1
|
Zhao R, Zhou X, Zhao Z, Liu W, Lv M, Zhang Z, Wang C, Li T, Yang Z, Wan Q, Xu R, Cui Y. Farrerol Alleviates Cerebral Ischemia-Reperfusion Injury by Promoting Neuronal Survival and Reducing Neuroinflammation. Mol Neurobiol 2024; 61:7239-7255. [PMID: 38376762 DOI: 10.1007/s12035-024-04031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Ischemia-reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress. However, the role of FAR in cerebral I/R injury remains unknown. In this study, we found that FAR reduced brain injury and neuronal viability after cerebral I/R injury. Meanwhile, administration of FAR also reduced the inflammatory response of microglia after brain injury. Mechanistically, FAR treatment directly reduced neuronal death after oxygen glucose deprivation/re-oxygenation (OGD/R) through enhancing cAMP-response element binding protein (CREB) activation to increase the expression of downstream neurotrophic factors and anti-apoptotic genes. Moreover, FAR decreased the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, inhibited microglia activation, and reduced the production of inflammatory cytokines in microglia after OGD/R treatment or LPS stimulation. The compromised inflammatory response by FAR directly promoted the survival of neurons after OGD/R. In conclusion, FAR exerted a protective effect on cerebral I/R injury by directly decreasing neuronal death through upregulating CREB expression and attenuating neuroinflammation. Therefore, FAR could be a potentially effective drug for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhiyuan Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Changxin Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Tianli Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zixiong Yang
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
4
|
Li Y, Wang T, Sun P, Zhu W, Chen Y, Chen M, Yang X, Du X, Zhao Y. Farrerol Alleviates Hypoxic-Ischemic Encephalopathy by Inhibiting Ferroptosis in Neonatal Rats via the Nrf2 Pathway. Physiol Res 2023; 72:511-520. [PMID: 37795893 PMCID: PMC10634562 DOI: 10.33549/physiolres.935040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/18/2023] [Indexed: 01/05/2024] Open
Abstract
Farrerol (FA) is a traditional Chinese herbal medicine known for its anti-inflammatory and anti-oxidative properties in various diseases. Ferroptosis is an iron-dependent oxidative stress-induced cell death. It is characterized by lipid peroxidation and glutathione depletion and is involved in neuronal injury. However, the role of FA in inhibiting ferroptosis in hypoxic-ischemic encephalopathy (HIE) and its underlying mechanisms are not yet completely elucidated. This study aimed to investigate whether FA could mediate ferroptosis and explore its function and molecular mechanism in HIE. A neonatal rat model of HIE was used, and rats were treated with FA, ML385 (a specific inhibitor of nuclear factor erythroid 2-related factor 2 [Nrf2]), or a combination of both. Neurological deficits, infarction volume, brain water content, pathological changes, and iron ion accumulation in the brain tissues were measured using the Zea-Longa scoring system and triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE), and Perls' staining. The expression levels of GSH-Px, MDA, SOD, and ROS in brain tissues were also evaluated. Western blot analysis was performed to analyze the expression of the Nrf2 pathway and ferroptosis-related proteins. The results showed that FA administration significantly reduced neuronal damage, infarct volume, cerebral edema, and iron ion accumulation and inhibited MDA and ROS levels while promoting GSH-Px and SOD levels. FA also increased the expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), Nrf2, and HO-1. Moreover, the combination of ML385 and FA in HIE abolished the FA protective effects. Therefore, the study concludes that FA exerts a neuroprotective effect after HIE by inhibiting oxidative stress and ferroptosis via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Y Li
- Department of Science and education, Pu'er People's Hospital, Yunnan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 317] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
6
|
Lv J, Zhu J, Wang P, Liu T, Yuan J, Yin H, Lan Y, Sun Q, Zhang Z, Ding G, Zhou C, Wang H, Wang Z, Wang Y. Artemisinin exerts a protective effect in the MPTP mouse model of Parkinson's disease by inhibiting microglial activation via the TLR4/Myd88/NF-KB pathway. CNS Neurosci Ther 2023; 29:1012-1023. [PMID: 36691817 PMCID: PMC10018080 DOI: 10.1111/cns.14063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS We performed cell and animal experiments to explore the therapeutic effect of artemisinin on Parkinson's disease (PD) and the TLR4/Myd88 signaling pathway. METHODS C57 mice were randomly divided into the blank, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and artemisinin-treated groups. Clinical symptoms, the number of dopaminergic (DAergic) neurons in the substantia nigra, and microglial cell activation were compared among the three groups. Subsequently, BV-2 cell activation and TLR4/Myd88 pathway component expression were compared among the blank, MPP+ -treated, artemisinin-treated, and TLR4 activator-treated groups. RESULTS Behavioral symptoms were improved, the number of DAergic neurons in the substantia nigra of the midbrain was increased, and microglial cell activation was decreased in artemisinin-treated MPTP-induced PD model mice compared with control-treated MPTP-induced PD model mice (p < 0.05). The cell experiments revealed that artemisinin treatment reduced MPP+ -induced BV-2 cell activation and inhibited the TLR4/Myd88 signaling pathway. Moreover, the effect of artemisinin on the BV-2 cell model was inhibited by the TLR4 activator LPS (p < 0.05). CONCLUSION Artemisinin may reduce damage to DAergic neurons in a PD mouse model by decreasing microglial activation through the TLR4-mediated MyD88-dependent signaling pathway. However, this finding cannot explain the relationship between microglia and DAergic neurons.
Collapse
Affiliation(s)
- Jing Lv
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Jing Zhu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Peihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Tongyu Liu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Jiang Yuan
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Huan Yin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yiran Lan
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Qiang Sun
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zhifeng Zhang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Guoda Ding
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Chenxi Zhou
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Huajie Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yunfu Wang
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| |
Collapse
|
7
|
Soraci L, Gambuzza ME, Biscetti L, Laganà P, Lo Russo C, Buda A, Barresi G, Corsonello A, Lattanzio F, Lorello G, Filippelli G, Marino S. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson's disease: mechanisms and therapeutic implications. J Neurol 2023; 270:1346-1360. [PMID: 36460875 PMCID: PMC9971082 DOI: 10.1007/s00415-022-11491-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder characterized by motor and non-motor disturbances as a result of a complex and not fully understood pathogenesis, probably including neuroinflammation, oxidative stress, and formation of alpha-synuclein (α-syn) aggregates. As age is the main risk factor for several neurodegenerative disorders including PD, progressive aging of the immune system leading to inflammaging and immunosenescence may contribute to neuroinflammation leading to PD onset and progression; abnormal α-syn aggregation in the context of immune dysfunction may favor activation of nucleotide-binding oligomerization domain-like receptor (NOD) family pyrin domain containing 3 (NLRP3) inflammasome within microglial cells through interaction with toll-like receptors (TLRs). This process would further lead to activation of Caspase (Cas)-1, and increased production of pro-inflammatory cytokines (PC), with subsequent impairment of mitochondria and damage to dopaminergic neurons. All these phenomena are mediated by the translocation of nuclear factor kappa-B (NF-κB) and enhanced by reactive oxygen species (ROS). To date, drugs to treat PD are mainly aimed at relieving clinical symptoms and there are no disease-modifying options to reverse or stop disease progression. This review outlines the role of the TLR/NLRP3/Cas-1 pathway in PD-related immune dysfunction, also focusing on specific therapeutic options that might be used since the early stages of the disease to counteract neuroinflammation and immune dysfunction.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (INRCA-IRCCS), 60121, Ancona, Italy.
| | - Pasqualina Laganà
- Biomedical, Dental, Morphological and Functional Imaging Department, University of Messina, 98124 Messina, Italy
| | - Carmela Lo Russo
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Annamaria Buda
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Giada Barresi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (INRCA-IRCCS), 60121 Ancona, Italy
| | - Giuseppe Lorello
- Unit of Internal Medicine, Polyclinic G Martino Hospital, 98125 Messina, Italy
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy
| |
Collapse
|
8
|
Qi W, Zeng D, Xiong X, Hu Q. Knockdown of SEMA7A alleviates MPP + -induced apoptosis and inflammation in BV2 microglia via PPAR-γ activation and MAPK inactivation. Immun Inflamm Dis 2023; 11:e756. [PMID: 36705403 PMCID: PMC9837934 DOI: 10.1002/iid3.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The inflammation mediated by microglial cells plays an important role in the process of neurodegenerative diseases. Recent evidence indicates that semaphorin 7A (SEMA7A) is implicated in various neurodegenerative diseases, but whether it plays a role in Parkinson's disease (PD) remains unclear. METHODS In this study, 1.0 mmol/L 1-methyl-4-phenylpyridinium (MPP+ )-stimulated mouse microglia (BV2) cells were used as an in vitro model of PD. The expression of SEMA7A was detected by quantitative polymerase chain reaction. Cell Counting Kit-8 and apoptosis kits were used to analyze the viability and apoptosis of BV-2 cells. The content of IL-6, IL-β, and tumor necrosis factor-α was determined by ELISA (enzyme-linked immunosorbent assay) kit. Western blot was used to detect the protein expression level of the inducible NO synthase and cyclooxygenase-2. RESULTS Our findings indicated that SEMA7A expression in BV2 cells was upregulated after MPP+ stimulation. Knockdown of SEMA7A promoted cell viability while it inhibited apoptosis and the expression of proinflammatory enzymes and proinflammatory cytokines. Silencing SEMA7A-induced peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation and mitogen-activated protein kinase (MAPK) signaling pathway inactivation. Furthermore, a PPAR-γ inhibitor and an MAPK activator promoted the effect of MPP+ on cell viability, apoptosis, and inflammation of BV2 cells; what is more, the PPAR-γ inhibitor and MAPK activator blocked the inhibitory effect of SEMA7A downregulation on MPP+ -induced injury. CONCLUSION In general, knockdown of SEMA7A inhibits MPP+ -induced BV2 cell apoptosis and inflammation via PPAR-γ activation and MAPK inactivation, which may provide a new therapy target for PD.
Collapse
Affiliation(s)
- Weinan Qi
- Department of NeurologyYantian District People's HospitalShenzhenChina
| | - Dan Zeng
- Department of RadiologyYantian District People's HospitalShenzhenChina
| | - Xiaoshuan Xiong
- Department of CardiologyYantian District People's HospitalShenzhenChina
| | - Qun Hu
- Department of AnesthesiologyYichun People's HospitalYichunChina
| |
Collapse
|
9
|
Antioxidant, Anti-Apoptotic, and Anti-Inflammatory Effects of Farrerol in a Mouse Model of Obstructive Uropathy. Curr Issues Mol Biol 2023; 45:337-352. [PMID: 36661510 PMCID: PMC9857068 DOI: 10.3390/cimb45010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive uropathy is a clinical condition that can lead to chronic kidney disease. However, treatments that can prevent the progression of renal injury and fibrosis are limited. Farrerol (FA) is a natural flavone with potent antioxidant and anti-inflammatory properties. Here, we investigated the effect of FA on renal injury and fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Mice underwent a sham or UUO operation and received intraperitoneal injections of FA (20 mg/kg) daily for 8 consecutive days. Histochemistry, immunohistochemistry and immunofluorescence staining, TdT-mediated dUTP nick end labeling assay, Western blotting, gene expression analysis, and biochemical tests were performed. FA attenuated renal dysfunction (p < 0.05) and ameliorated renal tubular injury (p < 0.01) and interstitial fibrosis (p < 0.001) in UUO mice. FA alleviated 4-hydroxynonenal expression (p < 0.001) and malondialdehyde levels (p < 0.01) by regulating pro-oxidant and antioxidant enzymes. Apoptosis in the kidneys of UUO mice was inhibited by FA (p < 0.001), and this action was accompanied by decreased expression of cleaved caspase-3 (p < 0.01). Moreover, FA alleviated pro-inflammatory cytokine production (p < 0.001) and macrophage infiltration (p < 0.01) in the kidneys of UUO mice. These results suggest that FA ameliorates renal injury and fibrosis in the UUO model by inhibiting oxidative stress, apoptosis, and inflammation.
Collapse
|
10
|
Qin X, Xu X, Hou X, Liang R, Chen L, Hao Y, Gao A, Du X, Zhao L, Shi Y, Li Q. The pharmacological properties and corresponding mechanisms of farrerol: a comprehensive review. PHARMACEUTICAL BIOLOGY 2022; 60:9-16. [PMID: 34846222 PMCID: PMC8635655 DOI: 10.1080/13880209.2021.2006723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Farrerol, a typical natural flavanone isolated from the traditional Chinese herb 'Man-shan-hong' [Rhododendron dauricum L. (Ericaceae)] with phlegm-reducing and cough-relieving properties, is widely used in China for treating bronchitis and asthma. OBJECTIVE To present the anti-inflammatory, antioxidant, vasoactive, antitumor, and antimicrobial effects of farrerol and its underlying molecular mechanisms. METHODS The literature was reviewed by searching PubMed, Medline, Web of Knowledge, Scopus, and Google Scholar databases between 2011 and May 2021. The following key words were used: 'farrerol,' 'flavanone,' 'anti-inflammatory,' 'antioxidant,' 'vasoactive,' 'antitumor,' 'antimicrobial,' and 'molecular mechanisms'. RESULTS Farrerol showed anti-inflammatory effects mainly mediated via the inhibition of interleukin (IL)-6/8, IL-1β, tumour necrosis factor(TNF)-α, NF-κB, NO, COX-2, JNK1/2, AKT, PI3K, ERK1/2, p38, Keap-1, and TGF-1β. Farrerol exhibited antioxidant effects by decreasing JNK, MDA, ROS, NOX4, Bax/Bcl-2, caspase-3, p-p38 MAPK, and GSK-3β levels and enhancing Nrf2, GSH, SOD, GSH-Px, HO-1, NQO1, and p-ERK levels. The vasoactive effects of farrerol were also shown by the reduced α-SMA, NAD(P)H, p-ERK, p-Akt, mTOR, Jak2, Stat3, Bcl-2, and p38 levels, but increased OPN, occludin, ZO-1, eNOS, CaM, IP3R, and PLC levels. The antitumor effects of farrerol were evident from the reduced Bcl-2, Slug, Zeb-1, and vimentin levels but increased p27, ERK1/2, p38, caspase-9, Bax, and E-cadherin levels. Farrerol reduced α-toxin levels and increased NO production and NF-κB activity to impart antibacterial activity. CONCLUSIONS This review article provides a theoretical basis for further studies on farrerol, with a view to develop and utilise farrerol for treating of vascular-related diseases in the future.
Collapse
Affiliation(s)
- Xiaojiang Qin
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- CONTACT Xiaojiang Qin School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Shanxi, China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liangjing Chen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuxuan Hao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Anqi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xufeng Du
- Department of Exercise Rehabilitation, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liangyuan Zhao
- Department of Exercise Rehabilitation, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, Shanxi, China
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Chronic Inflammatory Targeted Drugs, School of Materia Medica, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, China
- Qingshan Li School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Toledano-Díaz A, Álvarez MI, Toledano A. The relationships between neuroglial and neuronal changes in Alzheimer's disease, and the related controversies II: gliotherapies and multimodal therapy. J Cent Nerv Syst Dis 2022; 14:11795735221123896. [PMID: 36407561 PMCID: PMC9666878 DOI: 10.1177/11795735221123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/05/2022] [Indexed: 08/30/2023] Open
Abstract
Since the original description of Alzheimer´s disease (AD), research into this condition has mainly focused on assessing the alterations to neurons associated with dementia, and those to the circuits in which they are involved. In most of the studies on human brains and in many models of AD, the glial cells accompanying these neurons undergo concomitant alterations that aggravate the course of neurodegeneration. As a result, these changes to neuroglial cells are now included in all the "pathogenic cascades" described in AD. Accordingly, astrogliosis and microgliosis, the main components of neuroinflammation, have been integrated into all the pathogenic theories of this disease, as discussed in this part of the two-part monograph that follows an accompanying article on gliopathogenesis and glioprotection. This initial reflection verified the implication of alterations to the neuroglia in AD, suggesting that these cells may also represent therapeutic targets to prevent neurodegeneration. In this second part of the monograph, we will analyze the possibilities of acting on glial cells to prevent or treat the neurodegeneration that is the hallmark of AD and other pathologies. Evidence of the potential of different pharmacological, non-pharmacological, cell and gene therapies (widely treated) to prevent or treat this disease is now forthcoming, in most cases as adjuncts to other therapies. A comprehensive AD multimodal therapy is proposed in which neuronal and neuroglial pharmacological treatments are jointly considered, as well as the use of new cell and gene therapies and non-pharmacological therapies that tend to slow down the progress of dementia.
Collapse
|
12
|
Chen Y, Peng F, Xing Z, Chen J, Peng C, Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022; 13:1006434. [PMID: 36353622 PMCID: PMC9638012 DOI: 10.3389/fimmu.2022.1006434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is the fundamental immune response against multiple factors in the central nervous system and is characterized by the production of inflammatory mediators, activated microglia and astrocytes, and the recruitment of innate and adaptive immune cells to inflammatory sites, that contributes to the pathological process of related brain diseases, such as Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids, as a species of important natural compounds, have been widely revealed to alleviate neuroinflammation by inhibiting the production of pro-inflammatory mediators, elevating the secretion of anti-inflammatory factors, and modulating the polarization of microglia and astrocyte, mainly via suppressing the activation of NLRP3 inflammasome, as well as NF-κB, MAPK, and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/β-Catenin, PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will provide the latest and comprehensive knowledge on the therapeutic benefits and mechanisms of natural flavonoids in neuroinflammation, and the natural flavonoids might be developed into food supplements or lead compounds for neuroinflammation-associated brain disorders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| |
Collapse
|
13
|
Guo Y, Li Q, Xia R, Cai C. Farrerol exhibits inhibitory effects on lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. J Biochem Mol Toxicol 2022; 36:e23157. [PMID: 35833306 DOI: 10.1002/jbt.23157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/11/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
Farrerol is an herbal compound extracted from rhododendron. Here, our study is to investigate biological effects of farrerol on lung adenocarcinoma (LAC) cells. Human LAC cell lines and xenograft mouse model were utilized to define the effects of farrerol on tumor growth. Our findings indicated that farrerol significantly reduced LAC cell viability as well as the colony-forming capacity. Flow cytometry analysis demonstrated that farrerol contributed to cell apoptosis and G0/G1 phase cell cycle arrest. Mechanistically, farrerol treatment upregulated proapoptotic molecules (Bak, Bid, cleaved caspase-3 and cleaved caspase-9) and senescence markers (p16 and p2), but downregulated antiapoptosis genes (Bcl-2 and Bcl-XL) and cell cycle-associated genes (CyclinD1 and CDK4); meanwhile, the phosphorylation of retinoblastoma (Rb) protein was attenuated upon pretreatment of LAC cells with farrerol in comparison to untreated control. Further studies indicated that farrerol elevated reactive oxygen species levels, activating mitochondrial apoptotic pathway and causing cell apoptosis. However, exposure to farrerol did not result in significant apoptosis in normal lung epithelial cells, suggesting a tumor-specific effect of farrerol on LAC cells. In animal model, farrerol showed a significant inhibitory effect on LAC xenograft tumor growth. And gene expressions in tumor tissues, as mentioned above, were in line with the in vitro results. Taken together, these results suggested that farrerol caused LAC cell apoptosis by activating mitochondrial apoptotic pathway, whereas farrerol treatment had no notable effect on normal lung epithelial cells. Farrerol might be an effective therapeutic drug for LAC.
Collapse
Affiliation(s)
- Yi Guo
- Department of Pneumology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, China
| | - Quan Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Rongmu Xia
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chuanshu Cai
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Zhao X, Huang X, Yang C, Jiang Y, Zhou W, Zheng W. Artemisinin Attenuates Amyloid-Induced Brain Inflammation and Memory Impairments by Modulating TLR4/NF-κB Signaling. Int J Mol Sci 2022; 23:ijms23116354. [PMID: 35683033 PMCID: PMC9181281 DOI: 10.3390/ijms23116354] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
The abnormal immune response is an early change in the pathogenesis of Alzheimer’s disease (AD). Microglial activation is a crucial regulator of the immune response, which contributes to progressive neuronal injury by releasing neurotoxic products. Therefore, finding effective drugs to regulate microglial homeostasis and neuroinflammation has become a new AD treatment strategy. Artemisinin has potent anti-inflammatory and immune activities. However, it is unclear whether Artemisinin contributes to the regulation of microglial activation, thereby improving AD pathology. This study found that Artemisinin significantly reduced amyloid beta-peptide 1–42 (Aβ1–42)-induced increases in nitric oxide and reactive oxygen species and inflammatory factors in BV2 cells. In addition, Artemisinin inhibited the migration of microglia and prevented the expansion of the inflammatory cascade. The mechanical studies showed Artemisinin inhibited neuroinflammation and exerted neuroprotective effects by regulating the Toll-like receptor 4 (TLR4)/Nuclear factor-kappa B (NF-κB) signaling pathway. Similar results were obtained in AD model mice, in which Artemisinin administration attenuated Aβ1–42-induced neuroinflammation and neuronal injury, reversing spatial learning and memory deficits. The anti-inflammatory effect of Artemisinin is also accompanied by the activation of the TLR4/NF-κB signaling pathway in the animal model. Our results indicate that Artemisinin attenuated Aβ1–42-induced neuroinflammation and neuronal injury by stimulating the TLR4/NF-κB signaling pathway. These findings suggest that Artemisinin is a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Xia Zhao
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Hangzhou Medical College, Hangzhou 310000, China
| | - Xiaosu Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Chao Yang
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yizhou Jiang
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Wenshu Zhou
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging and Department of Pharmacology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; (X.Z.); (C.Y.); (Y.J.); (W.Z.)
- Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Correspondence: ; Tel.: +853-88224919
| |
Collapse
|
15
|
Yildirim S, Ozkan A, Aytac G, Agar A, Tanriover G. Role of melatonin in TLR4-mediated inflammatory pathway in the MTPT-induced mouse model. Neurotoxicology 2021; 88:168-177. [PMID: 34808223 DOI: 10.1016/j.neuro.2021.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has an essential role in various neurodegenerative diseases including Parkinson's disease (PD). Microglial activation as a result of neuroinflammation exacerbates the pathological consequences of the disease. The toxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes alpha-synuclein (α-synuclein) accumulation, which leads to dopaminergic neuron death in the MPTP-induced mouse model. Toll-like receptor 4 (TLR4) stimulates release of cytokine through NF-kB by activating glial cells, thus resulting in the death of dopaminergic neurons. Melatonin has the ability to cross the blood-brain barrier and protect neurons through anti-inflammatory properties. We hypothesized that melatonin could suppress TLR4-mediated neuroinflammation, decrease cytokine release due to the inflammatory response, and reduce dopaminergic neuron loss in the MPTP-induced mouse model. In the MPTP-induced mouse model, we aimed to assess the neuroinflammatory responses caused by TLR4 activation as well as the effect of melatonin on these responses. Three-month-old male C57BL/6 mice were randomly divided into five groups; Control (Group-C), Sham (Group-S), Melatonin-treated (Group-M), MPTP-injected (Group-P), and MPTP + melatonin-injected (Group-P + M). MPTP toxin (20 mg/kg) was dissolved in saline and intraperitoneally (i.p.) injected to mice for two days with 12 h intervals. The total dose per mouse was 80 mg/kg. Melatonin was administered (20 mg/kg) intraperitoneally to Group-M and Group-P + M twice a day for five days. Eight days after starting the experiment, the motor activities of mice were evaluated by locomotor activity tests. The effects on dopamine neurons in the SNPc was determined by tyrosine hydroxylase (TH) immunohistochemistry. TLR4, α-synuclein, and p65 expression was evaluated by immunostaining as well. The amount of TNF-alpha in the total brain was evaluated by western blot analysis. In our results seen that locomotor activity was lower in Group-P compared to Group-C. However, melatonin administration was improved this impairment. MPTPcaused decrease in TH immuno-expression in dopaminergic neurons in Group-P. TLR4 (p < 0.001), α-synuclein (p < 0.001), and p65 (p < 0.01) immuno-expressions were also decreased in Group-P+M compared to Group-P (using MPTP). TNF-α expression was lower in Group-C, Group-S, Group-M, and Group-P+M, when compared to Group-P (p < 0.0001) due to the absence of inflammatory response. In conclusion, our study revealed that melatonin administration reduced α-synuclein aggregation and TLR4-mediated inflammatory response in the MPTP-induced mouse model.
Collapse
Affiliation(s)
- Sendegul Yildirim
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Ayse Ozkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gunes Aytac
- TOBB University of Economics & Technology, Faculty of Medicine, Department of Anatomy, Ankara, Turkey; University of Hawai'i at Mānoa, John A. Burns School of Medicine, Department of Anatomy, Biochemistry & Physiology, Hawaii, USA
| | - Aysel Agar
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Biotechnology, Antalya, Turkey.
| |
Collapse
|
16
|
Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L, Sun Y, Wu J, Zhou Q, Huang J, Xiong N, Wang T. Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson's Disease. Front Immunol 2021; 12:719807. [PMID: 34691027 PMCID: PMC8531525 DOI: 10.3389/fimmu.2021.719807] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
According to emerging studies, the excessive activation of microglia and the subsequent release of pro-inflammatory cytokines play important roles in the pathogenesis and progression of Parkinson's disease (PD). However, the exact mechanisms governing chronic neuroinflammation remain elusive. Findings demonstrate an elevated level of NLRP3 inflammasome in activated microglia in the substantia nigra of PD patients. Activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Abnormal protein aggregation of α-synuclein (α-syn), a pathologically relevant protein of PD, were reported to activate the NLRP3 inflammasome of microglia through interaction with toll-like receptors (TLRs). This eventually releases pro-inflammatory cytokines through the translocation of nuclear factor kappa-B (NF-κB) and causes an impairment of mitochondria, thus damaging the dopaminergic neurons. Currently, therapeutic drugs for PD are primarily aimed at providing relief from its clinical symptoms, and there are no well-established strategies to halt or reverse this disease. In this review, we aimed to update existing knowledge on the role of the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis and microglial activation in PD. In addition, this review summarizes recent progress on the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis of microglia as a potential target for PD treatment by inhibiting microglial activation.
Collapse
Affiliation(s)
- Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Wang W, Lv R, Zhang J, Liu Y. circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR‑29c‑3p‑mediated AMPK/mTOR pathway in Parkinson's disease. Mol Med Rep 2021; 24:540. [PMID: 34080649 PMCID: PMC8170871 DOI: 10.3892/mmr.2021.12179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) can lead to movement injury and cognitive dysfunction. Although advances have been made in attenuating PD, the effect of inhibiting the development of PD remains disappointing. Therefore, the present study aimed at investigating the etiology of Parkinson's disease and developing an alternative therapeutic strategy for patients with PD. A PD mouse model was established using an intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP-HCl; 30 mg/kg/day for 5 days), and a PD cellular model was established by treating SH-SY5Y cells with different concentrations of 1-methyl-4-phenylpyridinium (MPP+) for 24 h. The expression levels of circular RNA sterile α motif domain containing 4A (circSAMD4A) and microRNA (miR)-29c-3p in both midbrain tissues and SH-SY5Y cells were detected via reverse transcription-quantitative PCR. The interaction between circSAMD4A and miR-29c-3p was verified using a dual-luciferase reporter experiment. Apoptosis-, autophagy- and 5′AMP-activated protein kinase (AMPK)/mTOR cascade-associated proteins in midbrain tissues and SH-SY5Y cells were detected using western blotting. Furthermore, TUNEL staining and flow cytometry were used to analyze cell apoptosis. It was found that circSAMD4A was upregulated, while miR-29c-3p was downregulated in both PD animal and cellular models. Moreover, circSAMD4A directly targeted and negatively regulated miR-29c-3p. Further studies identified that circSAMD4A knockdown inhibited MPTP- or MPP+-induced apoptosis and autophagy; however, these effects were abolished by an miR-29c-3p inhibitor. In addition, circSAMD4A knockdown repressed phosphorylated-AMPK expression and increased mTOR expression in MPTP- or MPP+-induced PD models, the effects of which were reversed by a miR-29c-3p inhibitor. Collectively, these results suggested that circSAMD4A participated in the apoptosis and autophagy of dopaminergic neurons by modulating the AMPK/mTOR cascade via miR-29c-3p in PD.
Collapse
Affiliation(s)
- Wensheng Wang
- Department of Neurology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Rongxiang Lv
- Department of Neurology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jingjing Zhang
- Department of Neurology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yu Liu
- Department of Neurology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
18
|
Lian H, Wang B, Lu Q, Chen B, Yang H. LINC00943 knockdown exerts neuroprotective effects in Parkinson's disease through regulates CXCL12 expression by sponging miR-7-5p. Genes Genomics 2021; 43:797-805. [PMID: 33886117 DOI: 10.1007/s13258-021-01084-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative movement disorder, but the pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) have been reported to play a prominent role in PD. OBJECTIVE This study is designed to explore the role and mechanism of long intergenic non-coding RNA 00943 (LINC00943) in the N-methyl-4-phenylpyridine (MPP+)-inducted PD model. METHODS LINC00943, microRNA-7-5p (miR-7-5p), and the chemokine (C-X-C motif) ligand 12 (CXCL12, also referred to as SDF-1) level were examined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were analyzed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), and flow cytometry assays, severally. Protein levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and CXCL12 were assessed by western blot assay. The ROS generation and SOD activity were detected by the corresponding kits. The binding relationship between miR-7-5p and LINC00943 or CXCL12 was predicted by Starbase and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. RESULTS LINC00943 and CXCL12 were increased, and miR-7-5p was decreased in MPP+-inducted SK-N-SH cells. LINC00943 silencing promoted cell viability, and repressed apoptosis and the inflammatory response in MPP+-treated SK-N-SH cells. The mechanical analysis discovered that LINC00943 acted as a sponge of miR-7-5p to regulate CXCL12 expression. CONCLUSIONS LINC00943 knockdown could attenuate MPP+-triggered neuron injury by regulating the miR-7-5p/CXCL12 axis, hinting at a promising therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Han Lian
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Baohua Wang
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Quan Lu
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Bin Chen
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Hui Yang
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China.
| |
Collapse
|
19
|
Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep 2021; 40:222089. [PMID: 32043530 PMCID: PMC7033313 DOI: 10.1042/bsr20193629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Abnormal aggregation of pathological tau protein is a neuropathological feature of Alzheimer's disease (AD). In the AD patients, the abnormal tau accumulation first appeared in entorhinal cortex (EC) and then propagated to the hippocampus with microglia activation and inflammation, but the mechanism is elusive. Here, we studied the role and mechanisms underlying periphery inflammation on brain tau transmission. By intraperitoneal injection of lipopolysaccharide (LPS) with brain medial entorhinal cortex (MEC)-specific overexpressing P301L human tau (P301L-hTau), we found that both acute and chronic administration of LPS remarkably promoted P301L-hTau transmission from MEC to the hippocampal subsets. Interestingly, the chronic LPS-induced P301L-hTau transmission was still apparent after blocking microglia activation. Further studies demonstrated that LPS disrupted the integrity of blood-brain barrier (BBB) and simultaneous intraperitoneal administration of glucocorticoid (GC) attenuated LPS-promoted P301L-hTau transmission. These data together suggest that a non-microglia-dependent BBB disruption contributes to peripheral LPS-promoted brain P301L-hTau transmission, therefore, maintaining the integrity of BBB can be a novel strategy for preventing pathological tau propagation in AD and other tauopathies.
Collapse
|
20
|
Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, Cuzzocrea S, Esposito E, Paterniti I. TLR7/8 in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21249384. [PMID: 33317145 PMCID: PMC7763162 DOI: 10.3390/ijms21249384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation and autoimmune mechanisms have a key part in the pathogenesis of Parkinson’s disease (PD). Therefore, we evaluated the role of Toll-like receptors (TLRs) as a link between inflammation and autoimmunity in PD. An in vivo model of PD was performed by administration of 1-metil 4-fenil 1,2,3,6-tetraidro-piridina (MPTP) at the dose of 20 mg/kg every 2 h for a total administration of 80/kg, both in single Knock Out (KO) mice for TLR7, TLR 8, and TLR9 and in double KO mice for TLR 7/8-/-. All animals were compared with WT animals used as a control group. All animals were sacrificed after 7 days form the first administration of MPTP. The genetic absence of TLR 7 and 8 modified the PD pathway, increasing the immunoreactivity for TH and DAT compared to PD groups and decreasing microglia and astrocytes activation. Moreover, the deletion of TLR7 and TLR8 significantly reduced T-cell infiltration in the substantia nigra and lymph nodes, suggesting a reduction of T-cell activation. Therefore, our result highlights a possibility that an immunotherapy approach, by using a dual antagonist of TLR 7 and 8, could be considered as a possible target to develop new therapies for Parkinson diseases.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Carmelo Biondo
- Metchnikoff Laboratory, Department of Human Pathology and Medicine, University of Messina, 31-98166 Messina, Italy; (C.B.); (G.M.)
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Department of Human Pathology and Medicine, University of Messina, 31-98166 Messina, Italy; (C.B.); (G.M.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
- Correspondence: ; Tel.: +39-090-676-5208
| |
Collapse
|
21
|
Guo F, Wang X, Liu X. Protective effects of irigenin against 1-methyl-4-phenylpyridinium-induced neurotoxicity through regulating the Keap1/Nrf2 pathway. Phytother Res 2020; 35:1585-1596. [PMID: 33118665 DOI: 10.1002/ptr.6926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
The rhizome of Belamcanda chinensis possesses antiinflammatory and antioxidant activities. However, the effect of irigenin, isolated from the rhizome of B. chinensis, on 1-methyl-4-phenylpyridinium (MPP+ )-induced neurotoxicity is unknown. MTT assay showed that MPP+ exposure dose dependently inhibited the viability of mouse microglia BV-2 cells, whereas irigenin suppressed MPP+ -induced viability reduction. The production of nitric oxide, prostaglandin E2, tumor necrosis factor-α and interleukin-6 were increased by MPP+ treatment, which were abolished by irigenin treatment. Irigenin-attenuated MPP+ -induced increase of malondialdehyde content and activities of superoxide dismutase, catalase and glutathione peroxidase in BV-2 cells. Irigenin treatment also repressed apoptosis, caspase-3/7 activity and Cytochrome C expression in MPP+ -challenged BV-2 cells. Interestingly, irigenin activated the Keap1/Nrf2 pathway in MPP+ -induced BV-2 cells. Nrf2 knockdown attenuated the effects of irigenin on MPP+ -induced viability reduction, inflammation, oxidative stress and apoptosis in BV-2 cells. In conclusion, irigenin alleviated MPP+ -induced neurotoxicity in BV-2 cells through regulating the Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Fen Guo
- Department of Geriatrics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiaoxue Wang
- Department of Geriatrics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xinxin Liu
- Department of Geriatrics, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
22
|
Farrerol alleviates high glucose-induced renal mesangial cell injury through the ROS/Nox4/ERK1/2 pathway. Chem Biol Interact 2020; 316:108921. [PMID: 31838053 DOI: 10.1016/j.cbi.2019.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Hyperproliferation and oxidative stress induced by hyperglycemia in mesangial cells plays crucial roles in the pathological process of diabetic nephropathy. Farrerol, isolated from rhododendron leaves, possesses broad anti-oxidative and anti-inflammatory properties towards several diseases, but its role in diabetic neuropathy remains unclear. The aim of this study was to evaluate the effects of farrerol in high glucose induced mesangial cell injury, and to explore underlying molecular mechanisms. Our results showed that high glucose in vitro conditions significantly stimulated cell proliferation, inflammatory cytokine secretion, extracellular matrix deposition, excessive oxidative stress, and NADPH oxidase activity in mesangial cells. Levels of NADPH oxidase 4 (Nox4) expression, ERK1/2 phosphorylation, and TGF-β1/Smad2 activation were significantly induced by high glucose conditions in mesangial cells. Inversely, farrerol treatments at 40, 60, and 80 μM concentrations, dose-dependently alleviated this molecular damage by high glucose in mesangial cells. We also found that restoration of Nox4 expression abolished the protective effects of farrerol on high glucose-induced proliferation and reactive oxygen species generation. Furthermore, pretreatment with the Nox4 inhibitor diphenyliodonium or the ERK1/2 pathway inhibitor PD98059, displayed similar ameliorated effects of farrerol on high glucose-induced mesangial cell damage. Taken together, these data suggest that farrerol displays protective effects on high glucose induced mesangial cell injury, partly through the Nox4-mediated ROS/ERK1/2 signaling pathway. These observations may provide novel insights into the application of farrerol as a diabetic neuropathy treatment.
Collapse
|
23
|
Feng Z, Zhang L, Wang S, Hong Q. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson's disease. Biochem Biophys Res Commun 2019; 522:388-394. [PMID: 31761328 DOI: 10.1016/j.bbrc.2019.11.102] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease which is characterized by the substantia nigra dopaminergic neurons denatured. Circular RNA (circRNA) DLGAP4 (circDLGAP4) was found to have neuroprotective effect. In this study, we aimed to investigate whether circDLGAP4 participates in the progression of PD. Here, our results showed that circDLGAP4 expression was decreased in MPTP-induced PD mouse model and MPP+-induced PD cell models. In vitro study revealed that circDLGAP4 could promote viability, reduce apoptosis, decrease mitochondrial damage, enhance autophagy and thereby attenuated the neurotoxic effects of MPP+ in SH-SY5Y and MN9D cells. Further research suggested that circDLGAP4 exerted its functions via regulating miR-134-5p. Moreover, we demonstrated that CREB was a target of miR-134-5p and CREB expression could be regulated by circDLGAP4/miR-134-5p axis. CircDLGAP4/miR-134-5p could also modulate the activation of CREB signaling and thereby influence the expression of CREB target genes including BDNF, Bcl-2 and PGC-1α in SH-SY5Y and MN9D cells. In all, our study identifies that circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway both in human and mouse.
Collapse
Affiliation(s)
- Zhong Feng
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Li Zhang
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Sa Wang
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Qing Hong
- Department of Neurology, The First People's Hospital of Wenling, Wenling, Zhejiang, China.
| |
Collapse
|
24
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|