1
|
Meng J, Zhong H, Chu X, Guo J, Zhao S, Shen T, Sun W, Wang J, Jiang P. Comparative analysis of chemical elements and metabolites in diverse garlic varieties based on metabolomics and ionomics. Food Sci Nutr 2024; 12:7719-7736. [PMID: 39479693 PMCID: PMC11521672 DOI: 10.1002/fsn3.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 11/02/2024] Open
Abstract
As a plant classified under the "medicine food homology" concept, garlic offers various health benefits and comes in many different varieties. In this study, the metabolite composition of different garlic varieties were analyzed using LC-MS/MS quadrupole-Orbitrap mass spectrometry and ICP-MS. A total of 30 chemical elements and 1256 metabolites were identified. Significant differences in chemical elements and metabolomics profiles were observed among the five garlic groups (VIP > 1.5). Compared to WG, PG contained 5 unique compounds, HG had 15 unique compounds, SCG had 18 unique compounds, and SBG had 26 unique compounds. Furthermore, the results showed that WG had smaller differences with PG and HG, but significant differences with SBG and SCG. KEGG analysis revealed metabolic pathways associated with the formation of differential metabolites. These findings uncover the differences and mechanisms in the composition of various garlic varieties, providing a theoretical foundation for distinguishing the nutritional components of different garlic types.
Collapse
Affiliation(s)
- Junjun Meng
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Haitao Zhong
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Jinxiu Guo
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Shiyuan Zhao
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Tao Shen
- Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Jianhua Wang
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining No. 1 People's HospitalShandong First Medical UniversityJiningChina
| |
Collapse
|
2
|
Sleiman C, Daou RM, Al Hazzouri A, Hamdan Z, Ghadieh HE, Harbieh B, Romani M. Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications. Nutrients 2024; 16:2895. [PMID: 39275211 PMCID: PMC11397061 DOI: 10.3390/nu16172895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024] Open
Abstract
Hypertension is a major risk factor for heart disease and stroke. Garlic has a long history of use in traditional medicine for various conditions, including hypertension. This narrative review examined the scientific evidence on the efficacy of garlic in lowering blood pressure. It explores the historical uses of garlic in different cultures for medicinal purposes and delves into the phytochemical composition of garlic, highlighting key components, like allicin and ajoene, that are believed to contribute to its potential health benefits. Clinical studies that investigated the effects of garlic and garlic-based supplements on blood pressure are presented, with the findings suggesting that garlic consumption may modestly reduce blood pressure, particularly in individuals with mild hypertension. Potential mechanisms of action include increased nitric oxide production, improved endothelial function, and antioxidant properties. While garlic may offer some benefits for blood pressure management, it should not be considered a substitute for conventional antihypertensive medications. Further large-scale, long-term clinical trials are warranted to establish the efficacy of garlic in managing hypertension, including the optimal dosage and formulation.
Collapse
Affiliation(s)
- Christopher Sleiman
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Rose-Mary Daou
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Antonio Al Hazzouri
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Zahi Hamdan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Bernard Harbieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Maya Romani
- Department of Family Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
3
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
4
|
Hou C, Chen Y, Hazeena SH, Tain Y, Hsieh C, Chen D, Liu R, Shih M. Cardiovascular risk of dietary trimethylamine oxide precursors and the therapeutic potential of resveratrol and its derivatives. FEBS Open Bio 2024; 14:358-379. [PMID: 38151750 PMCID: PMC10909991 DOI: 10.1002/2211-5463.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.
Collapse
Affiliation(s)
- Chih‐Yao Hou
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Yu‐Wei Chen
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - You‐Lin Tain
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
- Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chang‐Wei Hsieh
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - De‐Quan Chen
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Rou‐Yun Liu
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Ming‐Kuei Shih
- Graduate Institute of Food Culture and InnovationNational Kaohsiung University of Hospitality and TourismTaiwan
| |
Collapse
|
5
|
Nusantoro AP, Kuntaman K, Perdanakusuma DS. Management of wounds in diabetes by administering allicin and quercetin in emulsion form as wound medicine in diabetic rat models. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2023-0177. [PMID: 38308387 DOI: 10.1515/jcim-2023-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Wounds in diabetes is a complex problem that requires effective treatment at a high cost. Adjuvant therapy from natural bioactive elements can be an alternative to overcome problems in diabetic wound healing disorders. Allicin and quercetin are natural bioactive substances contained in several fruit or vegetable plants that have various pharmacological effects. The purpose of this study was to determine the effect of allicin and quercetin in emulsion form as wound medicine in helping the wound healing process. Diabetic wistar rats with wounds on their backs measuring 1 × 1 cm were divided into four treatment groups which were given wound medicine once a day for seven days according to their distribution. The wound healing process was evaluated on the third and seventh day. Data were observed and analyzed using appropriate statistical tools. Measurement of wound healing indicators was carried out by examining wound contraction and histopathological examination showing that the treatment group given the allicin and quercetin formula experienced an improvement compared to the treatment group without allicin and quercetin. Allicin and quercetin increase the percentage of wound contraction, increase the density of blood vessels and the epithelialization process in the wound so that the wound healing process becomes faster. In conclusion, allicin and quercetin can be effective adjuvant therapies in helping wound healing in diabetes. Wound medication in the form of an emulsion is an effective choice, because it can maintain the stability of the allicin and quercetin content and can make the wound environment moist.
Collapse
Affiliation(s)
- Agik Priyo Nusantoro
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Nursing, Faculty of Health Science, Universitas Kusuma Husada, Surakarta, Indonesia
| | - Kuntaman Kuntaman
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - David Sontani Perdanakusuma
- Department of Reconstructive and Aesthetic Plastic Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
6
|
Huang L, Chen Y, Ding S, Qu L, He R, Dai C. Emulsification and encapsulation properties of conjugates formed between whey protein isolate and carboxymethyl cellulose under acidic conditions. Food Chem 2024; 430:136995. [PMID: 37544152 DOI: 10.1016/j.foodchem.2023.136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
In this study, carboxymethyl cellulose (CMC) was used to interact with whey protein isolate (WPI) to prepare conjugates as emulsifiers and embedding agents, which can be used under acidic conditions. Firstly, the effects of ratios and pH values on the formation of WPI-CMC conjugates were investigated. The turbidity and particle size of WPI were reduced in the presence of CMC at pH 4.6 (near the isoelectric point). Then the characterization of physicochemical properties indicated that electrostatic interactions played a major role in the formation of WPI-CMC conjugates, thereby changing the structure and function of conjugates. CMC and WPI reached the optimal aggregation state at pH 4.6 and a ratio of 4:1. The conjugates exhibited excellent emulsifying activity and stability for the oil-in-water emulsions. WPI-CMC conjugates also could provide protection to allicin by preventing degradation under environmental stresses, while maintaining its antioxidant activity.
Collapse
Affiliation(s)
- Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yu Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Shuang Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Lulu Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
7
|
Elsafty M, Abdeen A, Aboubakr M. Allicin and Omega-3 fatty acids attenuates acetaminophen mediated renal toxicity and modulates oxidative stress, and cell apoptosis in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:317-328. [PMID: 37436496 PMCID: PMC10771367 DOI: 10.1007/s00210-023-02609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Acetaminophen (APAP), a widely used medication known for its pain-relieving and fever-reducing effects, can cause kidney failure if taken in excess. To investigate the potential protective effects of allicin (ALC) and/or omega-3 fatty acids (O3FA) against acetaminophen-induced kidney damage, a study was conducted using 49 rats divided into seven groups. The control group was given saline, while the other groups received ALC, O3FA, APAP, ALC + APAP, O3FA + APAP, or ALC + O3FA + APAP. After administering APAP, the rats showed decreased levels of total protein and albumin in their blood, along with increased levels of creatinine and urea. The concentration of reduced glutathione (GSH), as well as the activity of superoxide dismutase (SOD) and catalase (CAT), decreased, while the level of malondialdehyde (MDA) in the renal tissues increased. The activation of caspase-3 and HSP70 also suggested an impact on kidney histopathology. Overall, the study found that ALC and/or O3FA may have a protective impact against acetaminophen-induced kidney damage through their anti-inflammatory, anti-apoptotic, and antioxidant defense systems.
Collapse
Affiliation(s)
- Moamen Elsafty
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt.
| |
Collapse
|
8
|
Pouliou C, Piperi C. Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options. Curr Med Chem 2024; 31:6187-6203. [PMID: 38726786 DOI: 10.2174/0109298673297545240507091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 10/16/2024]
Abstract
Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.
Collapse
Affiliation(s)
- Chrysi Pouliou
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
| | - Christina Piperi
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, 11527, Greece
| |
Collapse
|
9
|
Rayginia TP, Keerthana CK, Shifana SC, Pellissery MJ, Abhishek A, Anto RJ. Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma. Curr Med Chem 2024; 31:5199-5221. [PMID: 38213177 DOI: 10.2174/0109298673275501231213063902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.
Collapse
Affiliation(s)
- Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | - Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | | | - Maria Joy Pellissery
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Ajmani Abhishek
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
10
|
Deng Y, Ho CT, Lan Y, Xiao J, Lu M. Bioavailability, Health Benefits, and Delivery Systems of Allicin: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19207-19220. [PMID: 37943254 DOI: 10.1021/acs.jafc.3c05602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Garlic has been used worldwide as a spice due to its pungent taste and flavor-enhancing properties. As a main biologically active component of the freshly crushed garlic extracts, allicin (diallyl thiosulfinate) is converted from alliin by alliinase upon damaging the garlic clove, which has been reported to have many potent beneficial biological functions. In this work, allicin formation, stability, bioavailability, and metabolism process are examined and summarized. The biological functions of allicin and potential underlying mechanisms are reviewed and discussed, including antioxidation, anti-inflammation, antidiabetic, cardioprotective, antineurodegenerative, antitumor, and antiobesity effects. Novel delivery systems of allicin with enhanced stability, encapsulation efficiency, and bioavailability are also evaluated, such as nanoparticles, gels, liposomes, and micelles. This study could provide a comprehensive understanding of the physiochemical properties and health benefits of allicin, with great potential for further applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Yupei Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
11
|
Bose S, Robertson SF, Vu AA. Garlic extract enhances bioceramic bone scaffolds through upregulating ALP & BGLAP expression in hMSC-monocyte co-culture. BIOMATERIALS ADVANCES 2023; 154:213622. [PMID: 37742556 DOI: 10.1016/j.bioadv.2023.213622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Bone homeostasis is predicated by osteoblast and osteoclast cell cycles where gene expressions are responsible for their differentiation from human mesenchymal stem cells (hMSC) and monocytes, respectively. The pro-osteogenic potential of an hMSC-monocyte co-culture can be measured through complementary DNA (mRNA synthesis) within the nucleus, known as quantitative polymerase chain reaction (qPCR). Through this technique, the effects of garlic extract (allicin) release from calcium phosphate bone scaffolds on gene expression of bone forming and bone remodeling cells was explored. Results show this complex biomaterial system enhances hMSC differentiation through the upregulation of bone-forming proteins. Osteoblastic gene markers alkaline phosphatase (ALP) and osteocalcin (BGLAP), are respectively upregulated by 3-fold and 1.6-fold by day 14. These mature osteoblasts then upregulate the receptor activator of nuclear factor-kB ligand (RANKL) which recruits osteoclast cells, as captured by a nearly 2-fold higher osteoclast expression of tartrate-resistance acid-phosphatase (ACP5). This also activates antagonist osteoprotegerin (OPG) expression in osteoblasts, decreasing osteoclast resorption potential and ACP5 expression by day 21. The pro-osteogenic environment with garlic extract release is further quantified by a 4× increase in phosphatase activity and visibly captured in immunofluorescent tagged confocal images. Also corroborated by enhanced collagen formation in a preliminary in vivo rat distal femur model, this work collectively reveals how garlic extract can enhance bioceramic scaffolds for bone tissue regenerative applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Samuel F Robertson
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Ashley A Vu
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
12
|
Zhang M, Zou X, Du Y, Pan Z, He F, Sun Y, Li M. Integrated Transcriptomics and Metabolomics Reveal the Mechanism of Alliin in Improving Hyperlipidemia. Foods 2023; 12:3407. [PMID: 37761116 PMCID: PMC10528980 DOI: 10.3390/foods12183407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This research aims to assess the anti-hyperlipidemia effects of alliin in vivo and its potential mechanisms through transcriptomics and metabolomics analysis. A hyperlipidemia mode was established in C57BL/6 mice fed a high-fat diet, and the related physiological parameters of the animals were recorded. Serum TC and MDA in livers significantly decreased by 12.34% and 29.59%, respectively, and SOD and CAT in livers significantly increased by 40.64% and 39.05%, respectively, after high doses of alliin interventions. In total, 148 significantly different genes, particularly Cel, Sqle, Myc, and Ugt1a2, were revealed for their potential roles in HFD-induced alliin, mainly through steroid biosynthesis, triglyceride metabolism, drug metabolism-cytochrome P450, and the PI3K-Akt signaling pathway, according to transcriptomics analysis. Metabolomics results revealed 18 significantly different metabolites between the alliin group and HFD group, which were classified as carboxylic acids, such as N-undecanoylglycine, adipic acid, D-pantothenic acid, cyprodenate, and pivagabine. We found pantothenic acid played a vital role and was effective through pantothenic acid and CoA biosynthesis metabolism. The "steroid biosynthesis pathway" was identified as the most significant metabolic pathway by integrated transcriptomics and metabolomics analysis. This work offered a theoretical framework for the mechanism of alliin lipid lowering in the future. The development and utilization of alliin will be a viable strategy to improve the health status of people with hyperlipidemia, suggesting prospective market opportunities.
Collapse
Affiliation(s)
- Min Zhang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.Z.); (Y.D.); (Z.P.); (Y.S.)
- College of Food, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoying Zou
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.Z.); (Y.D.); (Z.P.); (Y.S.)
- College of Food, South China Agricultural University, Guangzhou 510642, China
| | - Yixuan Du
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.Z.); (Y.D.); (Z.P.); (Y.S.)
- College of Food, South China Agricultural University, Guangzhou 510642, China
| | - Zhuangguang Pan
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.Z.); (Y.D.); (Z.P.); (Y.S.)
- College of Food, South China Agricultural University, Guangzhou 510642, China
| | - Fangqing He
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.Z.); (Y.D.); (Z.P.); (Y.S.)
- College of Food, South China Agricultural University, Guangzhou 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.Z.); (Y.D.); (Z.P.); (Y.S.)
- College of Food, South China Agricultural University, Guangzhou 510642, China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.Z.); (Y.D.); (Z.P.); (Y.S.)
- College of Food, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Rybak LP, Alberts I, Patel S, Al Aameri RFH, Ramkumar V. Effects of natural products on cisplatin ototoxicity and chemotherapeutic efficacy. Expert Opin Drug Metab Toxicol 2023; 19:635-652. [PMID: 37728555 DOI: 10.1080/17425255.2023.2260737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Ian Alberts
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shree Patel
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
14
|
Xie T, Wu Q, Lu H, Hu Z, Luo Y, Chu Z, Luo F. Functional Perspective of Leeks: Active Components, Health Benefits and Action Mechanisms. Foods 2023; 12:3225. [PMID: 37685158 PMCID: PMC10486880 DOI: 10.3390/foods12173225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Leek (Allium fistulosum L.), a common and widely used food ingredient, is a traditional medicine used in Asia to treat a variety of diseases. Leeks contain a variety of bioactive substances, including sulfur compounds, dietary fiber, steroid compounds and flavonoid compounds. Many studies have shown that these active ingredients produce the following effects: promotion of blood circulation, lowering of cholesterol, relief of fatigue, anti-inflammation, anti-bacteria, regulation of cell metabolism, anti-cancer, anti-oxidation, and the lowering of fat and blood sugar levels. In this paper, the main bioactive components and biological functions of leeks were systemically reviewed, and the action mechanisms of bioactive components were discussed. As a common food, the health benefits of leeks are not well known, and there is no systematic summary of leek investigations. In light of this, it is valuable to review the recent progress and provide reference to investigators in the field, which will promote future applications and investigations of leeks.
Collapse
Affiliation(s)
- Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhongxing Chu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
15
|
Shiek SS, Sajai ST, Dsouza HS. Arsenic-induced toxicity and the ameliorative role of antioxidants and natural compounds. J Biochem Mol Toxicol 2023; 37:e23281. [PMID: 36550698 DOI: 10.1002/jbt.23281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Arsenic (As) poisoning has proven to be a major threat worldwide because of its toxic effects on the human body. As toxicity through drinking water is a global health concern. The toxicity of As is known to affect the liver, kidney, lungs, muscles, cardiovascular system, and nervous system and can even induce diabetes. Further As can cause skin lesions leading to notable diseases in the skin like Bowen's disease. Chronic exposure to As has caused many tragedies in Eastern, and several Southeast Asian and Latin American countries. Long-term exposure to As makes it an immediate threat that should be dealt with as a priority, and one of the ways to handle it may be with the use of antioxidants. In this review, we have discussed the natural and anthropogenic sources of As, its metabolism, pathophysiology, and mechanism of toxicity. Besides, we have also discussed some of the synthetic chelators and the ameliorative role of antioxidants and natural compounds in reducing As toxicity.
Collapse
Affiliation(s)
- Sadiya S Shiek
- Department of Biology, College of Science, United Arab Emirates University, United Arab Emirates
| | - Sanai T Sajai
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
16
|
Construction and Activity Study of a Natural Antibacterial Patch Based on Natural Active Substance-Green Porous Structures. Molecules 2023; 28:molecules28031319. [PMID: 36770989 PMCID: PMC9918939 DOI: 10.3390/molecules28031319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial infections are a serious threat to human health, and the rapid emergence of bacterial resistance caused by the abuse of antibiotics exacerbates the seriousness of this problem. Effectively utilizing natural products to construct new antimicrobial strategies is regarded as a promising way to suppress the rapid development of bacterial resistance. In this paper, we fabricated a new type of natural antibacterial patch by using a natural active substance (allicin) as an antibacterial agent and the porous structure of the white pulp of pomelo peel as a scaffold. The antibacterial activity and mechanisms were systematically investigated by using various technologies, including the bacteriostatic circle, plate counting, fluorescence staining, and a scanning electron microscope. Both gram-positive and negative bacteria can be effectively killed by this patch. Moreover, this natural antibacterial patch also showed significant anti-skin infection activity. This study provides a green approach for constructing efficient antibacterial patches.
Collapse
|
17
|
Health benefits of bioactive components in pungent spices mediated via the involvement of TRPV1 channel. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Mollahosseini M, Hosseini-Marnani E, Panjeshahin A, Panbehkar-Jouybari M, Gheflati A, Mozaffari-Khosravi H. A systematic review of randomized controlled trials related to the effects of garlic supplementation on platelet aggregation. Phytother Res 2022; 36:4041-4050. [PMID: 36222178 DOI: 10.1002/ptr.7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022]
Abstract
The increment of platelet aggregation factors has been considered a key phenomenon in atherosclerosis. Studies have shown that garlic (Allium sativum) is associated with a reduction in platelet aggregation and thrombosis. Hence, the present systematic review was conducted to evaluate the effect of garlic on platelet aggregation. All randomized controlled trials (RCTs) with keywords related to garlic and platelet aggregation were thoroughly searched in electronic databases including PubMed, Scopus, ISI Web of Science, and Google Scholar up to January 2021. Moreover, the references of all related articles were screened to discover more relevant studies. The quality of each study was reported based on Cochrane Collaboration's tool. In total, 12 studies met the inclusion criteria from 18,235 identified articles (including 595 participants). Most of the studies assessed platelet aggregation in response to different inducers. Of the 12 clinical trials, six studies depicted the beneficial effect of garlic on reducing platelet aggregation. The summary of the quality assessment indicated that most of the studies had high-quality scores. Regarding the small number of RCTs and heterogeneity between studies, it is impossible to make a proper conclusion about the impacts of garlic on platelet aggregation. Therefore, further precise trials with a standard design are necessary to validate the anti-thrombotic effect of garlic.
Collapse
Affiliation(s)
- Mehdi Mollahosseini
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Hosseini-Marnani
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Asieh Panjeshahin
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Monireh Panbehkar-Jouybari
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Gheflati
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mozaffari-Khosravi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
19
|
Therapeutic Effects and Mechanisms of Action of Garlic (Allium sativum) on Nonalcoholic Fatty Liver Disease: A Comprehensive Systematic Literature Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/6960211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally the leading cause of hepatic dysfunction. Garlic has many physiological benefits, including anti-inflammatory, antioxidant, anticancer, lipid-lowering, and antidiabetes effects. The present study aimed to systematically review the effects of garlic (Allium sativum) and its mechanisms of function in managing NAFLD and its associated complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (CRD42021289348). The Scopus, Embase, Web of Science, Cochrane PubMed, and Google Scholar databases were searched until February 2022. According to the inclusion criteria, finally, 12 studies were entered into the study. The evidence provided in the study revealed that garlic could regulate the development of NAFLD via several mechanisms of action, such as lowering body weight, modulating lipid and glucose metabolism, and reducing inflammation and oxidative stress (OS). Overall, the beneficial effects of garlic in the treatment of NAFLD make it a potential therapeutic and efficient agent in managing NAFLD and its related risk factors. There is an insufficient number of clinical trials addressing the effects of garlic in humans; therefore, conducting more human research in the future is recommended.
Collapse
|
20
|
Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169082. [PMID: 36012349 PMCID: PMC9409331 DOI: 10.3390/ijms23169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors.
Collapse
|
21
|
Mousa AM, Soliman KEA, Alhumaydhi FA, Almatroudi A, Allemailem KS, Alsahli MA, Alrumaihi F, Aljasir M, Alwashmi ASS, Ahmed AA, Khan A, Al-Regaiey KA, AlSuhaymi N, Alsugoor MH, Aljarbou WA, Elsayed AM. Could allicin alleviate trastuzumab-induced cardiotoxicity in a rat model through antioxidant, anti-inflammatory, and antihyperlipidemic properties? Life Sci 2022; 302:120656. [PMID: 35605695 DOI: 10.1016/j.lfs.2022.120656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022]
Abstract
AIMS Although trastuzumab (TZB)-induced cardiotoxicity is well documented and allicin (one of the main active garlic ingredients) has ameliorating effects against numerous causes of toxicities; however, the influence of allicin on TZB-induced cardiotoxicity has not been investigated yet. Therefore, the current work explored the potential cardioprotective structural, biochemical, and molecular mechanisms of allicin against TZB-induced cardiotoxicity in a rat's model. METHODS Forty rats were divided into four equal groups and treated for five weeks. The control group (G1) received PBS, the allicin group (G2) received allicin (9 mg/kg/day), the TZB group (G3) received TZB (6 mg/kg/week), and the allicin+TZB group (G4) received 9 mg of allicin/kg/day +6 mg of TZB/kg/week. Heart specimens and blood samples were processed for histopathological, immunohistochemical, biochemical, and molecular investigations to determine the extent of cardiac injury in all groups. KEY FINDINGS The myocardium of G3 revealed significant increases in the numbers of inflammatory and apoptotic cells and the area percentage of collagen fibers and TNF-α immunoexpression compared with G1 and G2. Besides, qRT-PCR analysis exhibited significant reductions of SOD3, GPX1, and CAT expressions with significant increases in TNFα, IL-1β, IL-6, cTnI, cTnT, and LDH expressions. Additionally, flow cytometry analysis demonstrated a significant elevation in the apoptotic and ROS levels. In contrast, allicin+TZB cotherapy in G4 ameliorated all previous changes compared with G3. SIGNIFICANCE The current study proves that allicin could be used as a novel supplementary cardioprotective therapy to avoid TZB-induced cardiotoxicity via its anti-inflammatory, antifibrotic, antioxidant, antihyperlipidemic, and antiapoptotic properties.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Khaled E A Soliman
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah 51452, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt.
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ahmed A Ahmed
- Research Center, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khalid A Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, Umm Al-Qura University, AlQunfudah, Makkah 21912, Saudi Arabia.
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, Umm Al-Qura University, AlQunfudah, Makkah 21912, Saudi Arabia.
| | | | - Abulmaaty M Elsayed
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Mutah, Jordan; Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| |
Collapse
|
22
|
Chen Y, Zhan Q, Zhang J, Wang W, Luan Khoo B, Liu Z, Wei S, Niu J, Xu J, Yu CC, Hu X, Liu Y, Han J, Liu S, Liu L. Accurate prediction of drug-induced heterogeneous response of red cell in vivo using a gravity-driven flow cytometry based on a microfluidic chip. Anal Chim Acta 2022; 1221:340151. [DOI: 10.1016/j.aca.2022.340151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
|
23
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
24
|
Huang L, Jia S, Wu R, Chen Y, Ding S, Dai C, He R. The structure, antioxidant and antibacterial properties of thiol-modified soy protein isolate induced by allicin. Food Chem 2022; 396:133713. [PMID: 35868284 DOI: 10.1016/j.foodchem.2022.133713] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
This study investigated the effect of allicin binding on the structure, antioxidant and antibacterial properties of soy protein isolate (SPI). Results showed that allicin bound to 82.6 % free thiol groups of SPI at a molar ratio of 0.5. The combination of allicin and SPI significantly affected the structure of protein. Result of circular dichroism showed that the content of α-helix decreased by 26.9 % and the content of β-sheet increased by 12.2 % over control when the molar ratio was 0.5. The result of surface hydrophobicity signified the unfolding of SPI with the action of allicin. These results implied that allicin binding might be a suitable method for the modification of SPI. Furthermore, the antibacterialand antioxidant experiments indicated that allicin-SPI conjugates not only had the capacity to inhibit the growth of Escherichia coli and Staphyloccocus aureus, but also had DPPH and ABTS radicals scavenging activities.
Collapse
Affiliation(s)
- Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Shifang Jia
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ruike Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yanyue Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Shuang Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
25
|
Egbujor MC, Petrosino M, Zuhra K, Saso L. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Antioxidants (Basel) 2022; 11:1255. [PMID: 35883746 PMCID: PMC9311638 DOI: 10.3390/antiox11071255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling has become a key pathway for cellular regulation against oxidative stress and inflammation, and therefore an attractive therapeutic target. Several organosulfur compounds are reportedly activators of the Nrf2 pathway. Organosulfur compounds constitute an important class of therapeutic agents in medicinal chemistry due to their ability to participate in biosynthesis, metabolism, cellular functions, and protection of cells from oxidative damage. Sulfur has distinctive chemical properties such as a large number of oxidation states and versatility of reactions that promote fundamental biological reactions and redox biochemistry. The presence of sulfur is responsible for the peculiar features of organosulfur compounds which have been utilized against oxidative stress-mediated diseases. Nrf2 activation being a key therapeutic strategy for oxidative stress is closely tied to sulfur-based chemistry since the ability of compounds to react with sulfhydryl (-SH) groups is a common property of Nrf2 inducers. Although some individual organosulfur compounds have been reported as Nrf2 activators, there are no papers with a collective analysis of these Nrf2-activating organosulfur compounds which may help to broaden the knowledge of their therapeutic potentials and motivate further research. In line with this fact, for the first time, this review article provides collective and comprehensive information on Nrf2-activating organosulfur compounds and their therapeutic effects against oxidative stress, thereby enriching the chemical and pharmacological diversity of Nrf2 activators.
Collapse
Affiliation(s)
- Melford Chuka Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Abia State, Nigeria
| | - Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
26
|
Garlic the Wonder Adjuvant in Medicinal Field. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background: Plant derived compounds are drawing attention in curing and treating variety of ailment and diseases. This increase in popularity of natural products has renewed interest in garlic, which has been used by human for centuries. It has been found that garlic pulp contains more than 200 chemical compounds and numerous garlic molecules can still be explored, extracted, synthesized and optimized. As in market various preparations of garlic are available which include tablets made from dried and powdered clove, oils and liquid extracts however, it would also be interesting to explore the effect of different forms of garlic extract on standard drug therapy especially when used as an adjuvant therapy. In this review a report on the pharmaceutical preparation which has used extracted compounds from garlic or its derivatives as a main constituent is compiled, so that it could be useful to increase our knowledge about the therapeutic effect of garlic and could improve our future experimental and chemical plans.
Methods: We performed a systematic review of literature using term garlic.
Result: In this report a comprehensive investigation has been conducted on garlic which includes various scientific aspects about it by which researchers from various disciplines could be directed to put efforts toward discovering the benefits of garlic on human health.
Conclusion: Garlic and its extracts had a wide range of applications even against resistant organisms to serve as powerful anti-microbial agent. Therefore, research is needed to refine the pathophysiological mechanisms of action of garlic and its utility in treatment of various diseases by developing more stable and suitable formulations. The development of Garlic as a commercial anti-biotic has come to a halt. Although its efficiency is scientifically proven still it has only been used as dietary supplement or as traditional medicine.
Collapse
|
27
|
Nagy MM, Wang S, Farag MA. Quality analysis and authentication of nutraceuticals using near IR (NIR) spectroscopy: A comprehensive review of novel trends and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
29
|
Agahi F, Penalva-Olcina R, Font G, Juan-García A, Juan C. Effects of Voghiera garlic extracts in neuronal human cell line against zearalenone's derivates and beauvericin. Food Chem Toxicol 2022; 162:112905. [PMID: 35257812 DOI: 10.1016/j.fct.2022.112905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
The Fusarium toxins constitute one of the largest groups of mycotoxins produced by Fusarium species, which are major pathogens of cereal plants. In the present study neuroprotection effect of Allium sativum L garlic extract which is known as Voghiera garlic, from a local garlic ecotype of Ferrara (Italy) was examined on an undifferentiated SH-SY5Y neuronal cells against ZEA's metabolites (α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL)) and beauvericin (BEA) mycotoxins which are considered as the most reported Fusarium mycotoxins, via MTT (3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, over 24 h and 48 h through direct treatment, simultaneous treatment and pre-treatment strategies. The results demonstrated remarkable improvement in cells viability in simultaneous and pre-treatment strategy with Voghiera garlic extract (VGE); specifically, for simultaneous treatment of VGE with β-ZEL which viability increased significantly up to 56%, and subsequently with α-ZEL and BEA by up to 38% and 37% respectively, compared to each mycotoxin tested alone for their highest concentrations assayed, while direct treatments for each mycotoxins individually decreased significantly (for α-ZEL up to 69%, for β-ZEL 82% and for BEA up to 43%). It is proposed by the present study that VGE extract found to be effective in reducing the cytotoxicity/neurotoxicity of α-ZEL, β-ZEL and BEA mycotoxins encountered in food and feed commodity.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
30
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Revealing the Therapeutic Uses of Garlic ( Allium sativum) and Its Potential for Drug Discovery. ScientificWorldJournal 2022; 2021:8817288. [PMID: 35002548 PMCID: PMC8739926 DOI: 10.1155/2021/8817288] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Garlic is a common bulb vegetable that is used to flavor and flavor food. The plant contains biologically active components that contribute to its pharmacological properties. This paper attempts to examine the therapeutic uses and potential role in the drug development of garlic for various human diseases. Methods To obtain crucial data and scientific knowledge about the therapeutic uses of garlic, systematic literature searches were conducted using key terms on well-known indexed platforms such as PubMed, Scopus, Web of Science, Medline, Embase, and popular search engines. Results Garlic, which is utilized as a spice and flavoring ingredient, is found to have fundamental nutritional components. Carbohydrates, protein, fat, minerals, water, and vitamins are all found in abundance in this plant. The plant also has a high medicinal value and is used to cure a variety of human diseases. It has anti-inflammatory, rheumatological, ulcer inhibiting, anticholinergic, analgesic, antimicrobial, antistress, antidiabetes, anticancer, liver protection, anthelmintics, antioxidants, antifungal, and wound healing properties, as well as properties that help with asthma, arthritis, chronic fever, tuberculosis, runny nose, malaria, leprosy, skin discoloration, and itching, indigestion, colic, enlarged spleen, hemorrhoids, fistula, bone fracture, gout, urinary tract disease, diabetes, kidney stones, anemia, jaundice, epilepsy, cataract, and night blindness. Conclusions The nutritional content of the plant is significant, and it has incredible therapeutic potential. The findings of this study are needed to investigate the therapeutic potential, as it may be a promising option for drug development.
Collapse
|
32
|
Imaizumi VM, Laurindo LF, Manzan B, Guiguer EL, Oshiiwa M, Otoboni AMMB, Araujo AC, Tofano RJ, Barbalho SM. Garlic: A systematic review of the effects on cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 63:6797-6819. [PMID: 35193446 DOI: 10.1080/10408398.2022.2043821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allium sativum (garlic) certainly is one of the oldest horticultural crops in the world and presents bioactive compounds that are related to the garlic's effects on human health. Several authors have shown beneficial effects on diabetes, hypertension, dyslipidemia, obesity, and cardiovascular diseases (CVD), which are among the most relevant causes of mortality in the world. The aim of this systematic review was to evaluate the effects of garlic in the risk factors of CVD and evaluate its economic importance. MEDLINE-PubMed, COCHRANE, EMBASE, and Google Scholar databases were searched. The included studies showed that the use of garlic can reduce blood pressure, waist circumference, body mass index, LDL-c, non-HDL-c, total cholesterol, triglycerides, and inflammatory markers. It also can increase the levels of HDL-c and can improve cardiovascular parameters such as coronary artery calcium, microcirculation, epicardial and periaortic adipose tissue, post occlusive reactive hyperemia, low attenuation plaque, carotid intima-media thickness; and carotid intima-media thickness. Due to these reasons, garlic can be considered in the prevention and treatment of CVD risk factors.
Collapse
Affiliation(s)
- Vitor Massami Imaizumi
- Department of Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, Marília, São Paulo, Brazil
| | - Barbara Manzan
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, Marília, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, São Paulo, Brazil
| | - Marie Oshiiwa
- Department of Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo, Brazil
| | | | - Adriano Cressoni Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, São Paulo, Brazil
| | - Ricardo Jose Tofano
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, São Paulo, Brazil
| |
Collapse
|
33
|
Farooq J, Sultana R, Taj T, Asdaq SMB, Alsalman AJ, Mohaini MA, Al Hawaj MA, Kamal M, Alghamdi S, Imran M, Shahin H, Tabassum R. Insights into the Protective Effects of Thymoquinone against Toxicities Induced by Chemotherapeutic Agents. Molecules 2021; 27:molecules27010226. [PMID: 35011457 PMCID: PMC8746502 DOI: 10.3390/molecules27010226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The drugs used to treat cancer not only kill fast-growing cancer cells, but also kill or slow the growth of healthy cells, causing systemic toxicities that lead to altered functioning of normal cells. Most chemotherapeutic agents have serious toxicities associated with their use, necessitating extreme caution and attention. There is a growing interest in herbal remedies because of their pharmacological activities, minimal side effects, and low cost. Thymoquinone, a major component of the volatile oil of Nigella sativa Linn, also known as black cumin or black seeds, is commonly used in Middle Eastern countries as a condiment. It is also utilized for medicinal purposes and possesses antidiabetic, anti-cancer, anti-inflammatory, hepatoprotective, anti-microbial, immunomodulatory, and antioxidant properties. This review attempts to compile the published literature demonstrating thymoquinone's protective effect against chemotherapeutic drug-induced toxicities.
Collapse
Affiliation(s)
- Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India; (J.F.); (T.T.); (H.S.); (R.T.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Correspondence: or (R.S.); or (S.M.B.A.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India; (J.F.); (T.T.); (H.S.); (R.T.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
- Correspondence: or (R.S.); or (S.M.B.A.)
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Arar 91911, Saudi Arabia;
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Thuwal 31982, Saudi Arabia
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Arar 91911, Saudi Arabia;
| | - Haleema Shahin
- Department of Pharmacology, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India; (J.F.); (T.T.); (H.S.); (R.T.)
| | - Ruheena Tabassum
- Department of Pharmacology, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India; (J.F.); (T.T.); (H.S.); (R.T.)
| |
Collapse
|
34
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
35
|
Vinayagam R, Eun Lee K, Ambati RR, Gundamaraju R, Fawzy Ramadan M, Gu Kang S. Recent development in black garlic: Nutraceutical applications and health-promoting phytoconstituents. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, The Republic of Korea
| | - Kyung Eun Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, The Republic of Korea
- Stemforce, Institute of Industrial Technology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan’s Foundation for Science, Technology, and Research Deemed to be University, Guntur, India
| | - Rohit Gundamaraju
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, KSA
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, The Republic of Korea
| |
Collapse
|
36
|
Del Rayo Camacho-Corona M, Camacho-Morales A, Góngora-Rivera F, Escamilla-García E, Morales-Landa JL, Andrade-Medina M, Herrera-Rodulfo AF, García-Juárez M, García-Espinosa P, Stefani T, González-Barranco P, Carrillo-Tripp M. Immunomodulatory effects of Allium Sativum L. and its constituents against viral infections and metabolic diseases. Curr Top Med Chem 2021; 22:109-131. [PMID: 34809549 DOI: 10.2174/1568026621666211122163156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/24/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Allium sativum L., or garlic, is one of the most studied plants worldwide within the field of traditional medicine. Current interests lie in the potential use of garlic as a preventive measure and adjuvant treatment for viral infections, e.g., SARS-CoV-2. Even though it cannot be presented as a single treatment, its beneficial effects are beyond doubt. The World Health Organization has deemed it an essential part of any balanced diet with immunomodulatory properties. OBJECTIVE The aim of the study was to review the literature on the effects of garlic compounds and preparations on immunomodulation and viral infection management, with emphasis on SARS-CoV-2. METHOD Exhaustive literature search has been carried out on electronic databases. CONCLUSION Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic's ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of innovative strategies to achieve such a challenge in the near future.
Collapse
Affiliation(s)
| | | | - Fernando Góngora-Rivera
- Stroke Unit and Neurology Department, University Hospital Jose Eleuterio Gonzalez, Universidad Autónoma de Nuevo León, Monterrey, N.L. Mexico
| | - Erandi Escamilla-García
- Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autónoma de Nuevo León, Monterrey, N.L. Mexico
| | - Juan Luis Morales-Landa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Subsede Noreste, Apodaca, N.L. Mexico
| | - Mariana Andrade-Medina
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, N.L. Mexico
| | - Aldo Fernando Herrera-Rodulfo
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, N.L. Mexico
| | - Martín García-Juárez
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, N.L. Mexico
| | | | - Tommaso Stefani
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, Prague. Czech Republic
| | - Patricia González-Barranco
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, N.L. Mexico
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, N.L. Mexico
| |
Collapse
|
37
|
AlAhadeb JI. New combination of drugs to combat Escherichia coli DSM1103 QCDSM by reducing antibiotic ciprofloxacin standard dose using response surface methodology. J Infect Public Health 2021; 14:1815-1821. [PMID: 34776343 DOI: 10.1016/j.jiph.2021.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Microbial diseases are emerged as a concern for the global health and are responsible for increased mortality among different age groups. It is therefore essential to control the microbial population with novel antimicrobial agents. Antibiotic-phytochemicals mixtures are used for improving the antibacterial efficiency against bacterial pathogens to decrease their microbial resistance development. This study compared the inhibitory potentials of ciprofloxacin antibiotic and phytochemical mixtures of Syzygium aromaticum (clove), Allium sativum (garlic) and Cinnamomum verum (cinnamon) against Escherichia coli DSM1103 QCDSM using Minimal inhibitory concentrations (MICs) and Bactericidal inhibitory concentrations (MBCs) methods. OBJECTIVE Inhibitory activity of ciprofloxacin and three oil plant extracts of the selected plants (clove, garlic, cinnamon) were tested against E. coli DSM1103 QCDSM using well diffusion method on Muller-Hinton agar plates by studying MIC and MBC tests. The software "Design Expert® 12" Stat-Ease was used to analyze the experimental mixture design. RESULTS A mixture design of twenty mixture combination runs using different concentration levels of ciprofloxacin and the three oil plants extracts were performed against E. coli DSM1103 QCDSM growth. Results revealed that the standard recommended ciprofloxacin dose 5 μg/100 ml may be replaced by the oil extracts of S. aromaticum 4.75 % (v/v), A. sativum 5.0% (v/v), C. verum 5.0%(v/v) and ciprofloxacin 0.25% (w/v) as alternative drugs. CONCLUSION The proposed mixture containing Syzygium aromaticum (clove), Allium sativum (garlic) and Cinnamomum verum (cinnamon) was found to be an effective antimicrobial agent and may signifies the role of traditional knowledge in drug discovery.
Collapse
Affiliation(s)
- Jawaher I AlAhadeb
- Department of Biology, College of Education (Majmaah), Majmaah University, P.O. Box 66, AlMajmaah 11952, Saudi Arabia.
| |
Collapse
|
38
|
Sánchez-Gloria JL, Martínez-Olivares CE, Rojas-Morales P, Hernández-Pando R, Carbó R, Rubio-Gayosso I, Arellano-Buendía AS, Rada KM, Sánchez-Muñoz F, Osorio-Alonso H. Anti-Inflammatory Effect of Allicin Associated with Fibrosis in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22168600. [PMID: 34445305 PMCID: PMC8395330 DOI: 10.3390/ijms22168600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling. Recent evidence supports that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Recent studies have shown that garlic extract has protective effects in PAH, but the precise role of allicin, a compound derived from garlic, is unknown. Thus, we used allicin to evaluate its effects on inflammation and fibrosis in PAH. Male Wistar rats were divided into three groups: control (CON), monocrotaline (60 mg/kg) (MCT), and MCT plus allicin (16 mg/kg/oral gavage) (MCT + A). Right ventricle (RV) hypertrophy and pulmonary arterial medial wall thickness were determined. IL-1β, IL-6, TNF-α, NFκB p65, Iκβ, TGF-β, and α-SMA were determined by Western blot analysis. In addition, TNF-α and TGF-β were determined by immunohistochemistry, and miR-21-5p and mRNA expressions of Cd68, Bmpr2, and Smad5 were determined by RT-qPCR. Results: Allicin prevented increases in vessel wall thickness due to TNF-α, IL-6, IL-1β, and Cd68 in the lung. In addition, TGF-β, α-SMA, and fibrosis were lower in the MCT + A group compared with the MCT group. In the RV, allicin prevented increases in TNF-α, IL-6, and TGF-β. These observations suggest that, through the modulation of proinflammatory and profibrotic markers in the lung and heart, allicin delays the progression of PAH.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Disulfides/therapeutic use
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hypertension, Pulmonary/drug therapy
- Male
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats
- Rats, Wistar
- Smad5 Protein/genetics
- Smad5 Protein/metabolism
- Sulfinic Acids/therapeutic use
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Constanza Estefanía Martínez-Olivares
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Pedro Rojas-Morales
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Karla M. Rada
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Correspondence: (F.S.-M.); (H.O.-A.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
- Correspondence: (F.S.-M.); (H.O.-A.)
| |
Collapse
|
39
|
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat Rev Nephrol 2021; 17:402-416. [PMID: 33758363 DOI: 10.1038/s41581-021-00408-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the retention of a myriad of solutes termed uraemic (or uremic) toxins, which inflict damage to several organs, including the cardiovascular system. Uraemic toxins can induce hallmarks of cardiovascular disease (CVD), such as atherothrombosis, heart failure, dysrhythmias, vessel calcification and dysregulated angiogenesis. CVD is an important driver of mortality in patients with CKD; however, reliance on conventional approaches to managing CVD risk is insufficient in these patients, underscoring a need to target risk factors that are specific to CKD. Mounting evidence suggests that targeting uraemic toxins and/or pathways induced by uraemic toxins, including tryptophan metabolites and trimethylamine N-oxide (TMAO), can lower the risk of CVD in patients with CKD. Although tangible therapies resulting from our growing knowledge of uraemic toxicity are yet to materialize, a number of pharmacological and non-pharmacological approaches have the potential to abrogate the effects of uraemic toxins, for example, by decreasing the production of uraemic toxins, by modifying metabolic pathways induced by uraemic toxins such as those controlled by aryl hydrocarbon receptor signalling and by augmenting the clearance of uraemic toxins.
Collapse
Affiliation(s)
- Jonathan D Ravid
- School of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. .,Boston Veterans Affairs Healthcare System, Boston, MA, USA. .,Global Co-creation Lab, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
40
|
Sangouni AA, Alizadeh M, Jamalzehi A, Parastouei K. Effects of garlic powder supplementation on metabolic syndrome components, insulin resistance, fatty liver index, and appetite in subjects with metabolic syndrome: A randomized clinical trial. Phytother Res 2021; 35:4433-4441. [PMID: 33974725 DOI: 10.1002/ptr.7146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 01/15/2023]
Abstract
The prevalence of metabolic syndrome (MetS) is increasing. It is closely linked to nonalcoholic fatty liver disease. Garlic consumption as a strategy for the management of MetS has been suggested. We investigated the effect of garlic supplementation on MetS components, insulin resistance, fatty liver index (FLI), and appetite in subjects with MetS. Ninety subjects were assigned to receive 1,600 mg/d garlic powder or placebo for 3 months. The primary outcomes included MetS components. The secondary outcomes included insulin resistance, FLI, and appetite. Garlic supplementation compared with the placebo led to a significant increase in high density lipoprotein-cholesterol (4.5 vs. -1.8, p < .001) and a significant reduction in waist circumference (-1.3 vs. 0.0, p = .001), diastolic blood pressure (-6.7 vs. 0.0, p < .001), systolic blood pressure (-7.7 vs. 0.5, p < .001), triglyceride (-40.0 vs. 0.1, p < .001), γ-glutamyl transferase (-3.2 vs. 0.6, p = .01), FLI (-5.5 vs. 0.1, p < .001), insulin (-2.9 vs. -1.1, p < .001), homeostatic model of assessment for insulin resistance (-0.5 vs. -0.3, p < .001) and appetite (hunger: -11.7 vs. 1.7, p < .001; fullness: 10.0 vs. 0.3, p = .001; desire to eat: -6.7 vs. 2.1, p < .001; and ability to eat: -11.5 vs. -1.0, p < .001). Garlic improves MetS components, insulin resistance, FLI, and appetite.
Collapse
Affiliation(s)
- Abbas Ali Sangouni
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Nutrition and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Alizadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Atena Jamalzehi
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Nutrition and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
42
|
Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, Mollazadeh S, Rezaei M, Pourghadamyari H, Masoud Khooy M, Aschner M, Khan H, Rezaei N, Shojaie L, Mirzaei H. Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities. Front Oncol 2021; 11:650256. [PMID: 33987085 PMCID: PMC8111078 DOI: 10.3389/fonc.2021.650256] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancer tumors are one of the major causes of cancer-related fatalities; the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence confirmed that allium-containing food, such as garlic, reduces the risk of developing malignancies. Among all compounds in garlic, allicin has been most researched, as it contains sulfur and produces many second degradation compounds, such as sulfur dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in the presence of enzymatic reactions in gastric juice. These substances have shown anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers. Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.
Collapse
Affiliation(s)
- Mahshad Sarvizadeh
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hasanpour
- School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Nima Rezaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
43
|
Comas F, Moreno-Navarrete JM. The Impact of H 2S on Obesity-Associated Metabolic Disturbances. Antioxidants (Basel) 2021; 10:antiox10050633. [PMID: 33919190 PMCID: PMC8143163 DOI: 10.3390/antiox10050633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Over the last several decades, hydrogen sulfide (H2S) has gained attention as a new signaling molecule, with extensive physiological and pathophysiological roles in human disorders affecting vascular biology, immune functions, cellular survival, metabolism, longevity, development, and stress resistance. Apart from its known functions in oxidative stress and inflammation, new evidence has emerged revealing that H2S carries out physiological functions by targeting proteins, enzymes, and transcription factors through a post-translational modification known as persulfidation. This review article provides a critical overview of the current state of the literature addressing the role of H2S in obesity-associated metabolic disturbances, with particular emphasis on its mechanisms of action in obesity, diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain;
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Correspondence: ; Tel.: +(34)-872-98-70-87
| |
Collapse
|
44
|
Toygar I, Tureyen A, Demir D, Cetinkalp S. Effect of allicin on wound healing: an experimental diabetes model. J Wound Care 2021; 29:388-392. [PMID: 32654608 DOI: 10.12968/jowc.2020.29.7.388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of allicin on wound healing in an experimental diabetes model. METHOD In this randomised controlled study, 50 Wistar albino rats (25 females, 25 males) each weighing 200-300g were used. To develop the diabetes model, 30 rats were induced with 50mg/kg streptozotocin (STZ); 20 rats were not induced in order to compare diabetic and nondiabetic rats. The diabetic rats were divided into three groups, according to dressing material used (allicin, physiological serum and control, where no dressing was used), and the nondiabetic rats were divided into two groups (allicin and control, where no dressing was used). The wound area was calculated and recorded on days 0, 7, 14 and 21. In addition, biopsies were taken from the wound area on days 0, 7, 14 and 21 and used for microscopic examination. Day 0 was used as a reference to calculate wound healing percentage. RESULTS On days 7 and 14, there were statistically significant differences between groups. Wound surface areas were smaller in the allicin group than in other groups on days 7 and 14. There were no statistically significant differences between the groups on day 21. In addition, it was determined that neutrophil, mononuclear cell, intraepithelial oedema and dermal oedema density were lower and fibroblast, angiogenesis and collagen density were higher in the allicin groups on days 7 and 14. CONCLUSION In this study, allicin was found to be potentially effective on wound healing. Future research should be conducted in order to clarify how it affects wound healing.
Collapse
Affiliation(s)
- Ismail Toygar
- Ege University, Nursing Faculty, Department of Internal Medicine Nursing, Turkey
| | - Aynur Tureyen
- Ege University, Nursing Faculty, Department of Internal Medicine Nursing, Turkey
| | - Derya Demir
- Faculty of Medicine, Department of Pathology, Ege University, Turkey
| | - Sevki Cetinkalp
- Faculty of Medicine, Department of Endocrinology and Metabolic Diseases, Ege University, Turkey
| |
Collapse
|
45
|
Enayati A, Johnston TP, Sahebkar A. Anti-atherosclerotic Effects of Spice-Derived Phytochemicals. Curr Med Chem 2021; 28:1197-1223. [PMID: 32368966 DOI: 10.2174/0929867327666200505084620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the world. Atherosclerosis is characterized by oxidized lipid deposition and inflammation in the arterial wall and represents a significant problem in public health and medicine. Some dietary spices have been widely used in many countries; however, the mechanism of their action as it relates to the prevention and treatment of atherosclerosis is still poorly understood. In this review, we focus on the properties of various spice-derived active ingredients used in the prevention and treatment of atherosclerosis, as well as associated atherosclerotic risk factors. We provide a summary of the mechanisms of action, epidemiological analyses, and studies of various components of spice used in the clinic, animal models, and cell lines related to atherosclerosis. Most notably, we focused on mechanisms of action by which these spice-derived compounds elicit their lipid-lowering, anti-inflammatory, antioxidant, and immunomodulatory properties, as well as their involvement in selected biochemical and signal transduction pathways. It is suggested that future research should aim to design well-controlled clinical trials and more thoroughly investigate the role of spices and their active components in the prevention/treatment of atherosclerosis. Based on this literature review, it appears that spices and their active components are well tolerated and have few adverse side effects and, therefore, provide a promising adjunctive treatment strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
46
|
Trends in H 2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10030429. [PMID: 33799669 PMCID: PMC8002049 DOI: 10.3390/antiox10030429] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
Collapse
|
47
|
Iglesias-Carres L, Hughes MD, Steele CN, Ponder MA, Davy KP, Neilson AP. Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation. J Nutr Biochem 2021; 91:108600. [PMID: 33577949 DOI: 10.1016/j.jnutbio.2021.108600] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Trimethylamine-N-oxide (TMAO) has been reported as a risk factor for atherosclerosis development, as well as for other cardiovascular disease (CVD) pathologies. The objective of this review is to provide a useful summary on the use of phytochemicals as TMAO-reducing agents. This review discusses the main mechanisms by which TMAO promotes CVD, including the modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress. Current knowledge on the available strategies to reduce TMAO formation are discussed, highlighting the effect and potential of phytochemicals. Overall, phytochemicals (i.e., phenolic compounds or glucosinolates) reduce TMAO formation by modulating gut microbiota composition and/or function, inhibiting host's capacity to metabolize TMA to TMAO, or a combination of both. Perspectives for design of future studies involving phytochemicals as TMAO-reducing agents are discussed. Overall, the information provided by this review outlines the current state of the art of the role of phytochemicals as TMAO reducing agents, providing valuable insight to further advance in this field of study.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC
| | - Michael D Hughes
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Cortney N Steele
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Kevin P Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andrew P Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC.
| |
Collapse
|
48
|
Revell MA, Pugh MA. Herbal Medications Used to Ameliorate Cardiac Conditions. Nurs Clin North Am 2021; 56:123-136. [PMID: 33549280 DOI: 10.1016/j.cnur.2020.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Herbs have been used for centuries to treat various diseases, including cardiovascular disease. Herbs may be used by clients exclusively for disease management or in combination with conventional medications. This article increases provider awareness of certain herbs and their potential use by clients, as well as their impact on the cardiovascular system. It is important for the advanced practice nurse to collect information related to herb use during history retrieval. This information should prompt the nurse to discuss possible benefits and side effects that may occur taking herbs in isolation or in combination with cardiovascular prescription medications.
Collapse
Affiliation(s)
- Maria A Revell
- Tennessee State University, School of Nursing, 3500 John A. Merritt Boulevard, Campus Box 9590, Nashville, TN 37209, USA.
| | - Marcia A Pugh
- Greene County Health System, 509 Wilson Avenue, Eutaw, AL 35462, USA
| |
Collapse
|
49
|
Abe K, Myoda T, Nojima S. Identification and Characterization of Sulfur Heterocyclic Compounds That Contribute to the Acidic Odor of Aged Garlic Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1020-1026. [PMID: 33448852 DOI: 10.1021/acs.jafc.0c06634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aroma of aged garlic extract (AGE) has been recently characterized as a complexity of seasoning-like, metallic, fatty, and acidic notes; most of the important aroma compounds were identified in a previous study. Besides the 25 previously identified aromas of AGE, several of the odor compounds that contribute to the acidic notes were isolated and identified using various analytical techniques, including gas chromatography coupled with an olfactometry monitoring system (GC-O), accurate and high-performance preparative GC system, GC-MS analysis, and sensory evaluation. The identified aromas include: 2,4-dimethyl-1,3-dithiolane, 2,5-dimethyl-1,4-dithiane, and 2,6-dimethyl-1,4-dithiane. Interestingly, AGE contains all stereoscopic isomers of each of these components. An aroma recombinant composed of the newly identified acidic odors with other key odorants showed good agreement with the aroma of AGE.
Collapse
Affiliation(s)
- Kazuki Abe
- Laboratory of Aroma Chemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri City, Hokkaido 099-2493, Japan
- Healthcare Research and Development Division, Wakunaga Pharmaceutical Company Ltd., 1624 Shimokotachi, Kodacho, Akitakata, Hiroshima 739-1195, Japan
| | - Takao Myoda
- Laboratory of Aroma Chemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri City, Hokkaido 099-2493, Japan
| | - Satoshi Nojima
- Laboratory of Aroma Chemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri City, Hokkaido 099-2493, Japan
| |
Collapse
|
50
|
Sorlozano-Puerto A, Albertuz-Crespo M, Lopez-Machado I, Gil-Martinez L, Ariza-Romero JJ, Maroto-Tello A, Baños-Arjona A, Gutierrez-Fernandez J. Antibacterial and Antifungal Activity of Propyl-Propane-Thiosulfinate and Propyl-Propane-Thiosulfonate, Two Organosulfur Compounds from Allium cepa: In Vitro Antimicrobial Effect via the Gas Phase. Pharmaceuticals (Basel) 2020; 14:ph14010021. [PMID: 33383767 PMCID: PMC7824278 DOI: 10.3390/ph14010021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Propyl-propane thiosulfinate (PTS) and propyl-propane thiosulfonate (PTSO) are two volatile compounds derived from Allium cepa with a widely documented antimicrobial activity. The aim of this study was to evaluate their anti-candidiasis activity and the ability of its gaseous phase to inhibit bacterial and yeast growth in vitro. The minimum inhibitory concentration of various antifungal products (including PTS and PTSO) was determined versus 203 clinical isolates of Candida spp. through broth microdilution assay. Additionally, the antimicrobial activity through aerial diffusion of PTS and PTSO was evaluated over the growth of a collection of bacteria and yeasts cultivated in agar plates. All yeasts were susceptible to the antifungals tested, except C. glabrata and C. krusei, that showed azole resistance. PTSO (MIC50 and MIC90 ranged from 4 to 16 mg/L and 8 to 32 mg/L, respectively) was significantly more active against yeasts than PTS (MIC50 and MIC90 ranged from 16 to 64 mg/L and 32 to 64 mg/L). Values were higher than those obtained for antifungal drugs. Gaseous phases of PTS and PTSO generated growth inhibition zones whose diameters were directly related to the substances concentration and inversely related to the microbial inoculum. The quantification of PTS and PTSO levels reached in the growth media through aerial diffusion displayed a concentration gradient from the central zone to the periphery. Only P. aeruginosa ATCC 27853 showed resistance, while yeasts (C. albicans ATCC 200955 and C. krusei ATCC 6258) presented the higher susceptibility to both compounds. These results suggest that PTS and PTSO display antibacterial and anti-candidiasis activity in vitro through aerial diffusion, having potential use in human therapy.
Collapse
Affiliation(s)
- Antonio Sorlozano-Puerto
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, Avda. de la Investigación, 11, 18016 Granada, Spain; (A.S.-P.); (M.A.-C.); (I.L.-M.)
| | - Maria Albertuz-Crespo
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, Avda. de la Investigación, 11, 18016 Granada, Spain; (A.S.-P.); (M.A.-C.); (I.L.-M.)
| | - Isaac Lopez-Machado
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, Avda. de la Investigación, 11, 18016 Granada, Spain; (A.S.-P.); (M.A.-C.); (I.L.-M.)
| | - Lidia Gil-Martinez
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (L.G.-M.); (J.J.A.-R.); (A.M.-T.); (A.B.-A.)
| | - Juan Jose Ariza-Romero
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (L.G.-M.); (J.J.A.-R.); (A.M.-T.); (A.B.-A.)
| | - Alba Maroto-Tello
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (L.G.-M.); (J.J.A.-R.); (A.M.-T.); (A.B.-A.)
| | - Alberto Baños-Arjona
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (L.G.-M.); (J.J.A.-R.); (A.M.-T.); (A.B.-A.)
| | - Jose Gutierrez-Fernandez
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, Avda. de la Investigación, 11, 18016 Granada, Spain; (A.S.-P.); (M.A.-C.); (I.L.-M.)
- Laboratory of Microbiology, Virgen de las Nieves University Hospital-ibs, Avda. de las Fuerzas Armadas, 2, 18012 Granada, Spain
- Correspondence:
| |
Collapse
|