1
|
Studzińska-Sroka E, Paczkowska-Walendowska M, Kledzik J, Galanty A, Gościniak A, Szulc P, Korybalska K, Cielecka-Piontek J. Antidiabetic Potential of Black Elderberry Cultivars Flower Extracts: Phytochemical Profile and Enzyme Inhibition. Molecules 2024; 29:5775. [PMID: 39683932 DOI: 10.3390/molecules29235775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Black elderberry (Sambucus nigra L.) flowers are rich in polyphenolic compounds, including chlorogenic acid and quercetin derivatives, which are known for their health benefits, particularly their antioxidant and antidiabetic properties. This study aimed to optimize the extraction conditions using the Box-Behnken model to maximize polyphenol yields from different elderberry flower cultivars and to evaluate their potential for antidiabetic action. The extracts were analyzed for their phytochemical content and assessed for enzyme inhibition, specifically targeting enzymes critical in carbohydrate digestion and glucose regulation. The anti-inflammatory activity was also assessed. Results indicated that the Black Beauty, Obelisk, and Haschberg cultivars demonstrated significant inhibition of α-glucosidase, with a high inhibitory potential against α-amylase enzymes for the Obelisk cultivar. Additionally, high chlorogenic acid content was strongly correlated with enzyme inhibition and antioxidant activity, suggesting its substantial role in glucose regulation. This study underscores the potential of elderberry flower extracts, particularly those rich in chlorogenic acid, as natural agents for managing blood glucose levels, warranting further exploration of their use in antidiabetic applications.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | | | - Justyna Kledzik
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Ayvazyan A, Zidorn C. Traditionally Used Medicinal Plants of Armenia. PLANTS (BASEL, SWITZERLAND) 2024; 13:3411. [PMID: 39683204 DOI: 10.3390/plants13233411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
The rich and diverse flora of Armenia has been used for medicinal purposes for at least 3000 years. The relevant literature in Armenian, English, and Russian revealed a vast array of used medicinal plants, some of them unique to the Caucasus region. The usage of medicinal plants confirms the position of Armenia as a country at the crossroads of Asia and Europe because of its traditional usage of medicinal plants from both continents. Literature data in Armenian, English, and Russian on medicinal plants of Armenia were mainly obtained using various electronic databases. From all available sources, 320 Armenian medicinal plant species were extracted with their botanical and local names and traditional uses. The use of medicinal plants by the Armenian people is systematically compiled, including the used plant organs and preparations and the ailments for which the various taxa are/were used. Medicinal plants of Armenia are represented for both wild and cultivated species. Some of the taxa used are unique to Armenia or the Caucasus region, while many other species are also used in various other countries. Some of the species from traditional Armenian medicine are currently being studied using modern methods.
Collapse
Affiliation(s)
- Arpine Ayvazyan
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
3
|
Sanlier N, Ejder ZB, Irmak E. Are the Effects of Bioactive Components on Human Health a Myth?: Black Elderberry (Sambucus nigra L.) from Exotic Fruits. Curr Nutr Rep 2024; 13:815-827. [PMID: 39278865 DOI: 10.1007/s13668-024-00572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE OF REVIEW Black elderberry has come to the fore in recent years due to its health benefits. Black elderberry fruit (Sambucus nigra L.), collected from natural sources, has a rich content of protein, vitamins, antioxidants, unsaturated fatty acids, and minerals as it contains conjugated and free forms of amino acids. RECENT FINDINGS Black elderberry can prevent oxidative stress and reduce blood pressure and prevent cardiovascular diseases, diabetes mellitus, neurodegenerative diseases thanks to the polyphenols it contains. It can prevent diseases, stimulate the immune system, show an antitumor effect, and be effective in the course of disease processes by rising the activity of antioxidant enzymes, including glutathione. Since black elderberry is a promising food in terms of bioactive components, it is considered as promising to treat and prevent many diseases. However, it is not correct to prove its beneficial effects on the prevention of chronic diseases and to make generalisations. Therefore, there is a need of more comprehensive evidence-based clinical studies and data. This review examined current evidence and discussions about the health-related effects of black elderberry, which contains many biologically active components such as polyphenols, phenolic acids, flavonols, proanthocyanidins and anthocyanins, as well as terpenes and lectins, and offered some suggestions on its use in the future.
Collapse
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey.
| | - Zeynep Bengisu Ejder
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey
| | - Esra Irmak
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey
| |
Collapse
|
4
|
Dwikarina A, Bayati M, Efrat N, Roy A, Lei Z, Ho KV, Sumner L, Greenlief M, Thomas AL, Applequist W, Townesmith A, Lin CH. Exploring American Elderberry Compounds for Antioxidant, Antiviral, and Antibacterial Properties Through High-Throughput Screening Assays Combined with Untargeted Metabolomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.611920. [PMID: 39314315 PMCID: PMC11419141 DOI: 10.1101/2024.09.13.611920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
American elderberry (Sambucus nigra subsp. canadensis) is a rapidly emerging new perennial crop for Missouri, recognized for its high level of bioactive compounds with significant health benefits, including antibacterial, antiviral, and antioxidant properties. A high-throughput screening assay combined with untargeted metabolomics analysis was utilized on American elderberry juice from 21 genotypes to explore and characterize these bioactive compounds. Our metabolomics study has identified 32 putative bioactive compounds in the American Elderberry juices. An array of high-throughput screening bioassays was conducted to evaluate 1) total antioxidant capacity, 2) activation of antioxidant response elements (ARE), 3) antiviral activity, and 4) antibacterial activity of the putatively identified compounds. Our results revealed that 14 of the 32 American elderberry compounds exhibited strong antioxidant activity. Four compounds (isorhamnetin 3-O-glucoside, kaempferol, quercetin, and naringenin) activated ARE activity and were found to be non-cytotoxic to cells. Notably, six of the 32 compounds demonstrated significant antiviral activity in an in vitro TZM-bl assay against two strains of HIV-1 virus, CXCR4-dependent NL4-3 virus and CCR5-dependent BaL virus. Luteolin showed the most potent anti-HIV activity against the NL4-3 virus (IC50 = 1.49 μM), followed by isorhamnetin (IC50 = 1.67 μM). The most potent anti-HIV compound against the BaL virus was myricetin (IC50 = 1.14 μM), followed by luteolin (IC50 = 4.38 μM). Additionally, six compounds were found to have antibacterial activity against gram-positive bacteria S. aureus, with cyanidin 3-O-rutinoside having the most potent antibacterial activity in vitro (IC50 = 2.9 μM), followed by cyanidin 3-O-glucoside (IC50 = 3.7 μM). These findings support and validate the potential health benefits of compounds found in American elderberry juices and highlight their potential for use in dietary supplements as well as innovative applications in health and medicine.
Collapse
Affiliation(s)
- Amanda Dwikarina
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
| | - Mohamed Bayati
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
- Environmental Engineering Department, Tikrit University, Tikrit, Iraq
| | - Novianus Efrat
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS
| | - Zhentian Lei
- Division of Biochemistry, Bond Life Sciences Center, Interdisciplinary Plant Group, MU Metabolomics Center
| | - Khanh-Van Ho
- Division of Biochemistry, Bond Life Sciences Center, Interdisciplinary Plant Group, MU Metabolomics Center
| | - Lloyd Sumner
- Division of Biochemistry, Bond Life Sciences Center, Interdisciplinary Plant Group, MU Metabolomics Center
| | - Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, U.S.A
| | - Andrew L. Thomas
- Division of Plant Science and Technology, Southwest Research, Extension, and Education Center, University of Missouri, Mt. Vernon, MO, U.S.A
| | | | | | - Chung-Ho Lin
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
| |
Collapse
|
5
|
Ren Y, Meyer G, Anderson AT, Lauber KM, Gallucci JC, Gao G, Kinghorn AD. Development of Potential Therapeutic Agents from Black Elderberries (the Fruits of Sambucus nigra L.). Molecules 2024; 29:2971. [PMID: 38998923 PMCID: PMC11243002 DOI: 10.3390/molecules29132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Elderberry (Sambucus nigra L.) is a widespread deciduous shrub, of which the fruits (elderberries) are used in the food industry to produce different types of dietary supplement products. These berries have been found to show multiple bioactivities, including antidiabetic, anti-infective, antineoplastic, anti-obesity, and antioxidant activities. An elderberry extract product, Sambucol®, has also been used clinically for the treatment of viral respiratory infections. As the major components, phenolic compounds, such as simple phenolic acids, anthocyanins and other flavonoids, and tannins, show promising pharmacological effects that could account for the bioactivities observed for elderberries. Based on these components, salicylic acid and its acetate derivative, aspirin, have long been used for the treatment of different disorders. Dapagliflozin, an FDA-approved antidiabetic drug, has been developed based on the conclusions obtained from a structure-activity relationship study for a simple hydrolyzable tannin, β-pentagalloylglucoside (β-PGG). Thus, the present review focuses on the development of therapeutic agents from elderberries and their small-molecule secondary metabolites. It is hoped that this contribution will support future investigations on elderberries.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Andrew T. Anderson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Kaitlyn M. Lauber
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Judith C. Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Gary Gao
- OSU South Centers, The Ohio State University, Piketon, OH 45661, USA;
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Alan Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| |
Collapse
|
6
|
Horváth G, Molnár E, Szabó Z, Kecskeméti G, Juhász L, Tallósy SP, Nyári J, Bogdanov A, Somogyvári F, Endrész V, Burián K, Virok DP. Carnosic Acid Inhibits Herpes Simplex Virus Replication by Suppressing Cellular ATP Synthesis. Int J Mol Sci 2024; 25:4983. [PMID: 38732202 PMCID: PMC11084413 DOI: 10.3390/ijms25094983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Acquiring resistance against antiviral drugs is a significant problem in antimicrobial therapy. In order to identify novel antiviral compounds, the antiviral activity of eight plants indigenous to the southern region of Hungary against herpes simplex virus-2 (HSV-2) was investigated. The plant extracts and the plant compound carnosic acid were tested for their effectiveness on both the extracellular and intracellular forms of HSV-2 on Vero and HeLa cells. HSV-2 replication was measured by a direct quantitative PCR (qPCR). Among the tested plant extracts, Salvia rosmarinus (S. rosmarinus) exhibited a 90.46% reduction in HSV-2 replication at the 0.47 μg/mL concentration. Carnosic acid, a major antimicrobial compound found in rosemary, also demonstrated a significant dose-dependent inhibition of both extracellular and intracellular forms of HSV-2. The 90% inhibitory concentration (IC90) of carnosic acid was between 25 and 6.25 μg/mL. Proteomics and high-resolution respirometry showed that carnosic acid suppressed key ATP synthesis pathways such as glycolysis, citrate cycle, and oxidative phosphorylation. Inhibition of oxidative phosphorylation also suppressed HSV-2 replication up to 39.94-fold. These results indicate that the antiviral action of carnosic acid includes the inhibition of ATP generation by suppressing key energy production pathways. Carnosic acid holds promise as a potential novel antiviral agent against HSV-2.
Collapse
Affiliation(s)
- Georgina Horváth
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, 6725 Szeged, Hungary
| | - Edit Molnár
- Réthy Pál County Hospital, Gyulai Str. 18, 5600 Bekescsaba, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Dóm Sq. 8, 6720 Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Dóm Sq. 8, 6720 Szeged, Hungary
| | - László Juhász
- Institute of Surgical Research, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szőkefalvi-Nagy Béla Str. 6, 6720 Szeged, Hungary
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szőkefalvi-Nagy Béla Str. 6, 6720 Szeged, Hungary
| | - József Nyári
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, 6725 Szeged, Hungary
| | - Anita Bogdanov
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, 6725 Szeged, Hungary
| | - Ferenc Somogyvári
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, 6725 Szeged, Hungary
| | - Valéria Endrész
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, 6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, 6725 Szeged, Hungary
| | - Dezső P. Virok
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 6, 6725 Szeged, Hungary
| |
Collapse
|
7
|
Stabnikova O, Stabnikov V, Paredes-López O. Fruits of Wild-Grown Shrubs for Health Nutrition. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:20-37. [PMID: 38280176 DOI: 10.1007/s11130-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Cultivated fruits and berries, such as raspberries, strawberries, black currants, cherries, blueberries, are generally recognized sources of antioxidants, vitamins, minerals, and other substances beneficial to human health and well-being. However, there are also wild berries and fruits that are of undoubted interest as food products having valuable medicinal properties due to the presence of phenolic compounds, antioxidants, and vitamins. These fruits have a great potential to be used in functional food making. The present review is dedicated to fruits of wild-grown shrubs Bird cherry (Prunus padus L.), Rowan berry (Sorbus aucuparia L.), Guelder rose (Viburnum opulus L.), Black elderberry (Sambucus nigra L.), and Barberry (Berberis vulgaris L.) The chemical compositions of these wild berries are described as well as their effects on the improvement of human health proved by clinical trials and epidemiological studies. The possibilities of using the fruits of wild-grown shrubs in the preparation of functional foods and examples of their implementation for the manufacturing of dairy, bakery and meat products are considered.
Collapse
Affiliation(s)
- Olena Stabnikova
- Advanced Research Laboratory, National University of Food Technologies, 68 Volodymyrska Street, Kyiv, 01601, Ukraine.
| | - Viktor Stabnikov
- Department of Biotechnology and Microbiology, National University of Food Technologies, 68 Volodymyrska Street, Kyiv, 01601, Ukraine
| | - Octavio Paredes-López
- Department of Biotechnology and Biochemistry, the National Polytechnic Institute, Guanajuato, 36824, Mexico
| |
Collapse
|
8
|
Stange R. [Phytotherapy in respiratory tract infections]. MMW Fortschr Med 2023; 165:74-79. [PMID: 37857972 DOI: 10.1007/s15006-023-2978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
- Rainer Stange
- Abteilung Naturheilkunde, Charité - Universitätsmedizin Berlin und Immanuel Krankenhaus Berlin, Königstraße 63, 14109, Berlin, Deutschland.
| |
Collapse
|
9
|
Milani F, Bottoni M, Bardelli L, Colombo L, Colombo PS, Bruschi P, Giuliani C, Fico G. Remnants from the Past: From an 18th Century Manuscript to 21st Century Ethnobotany in Valle Imagna (Bergamo, Italy). PLANTS (BASEL, SWITZERLAND) 2023; 12:2748. [PMID: 37514363 PMCID: PMC10386062 DOI: 10.3390/plants12142748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND This project originated from the study of an 18th century manuscript found in Valle Imagna (Bergamo, Italy) which contains 200 plant-based medicinal remedies. A first comparison with published books concerning 20th century folk medicine in the Valley led to the designing of an ethnobotanical investigation, aimed at making a thorough comparison between past and current phytotherapy knowledge in this territory. METHODS The field investigation was conducted through semi-structured interviews. All data collected was entered in a database and subsequently processed. A diachronic comparison between the field results, the manuscript, and a 20th century book was then performed. RESULTS A total of 109 interviews were conducted and the use of 103 medicinal plants, belonging to 46 families, was noted. A decrease in number of plant taxa and uses was observed over time, with only 42 taxa and 34 uses reported in the manuscript being currently known by the people of the valley. A thorough comparison with the remedies in the manuscript highlighted similar recipes for 12 species. Specifically, the use of agrimony in Valle Imagna for the treatment of deep wounds calls back to an ancient remedy against leg ulcers based on this species. CONCLUSIONS The preliminary results of this study allow us to outline the partial passage through time fragments of ancient plant-based remedies once used in the investigated area.
Collapse
Affiliation(s)
- Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Laura Bardelli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Lorenzo Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paola Sira Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Piero Bruschi
- Department of Agricultural, Environmental, Food and Forestry Science and Technology, University of Florence, 50144 Florence, Italy
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
10
|
Wu ZB, Zheng MM, Qin SR, Huang JL, Li D, Wang WJ. Chemical constituents from the aerial parts of Sambucus adnata Wall. and their chemotaxonomic significance. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Solomonian L, Blesoff J, Garofalo L, Lucas S, Picardo A, Garber A, Wilson M, Leach M. Naturopathic Management of Acute Pediatric Respiratory Infections: A Modified Delphi Study. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:181-195. [PMID: 36827416 DOI: 10.1089/jicm.2022.0669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Objective: Both the United Nations and the World Health Organization have identified antimicrobial resistance as a significant threat to global health. The Centers for Disease Control and Prevention identified five pediatric respiratory conditions as requiring particular scrutiny in terms of antibiotic stewardship. This study sought to identify strategies used by experienced naturopathic practitioners to treat acute respiratory infections in children. The authors theorize that naturopathic strategies safely fill the gap between watchful waiting and antibiotic prescription, thus reducing the use of antibiotics. Methods: Naturopathic practitioners in Canada, the United States, and Australia with a minimum of 5 years of experience in clinical naturopathic care of children were recruited for a modified Delphi study. A 14-person panel of practitioners was selected to complete a series of four iterative surveys assessing agreement to statements in five domains of knowledge/attitudes, assessment/diagnosis, management, monitoring, and education. Items were deemed to have reached consensus if they reached a predetermined threshold of 70% agreement, or failed to reach a threshold of 40% agreement. Items between these boundaries were modified and retested until either consensus was reached or the four surveys had been completed. Results: Results yielded a large degree of agreement on core naturopathic approaches to the management of acute pediatric respiratory infections, especially lifestyle strategies, including adequate rest and dietary recommendations. The use of vitamins C and D was strongly supported, as were herbs, particularly echinacea and elderberry. Some hydrotherapy and topical applications specific to the individual focus on infection also reached consensus. Results suggested that most respondents, even if they have the authority to prescribe antibiotics, rarely deem it necessary to do so. Conclusion: Findings of this study provide (1) clarity on the role of naturopathic doctors in the management of pediatric health concerns and the stewardship of antibiotics; and (2) initial guidance to less experienced naturopathic practitioners. The findings also identify key priorities for research into the safety and effectiveness of naturopathic interventions to reduce the unnecessary prescribing of antibiotics.
Collapse
Affiliation(s)
| | - Jamine Blesoff
- National University of Health Sciences, Lombard, IL, USA
| | | | - Sandra Lucas
- School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Andrea Picardo
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
| | - Anna Garber
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
| | - Mariah Wilson
- Canadian College of Naturopathic Medicine, Toronto, ON, Canada
| | - Matthew Leach
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
12
|
Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023; 13:402. [PMID: 36836758 PMCID: PMC9966545 DOI: 10.3390/life13020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.
Collapse
Affiliation(s)
- Andrea Ricci
- Studio Nutrizione e Benessere, Via Giuseppe Verdi 1, 84043 Agropoli, Italy
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area Di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
13
|
Moghaddam MH, Farrokhi S, Hasani A, Khosravi A, Pirani M, Vakili K, Fathi M, Eskandari N, Golshan A, Sadeghzadeh S, Namakin K, Aliaghaei A, Abdollahifar MA. Elderberry Diet Restores Spermatogenesis in the Transient Scrotal Hyperthermia-Induced Mice. Reprod Sci 2022; 29:3373-3386. [PMID: 35088364 DOI: 10.1007/s43032-022-00865-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past years, several studies have also reported the adverse effects of hyperthermia on normal testicular tissues in several species including mice, rats, and humans. These deleterious impacts include temporarily drop in relative weight of testis along with a temporary partial or complete infertility. Sambucus nigra, also known as elderberry or sweet elder, is a source of bioactive compounds that has drawn growing attention for its potential beneficial effects in preventing and treating several diseases. This experimental research divided 30 mice into the following three groups: (1) control, (2) hyperthermia, and (3) hyperthermia receiving elderberry diet for 35 days. Scrotal hyperthermia was induced by water bath with 43 °C for 30 min. Then, the mice were euthanized, and their sperm samples were collected for sperm parameters analysis. Then, we took the testis samples for histopathological experimentations, immunohistochemistry against TNF-α and caspase-3 and serum testosterone, FSH and LH levels. Our outputs indicated that elderberry diet could largely improve the sperms parameters and stereological parameters, like spermatogonia, primary spermatocyte, round spermatid, and Leydig cells together with an increasing level of the serum testosterone compared to the scrotal hyperthermia induced mice. In addition, it was found that the expression of TNF-α and caspase-3 significantly decreased in the treatment groups by elderberry diet compared to the scrotal hyperthermia-induced mice. In conclusion, it could be concluded that elderberry diet may be regarded as an alternative treatment for improving the spermatogenesis process in the scrotal hyperthermia induced mice.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sheida Farrokhi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Amirhosein Hasani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Amirreza Khosravi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Maryam Pirani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Golshan
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Sara Sadeghzadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Kosar Namakin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Abbas Aliaghaei
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| |
Collapse
|
14
|
Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elderberries are appreciated for their antioxidant properties. Sambucus nigra L. is an extremely abundant plant in the wild flora of Romania, but it is underutilized. Elderberry is used in modern and traditional medicine due to the complex chemical composition of the fruit. The content of phenolic compounds is high (516–8974 mg/100 g DW), of which the most abundant are anthocyanins. Phenolic compounds are known for their beneficial effects on the body. Numerous studies have demonstrated the antioxidant capacity, antibacterial, antiviral, antidiabetic, and anticancer properties of the fruit. It is considered that most of the therapeutic properties of elderberries can be correlated with the antioxidant activity they have. S. nigra fruits are also used in the food industry. Some studies have shown that the therapeutic properties of elderberries can also be found in the products obtained from them. Therefore, this review aimed to describe the chemical composition of elderberries and products obtained from them, the positive effects on the body, and the methods by which the bioactive compounds can be extracted from the fruits and analyzed. This manuscript is useful for extraction optimization and characterization in order to valorize new functional foods, food supplements, and also in new pharmaceutical products.
Collapse
|
15
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
16
|
Bark stripping behaviour by a large-sized rodent, the crested porcupine, as an adaptation to climate change. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Ochnik M, Franz D, Sobczyński M, Naporowski P, Banach M, Orzechowska B, Sochocka M. Inhibition of Human Respiratory Influenza A Virus and Human Betacoronavirus-1 by the Blend of Double-Standardized Extracts of Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. Pharmaceuticals (Basel) 2022; 15:ph15050619. [PMID: 35631445 PMCID: PMC9143272 DOI: 10.3390/ph15050619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Viral and bacterial diseases are among the greatest concerns of humankind since ancient times. Despite tremendous pharmacological progress, there is still a need to search for new drugs that could treat or support the healing processes. A rich source of bioactive compounds with antiviral potency include plants such as black chokeberry and elderberry. The aim of this study was to assess the in vitro antiviral ability of an originally designed double-standardized blend of extracts from Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. (EAM-ESN) or separated extracts of A. melanocarpa (EAM) or S. nigra (ESN) against four human respiratory tract viruses: influenza A virus (A/H1N1), betacoronavirus-1 (HCoV-OC43) belonging to the same β-coronaviruses as the current pandemic SARS-CoV-2, human herpesvirus type 1 (HHV-1), and human adenovirus type 5 (HAdV-5). Antiviral assays (AVAs) were used to evaluate the antiviral activity of the plant extracts in a cell-present environment with extracts tested before, simultaneously, or after viral infection. The virus replication was assessed using the CPE scale or luminescent assay. The EAM-ESN blend strongly inhibited A/H1N1 replication as well as HCoV-OC43, while having a limited effect against HHV-1 and HAdV-5. This activity likely depends mostly on the presence of the extract of S. nigra. However, the EAM-ESN blend possesses more effective inhibitory activity toward virus replication than its constituent extracts. A post-infection mechanism of action of the EAM-ESN make this blend the most relevant for potential drugs and supportive treatments; thus, the EAM-ESN blend might be considered as a natural remedy in mild, seasonal respiratory viral infections.
Collapse
Affiliation(s)
- Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Dominika Franz
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Piotr Naporowski
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Mariusz Banach
- Department of Physical Chemistry and Polymer Physical Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Beata Orzechowska
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
- Correspondence: ; Tel.: +48-713-709-924
| |
Collapse
|
18
|
Liu D, He XQ, Wu DT, Li HB, Feng YB, Zou L, Gan RY. Elderberry ( Sambucus nigra L.): Bioactive Compounds, Health Functions, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4202-4220. [PMID: 35348337 DOI: 10.1021/acs.jafc.2c00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elderberry (Sambucus nigra L.) is rich in many bioactive compounds and exhibits diverse health functions, of which an understanding can be helpful for its better utilization in the food industry. This review mainly summarizes recent studies about the bioactive compounds and health functions of elderberry, highlighting the potential mechanism of action. In addition, the applications of elderberry in foods are also discussed. Elderberry contains diversely bioactive ingredients, such as (poly)phenolic compounds and terpenoid compounds. Recent studies report that some food processing methods can affect the content of bioactive compounds in elderberry. Additionally, elderberry exhibits various health functions in vitro and in vivo, including antioxidant, anti-inflammatory, anticancer, anti-influenza, antimicrobial, antidiabetic, cardiovascular protective, and neuroprotective activities, and their potential molecular mechanisms are associated with regulating some key signaling pathways and molecular targets. Up to now, there have been limited clinical trials supporting the health benefits of elderberry. Overall, elderberry is a promising dietary source of bioactive ingredients and has the potential to be developed into functional foods or nutraceuticals for preventing and treating certain chronic diseases.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Xiao-Qin He
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| |
Collapse
|
19
|
Mocanu ML, Amariei S. Elderberries—A Source of Bioactive Compounds with Antiviral Action. PLANTS 2022; 11:plants11060740. [PMID: 35336621 PMCID: PMC8948669 DOI: 10.3390/plants11060740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
In the current context, when more and more unknown pathogens appear, healthy eating and supplementing it with natural products play an increasingly important role in maintaining the health of the body. The European black elder (Sambucus nigra), found in abundance in the spontaneous flora, can provide us, as a raw material, elderberries, which have been known for thousands of years as having nutritional and healing properties. The phytotherapeutic principles found in elderberry fruits give them antiviral, antibacterial and antidiabetic properties, antitumor potential, antioxidant, antidepressant and immune boosting properties, as well as a certain impacts on obesity and metabolic dysfunctions. Polyphenols and lectins give elderberry fruits the ability to inhibit coronaviruses, which is a topic of great interest in our times. This article summarizes the existing data regarding the chemical composition, active principles and biopharmaceutical properties of elderberries, as well as their use.
Collapse
|
20
|
Chavda VP, Patel AB, Vihol D, Vaghasiya DD, Ahmed KMSB, Trivedi KU, Dave DJ. Herbal Remedies, Nutraceuticals, and Dietary Supplements for COVID-19 Management: An Update. CLINICAL COMPLEMENTARY MEDICINE AND PHARMACOLOGY 2022; 2:100021. [PMID: 36620357 PMCID: PMC8816850 DOI: 10.1016/j.ccmp.2022.100021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Currently, the world is facing a Coronavirus pandemic with a grave deficiency of specific therapy for Coronavirus Disease (COVID-19). Moreover, scientists attempt to discover the most refined approach to prevent this condition. Regarding COVID-19 infection, herbal medicines with immunomodulatory effects may offer patients a promising preventive treatment option. Several ayurvedic and Traditional Chinese Medicine (TCM) are effective during this worrisome Coronavirus pandemic i.e. Tinospora cordifolia (Willd.) Miers, Withania somnifera (L.) Dunal, Scutellaria baicalensis Georgi, Curcuma longa L. etc. TCM was shown to be utilized with over 90% efficacy when the COVID-19 pandemic broke out in early 2020. In addition to herbal treatments and nutraceutical drugs, dietary supplements such as vitamins and amino acid derivatives also play a significant part in COVID-19 management. Diet can assist in regulating inflammation, while nutraceuticals can aid in the prevention of viral invasion. Functional amino acids (e.g., arginine, cysteine, glutamate, glutamine, glycine, taurine, and tryptophan) and glutathione, which are all abundant in animal-sourced foodstuffs, are crucial for optimum immunity and health in humans and animals. The goal of this article is to thoroughly evaluate recent statistics on the effectiveness of herbal medicines in COVID-19, the antiviral activity of nutraceuticals, and the significance of these results in creating dietary supplements that would enhance innate immunity and contribute as preventive measures against severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Aayushi B Patel
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Disha Vihol
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Darsh D Vaghasiya
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | | | - Kushal U Trivedi
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| |
Collapse
|
21
|
Black Elder and Its Constituents: Molecular Mechanisms of Action Associated with Female Reproduction. Pharmaceuticals (Basel) 2022; 15:ph15020239. [PMID: 35215351 PMCID: PMC8877800 DOI: 10.3390/ph15020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The present review summarizes the current knowledge concerning provenance, properties, physiological and therapeutic actions of elderberry and the bioactive molecules present in the plant, with emphasis on their action on female reproduction. Elderberry or black elder (Sambucus nigra L.) attracts attention due to its easy cultivation and high availability of bioactive compounds. Most of the available data concerning black elder’s therapeutic action are focused on its effects such as activation of immune processes and anti-inflammatory processes (cytokine production, etc.) and regulation of hormones and their receptors in cancer cells. The effects of elderberry on reproduction have been poorly investigated so far. Nevertheless, conducted studies so far demonstrate the stimulatory influence of black elder extract and its constituents, such as rutin, anthocyanins and agglutinins, on the viability and steroidogenesis of healthy ovarian cells as well as their ability to promote apoptosis and reduce the viability and proliferation of ovarian cancer cells. Furthermore, the action of black elder extract and its constituent biomolecules, such as anthocyanins and lectins, on embryogenesis and the embryonal estradiol-estradiol receptor system have also been reported. The available information, despite limitations, suggest the applicability of black elder constituents for improvement of reproductive processes in animal biotechnology, animal production and assisted reproduction, as well as for prevention and treatment of reproductive disorders (including cancer) in veterinary and human medicine.
Collapse
|
22
|
Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals (Basel) 2022; 12:245. [PMID: 35158569 PMCID: PMC8833589 DOI: 10.3390/ani12030245] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to present a review of literature data on the antioxidant potential of raw milk and dairy products (milk, fermented products, and cheese) and the possibility to modify its level at the milk production and processing stage. Based on the available reports, it can be concluded that the consumption of products that are a rich source of bioactive components improves the antioxidant status of the organism and reduces the risk of development of many civilization diseases. Milk and dairy products are undoubtedly rich sources of antioxidant compounds. Various methods, in particular, ABTS, FRAP, and DPPH assays, are used for the measurement of the overall antioxidant activity of milk and dairy products. Research indicates differences in the total antioxidant capacity of milk between animal species, which result from the differences in the chemical compositions of their milk. The content of antioxidant components in milk and the antioxidant potential can be modified through animal nutrition (e.g., supplementation of animal diets with various natural additives (herbal mixtures, waste from fruit and vegetable processing)). The antioxidant potential of dairy products is associated with the quality of the raw material as well as the bacterial cultures and natural plant additives used. Antioxidant peptides released during milk fermentation increase the antioxidant capacity of dairy products, and the use of probiotic strains contributes its enhancement. Investigations have shown that the antioxidant activity of dairy products can be enhanced by the addition of plant raw materials or their extracts in the production process. Natural plant additives should therefore be widely used in animal nutrition or as functional additives to dairy products.
Collapse
Affiliation(s)
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (M.S.); (A.B.)
| | | |
Collapse
|
23
|
Shahagadkar P, Shah H, Palani A, Munirathinam G. Berry derived constituents in suppressing viral infection: Potential avenues for viral pandemic management. Clin Nutr ESPEN 2021; 46:14-20. [PMID: 34857187 DOI: 10.1016/j.clnesp.2021.09.728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Berries are acknowledged as a rich source of major dietary antioxidants and the fact that berry phenolics exhibit antioxidant property is widely accepted. Berries are abundant in Vitamin C and polyphenols such as anthocyanins, flavonoids, and phenolic acids. Polyphenols are found to have several therapeutic effects such as anti-inflammatory, antioxidant, and antimicrobial properties. Increasing studies are focusing on natural products and their components for alternative therapeutics against viral infections. In particular, berries such as elderberry, blueberry, raspberry, and cranberry have proven to be effective against viral infections. Of note, the decoction of Honeysuckle (Lonicera japonica) has been shown to treat viral epidemic diseases. Owing to the rich source of various antiviral constituents, berries could be an alternative source for managing viral infections. In this review, we provide insights into how berry derived components inhibit viral infection and their clinical usefulness in viral disease management.
Collapse
Affiliation(s)
- Preksha Shahagadkar
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Hillary Shah
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Arvind Palani
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA.
| |
Collapse
|
24
|
Schön C, Mödinger Y, Krüger F, Doebis C, Pischel I, Bonnländer B. A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1978941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
| | | | - Franziska Krüger
- IMD Institut für Medizinische Diagnostik, Berlin-Steglitz, Germany
| | - Cornelia Doebis
- IMD Institut für Medizinische Diagnostik, Berlin-Steglitz, Germany
| | - Ivo Pischel
- Centre for Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, London, UK
| | | |
Collapse
|
25
|
Skrajnowska D, Brumer M, Kankowska S, Matysek M, Miazio N, Bobrowska-Korczak B. Covid 19: Diet Composition and Health. Nutrients 2021; 13:2980. [PMID: 34578858 PMCID: PMC8472186 DOI: 10.3390/nu13092980] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the disease coronavirus disease 2019 (COVID-19). The cumulative number of cases reported globally is now nearly 197 million and the number of cumulative deaths is 4.2 million (26 July to 1 August 2021). Currently we are focusing primarily on keeping a safe distance from others, washing our hands, and wearing masks, and the question of the effects of diet and diet-dependent risk factors remains outside the center of attention. Nevertheless, numerous studies indicate that diet can play an important role in the course of COVID-19. In this paper, based on select scientific reports, we discuss the structure and replication cycle of SARS-CoV-2, risk factors, dietary standards for sick patients, and the roles of the microbiome and dietary components supporting the immune system in preventing COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Bobrowska-Korczak
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.); (M.B.); (S.K.); (M.M.); (N.M.)
| |
Collapse
|
26
|
Ciprandi G, Tosca MA. Non-pharmacological remedies for post-viral acute cough. Monaldi Arch Chest Dis 2021; 92. [PMID: 34461702 DOI: 10.4081/monaldi.2021.1821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022] Open
Abstract
The post-viral acute cough (PAC) is a widespread symptom, mainly in childhood and adolescence, and is usually associated with an acute upper respiratory infection, namely the common cold. The use of cough relievers is, therefore, impressive, as documented by the market data. There are many medical devices and dietary supplements for treating PAC, which contain non-pharmacological components. Ancient people used traditional herbs to treat PAC. Thus, a well-established tradition considers natural remedies as an effective and safe way to relieve PAC. The herbal agents include polyphenols, flavonoids, saponins, glucosides, and alkaloids. Also, the European Medicine Agency has recognized the value of plant extracts and other natural substances to treat PAC. Nevertheless, a few studies investigated the role of non-pharmacologic remedies for PAC. There is some evidence for honey, glycerol, Althea officinalis, Drosera rotundifolia, Grindelia, Hedera helix, Pelargonium sidoides, Sambucus nigra, Thymus vulgaris, hyaluronic acid, and saline solutions. However, further rigorous studies should confirm natural products' efficacy and safety to relieve PAC.
Collapse
|
27
|
Nile SH, Nile A, Jalde S, Kai G. Recent advances in potential drug therapies combating COVID-19 and related coronaviruses-A perspective. Food Chem Toxicol 2021; 154:112333. [PMID: 34118347 PMCID: PMC8189744 DOI: 10.1016/j.fct.2021.112333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoVs) are a large family of viruses responsible for the severe pathophysiological effects on human health. The most severe outbreak includes Severe Acute Respiratory Syndrome (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 poses major challenges to clinical management because no specific FDA-approved therapy yet to be available. Thus, the existing therapies are being used for the treatment of COVID-19, which are under clinical trials and compassionate use, based on in vitro and in silico studies. In this review, we summarize the potential therapies utilizing small molecules, bioactive compounds, nucleoside and nucleotide analogs, peptides, antibodies, natural products, and synthetic compounds targeting the complex molecular signaling network involved in COVID-19. In this review>230 natural and chemically synthesized drug therapies are described with their recent advances in research and development being done in terms of their chemical, structural and functional properties. This review focuses on possible targets for viral cells, viral proteins, viral replication, and different molecular pathways for the discovery of novel viral- and host-based therapeutic targets against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Shivkumar Jalde
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, South Korea
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
28
|
Boroduske A, Jekabsons K, Riekstina U, Muceniece R, Rostoks N, Nakurte I. Wild Sambucus nigra L. from north-east edge of the species range: A valuable germplasm with inhibitory capacity against SARS-CoV2 S-protein RBD and hACE2 binding in vitro. INDUSTRIAL CROPS AND PRODUCTS 2021; 165:113438. [PMID: 33753964 PMCID: PMC7969829 DOI: 10.1016/j.indcrop.2021.113438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 05/14/2023]
Abstract
Berries and flowers of Sambucus nigra L. tree are well known for their ability to mitigate symptoms of upper respiratory disorders related to reported antiviral properties. Industrial application and commercial cultivation of S. nigra is largely limited to a few widely grown cultivars. Restricted genetic diversity of cultivated S. nigra can be disadvantageous if new industrial applications are discovered. In this study wild S. nigra populations located on the north-east edge of the species natural range were explored by assessing genetic origin, berry and flower anti-oxidative potential, and berry rutin content. Best performing wild S. nigra extracts were selected for an assessment of previously unreported biological activity- inhibitory capacity against SARS-CoV2 S1 protein receptor binding domain (RBD) binding to recombinant human angiotensin -converting enzyme 2 (ACE2) receptor in vitro based on competitive enzyme linked immunosorbent assay (ELISA). Inter-simple sequence repeat (ISSR) marker-based genetic characterization suggested that explored wild S. nigra populations result from wild gene pool expanding northwards with admixture of historically introduced cultivated S. nigra. Average values of total phenolic content, anti-radical activity, and total flavonoids content of wild S. nigra populations did not exceed those of cv. 'Haschberg'. Concentration-dependent inhibition of ACE2-SARS-CoV2 S-protein RBD binding was demonstrated in vitro for elderberry fruits and flowers extracts (IC50 of 1.66 mg DW ml-1 and 0.532 mg DW ml-1, respectively). Wild elderberry fruit extract exhibited higher inhibitory capacity than the extract from berries of cv 'Haschberg'. This study validates the requirement for S. nigra wild germplasm bioprospecting and opens up directions for further research of new anti-SARS-CoV2 industrial applications of S. nigra.
Collapse
Key Words
- ACE2, angiotensin converting enzyme 2
- Antiviral
- DW, dry weight
- ELISA, enzyme linked immunosorbent assay
- Elderberry flower
- Elderberry fruit
- HPLC, high-performance liquid chromatography
- IC50, the half maximal inhibitory concentration
- ISSR, inter-simple sequence repeat
- PVPP, polyvinylpyrrolidone
- Phytochemistry
- SARS-CoV2, severe acute respiratory syndrome coronavirus 2
- Sambucus nigra L.
- TEAC, trolox equivalent anti-radical capacity
- TFC, total flavonoid content
- TPCC, total phenolic content
Collapse
Affiliation(s)
- Anete Boroduske
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas Str.1, Riga, LV - 1004, Latvia
| | - Kaspars Jekabsons
- Department of Pharmacy, Faculty of Medicine, University of Latvia, Jelgavas Str.3, Riga, LV-1004, Latvia
| | - Una Riekstina
- Department of Pharmacy, Faculty of Medicine, University of Latvia, Jelgavas Str.3, Riga, LV-1004, Latvia
| | - Ruta Muceniece
- Department of Pharmacy, Faculty of Medicine, University of Latvia, Jelgavas Str.3, Riga, LV-1004, Latvia
| | - Nils Rostoks
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas Str.1, Riga, LV - 1004, Latvia
| | - Ilva Nakurte
- Institute for Environmental Solutions, "Lidlauks", Priekulu parish, Priekulu county, LV-4126, Latvia
| |
Collapse
|
29
|
|
30
|
Ti H, Zhuang Z, Yu Q, Wang S. Progress of Plant Medicine Derived Extracts and Alkaloids on Modulating Viral Infections and Inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1385-1408. [PMID: 33833499 PMCID: PMC8020337 DOI: 10.2147/dddt.s299120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
Viral infectious diseases are serious threats to human health in both developing and developed countries. Although there is the continued development of new drugs from synthetic sources as antiviral agents, medicinal plants continue to provide the basic raw materials for some of the most important antiviral drugs. Alkaloids are a class of pharmacologically active plant compounds that are usually alkaline in nature. In this review, we tried to summarize recent progress in herb-based antiviral research, the advantages of using active plant compounds as antiviral agents, and the inflammatory responses initiated by alkaloids, based on the literature from 2009 to 2019, for the treatment of conditions, including influenza, human immunodeficiency virus, herpes simplex virus, hepatitis, and coxsackievirus infections. Articles are retrieved from PubMed, Google Scholar, and Web of Science using relevant keywords. In particular, the alkaloids from medicinal plants responsible for the molecular mechanisms of anti-inflammatory actions are identified and discussed. This review can provide a theoretical basis and approaches for using various alkaloids as antiviral treatments. More research is needed to develop alkaloidal compounds as antiviral therapeutic agents and potential regulators of the anti-inflammatory response.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zixi Zhuang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.,Guangdong Institute of Analysis (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Qian Yu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
31
|
Srivastava A, Gupta RC, Doss RB, Lall R. Trace Minerals, Vitamins and Nutraceuticals in Prevention and Treatment of COVID-19. J Diet Suppl 2021; 19:395-429. [PMID: 33682615 DOI: 10.1080/19390211.2021.1890662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was first officially diagnosed in the city of Wuhan, China in January 2020. In reality, the disease was identified in December 2019 in the same city where patients began showing symptoms of pneumonia of unidentified origin. Very soon the disease became a global pandemic due to the suppression of information in the country of origin and inadequate testing for the COVID-19 virus. Currently, > 101 million people have been found positive for this virus and > 2.17 million people have died. There are no signs that COVID-19 is slowing down. This deadly virus affects multiple vital organs (lungs, heart, nervous system, blood, and immune system), yet its exact mechanism of pathophysiology remains obscure. Depending on the viral load, sick people often show symptoms of fever, cough, shortness of breath, coagulopathy, cardiac abnormalities, fatigue, and death. Great strides have been made in COVID-19 testing, thereby allowing timely therapeutic intervention. Currently, vaccines are on the market from Pfizer, Moderna and Astra Zeneca with limited supply. Phase III clinical trials are also underway from other manufacturers. In the current scenario, nutraceuticals and other phyto-mineral supplements appear to be promising alternative solutions for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
| | - Ramesh C Gupta
- Breathitt Veterinary Center, Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | - Robin B Doss
- Breathitt Veterinary Center, Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | | |
Collapse
|
32
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
33
|
Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules 2021; 26:727. [PMID: 33573318 PMCID: PMC7866841 DOI: 10.3390/molecules26030727] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Plant Biology, Institute of Biology, Kiev National, University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 47189-63616 Khuzestan, Iran;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Jan Kubeš
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Ulkar Ibrahimova
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Sayyara Ibadullayeva
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56126 Behbahan, Italy
| |
Collapse
|
34
|
Brendler T, Al‐Harrasi A, Bauer R, Gafner S, Hardy ML, Heinrich M, Hosseinzadeh H, Izzo AA, Michaelis M, Nassiri‐Asl M, Panossian A, Wasser SP, Williamson EM. Botanical drugs and supplements affecting the immune response in the time of
COVID
‐19: Implications for research and clinical practice. Phytother Res 2020; 35:3013-3031. [DOI: 10.1002/ptr.7008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas Brendler
- Department of Botany and Plant Biotechnology University of Johannesburg Johannesburg South Africa
- Plantaphile Collingswood New Jersey USA
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research Centre University of Nizwa Nizwa Oman
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy University of Graz Graz Austria
| | | | - Mary L. Hardy
- Association of Integrative and Holistic Medicine San Diego California USA
| | - Michael Heinrich
- Research Group ‘Pharmacognosy and Phytotherapy’, UCL School of Pharmacy University of London London UK
- Graduate Institute of Integrated Medicine, College of Chinese Medicine China Medical University Taichung Taiwan
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Angelo A. Izzo
- Department of Pharmacy, School of Medicine University of Naples Federico II Naples Italy
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences University of Kent Canterbury UK
| | - Marjan Nassiri‐Asl
- Department of Pharmacology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Neurobiology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Solomon P. Wasser
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa Israel
| | | |
Collapse
|
35
|
Khan T, Khan MA, Mashwani ZUR, Ullah N, Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020; 31:101890. [PMID: 33520034 PMCID: PMC7831775 DOI: 10.1016/j.bcab.2020.101890] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of \suitable candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of phytomedicine against COVID-19. The main aim is to review the mechanistic aspects of most important phytochemical compounds that have showed potential against coronaviruses. Glycyrrhizin from the roots of Glycyrrhiza glabra has shown promising potential against the previously epidemic coronavirus, SARS-CoV. Other important plants such as Artemisia annua, Isatis indigotica, Lindera aggregate, Pelargonium sidoides, and Glychirrhiza spp. have been employed against SARS-CoV. Active ingredients (e.g. emodin, reserpine, aescin, myricetin, scutellarin, apigenin, luteolin, and betulonic acid) have shown promising results against the coronaviruses. Phytochemicals have demonstrated activity against the coronaviruses through mechanisms such as viral entry inhibition, inhibition of replication enzymes and virus release blockage. However, compared to synthetic drugs, phytomedicine are mechanistically less understood and should be properly evaluated before application. Nonetheless, phytochemicals reduce the tedious job of drug discovery and provide a less time-consuming alternative for drug testing. Therefore, along with other drugs currently tested against COVID-19, plant-based drugs should be included for speedy development of COVID-19 treatment.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, KP, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | | | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | - Akhtar Nadhman
- Department of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
36
|
Seifert G, Jeitler M, Stange R, Michalsen A, Cramer H, Brinkhaus B, Esch T, Kerckhoff A, Paul A, Teut M, Ghadjar P, Langhorst J, Häupl T, Murthy V, Kessler CS. The Relevance of Complementary and Integrative Medicine in the COVID-19 Pandemic: A Qualitative Review of the Literature. Front Med (Lausanne) 2020; 7:587749. [PMID: 33363186 PMCID: PMC7761649 DOI: 10.3389/fmed.2020.587749] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
Background: During the COVID-19 pandemic people are facing risks of adverse health effects due to the restrictions implemented such as quarantine measures, reduced social contact, and self-isolation. In this qualitative review, we collected data on potential preventive and therapeutic health benefits of Complementary and Integrative Medicine (CIM) that might be useful during the COVID-19 pandemic. We have reviewed the scientific literature to summarize CIM practices that could be beneficial for improving physical and mental health and well-being of the population under the current pandemic circumstances. It must be noted that this review is not SARS-CoV-2 specific and we explicitly do not intend to make any SARS-CoV-2 specific health claims in this article. Methods and Findings: A qualitative, non-systematic literature review was conducted in Medline to identify literature describing preventive and therapeutic CIM approaches for strengthening mental and physical health. For a variety of CIM approaches clinical evidence was identified, indicating beneficial effects. CIM approaches include specific dietary measures and selected micronutrients, physical activity, techniques from Mind-Body Medicine, single botanicals or botanical compounds, and spending time in nature among others. The effects of CIM measures on conditions like obesity and hypertension are of special relevance here, as these conditions are considered as risk factors for a severe course of COVID-19. Moreover, a possibly direct effect of CIM approaches on immune functions and clinical parameters in respiratory tract infections, such as influenza, were identified. The findings of this review could be helpful for clinicians, patients, and the general population during the current pandemic when discussing and/or considering CIM options. Conclusions: CIM offers a variety of preventive and therapeutic options for strengthening physical and mental resilience, which could also be useful in the current COVID-19 pandemic. The evidence of CIM approaches with a potential benefit in the COVID-19 pandemic in different areas is worth to be analyzed. While this qualitative review has several obvious limitations, it might serve as useful starting point for further research on this topic.
Collapse
Affiliation(s)
- Georg Seifert
- Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Department of Pediatrics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,*Correspondence: Georg Seifert
| | - Michael Jeitler
- Department of Internal and Integrative Medicine, Immanuel Krankenhaus Berlin, Berlin, Germany,Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rainer Stange
- Department of Internal and Integrative Medicine, Immanuel Krankenhaus Berlin, Berlin, Germany,Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Michalsen
- Department of Internal and Integrative Medicine, Immanuel Krankenhaus Berlin, Berlin, Germany,Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Cramer
- Department of Internal and Integrative Medicine, Evang. Kliniken Essen-Mitte, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany,National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Benno Brinkhaus
- Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, University Clinic for Integrative Health Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Annette Kerckhoff
- Institute for Integrative Health Care and Health Promotion, University Clinic for Integrative Health Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Anna Paul
- Department of Internal and Integrative Medicine, Evang. Kliniken Essen-Mitte, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Michael Teut
- Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jost Langhorst
- Department of Internal and Integrative Medicine, Klinikum Bamberg, Chair for Integrative Medicine, University of Duisburg-Essen, Bamberg, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vijay Murthy
- Faculty of Medicine, Primary Care and Population Sciences, University of Southampton, Southampton, United Kingdom
| | - Christian S. Kessler
- Department of Internal and Integrative Medicine, Immanuel Krankenhaus Berlin, Berlin, Germany,Institute of Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
37
|
Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Macknin M, Wolski K, Negrey J, Mace S. Elderberry Extract Outpatient Influenza Treatment for Emergency Room Patients Ages 5 and Above: a Randomized, Double-Blind, Placebo-Controlled Trial. J Gen Intern Med 2020; 35:3271-3277. [PMID: 32929634 PMCID: PMC7661609 DOI: 10.1007/s11606-020-06170-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Black elderberry, used medicinally for centuries, decreased influenza duration by 4 days in three previous peer-reviewed trials. US elderberry sales, possibly related to a "high severity" and "high activity" influenza season from January to March 2018, more than doubled from 2017 to 2018 to > $100 million. OBJECTIVE To determine whether elderberry extract decreases influenza's duration and severity. DESIGN FDA-approved, investigator-initiated, Investigational New Drug, double-blind, randomized, placebo-controlled trial. Conducted January 2018-April 2019 in three emergency rooms, two suburban and one urban, in the Midwestern Health System. PATIENTS Eighty-seven consecutive, consenting patients, over age four, with < 48 h of at least 2 moderate-severity influenza symptoms and positive polymerase chain reaction influenza test. INTERVENTION Patients from age 5 to 12 years received placebo or 15 ml (5.7 g) elderberry extract orally twice a day for 5 days; those > 12 years received 15 ml 4 times a day for 5 days. Patients were permitted to choose to also receive the standard dosage of oseltamivir. MEASUREMENTS Primary: days until all symptoms were none or mild for 21.5 h. Secondary: days to complete symptom resolution for 24 h. RESULTS The 87 participants were randomized to receive placebo (n = 44) or elderberry (n = 43). The average age was 25 ± 20 years, and 56% were male. The average number of days to reach all symptoms none or mild for 21.5 h in the placebo group was 4.9 ± 2.8 days compared to 5.3 ± 3.6 in the elderberry group (p = 0.57). The average number of days to complete resolution was 8.7 ± 3.8 and 8.6 ± 3.9 in the placebo and elderberry group, respectively (p = 0.87). LIMITATIONS Small sample size, but powered > 0.90 to detect 2-day benefit of elderberry versus placebo. CONCLUSIONS We found no evidence that elderberry benefits the duration or severity of influenza. Post hoc analysis suggested primary outcomes with elderberry taken alone (without oseltamivir) were 2 days worse than with placebo taken alone. Our results contradict previous studies and demonstrate the need for further studies. TRIAL REGISTRATION NCT03410862.
Collapse
Affiliation(s)
- Michael Macknin
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, USA. .,, Beachwood, USA.
| | - Kathy Wolski
- C5 Research, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey Negrey
- Clinical Research Unit, Cleveland Clinic, Cleveland, OH, USA
| | - Sharon Mace
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
39
|
Silveira D, Prieto-Garcia JM, Boylan F, Estrada O, Fonseca-Bazzo YM, Jamal CM, Magalhães PO, Pereira EO, Tomczyk M, Heinrich M. COVID-19: Is There Evidence for the Use of Herbal Medicines as Adjuvant Symptomatic Therapy? Front Pharmacol 2020; 11:581840. [PMID: 33071794 PMCID: PMC7542597 DOI: 10.3389/fphar.2020.581840] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Current recommendations for the self-management of SARS-Cov-2 disease (COVID-19) include self-isolation, rest, hydration, and the use of NSAID in case of high fever only. It is expected that many patients will add other symptomatic/adjuvant treatments, such as herbal medicines. AIMS To provide a benefits/risks assessment of selected herbal medicines traditionally indicated for "respiratory diseases" within the current frame of the COVID-19 pandemic as an adjuvant treatment. METHOD The plant selection was primarily based on species listed by the WHO and EMA, but some other herbal remedies were considered due to their widespread use in respiratory conditions. Preclinical and clinical data on their efficacy and safety were collected from authoritative sources. The target population were adults with early and mild flu symptoms without underlying conditions. These were evaluated according to a modified PrOACT-URL method with paracetamol, ibuprofen, and codeine as reference drugs. The benefits/risks balance of the treatments was classified as positive, promising, negative, and unknown. RESULTS A total of 39 herbal medicines were identified as very likely to appeal to the COVID-19 patient. According to our method, the benefits/risks assessment of the herbal medicines was found to be positive in 5 cases (Althaea officinalis, Commiphora molmol, Glycyrrhiza glabra, Hedera helix, and Sambucus nigra), promising in 12 cases (Allium sativum, Andrographis paniculata, Echinacea angustifolia, Echinacea purpurea, Eucalyptus globulus essential oil, Justicia pectoralis, Magnolia officinalis, Mikania glomerata, Pelargonium sidoides, Pimpinella anisum, Salix sp, Zingiber officinale), and unknown for the rest. On the same grounds, only ibuprofen resulted promising, but we could not find compelling evidence to endorse the use of paracetamol and/or codeine. CONCLUSIONS Our work suggests that several herbal medicines have safety margins superior to those of reference drugs and enough levels of evidence to start a clinical discussion about their potential use as adjuvants in the treatment of early/mild common flu in otherwise healthy adults within the context of COVID-19. While these herbal medicines will not cure or prevent the flu, they may both improve general patient well-being and offer them an opportunity to personalize the therapeutic approaches.
Collapse
Affiliation(s)
- Dâmaris Silveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Jose Maria Prieto-Garcia
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Omar Estrada
- Biophysics and Biochemistry Center, Venezuelan Institute of Scientific Research, Caracas, Venezuela
| | | | | | | | - Edson Oliveira Pereira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Michal Tomczyk
- Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, School of Pharmacy, University College of London, London, United Kingdom
| |
Collapse
|
40
|
Siddiqui AJ, Danciu C, Ashraf SA, Moin A, Singh R, Alreshidi M, Patel M, Jahan S, Kumar S, Alkhinjar MIM, Badraoui R, Snoussi M, Adnan M. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. PLANTS 2020; 9:plants9091244. [PMID: 32967179 PMCID: PMC7570315 DOI: 10.3390/plants9091244] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the presence of medicinal plants and their bioactive molecules with antiviral properties might also be a successful strategy in order to develop therapeutic agents against SARS-CoV-2 infection. Thus, this review will summarize the available literature and other information/data sources related to antiviral medicinal plants, with possible ethnobotanical evidence in correlation with coronaviruses. The identification of novel antiviral compounds is of critical significance, and medicinal plant based natural compounds are a good source for such discoveries. In depth search and analysis revealed several medicinal plants with excellent efficacy against SARS-CoV-1 and MERS-CoV, which are well-known to act on ACE-2 receptor, 3CLpro and other viral protein targets. In this review, we have consolidated the data of several medicinal plants and their natural bioactive metabolites, which have promising antiviral activities against coronaviruses with detailed modes of action/mechanism. It is concluded that this review will be useful for researchers worldwide and highly recommended for the development of naturally safe and effective therapeutic drugs/agents against SARS-CoV-2 infection, which might be used in therapeutic protocols alone or in combination with chemically synthetized drugs.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Ritu Singh
- Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India;
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India;
| | - Sadaf Jahan
- Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia;
| | - Sanjeev Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi 835205, India;
| | - Mulfi I. M. Alkhinjar
- Saudi Center for Disease Prevention and Control, Al Aarid, King Abdulaziz Rd, Riyadh 13354, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Section of Histology-Cytology, Medicine College of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
- Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| |
Collapse
|
41
|
Bottoni M, Milani F, Colombo L, Nallio K, Colombo PS, Giuliani C, Bruschi P, Fico G. Using Medicinal Plants in Valmalenco (Italian Alps): From Tradition to Scientific Approaches. Molecules 2020; 25:molecules25184144. [PMID: 32927742 PMCID: PMC7570945 DOI: 10.3390/molecules25184144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
This ethnobotanical survey was carried out in Caspoggio (Valmalenco, SO, Italy) with the purpose of investigating the traditional uses of medicinal plants. Moreover, a bibliographic research meant to validate or refute the uses, focusing on the potentially responsible compounds, was performed. Fifty-nine species, attributable to 30 families (Asteraceae, Pinaceae, Malvaceae, and Lamiaceae the most cited), were mentioned. Arnica montana, anti-inflammatory for traumas and musculoskeletal pains; Pinus mugo, expectorant; Malva sylvestris, anti-inflammatory and soothing; Achillea moschata, digestive. The compounds, responsible for the therapeutic activities, are often polyphenols and terpenoids: helenanin in A. montana, α-pinene, δ-3-carene, and limonene in P. mugo, gossypin and malvin in M. sylvestris, luteolin and apigenin in A. moschata. Scientific evidence for at least one of the traditional activities described was found for 50 species but only in 26 out of 196 works consulted, it is possible to make a comparison between investigated extracts and traditional preparations. This study is thus a stimulus to new phytochemical investigations, mimicking as much as possible the traditional preparations. This work is part of the European Interreg Italy-Switzerland B-ICE project, aimed at creating a management model for the ongoing climate change and searching for new sources of territory valorization as attractions for tourists.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Lorenzo Colombo
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Kevin Nallio
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Paola Sira Colombo
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Claudia Giuliani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Piero Bruschi
- Department of Agricultural, Environmental, Food and Forestry Science and Technology, University of Florence, 50144 Florence, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| |
Collapse
|
42
|
Bartak M, Lange A, Słonska A, Cymerys J. Antiviral and healing potential of Sambucus nigra extracts. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.03.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nowadays, the application of alternative methods instead of clinical treatment creates a new possibility to prevent the development of diseases. Medicinal plants such as Sambucus nigra have been well known due to their extraordinary properties. The similarity to synthetic substances makes it potentially dependable; however, a high concentration of cyanogenic glycosides may exert detrimental consequences. It has been documented that Sambucus nigra extracts are used against both human and animal viruses, like influenza A and B viruses, human immunodeficiency virus (HIV), dengue virus (DENV-2), human herpesvirus type 1 (HSV-1) and human coronavirus NL63 (HCoV-NL63). Such reports are notably valuable especially considering the widespread usage of commercial drugs, which could be ineffective. This review provides insight on recent research on the health properties of plant Sambucus nigra as an antiviral medication that may help propose new therapy.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Słonska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Abstract
Common cold and flu are caused by common respiratory viral pathogens, which results in hospitalization and death in the world. Among the viral infections, influenza viruses have worldwide spread with major effects on health of societies. Change in antigenic structures of influenza viruses is associated with the lack of effective treatments. Therefore, the use of herbal medicine as alternative choice can be used for management of flu and cold. The flowers of Sambucus nigra or black elders have been approved by commission E for cold, and flu. Although, elders are used in different herbal formulates, but there is no comprehensive study. The subject of this review article was to summarize the efficacy of black elder in treatment of cold and flu. For preparing this manuscript, the electronic resources, books, and thesis were searched by key words of Sambucus, elder, cold, flu, and viral infections. The results of investigations exhibited that there are four clinical trials for elder berries, which it reduced the cold duration and severity (fever, pain, congestion, cough), while there is no clinical trial for elder flower on common cold and flu in spite of its approval by commission E. So, evaluating the efficacy of elder flowers in comparison with its berries and standard treatment on patients with viral respiratory infections should be the subject of large clinical studies.
Collapse
Affiliation(s)
- Mohaddese Mahboubi
- Medicinal Plants Research Department, Research and Development, TabibDaru Pharmaceutical Company, Kashan, Iran
| |
Collapse
|
44
|
Kitrytė V, Laurinavičienė A, Syrpas M, Pukalskas A, Venskutonis PR. Modeling and optimization of supercritical carbon dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Weng JR, Lin CS, Lai HC, Lin YP, Wang CY, Tsai YC, Wu KC, Huang SH, Lin CW. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res 2019; 273:197767. [PMID: 31560964 PMCID: PMC7114872 DOI: 10.1016/j.virusres.2019.197767] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023]
Abstract
Sambucus FormosanaNakai extract reduced cytopathicity and virus yield in HCoV-NL63-infected cells. Among phenolic acid constituents, caffeic acid, chlorogenic acid and gallic acid sustained the anti-HCoV-NL63 activity. Sambucus FormosanaNakai extract and caffeic acid concentration-dependently inhibited HCoV-NL63 attachment onto cells.
Human coronavirus NL63 (HCoV-NL63), one of the main circulating HCoVs worldwide, causes respiratory tract illnesses like runny nose, cough, bronchiolitis and pneumonia. Recently, a severe respiratory illness outbreak of HCoV-NL63 has been reported in a long-term care facility. Sambucus FormosanaNakai, a species of elderberry, is a traditional medicinal herb with anti-inflammatory and antiviral potential. The study investigated the antiviral activity of Sambucus FormosanaNakai stem ethanol extract and some phenolic acid constituents against HCoV-NL63. The extract was less cytotoxic and concentration-dependently increased anti-HCoV-NL63 activities, including cytopathicity, sub-G1 fraction, virus yield (IC50 = 1.17 μg/ml), plaque formation (IC50 = 4.67 μg/ml) and virus attachment (IC50 = 15.75 μg/ml). Among the phenolic acid constituents in Sambucus FormosanaNakai extract, caffeic acid, chlorogenic acid and gallic acid sustained the anti-HCoV-NL63 activity that was ranked in the following order of virus yield reduction: caffeic acid (IC50 = 3.54 μM) > chlorogenic acid (IC50 = 43.45 μM) > coumaric acid (IC50 = 71.48 μM). Caffeic acid significantly inhibited the replication of HCoV-NL63 in a cell-type independent manner, and specifically blocked virus attachment (IC50 = 8.1 μM). Therefore, the results revealed that Sambucus Formosana Nakai stem ethanol extract displayed the strong anti-HCoV-NL63 potential; caffeic acid could be the vital component with anti-HCoV-NL63 activity. The finding could be helpful for developing antivirals against HCoV-NL63.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Hepato-gastroenterology, department of internal medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ping Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yu-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Kun-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan; Chinese Medicine Research center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
46
|
Sambucus nigra L. ameliorates UVB-induced photoaging and inflammatory response in human skin keratinocytes. Cytotechnology 2019; 71:1003-1017. [PMID: 31512082 DOI: 10.1007/s10616-019-00342-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Sambucus nigra L. (Elderberry) is widely used as a dietary supplement in functional food and possesses many pharmacological activities to prevent ailments, such as the colds and fever, diabetes and cancer. However, research on its skin anti-aging effect is still limited. Here, we evaluated the recovery effects of elderberry extract (EB) in UVB-irradiated human skin keratinocytes (HaCaTs) and investigated whether EB represents a potential therapeutic agent against skin photoaging and inflammation. In this study, EB showed good efficiency on scavenging free radicals and dose-dependently reduced reactive oxygen species (ROS) generation. EB notably decreased UVB-induced matrix metalloproteinase-1 (MMP-1) expression and inflammatory cytokine secretion through the inhibition of mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) and nuclear factor-κB (NF-κB) signaling pathways, blocking extracellular matrix (ECM) degradation and inflammation in UVB-irradiated HaCaTs. In addition, EB improved nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling to increase oxidative defense capacity, and enhanced transforming growth factor beta (TGF-β) signaling activation to promote procollagen type I synthesis, relieving UVB-induced skin cell damage. These results indicated that EB has the potential to ameliorate UVB-induced skin photoaging and inflammation.
Collapse
|
47
|
Neves D, Valentão P, Bernardo J, Oliveira MC, Ferreira JM, Pereira DM, Andrade PB, Videira RA. A new insight on elderberry anthocyanins bioactivity: Modulation of mitochondrial redox chain functionality and cell redox state. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
48
|
Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018; 32:811-822. [PMID: 29356205 DOI: 10.1002/ptr.6024] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo studies met the inclusion criteria of this review. The inferences from scientific literature review, focusing on potential therapeutic consequences of medicinal plants on experimental models of HIV, HSV, influenza, hepatitis, and coxsackievirus have ascertained the curative antiviral potential of plants. Fifty-four medicinal plants belonging to 36 different families having antiviral potential were documented. Out of 54 plants, 27 individually belong to particular plant families. On the basis of the work of several independent research groups, the therapeutic potential of medicinal plants against listed common viral diseases in the region has been proclaimed. In this context, the herbal formulations as alternative medicine may contribute to the eradication of complicated viral infection significantly. The current review consolidates the data of the various medicinal plants, those are Sambucus nigra, Caesalpinia pulcherrima, and Hypericum connatum, holding promising specific antiviral activities scientifically proven through studies on experimental animal models. Consequently, the original research addressing the development of novel nutraceuticals based on listed medicinal plants is highly recommended for the management of viral disorders.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Awais Altaf
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Khalil Ahmad
- Department of Eastern Medicine, University College of Conventional Medicine, Islamia University, Bahawalpur, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Suhaila Nasir
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Huma Mehboob
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|