in vivo, in vitro and ex vivo, respectively. Chinese herbal formulae and herbderived bioactive compounds exhibit immunomodulatory, anti-inflflammatory and anti-asthma activities in different experimental models and their various mechanisms of action are being investigated in modern CM research with genomics, proteomics and metabolomics technologies, which will lead to a new era in the development of new drug discovery for allergic asthma in CM.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.,University Course of Traditional Chinese Medicine, Medical University of Vienna, A-1090, Vienna, Austria
| | - Lin-Peng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shan He
- Molecular Research in Traditional Chinese Medicine Group, Department of Pathophysiology and Allergy Research, Vienna General Hospital, Medical University of Vienna, A-1090, Vienna, Austria
| | - Yan Ma
- University Course of Traditional Chinese Medicine, Medical University of Vienna, A-1090, Vienna, Austria. .,Molecular Research in Traditional Chinese Medicine Group, Department of Pathophysiology and Allergy Research, Vienna General Hospital, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
14
|
Abstract
This article explains the proposed pathophysiology, evidence of efficacy, and adverse effects of several complementary and alternative medicine modalities, for the treatment of allergic conditions, such as traditional Chinese medicine formula, herbal treatments, acupuncture, and homeopathy.
Collapse
Affiliation(s)
- Juan Qiu
- Department of Family and Community Medicine, Pennsylvania State University College of Medicine, Penn State Hershey Medical Group, 32 Colonnade Way, State College, PA 16803, USA.
| | - Kristen Grine
- Department of Family and Community Medicine, Pennsylvania State University College of Medicine, Penn State Hershey Medical Group, 476 Rolling Ridge Drive, #101, State College, PA 16801, USA
| |
Collapse
|
15
|
Liu C, Yang N, Chen X, Tversky J, Zhan J, Chehade M, Miller RL, Li XM. The Flavonoid 7,4'-Dihydroxyflavone Prevents Dexamethasone Paradoxical Adverse Effect on Eotaxin Production by Human Fibroblasts. Phytother Res 2017; 31:449-458. [PMID: 28102022 DOI: 10.1002/ptr.5767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 01/04/2023]
Abstract
Eotaxin/CCL-11 is a major chemoattractant that contributes to eosinophilic inflammation in asthma. Glucocorticoids inhibit inflammation, but long-time exposure may cause paradoxical adverse effects by augmenting eotaxin/CCL-11production. The aim of this study was to determine if 7,4'-dihydroxyflavone (7,4'-DHF), the eotaxin/CCL11 inhibitor isolated from Glycyrrhiza uralensis, reduces in vitro eotaxin production induced by long-time dexamethasone (Dex) exposure, and if so, to elucidate the mechanisms of this inhibition. Human lung fibroblast-1 cells were used to identify the potency of 7,4'-DHF compared with other compounds from G. uralensis, to compare 7,4'-DHF with Dex on eotaxin production following 24-h short-time culture and 72-h longer-time (LT) culture, and to determine the effects of the 7,4'-DHF on Dex LT culture augmented eotaxin production and molecule mechanisms. 7,4'-DHF was the most potent eotaxin/CCL-11 inhibitor among the ten compounds and provided continued suppression. In contrast to short-time culture, Dex LT culture increased constitutively, and IL-4/TNF-α stimulated eotaxin/CCL11 production by human lung fibroblast-1 cells. This adverse effect was abrogated by 7,4'-DHF co-culture. 7,4'-DHF significantly inhibited Dex LT culture augmentation of p-STAT6 and impaired HDAC2 expression. This study demonstrated that 7,4'-DHF has the ability to consistently suppress eotaxin production and prevent Dex-paradoxical adverse effects on eotaxin production. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Changda Liu
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nan Yang
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoke Chen
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Respiratory Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Jody Tversky
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322, USA
| | - Mirna Chehade
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University, New York, NY, 10032, USA.,Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University, New York, NY, 10032, USA.,Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Xiu-Min Li
- Department of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
16
|
Li J, Zhang F, Li J. The Immunoregulatory Effects of Traditional Chinese Medicine on Treatment of Asthma or Asthmatic Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1059-81. [PMID: 26364661 DOI: 10.1142/s0192415x15500615] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic respiratory symptoms with variable airflow limitation and airway hyperresponsiveness (AHR), and causes high economic burden. Traditional Chinese medicine (TCM) has a long-lasting history of using herbal medicine in the treatment of various respiratory diseases including asthma. In the last several decades, an increasing number of herbs have been shown to be effective in the treatment of asthma in clinical trials or asthmatic inflammation in animal models. Literature about the effects of TCM on the immune system were searched in electronic databases such as PubMed, Google Scholar and Scopus from 2000 to 2014. 'TCM' and 'asthma' were used as keywords for the searches. Over 400 literatures were searched and the literatures about the immune system were selected and reviewed. We only reviewed literatures published in English. Accumulating evidence suggests that TCM can directly inhibit the activation and migration of inflammatory cells, regulate the balance of Th1/Th2 responses, and suppress allergic hyperreactivity through inducing regulatory T cells or attenuating the function of dendritic cells (DCs). These studies provided useful information to facilitate the use of TCM to treat asthma. This review was conducted to classify the findings based on their possible mechanisms of action reported.
Collapse
Affiliation(s)
- Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
17
|
|
18
|
Anti-inflammatory Effects of Ganoderma lucidum Triterpenoid in Human Crohn's Disease Associated with Downregulation of NF-κB Signaling. Inflamm Bowel Dis 2015; 21:1918-25. [PMID: 25993687 PMCID: PMC4509964 DOI: 10.1097/mib.0000000000000439] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Current medications have potentially serious side effects. Hence, there is increasing interest in alternative therapies. We previously demonstrated the anti-inflammatory effects of Food Allergy Herbal Formula-2 in vitro on peripheral blood mononuclear cells (PBMCs) and mucosa from CD subjects. Here, we investigated the anti-inflammatory effects of a bioactive compound isolated from Ganoderma lucidum (G. lucidum), a key herbal constituent of Food Allergy Herbal Formula-2, in CD in vitro. METHODS Triterpene ganoderic acid C1 (GAC1) was isolated from G. lucidum. Stimulated RAW 264.7 macrophages were treated with GAC1. Human PBMCs and colonic biopsies were obtained from children with CD and cultured with or without GAC1. TNF-α and other proinflammatory cytokine levels were measured in the culture supernatant. NF-κB signaling was investigated in PBMCs and colonic mucosa treated with GAC1 by In-Cell Western and Western blot analysis. RESULTS GAC1 decreased TNF-α production by macrophages and PBMCs from CD subjects. GAC1 significantly decreased TNF-α, IFN-γ, and IL-17A production by inflamed colonic biopsies from CD subjects. These effects were due to downregulation of the NF-κB signaling pathway. CONCLUSIONS GAC1 inhibited production of TNF-α and other proinflammatory cytokines by PBMCs and inflamed CD colonic mucosa due to blockage of NF-κB activation. GAC1 is a key beneficial constituent in G. lucidum and the Food Allergy Herbal Formula-2 in suppressing the inflammatory cytokines found in CD and warrants clinical investigation for the treatment of CD.
Collapse
|
19
|
Liu C, Yang N, Song Y, Wang L, Zi J, Zhang S, Dunkin D, Busse P, Weir D, Tversky J, Miller RL, Goldfarb J, Zhan J, Li XM. Ganoderic acid C1 isolated from the anti-asthma formula, ASHMI™ suppresses TNF-α production by mouse macrophages and peripheral blood mononuclear cells from asthma patients. Int Immunopharmacol 2015; 27:224-31. [PMID: 26004313 DOI: 10.1016/j.intimp.2015.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
Asthma is a heterogeneous airway inflammatory disease, which is associated with Th2 cytokine-driven inflammation and non-Th2, TNF-α mediated inflammation. Unlike Th2 mediated inflammation, TNF-α mediated asthma inflammation is generally insensitive to inhaled corticosteroids (ICS). ASHMITM, aqueous extract of three medicinal herbs-Ganoderma lucidum (G. lucidum), Sophora flavescens Ait (S. flavescens) and Glycyrrhiza uralensis Fischer (G. uralensis), showed a high safety profile and was clinically beneficial in asthma patients. It also suppresses both Th2 and TNF-α associated inflammation in murine asthma models. We previously determined that G. uralensis flavonoids are the key active compounds responsible for ASHMITM suppression of Th2 mediated inflammation. Until now, there are limited studies on anti-TNF-α compounds presented in ASHMITM. The objective of this study was to isolate and identify TNF-α inhibitory compounds in ASHMITM. Here we report that G. lucidum, but not the other two herbal extracts, S. flavescens or G. uralensis inhibited TNF-α production by murine macrophages; and that the methylene chloride (MC)-triterpenoid-enriched fraction, but not the polysaccharide-enriched fraction, contained the inhibitory compounds. Of the 15 triterpenoids isolated from the MC fraction, only ganoderic acid C1 (GAC1) significantly reduced TNF-α production by murine macrophages (RAW 264.7 cells) and peripheral blood mononuclear cells (PBMCs) from asthma patients. Inhibition was associated with down-regulation of NF-κB expression, and partial suppression of MAPK and AP-1 signaling pathways. Ganoderic acid C1 may have potential for treating TNF-α mediated inflammation in asthma and other inflammatory diseases.
Collapse
Affiliation(s)
- Changda Liu
- Pediatric Allergy & Immunology, Icahn School of Medicine at Mount Sinai, NY 10029, United States
| | - Nan Yang
- Pediatric Allergy & Immunology, Icahn School of Medicine at Mount Sinai, NY 10029, United States
| | - Ying Song
- Pediatric Allergy & Immunology, Icahn School of Medicine at Mount Sinai, NY 10029, United States
| | - Lixin Wang
- Pediatric Allergy & Immunology, Icahn School of Medicine at Mount Sinai, NY 10029, United States; Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated with Shanghai TCM University, China
| | - Jiachen Zi
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, United States
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, United States
| | - David Dunkin
- Pediatric Gastroenterology, Pediatric Department, Icahn School of Medicine at Mount Sinai, NY 10029, United States
| | - Paula Busse
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, United States
| | - David Weir
- Division of Pulmonary, Critical Care Medicine, and Sleep Medicine , Mount Sinai Medical Center, NY 10029, United States
| | - Jody Tversky
- Division of Allergy & Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, MD 21224, United States
| | - Rachel L Miller
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University, New York, NY, 10032, United States; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University, New York, NY 10032, United States; Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, United States
| | - Joseph Goldfarb
- Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, NY, 10029, United States
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, United States.
| | - Xiu-Min Li
- Pediatric Allergy & Immunology, Icahn School of Medicine at Mount Sinai, NY 10029, United States.
| |
Collapse
|
20
|
Liu C, Weir D, Busse P, Yang N, Zhou Z, Emala C, Li XM. The Flavonoid 7,4'-Dihydroxyflavone Inhibits MUC5AC Gene Expression, Production, and Secretion via Regulation of NF-κB, STAT6, and HDAC2. Phytother Res 2015; 29:925-32. [PMID: 25809288 DOI: 10.1002/ptr.5334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/22/2022]
Abstract
Mucus overproduction is a significant component of the pathophysiology of obstructive lung diseases. Currently, there are only a few medications available that inhibit mucus production. Previous studies showed that glycyrrhizin, a triterpenoid in Glycyrrhiza uralensis inhibits mucin 5AC (MUC5AC) mRNA and protein expression. Other potential mucus production inhibitory compounds contained within in G. uralensis have not been fully investigated. The aim of the present study was to determine if the G. uralensis flavonoid 7,4'-dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production, and secretion, and if so, to elucidate the mechanism of this inhibition. 7,4'-Dihydroxyflavone significantly decreased phorbol 12-myristate 13-acetate-stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production, at a 28-fold lower concentration than glycyrrhizin (The half maximal inhibitory concentration IC50 value of 1.4 μM vs 38 μM, respectively); 7,4'-DHF also inhibited MUC5AC mucus secretion. Inhibition was associated with the suppression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription 6 (STAT6) activation, and enhanced histone deacetylase 2 (HDAC2) expression. In a murine model of asthma, 7,4'-DHF-treated mice exhibited a marked reduction in MUC5AC secretion in the bronchoalveolar lavage fluid compared with control mice. These findings, together with previous findings linking NF-κB, STAT6, and HDAC2 modulation to the control of MUC5AC expression, demonstrate that 7,4'-DHF is a newly identified component of G. uralensis that regulates MUC5AC expression and secretion via regulation of NF-κB, STAT6, and HDAC2.
Collapse
Affiliation(s)
- Changda Liu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Weir
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Busse
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nan Yang
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhenwen Zhou
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Charles Emala
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Xiu-Min Li
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
López-Expósito I, Srivastava KD, Birmingham N, Castillo A, Miller RL, Li XM. Maternal Antiasthma Simplified Herbal Medicine Intervention therapy prevents airway inflammation and modulates pulmonary innate immune responses in young offspring mice. Ann Allergy Asthma Immunol 2014; 114:43-51.e1. [PMID: 25465920 DOI: 10.1016/j.anai.2014.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Maternal asthma is a risk factor for asthma in offspring; however, transmission of the risk for allergic asthma without direct offspring sensitization has not been explored. OBJECTIVE To determine whether offspring from mothers with ovalbumin (OVA)-sensitized asthma would develop airway disease at first-ever exposure to OVA and whether preconception maternal treatment with the Antiasthma Simplified Herbal Medicine Intervention (ASHMI) or dexamethasone (DEX) could modify this risk in offspring. METHODS Female BALB/c mice (F0) with OVA-induced asthma were generated using established protocols. Mice with asthma were treated with ASHMI, DEX, or water for 6 to 7 weeks. Naive mice served as controls. Subsequently, mice were mated. Twelve-day-old F1 offspring received 3 consecutive intranasal low- or high-dose OVA exposures without sensitization. Forty-eight hours later, airway inflammation, mucus hypersecretion, serum antibodies, and cytokines were evaluated. RESULTS Offspring from OVA-sensitized mothers, but not naive mothers, showed eosinophilic and neutrophilic airway inflammation, and mucus hyperplasia after OVA exposure and he presence of OVA-specific IgG1 and IgG2a. Offspring of ASHMI- and DEX-treated mothers showed decreased airway inflammation and mucus hypersecretion after low-dose OVA (P < .05-.001 for the 2 comparisons vs offspring of OVA/Sham mothers). Offspring of ASHMI-treated, but not DEX-treated, mothers were protected after the high-dose OVA challenge (P < .05-.01 vs offspring OVA/Sham). Maternal ASHMI therapy was associated with increased IgG2a (P < .01 vs offspring of OVA/Sham mothers) and decreased bronchoalveolar lavage fluid CXCL-1 and eotaxin-1 levels (P < .01 and P < .05, respectively, vs offspring of OVA/Sham mothers). CONCLUSION Offspring of mothers with OVA-induced asthma developed airway inflammation and mucus to first-ever OVA exposure without prior sensitization. Maternal therapy with ASHMI was superior to DEX in decreasing offspring susceptibility to airway disease and could be a strategy to lower asthma prevalence.
Collapse
Affiliation(s)
- Iván López-Expósito
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; Department of Bioactivity and Food Analysis, Institute in Food Science Research (CIAL), CSIC-UAM, Madrid, Spain
| | - Kamal D Srivastava
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York.
| | - Neil Birmingham
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York
| | - Alexandra Castillo
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York
| | - Rachel L Miller
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University, New York, New York
| | - Xiu-Min Li
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
22
|
Patil SP, Liu C, Alban J, Yang N, Li XM. Glycyrrhiza uralensis flavonoids inhibit brain microglial cell TNF-α secretion, p-IκB expression, and increase brain-derived neurotropic factor (BDNF) secretion. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2014. [DOI: 10.1016/j.jtcms.2014.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Srivastava KD, Dunkin D, Liu C, Yang N, Miller RL, Sampson HA, Li XM. Effect of Antiasthma Simplified Herbal Medicine Intervention on neutrophil predominant airway inflammation in a ragweed sensitized murine asthma model. Ann Allergy Asthma Immunol 2014; 112:339-47.e1-2. [PMID: 24679734 DOI: 10.1016/j.anai.2014.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/09/2014] [Accepted: 01/26/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neutrophil-predominant asthma is less responsive to steroids and associated with poorer disease control. The effects of Antiasthma Simplified Herbal Medicine Intervention (ASHMI), a traditional Chinese medicine formula reported to be efficacious in asthmatic patients and murine asthma models, on neutrophil predominant asthma are unknown. OBJECTIVE To determine the effects of standard ASHMI and refined formula ASHMI (ASHMI(II)) in a neutrophil-predominant murine model of ragweed (RW) asthma and explore underlying mechanisms. METHODS BALB/c mice were systemically sensitized, intranasally challenged with RW extract, and orally treated with ASHMI, ASHMI(II), or vehicle (water). In a separate experiment, some RW sensitized mice were treated with dexamethasone before challenge. After RW challenge, airway hyperreactivity (AHR), total and differential bronchoalveolar lavage fluid leukocyte counts, lung histologic features, and bronchoalveolar lavage fluid cytokine and chemokine levels were assessed. RW stimulation of the murine macrophage cell line RAW264.7 was used to determine effects of ASHMI active compound ganoderic acid C1 (GAC1) on tumor necrosis factor α (TNF-α) production and regulation of phosphorylated IκB and histone deacetylase 2 (HDAC2) levels. RESULTS ASHMI and ASHMI(II) markedly reduced AHR, mucous production, neutrophilic inflammation, and TNF-α, interleukin 8, and interleukin 17 levels and decreased eosinophilic inflammation and TH2 responses in vivo (P < .01-.001 for all). GAC1 inhibited TNF-α production in RW-stimulated RAW264.7 cells in association with suppression of phosphorylated IκB and increased HDAC2 expression. Dexamethasone failed to reduce AHR and neutrophilic inflammation. CONCLUSION ASHMI treatment was efficacious in a murine model of neutrophil-predominant asthma via modulation of innate chemokines, TH2 responses, nuclear factor-κB, and HDAC2. ASHMI, and/or its constituent GAC1, may be a valuable option for treating neutrophil-predominant asthma.
Collapse
Affiliation(s)
- Kamal D Srivastava
- Division of Allergy and Immunology, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - David Dunkin
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Changda Liu
- Division of Allergy and Immunology, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nan Yang
- Division of Allergy and Immunology, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel L Miller
- Department of Medicine, Department of Pediatrics, Department of Environmental Health Sciences, Columbia University, New York, New York
| | - Hugh A Sampson
- Division of Allergy and Immunology, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiu-Min Li
- Division of Allergy and Immunology, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
24
|
Tang W, Xie Q, Guan J, Jin S, Zhao Y. Phytochemical profiles and biological activity evaluation of Zanthoxylum bungeanum Maxim seed against asthma in murine models. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:444-450. [PMID: 24495470 DOI: 10.1016/j.jep.2014.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/04/2013] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum bungeanum Maxim seed (ZBMS) has been used in Traditional Chinese Medicine (TCM) as an ingredient of polyherbal formulations for the treatment of inflammation and asthma. The aim of this study was to analyze the major composition and to evaluate the anti-asthma activity of ZBMS. MATERIALS AND METHODS Some murine models including acetylcholine/histamine-induced asthma, ovalbumin-induced airway inflammation, ear edema and toe swelling measurement, citric acid-induced cough, and anti-stress abilities were investigated to fully study the anti-asthma activity of ZBMS.GC chromatography was also performed to analyze the major fatty acid composition of ZBMS. RESULTS The results demonstrated that the major fatty acid composition of ZBMS includes oleic acid (20.15%), linoleic acid (26.54%), and α-linolenic acid (30.57%), which was the leading component of ZBMS, and that the total fatty acid content of ZBMS was 77.27%. The murine models demonstrated that ZBMS displays a protective effect on guinea pig sensitization, a dose-dependent inhibition of the increases in RL and decreases in Cdyn, which resulted in the relief of auricle edema and toe swelling in mice and anti-stress activity. CONCLUSION Our results validate the traditional use of ZBMS for the treatment of asthma and other inflammatory joint disorders, and suggest that ZBMS has potential as a new therapeutic agent for asthma management.
Collapse
Affiliation(s)
- Weizhuo Tang
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People׳s Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People׳s Republic of China
| | - Qiangmin Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Jian Guan
- Liaoning Province Institute of Pharmaceutical Research, Shenyang 110015, People׳s Republic of China
| | - Saihong Jin
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou 310058, People׳s Republic of China
| | - Yuqing Zhao
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People׳s Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People׳s Republic of China.
| |
Collapse
|
25
|
Townsend EA, Zhang Y, Xu C, Wakita R, Emala CW. Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins. Am J Respir Cell Mol Biol 2014; 50:115-24. [PMID: 23962082 PMCID: PMC3930933 DOI: 10.1165/rcmb.2013-0133oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022] Open
Abstract
β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist-induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C-potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist-induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms through complementary intracellular pathways.
Collapse
Affiliation(s)
| | - Yi Zhang
- Department of Anesthesiology, Columbia University, New York, New York; and
| | - Carrie Xu
- Department of Anesthesiology, Columbia University, New York, New York; and
| | - Ryo Wakita
- Department of Anesthesiology, Columbia University, New York, New York; and
- Section of Anesthesiology and Clinical Physiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Charles W. Emala
- Department of Anesthesiology, Columbia University, New York, New York; and
| |
Collapse
|
26
|
Yang N, Liang B, Srivastava K, Zeng J, Zhan J, Brown L, Sampson H, Goldfarb J, Emala C, Li XM. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction. PHYTOCHEMISTRY 2013; 95:259-267. [PMID: 23993294 PMCID: PMC4118489 DOI: 10.1016/j.phytochem.2013.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 01/31/2013] [Accepted: 07/23/2013] [Indexed: 05/23/2023]
Abstract
Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that S. flavescens, but not G. lucidum or G. uralensis aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of β2-adrenoceptors.
Collapse
Affiliation(s)
- Nan Yang
- Department of Pediatrics, Center for Chinese Herbal Therapy for Asthma and Allergy, Jaffe Food Allergy Institute, 4105 Old Main Hill, Logan, UT 84322
| | - Banghao Liang
- Department of Pediatrics, Center for Chinese Herbal Therapy for Asthma and Allergy, Jaffe Food Allergy Institute, 4105 Old Main Hill, Logan, UT 84322
| | - Kamal Srivastava
- Department of Pediatrics, Center for Chinese Herbal Therapy for Asthma and Allergy, Jaffe Food Allergy Institute, 4105 Old Main Hill, Logan, UT 84322
| | - Jia Zeng
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322
| | - LaVerne Brown
- Department of Pediatrics, Center for Chinese Herbal Therapy for Asthma and Allergy, Jaffe Food Allergy Institute, 4105 Old Main Hill, Logan, UT 84322
| | - Hugh Sampson
- Department of Pediatrics, Center for Chinese Herbal Therapy for Asthma and Allergy, Jaffe Food Allergy Institute, 4105 Old Main Hill, Logan, UT 84322
| | - Joseph Goldfarb
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029
| | - Charles Emala
- Department of Anesthesiology, Columbia University, New York, New York 10032
| | - Xiu-Min Li
- Department of Pediatrics, Center for Chinese Herbal Therapy for Asthma and Allergy, Jaffe Food Allergy Institute, 4105 Old Main Hill, Logan, UT 84322
| |
Collapse
|
27
|
Srivastava K, Sampson HA, Emala CW, Li XM. The anti-asthma herbal medicine ASHMI acutely inhibits airway smooth muscle contraction via prostaglandin E2 activation of EP2/EP4 receptors. Am J Physiol Lung Cell Mol Physiol 2013; 305:L1002-10. [PMID: 24163140 DOI: 10.1152/ajplung.00423.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown that the anti-asthma traditional Chinese medicine herbal formula ASHMI (anti-asthma simplified herbal medicine intervention) inhibits acetylcholine-induced contractions of tracheal rings from ovalbumin-sensitized and naive mice in a β-adrenoceptor-independent manner. We sought to determine whether acute in vivo ASHMI administration inhibits airway hyperreactivity (AHR) in a murine model of allergic asthma and acetylcholine-induced tracheal ring constriction ex vivo and to elucidate the cellular mechanisms underlying these effects. Ovalbumin-sensitized mice received a single oral ASHMI dose 2 h before intravenous acetylcholine challenge. AHR was determined by invasive airway measurements. Myography was used to determine the effects of ASHMI on acetylcholine-induced constriction of tracheal rings from asthmatic mice with or without epithelial denudation. The effect of cyclooxygenase inhibition and EP2/EP4 receptor blockade on ASHMI attenuation of acetylcholine contractions was evaluated. Tracheal cAMP and PGE2 levels were measured by ELISA. A single acute oral dose of ASHMI dramatically reduced AHR in response to acetylcholine provocation in ovalbumin-sensitized mice (P < 0.001). In ex vivo experiments, ASHMI significantly and dose-dependently reduced tracheal ring constriction to acetylcholine (P < 0.05-0.001), which was epithelium independent and associated with elevated cAMP levels. This effect was abrogated by cyclooxygenase inhibition or EP2/EP4 receptor blockade. ASHMI also inhibited contraction to high K(+) (P < 0.001). ASHMI increased tracheal ring PGE2 release in response to acetylcholine or high K(+) (P < 0.05 for both). ASHMI produced direct and acute inhibition of AHR in vivo and blocked acetylcholine-induced tracheal ring constriction via the EP2/EP4 receptor pathway, identifying the mechanism by which ASHMI is an orally active bronchoprotective agent.
Collapse
Affiliation(s)
- Kamal Srivastava
- Pediatric Allergy and Immunology, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574.
| | | | | | | |
Collapse
|
28
|
Jayaprakasam B, Yang N, Wen MC, Wang R, Goldfarb J, Sampson H, Li XM. Constituents of the anti-asthma herbal formula ASHMI(TM) synergistically inhibit IL-4 and IL-5 secretion by murine Th2 memory cells, and eotaxin by human lung fibroblasts in vitro. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:195-205. [PMID: 23743163 DOI: 10.3736/jintegrmed2013029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Anti-asthma herbal medicine intervention (ASHMI(TM)), a combination of three traditional Chinese medicinal herbs developed in our laboratory, has demonstrated efficacy in both mouse models of allergic asthma, and a double-blind placebo-controlled clinical trial in patients with asthma. This study was designed to determine if the anti-inflammatory effects of individual herbal constituents of ASHMI(TM) exhibited synergy. METHODS Effects of ASHMI and its components aqueous extracts of Lingzhi (Ganoderma lucidum), Kushen (Sophora flavescens) and Gancao (Glycyrrhiza uralensis), on Th2 cytokine secretion by murine memory Th2 cells (D10.G4.1) and eotaxin-1 secretion by human lung fibroblast (HLF-1) cells were determined by measuring levels in culture supernatants by enzyme-linked immunosorbent assay. Potential synergistic effects were determined by computing interaction indices from concentration-effect curve parameters. RESULTS Individual Lingzhi, Kushen and Gancao extracts and ASHMI (the combination of individual extracts) inhibited production of interleukin (IL)-4 and IL-5 by murine memory Th2 cells and eotaxin-1 production by HLF-1 cells. The mean 25%-inhibitory-concentration (IC25) values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 30.9, 79.4, 123, and 64.6, respectively; for IL-5 production were 30.2, 263, 123.2 and 100, respectively; for eotaxin-1 were 13.2, 16.2, 30.2, and 25.1, respectively. The IC50 values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 158.5, 239.9, 446.7, and 281.8, respectively; for eotaxin-1 were 38.1, 33.1, 100, and 158.5, respectively. The interaction indices of ASHMI constituents at IC25 were 0.35 for IL-4, 0.21 for IL-5 and 0.59 for eotaxin-1. The interaction indices at IC50 values were 0.50 for IL-4 and 0.62 for eotaxin-1 inhibition. Inhibition of IL-5 did not reach IC50 values. All interaction indices were below 1 which indicated synergy. CONCLUSION By comparing the interaction index values, we find that constituents in ASHMI(TM) synergistically inhibited eotaxin-1 production as well as Th2 cytokine production.
Collapse
|
29
|
Li H, Wada E, Wada K. Maternal administration of the herbal medicine toki-shakuyaku-san promotes fetal growth and placental gene expression in normal mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:515-29. [PMID: 23711139 DOI: 10.1142/s0192415x13500377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Toki-shakuyaku-san (TSS), an herbal formula based on traditional Chinese medicine, is commonly used in obstetrics. To examine the effects of TSS on the normal mouse fetus and placenta, TSS was administered to normal pregnant mice and their placentas and fetuses were studied. First, the effects of maternal TSS treatment on implantation were investigated. Administration of TSS from gestation day 0.5 (G0.5) to G6.5 showed that litter size was not altered at embryonic day 11.5 (E11.5), but the number of resorbed fetuses was slightly decreased. Then, to investigate effects on fetal and placental growths after implantation, TSS was administered from G5.5. At E14.5, the body weight of fetuses from TSS-treated dams was significantly increased. Gene expression of insulin-like growth factor 2 (Igf2), one of the most important modulators of fetal growth, was significantly increased in the placentas and fetuses of TSS-treated dams. In addition, the expression of particular placental developmental genes and nutrient transporter genes was significantly increased in TSS-treated placentas. At E18.5, after longer-term administration of TSS, fetal and placental weights were not altered, but the expression of the placental developmental and nutrient transporter genes remained elevated compared with controls. These results suggest that maternal TSS treatment in normal mice enhances the expression of Igf2, placental developmental genes and nutrient transporter genes, resulting in increased fetal weight. No obvious changes were observed in the expression of these genes after longer-term maternal TSS treatment.
Collapse
Affiliation(s)
- Heng Li
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | |
Collapse
|
30
|
Birmingham JM, Patil S, Li XM, Busse PJ. The effect of oral tolerance on the allergic airway response in younger and aged mice. J Asthma 2013; 50:122-32. [PMID: 23298269 DOI: 10.3109/02770903.2012.753455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The effect of increased age on the induction of oral tolerance by low-dose antigen feeding and its effect on the response to antigen airway challenge in aged mice have not been well characterized. OBJECTIVE To determine whether oral tolerance can be induced in aged mice and its impact on the development of allergic airway inflammation. METHODS Younger (6 weeks old) and aged (18 months old) mice were fed ovalbumin (OVA) prior to sensitization to induce antigen tolerance. Serum antigen-specific immunoglobulins (Igs), bronchoalveolar lavage fluid (BALF), lung histology, enumeration of CD4 + Foxp3+ Treg cells, and airway hyperresponsiveness (AHR) were determined after the final antigen challenge. RESULTS Feeding antigen to aged mice prior to sensitization induced oral tolerance as determined by a decrease in antigen-specific IgE and IgG(1); however, the effect was greater in younger mice. Induction of oral tolerance was associated with a greater increase in airway Treg cells in the younger mice. Despite these differences, oral tolerance significantly suppressed features of asthma in aged mice, including BALF total cell and eosinophil numbers, cytokine production, and AHR. CONCLUSIONS Aged mice developed oral tolerance to antigen, which suppressed several features of allergic airway inflammation.
Collapse
Affiliation(s)
- Janette M Birmingham
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
31
|
Yang N, Patil S, Zhuge J, Wen MC, Bolleddula J, Doddaga S, Goldfarb J, Sampson HA, Li XM. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo. Phytother Res 2012; 27:1381-91. [PMID: 23165939 DOI: 10.1002/ptr.4862] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/18/2012] [Accepted: 09/27/2012] [Indexed: 11/09/2022]
Abstract
Allergic asthma is associated with Th2-mediated inflammation. Several flavonoids were isolated from Glycyrrhiza uralensis, one of the herbs in the anti-asthma herbal medicine intervention. The aim of this investigation was to determine whether Glycyrrhiza uralensis flavonoids have inhibitory effects on memory Th2 responses in vitro and antigen-induced Th2 inflammation in vivo. The effects of three Glycyrrhiza uralensis flavonoids on effector memory Th2 cells, D10.G4.1 (D10 cells), were determined by measuring Th2 cytokine production. Isoliquiritigenin, 7, 4'-dihydroxyflavone (7, 4'-DHF) and liquiritigenin significantly suppressed IL-4 and IL-5 production in a dose-dependent manner, 7, 4'-DHF being most potent. It was also evaluated for effects on D10 cell proliferation, GATA-3 expression and IL-4 mRNA expression, which were suppressed, with no loss of cell viability. Chronic treatment with 7, 4'-DHF in a murine model of allergic asthma not only significantly reduced eosinophilic pulmonary inflammation, serum IgE levels, IL-4 and IL-13 levels, but also increased IFN-γ production in lung cell cultures in response to antigen stimulation.
Collapse
Affiliation(s)
- Nan Yang
- Department of Pediatrics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Can we find better bronchodilators to relieve asthma symptoms? J Allergy (Cairo) 2012; 2012:321949. [PMID: 23091500 PMCID: PMC3467860 DOI: 10.1155/2012/321949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 01/27/2023] Open
Abstract
Bronchodilators are the first line therapy during acute asthmatic exacerbations to reverse airway obstruction primarily by relaxing airway smooth muscle. Only three categories of bronchodilators exist in clinical practice: β-adrenergic agonists, anticholinergics, and methylxanthines. Each of these categories have specific drugs dating back to the early 20th century, raising the question of whether or not we can find better bronchodilators. While caffeine, theophylline, atropine, and epinephrine were the first generations of therapeutics in each of these drug classes, there is no question that improvements have been made in the bronchodilators in each of these classes. In the following editorial, we will briefly describe new classes of potential bronchodilators including: novel PDE inhibitors, natural phytotherapeutics, bitter taste receptor ligands, and chloride channel modulators, which have the potential to be used alone or in combination with existing bronchodilators to reverse acute airway obstruction in the future.
Collapse
|
33
|
Li XM. Treatment of asthma and food allergy with herbal interventions from traditional chinese medicine. ACTA ACUST UNITED AC 2012; 78:697-716. [PMID: 21913200 DOI: 10.1002/msj.20294] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prevalence of asthma and allergy has increased over the past 2-3 decades in Westernized countries. Despite increased understanding of the pathogenesis of asthma and allergic diseases, control of severe asthma is still difficult. Asthma is also associated with a high prevalence of anxiety, particularly in adolescents. There is no effective treatment for food allergy. Food allergy is often associated with severe and recalcitrant eczema. Novel approaches for treatment of asthma and food allergy and comorbid conditions are urgently needed. Traditional Chinese medicine, used in Asia for centuries, is beginning to play a role in Western healthcare. There is increasing scientific evidence supporting the use of traditional Chinese medicine for asthma treatment. Since 2005, several controlled clinical studies of "antiasthma" herbal remedies have been published. Among the herbal medicines, antiasthma herbal medicine intervention is the only antiasthma traditional Chinese medicine product that is a Food and Drug Administration investigational new drug that has entered clinical trials in the United States. Research into the effects and mechanisms of action of antiasthma herbal medicine intervention in animal models is actively being pursued. Research on traditional Chinese medicine herbal medicines for treating food allergy is rare. The herbal intervention Food Allergy Herbal Formula-2 is the only Food and Drug Administration botanical investigational new drug under investigation as a multiple food allergy therapy. This review article discusses promising traditional Chinese medicine interventions for asthma, food allergy, and comorbid conditions, and explores their possible mechanisms of action.
Collapse
Affiliation(s)
- Xiu-Min Li
- Department of Pediatric Allergy and Immunology, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Gilissen LJWJ, Gao ZS, Chen Z. Multidisciplinary Approaches to Allergy Prevention. MULTIDISCIPLINARY APPROACHES TO ALLERGIES 2012. [DOI: 10.1007/978-3-642-31609-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Wisniewski JA, Li XM. Alternative and complementary treatment for food allergy. Immunol Allergy Clin North Am 2011; 32:135-50. [PMID: 22244237 DOI: 10.1016/j.iac.2011.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite increased consumer interest in complementary and alternative medicine (CAM) for the treatment of food allergy, there remains a relative paucity of knowledge regarding the clinical efficacy, mechanisms of action, and safety of most CAM treatments available to consumers. This article focuses on recent advances in CAM for food allergy, including acupuncture, herbal medicine, probiotics, and alternative approaches to allergen immunotherapy. The mechanism of action of several novel approaches to treatment of food allergy is reviewed, but FAHF-2 is the only investigational herbal formulation currently validated for use in human clinical trials.
Collapse
Affiliation(s)
- Julia Ann Wisniewski
- Department of Pediatrics, Division of Allergy and Immunology, University of Virginia, 409 Lane Road, Box 801355, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
36
|
Irié-N'guessan G, Champy P, Kouakou-Siransy G, Koffi A, Kablan BJ, Leblais V. Tracheal relaxation of five Ivorian anti-asthmatic plants: role of epithelium and K⁺ channels in the effect of the aqueous-alcoholic extract of Dichrostachys cinerea root bark. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:432-438. [PMID: 21963567 DOI: 10.1016/j.jep.2011.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/08/2011] [Accepted: 09/16/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leaves of Boerhavia diffusa (Nyctaginaceae), Baphia nitida, Cassia occidentalis, Desmodium adscendens (Fabaceae), and root bark of Dichrostachys cinerea (Fabaceae) are used in Ivory Coast for the treatment of asthma. The aim of this study was to evaluate the potential airway relaxant activity of different extracts of these plants. MATERIALS AND METHODS Extracts of different polarities (H(2)O, EtOH/H(2)O, MeOH and CH(2)Cl(2)) were obtained from these five plants. Their ex vivo relaxant activity was tested in mice isolated trachea precontracted with carbachol (1 μM). RESULTS Cumulative concentrations of most extracts induced moderate to strong relaxation, the methanolic extracts being the most potent and the polar extracts the most active at the concentrations used, supporting the traditional use of these five plants as anti-asthmatic remedies. We further investigated the molecular and cellular mechanisms of the mouse trachea relaxant effect of the aqueous-alcoholic extract of Dichrostachys cinerea root bark, the most potent extract. Its effect was not modified in the presence of β-adrenoceptor antagonists (propranolol or ICI 118,551) or a PKA inhibitor (H89). By contrast, it was decreased after depolarization-induced precontraction (with 80 mM KCl), in the presence of some K(+) channels blockers [4-aminopyridine as voltage-dependent K(+) (K(v)) channel blocker and tetraethylammonium chloride as large conductance Ca(2+)-activated K(+) (BK(Ca)) channel blocker, but not with glibenclamide, an ATP-sensitive K(+) (K(ATP)) channel blocker] or after epithelium removal. CONCLUSIONS The mouse tracheal relaxant effect of Dichrostachys cinerea EtOH/H(2)O extract was independent of β(2)-adrenoceptors activation and cAMP/PKA pathway, but dependent on epithelium and K(+) channels, namely K(v) and BK(Ca) channels. Further investigation will be required to identify the component(s) responsible for this airways relaxant activity.
Collapse
Affiliation(s)
- Geneviève Irié-N'guessan
- Chimie des substances naturelles, CNRS UMR 8076 BioCIS, LabEx LERMIT, F-92296 Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
37
|
López-Expósito I, Castillo A, Yang N, Liang B, Li XM. Chinese herbal extracts of Rubia cordifolia and Dianthus superbus suppress IgE production and prevent peanut-induced anaphylaxis. Chin Med 2011; 6:35. [PMID: 21961957 PMCID: PMC3204269 DOI: 10.1186/1749-8546-6-35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 09/30/2011] [Indexed: 11/17/2022] Open
Abstract
Background Peanut allergy is characterized by increased levels of peanut-specific IgE in the serum of most patients. Thus, the most logical therapy would be to inhibit the IgE production by committed B-cells. This study aims to investigate the unreported anti-IgE effects of Chinese herbal extracts of Rubia cordifolia (Qiancao) and Dianthus superbus (Qumai). Methods Seventy herbal extracts were tested for their ability to reduce IgE secretion by a human B-cell line. Those with the lowest inhibitory concentration 50 (IC50) values were tested in a mouse model of peanut-anaphylaxis. Anaphylactic scores, body temperature, plasma histamine and peanut-specific-immunoglobulins were determined. Results Rubia cordifolia and Dianthus superbus inhibited the in vitro IgE production by a human B-cell line in a dose-dependent manner and the in vivo IgE production in a murine model of peanut allergy without affecting peanut-specific-IgG1 levels. After challenge, all mice in the sham groups developed anaphylactic reactions and increased plasma histamine levels. The extract-treated mice demonstrated significantly reduced peanut-triggered anaphylactic reactions and plasma histamine levels. Conclusion The extracts of Rubia cordifolia and Dianthus superbus inhibited the IgE production in vivo and in vitro as well as reduced anaphylactic reactions in peanut-allergic mice, suggesting potentials for allergy treatments.
Collapse
Affiliation(s)
- Iván López-Expósito
- Department of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | | | | | |
Collapse
|
38
|
Inhibitory effects of inhaled complex traditional Chinese medicine on early and late asthmatic responses induced by ovalbumin in sensitized guinea pigs. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 11:80. [PMID: 21943157 PMCID: PMC3188474 DOI: 10.1186/1472-6882-11-80] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/24/2011] [Indexed: 11/27/2022]
Abstract
Background Many formulae of traditional Chinese medicines (TCMs) have been used for antiasthma treatment dating back many centuries. There is evidence to suggest that TCMs are effective as a cure for this allergenic disease administered via gastric tubes in animal studies; however, their efficacy, safety and side effects as an asthmatic therapy are still unclear. Methods In this study, guinea pigs sensitized with ovalbumin (OVA) were used as an animal model for asthma challenge, and the sensitization of animals by bronchial reactivity to methacholine (Mch) and the IgE concentration in the serum after OVA challenge were estimated. Complex traditional Chinese herbs (CTCM) were administered to the animals by nebulization, and the leukocytes were evaluated from bronchoalveolar lavage fluid (BALF). Results The results showed that inhalation of CTCM could abolish the increased lung resistance (13-fold increase) induced by challenge with OVA in the early asthmatic response (EAR), reducing to as low as baseline (1-fold). Moreover, our results indicated higher IgE levels (range, 78-83 ng/ml) in the serum of sensitized guinea pigs than in the unsensitized controls (0.9 ± 0.256 ng/ml). In addition, increased total leukocytes and higher levels of eosinophils and neutrophils were seen 6 hours after challenge, and the increased inflammatory cells were reduced by treatment with CTCM inhalation. The interleukin-5 (IL-5) level in BALF was also reduced by CTCM. Conclusion Our findings indicate a novel method of administering traditional Chinese medicines for asthma treatment in an animal model that may be more effective than traditional methods.
Collapse
|
39
|
Hong ML, Song Y, Li XM. Effects and mechanisms of actions of Chinese herbal medicines for asthma. Chin J Integr Med 2011; 17:483-91. [PMID: 21725872 DOI: 10.1007/s11655-011-0780-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Indexed: 11/29/2022]
Abstract
Asthma is a chronic inflammatory disorder of airways that affects approximately 300 million adults and children worldwide. Most therapy currently uses bronchodilators and corticosteroids. Systemic side effects from chronic use of these drugs are concern. Chinese medicine (CM) has a long history of human use in China and other Asian countries and well received by the patients. But as one component of Western integrative medicine (WIM), it is required that CM use is supported by scientific evidence. On the other hand, there are also suggestions that Western standardized medicine should consider personalized practice. In recent years there have been an increasing studies to narrow the gap between CM, the personalized medicine and Western medicine, evidence based medicine. This communication reviews several CM studies published in the English language in details by reviewing the effects and mechanisms of actions on asthma from clinic and experimental studies.Chinese herbal medicines exhibit broad actions on multiple asthma pathologic mechanisms. These mechanisms may involve antiinflammatory and immunomodulatory effects, inhibiting airway remodeling and normalization of hypothalamus, pituitary and adrenal (HPA)-axis disturbances. However, the mechanisms of actions of Chinese herbal medicines for asthma are not fully understood. More controlled clinical studies are warranted and some anti-asthma CM may be proved to be effective when used as monotherapy or complementary asthma therapies.
Collapse
Affiliation(s)
- Min-Li Hong
- Center for Chinese Medicine for Allergy and Asthma, Jaffe Food Allergy Institute, Pediatric Department, Division of Allergy and Immunology, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
40
|
Srivastava K, Zhang T, Yang N, Sampson H, Li XM. Anti-Asthma Simplified Herbal Medicine Intervention-induced long-lasting tolerance to allergen exposure in an asthma model is interferon-γ, but not transforming growth factor-β dependent. Clin Exp Allergy 2011; 40:1678-88. [PMID: 20573156 DOI: 10.1111/j.1365-2222.2010.03545.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic allergic asthma is the result of a T-helper type 2 (Th2)-biased immune status. Current asthma therapies control symptoms in some patients, but a long-lasting therapy has not been established. Anti-Asthma Simplified Herbal Medicine Intervention (ASHMI™), a Chinese herbal formula, improved symptoms and lung function, and reduced Th2 responses in a controlled trial of patients with persistent moderate to severe asthma. OBJECTIVE We evaluated the persistence of ASHMI™ beneficial effects following therapy in a murine model of chronic asthma and the immunological mechanisms underlying such effects. Methods BALB/c mice sensitized intraperitoneally with ovalbumin (OVA) received 3 weekly intratracheal OVA challenges to induce airway hyper-reactivity (AHR) and inflammation (OVA mice). Additionally, OVA mice were treated with ASHMI™ (OVA/ASHMI™) or water (OVA/sham) for 4 weeks, and then challenged immediately and 8 weeks post-therapy. In other experiments, OVA mice received ASHMI™ treatment with concomitant neutralization of IFN-γ or TGF-β. Effects on airway responses, cytokine- and OVA-specific IgE levels were determined 8 weeks post-therapy. RESULTS Before treatment, OVA mice exhibited AHR and pulmonary eosinophilic inflammation following OVA challenge, which was almost completely resolved immediately after completing treatment with ASHMI™ and did not re-occur following OVA re-challenge up to 8 weeks post-therapy. Decreased allergen-specific IgE and Th2 cytokine levels, and increased IFN-γ levels also persisted at least 8 weeks post-therapy. ASHMI™ effects were eliminated by the neutralization of IFN-γ, but not TGF-β, during therapy. CONCLUSION ASHMI™ induced long-lasting post-therapy tolerance to antigen-induced inflammation and AHR. IFN-γ is a critical factor in ASHMI™ effects.
Collapse
Affiliation(s)
- K Srivastava
- Department of Pediatrics, Division of Allergy & Immunology, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | | | | | |
Collapse
|
41
|
Busse PJ, Schofield B, Birmingham N, Yang N, Wen MC, Zhang T, Srivastava K, Li XM. The traditional Chinese herbal formula ASHMI inhibits allergic lung inflammation in antigen-sensitized and antigen-challenged aged mice. Ann Allergy Asthma Immunol 2010; 104:236-46. [PMID: 20377113 DOI: 10.1016/j.anai.2009.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although asthma is typically characterized as a childhood disease, it can develop later in life. Older asthmatic patients may be at increased risk for corticosteroid adverse effects. We developed a novel traditional Chinese medicine to treat asthma called antiasthma simplified herbal medicine intervention (ASHMI). Herbal products may offer safer adjunctive treatment for older asthmatic patients. OBJECTIVE To investigate the effects of ASHMI on characteristics of allergic asthma in an aged mouse model of asthma. METHODS BALB/c mice (6 weeks old [young] and 6, 12, and 18 months old [aged]) received ASHMI treatment before and during intraperitoneal ovalbumin sensitization and intratracheal challenges. The control groups were untreated, age-matched, ovalbumin-sensitized and ovalbumin-challenged mice (ovalbumin mice) and naive mice. After the final antigen challenge, airway pressure (defined as the time-integrated change in peak airway pressure) after acetylcholine provocation was measured, representing airway hyperresponsiveness, and bronchoalveolar lavage fluid, sera, lung tissues for histologic analysis, messenger RNA, and collagen were collected. RESULTS Mean time-integrated change in peak airway pressure values in 6-week-old and 6-, 12-, and 18-month-old ASHMI ovalbumin mice were significantly reduced compared with those of age-matched, nontreated ovalbumin mice. Bronchoalveolar lavage fluid eosinophil numbers were significantly lower in all ASHMI ovalbumin mice. Treatment with ASHMI of young and aged ovalbumin mice resulted in significantly decreased lung inflammation, detected via hematoxylin-eosin staining; airway mucous cell metaplasia, determined by means of periodic acid-Schiff staining; and messenger RNA copy numbers of the mucin gene MUC5AC. Levels of ovalbumin specific IgE and the T(H)2 cytokines interleukin 4 (IL-4), IL-5, and IL-13 in lung and splenocyte cultures were reduced. Interferon gamma secretion was increased. Treatment with ASHMI reduced collagen production. CONCLUSION Treatment with ASHMI reduces several features of asthma in aged antigen-sensitized and antigen-challenged mice.
Collapse
Affiliation(s)
- Paula J Busse
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|