1
|
Ferriere F, Aasi N, Flouriot G, Pakdel F. Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer. Phytother Res 2024. [PMID: 39707600 DOI: 10.1002/ptr.8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet. Indeed, some epidemiological studies highlight health benefits in consuming isoflavone-rich foods, notably by reducing the risk of certain cancers. However, several studies conducted on cell models show that these molecules can have negative effects on cell fate, particularly with regard to proliferation and survival of mammary tumor cells. Isoflavones are mainly genistein, daidzein, formononetin, and biochanin A. These molecules belong to the family of phytoestrogens, which are capable of interacting with both nuclear estrogen receptor, ERα and ERβ, to trigger agonistic and antagonistic effects. Due to their estrogenic properties, isoflavones are suspected to promote hormone-dependent cancers such as breast cancer. This suspicion is based primarily on their ability to bind to ERα in breast cells, thereby altering the signaling pathways that control cell growth. However, study results are sometimes contradictory. Some studies suggest that isoflavones may protect against breast cancer by acting as selective estrogen receptor modulators, while others highlight their potential role in stimulating tumor growth. This review explores the literature on the effects of isoflavones, focusing on their influence on ERα-dependent signaling in breast tumor cells.
Collapse
Affiliation(s)
- François Ferriere
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Nagham Aasi
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
2
|
Yang X, Pan Y, Cai L, Wang W, Zhai X, Zhang Y, Wu Q, Chen J, Zhang C, Wang Y. Calycosin Ameliorates Neuroinflammation via TLR4-Mediated Signal Following Cerebral Ischemia/Reperfusion Injury in vivo and in vitro. J Inflamm Res 2024; 17:10711-10727. [PMID: 39677283 PMCID: PMC11645956 DOI: 10.2147/jir.s480262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024] Open
Abstract
Background Cerebral ischemia-reperfusion injury (CIRI) is a key pathophysiological process that leads to stroke mortality, with TLR4-mediated inflammation playing a crucial role. Our previous research highlighted the neuroprotective effects of the phytoestrogen calycosin on CIRI, although the precise mechanism remains unclear. This study aimed to explore the effects of calycosin on the HMGB1/TLR4/NF-κB signaling pathway in rat models of CIRI, both in vivo and in vitro. Methods In vivo, a rat CIRI model was established using middle cerebral artery occlusion (MCAO), inducing ischemia for 1.5 h followed by 24 h of reperfusion. Calycosin was administered intraperitoneally 1 h after ischemia. Neurological deficits and brain infarct volumes were evaluated. Histological changes and key protein expressions around the ischemic penumbra were assessed by H&E staining and immunofluorescence. In vitro, primary neurons and PC12 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic CIRI. Cell viability was measured using a CCK8 assay, and alterations in HMGB1/TLR4/NF-κB pathway components were analyzed using qRT-PCR, Western blotting, and ELISA. Results In the MCAO rat model, calycosin significantly reduced neurological deficits and infarct sizes, and improved brain tissue damage following reperfusion. Similarly, in the OGD/R model, calycosin attenuated neuronal injury in PC12 cells and in primary neurons. Additionally, calycosin inhibited LPS-induced activation of the HMGB1/TLR4/NF-κB signaling pathway in PC12 cells. Both in vitro and in vivo studies have shown that calycosin effectively downregulates HMGB1 and TLR4 expression, decreases NF-κB and IκB phosphorylation, and reduces the secretion of inflammatory cytokines such as IL-6 and IL-18. Conclusion These findings suggest that calycosin mitigates cerebral ischemia-reperfusion injury and neuroinflammation by inhibiting the HMGB1/TLR4/NF-κB signaling pathway, thereby providing neuroprotection.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yanjin Pan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Le Cai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wenbo Wang
- Department of Neurosurgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, People’s Republic of China
| | - Xiaoya Zhai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yuhui Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Qiguang Wu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, People’s Republic of China
| | - Yong Wang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, People’s Republic of China
- Department of Physiology, Guilin Medical University, Guilin, 541199, People’s Republic of China
| |
Collapse
|
3
|
Xuan C, Zhao C, Zhou TT, Guo JJ, Pan D, Wang ZB, He GW. Associations of urinary phytoestrogens with all-cause and cardiovascular mortality in adults: a population-based cohort study. Front Endocrinol (Lausanne) 2024; 15:1400182. [PMID: 39319255 PMCID: PMC11419972 DOI: 10.3389/fendo.2024.1400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Background The overall understanding of the correlations between mortality risk and phytoestrogens in general population remains limited. We examined the association between urinary phytoestrogen levels and all-cause and cardiovascular mortality based on the National Health and Nutrition Examination Survey (NHANES). Methods Weighted Cox proportional hazard regression models were employed to calculate adjusted hazard ratios (HRs) and their 95% confidence intervals (CIs). Nonlinear relationships were assessed using multivariable-adjusted restricted cubic splines (RCS). Results In the fully adjusted model, the highest quartiles of urinary genistein levels were correlated with significantly elevated all-cause (HR = 1.36, 95%CI: 1.16-1.59) and cardiovascular (HR = 1.58, 95%CI: 1.20-2.09) mortality. Urinary enterolactone levels in the third quartile were associated with reduced all-cause (HR = 0.77, 95%CI: 0.65-0.90) and cardiovascular (HR = 0.74, 95%CI: 0.55-0.99) mortality. In the highest quartiles of urinary daidzein levels, the cardiovascular mortality was significantly increased (HR = 1.44, 95%CI: 1.09-1.90). RCS showed an non-linear relationship between urinary daidzein levels and all-cause mortality (P = 0.04). Conclusion In the context of a nationally representative sample, genistein exhibited associations with elevated all-cause and cardiovascular mortality, whereas enterolactone showed an association with reduced mortality. The dose-response relationship between urinary daidzein levels and all-cause mortality as well as sex-specific disparities in the impact of phytoestrogen levels should be considered.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting-Ting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zi-Bo Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
5
|
Chakraborty D, Malik S, Mann S, Agnihotri P, Joshi L, Biswas S. Chronic disease management via modulation of cellular signaling by phytoestrogen Bavachin. Mol Biol Rep 2024; 51:921. [PMID: 39158613 DOI: 10.1007/s11033-024-09849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The emergence of chronic diseases, particularly cancers, cardiovascular, and bone disorders, presents a formidable challenge, as currently available synthetic drugs often result in significant side effects and incur higher costs. Phytoestrogen Bavachin, present in the Psoralea corylifolia L. plant, represents structural and functional similarity to mammalian estrogen and has recently attracted researchers for its medicinal properties. This review spotlighted the extraction methods, bioavailability and therapeutic interventions of Bavachin against diseases. Bavachin exerted estrogenic properties, demonstrating the ability to bind to estrogen receptors (ERs), mimicking the actions of human estrogen and initiating estrogen-responsive pathways. Bavachin delivered potent therapeutic ventures in abrogating chronic diseases, including cancer, neuronal, bone, cardiovascular, skin, lung, and liver disorders via targeting signaling transductions, managing calcium signaling, immune regulation, inflammation, apoptosis, and oxidative stress. In-silico analysis, including Gene ontology and pathway enrichment analysis, retrieved molecular targets of Bavachin, majorly cytochrome c oxidase (COX), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and ER, hypothesizing Bavachin's cellular mechanism in preventing crucial health ailments. Limitations of Bavachin were also summarized, evidenced by hepatotoxicity at specific dosage levels. In conclusion, Bavachin showed promising therapeutic efficacy in suppressing chronic diseases and can be considered as an adequate replacement for hormone replacement therapy, necessitating further investigations on its effectiveness, safety, and clinical outcomes.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Malik
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Mann
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lovely Joshi
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Macrì R, Maiuolo J, Scarano F, Musolino V, Fregola A, Gliozzi M, Carresi C, Nucera S, Serra M, Caminiti R, Cardamone A, Coppoletta AR, Ussia S, Ritorto G, Mazza V, Bombardelli E, Palma E, Muscoli C, Mollace V. Evaluation of the Potential Beneficial Effects of Ferula communis L. Extract Supplementation in Postmenopausal Discomfort. Nutrients 2024; 16:2651. [PMID: 39203788 PMCID: PMC11357168 DOI: 10.3390/nu16162651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Peri-menopausal discomfort can have a detrimental effect on the physical health of women due to physiological and behavioral changes. Estrogen and progesterone-based hormone therapy can alleviate menopausal symptoms, but estrogen supplementation may have negative health effects. The effectiveness of hormone replacement therapy using natural compounds for peri-menopausal disorders is still uncertain. Evidence from in vivo experiments indicates that Ferula L. extract in ovariectomized rats leads to better sexual behavior. The effect seems to be linked to the phytoestrogenic properties of ferutinin, the primary bioactive compound in the extract. The purpose of this study was to assess the clinical impact of Ferula communis L. extract (titrated at 20% ferutinin, and given at doses of 100 mg/die for 90 days) on the quality of life of 64 menopausal women. The clinical trial was randomized, double-blind, and placebo controlled. Our data showed that Ferula communis L. extract reduced by 67 + 9% all symptoms associated to postmenopausal discomfort and enhanced significantly sexual behavior. In addition, the supplement led to a significant improvement of BMI and oxidative stress decrease in the women who received it, while also keeping platelet aggregation within normal levels. Overall, these results could point to the potential use of supplementation with Ferula communis L. extract to revert or mitigate menopause dysfunction.
Collapse
Affiliation(s)
- Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (V.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (V.M.)
| | - Annalisa Fregola
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Maria Serra
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Sara Ussia
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Giovanna Ritorto
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Valeria Mazza
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Ezio Bombardelli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (A.F.); (M.G.); (S.N.); (M.S.); (R.C.); (A.C.); (A.R.C.); (S.U.); (G.R.); (V.M.); (E.B.); (C.M.)
- Renato Dulbecco Institute, 88046 Lamezia Terme, Italy
| |
Collapse
|
7
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
8
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
9
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
10
|
Abramiuk M, Mertowska P, Frankowska K, Świechowska-Starek P, Satora M, Polak G, Dymanowska-Dyjak I, Grywalska E. How Can Selected Dietary Ingredients Influence the Development and Progression of Endometriosis? Nutrients 2024; 16:154. [PMID: 38201982 PMCID: PMC10781184 DOI: 10.3390/nu16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Endometriosis is a chronic, hormone-dependent disease characterized by the presence of endometrial tissue in ectopic locations. Since the treatment options for this disease are still limited, and the cure rate is unsatisfactory, the search for ways to treat symptoms and modify the course of the disease is of key importance in improving the quality of life of patients with endometriosis. So far, the literature has shown that nutrition can influence endometriosis through hormonal modification and altering the inflammatory or oxidative response. Since the importance of nutrition in this disease is still a subject of scientific research, we aimed to summarize the current knowledge on the role of dietary modifications in endometriosis. Our review showed that nutrients with anti-inflammatory and antioxidant properties, including most vitamins and several trace elements, may influence the pathogenesis of endometriosis and can be considered as the nutrients preventing the development of endometriosis. However, despite the many discoveries described in this review, further interdisciplinary research on this topic seems to be extremely important, as in the future, it may result in the development of personalized therapies supporting the treatment of endometriosis.
Collapse
Affiliation(s)
- Monika Abramiuk
- Independent Laboratory of Minimally Invasive Gynaecology and Gynaecological Endocrinology, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland; (G.P.); (I.D.-D.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Karolina Frankowska
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland; (K.F.); (M.S.)
| | - Paulina Świechowska-Starek
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland;
| | - Małgorzata Satora
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland; (K.F.); (M.S.)
| | - Grzegorz Polak
- Independent Laboratory of Minimally Invasive Gynaecology and Gynaecological Endocrinology, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland; (G.P.); (I.D.-D.)
| | - Izabela Dymanowska-Dyjak
- Independent Laboratory of Minimally Invasive Gynaecology and Gynaecological Endocrinology, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland; (G.P.); (I.D.-D.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
11
|
Lee YJ, Chen SR, Ko PE, Yang MY, Yu MH, Wang CJ, Lee HJ. Quercetin-3-O-β-d-glucuronide in the Nuciferine Leaf Polyphenol Extract Promotes Neurogenesis Involving the Upregulation of the Tropomyosin Receptor Kinase (Trk) Receptor and AKT/Phosphoinositide 3-Kinase Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15582-15592. [PMID: 37819167 DOI: 10.1021/acs.jafc.3c03894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Neurogenesis is crucial during the human lifespan for the maintenance of synaptic plasticity and normal function. The impairment of hippocampal neurogenesis in adults may lead to neurodegenerative disease, such as Alzheimer's disease. Miquelianin (quercetin-3-O-β-d-glucuronide, Q3GA) is a constituent of the nuciferine leaf polyphenol extract (NLPE), and it has protective effects against neurodegeneration. In this study, we examined the effect of the NLPE on neurogenesis and the mechanisms underlying Q3GA on neurogenesis. We fed 24-week-old male C57BL/6 mice with 0.1 or 0.25% NLPE for 2 weeks. NLPE treatment increased small spindle-shaped stem cell numbers in the subgranular zone and the number of doublecortin (DCX)- and neuron-specific nuclear protein (NeuN)-expressing neurons. HT22, a hippocampal cell line, treated with Q3GA revealed significant neurite growth and upregulated TrkR and PI3K/Akt levels. The evidence from a model of retinoic acid-induced SH-SY5Y cell differentiation showed that Q3GA or NLPE increases neurite growth significantly. Taken together, the NLPE containing Q3GA to promote neurogenesis involving the upregulation of TrkR and the PI3K/Akt signaling pathway might be potentiated as an alternative strategy for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Department of Pathology, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Pathology, School of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Sin-Rong Chen
- Institute of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Ping-En Ko
- Department of Medical Laboratory and Biotechnology, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Meng-Hsuin Yu
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Clinical Biochemistry, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N Road, South District, Taichung 40201, Taiwan
| |
Collapse
|
12
|
Zhang LF, Zhang XY, Wang AC, Feng YJ, Qi XM, Zhang YL, Li QF, Qiao YB, Li QS. Bidirectional crosstalk of the cAMP/ROS-dependent signaling pathways in inflammatory macrophage: An activation of formononetin. Toxicol Appl Pharmacol 2023; 472:116571. [PMID: 37269934 DOI: 10.1016/j.taap.2023.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Bacterial lipopolysaccharide (LPS) is a toxic stimulant to macrophage inflammation. Inflammation intersects cell metabolism and often directs host immunopathogenesis stress. We aim here at pharmacological discovering of formononetin (FMN) action, to which anti-inflammatory signaling spans across immune membrane receptors and second messenger metabolites. In ANA-1 macrophage stimulated by LPS, and simultaneous treatment with FMN, results show the Toll-like receptor 4 (TLR4) and estrogen receptor (ER) signals, in concert with reactive oxygen species (ROS) and cyclic adenosine monophosphate (cAMP), respectively. LPS stimulates inactivation of the ROS-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) by upregulating TLR4, but it does not affect cAMP. However, FMN treatment not only activates Nrf2 signaling by TLR4 inhibition, but also it activates cAMP-dependent protein kinase activities by upregulating ER. The cAMP activity gives rise to phosphorylation (p-) of protein kinase A, liver kinase B1 and 5'-AMP activated protein kinase (AMPK). Moreover, bidirectional signal crosstalk is amplified between p-AMPK and ROS, as FMN combinational validation with AMPK activator/inhibitor/target small-interfering RNA or ROS scavenger. The signal crosstalk is well positioned serving as the 'plug-in' knot for rather long signaling axis, and the immune-to-metabolic circuit via ER/TLR4 signal transduction. Collectively, convergence of the FMN-activated signals drives significant reduction of cyclooxygenase-2, interleukin-6 and NLR family pyrin domain-containing protein 3, in LPS-stimulated cell. Although anti-inflammatory signaling is specifically related to the immune-type macrophage, the p-AMPK antagonizing effect arises from FMN combination with ROS scavenger H-bond donors. Information of our work assists in predictive traits against macrophage inflammatory challenges, using phytoestrogen discoveries.
Collapse
Affiliation(s)
- Lan-Fang Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Xiao-Yan Zhang
- Fenyang College of Shanxi Medical University, Fenyang, Shanxi 032200, China
| | - Ai-Cheng Wang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Yi-Jia Feng
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Xiao-Ming Qi
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| | - Yuan-Lin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| | - Qing-Fang Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, TaiYuan, Shanxi 030619, China.
| |
Collapse
|
13
|
Dong JJ, Ma JY, Yang WY, Cai W, Wu WH. Characterization of the volatile profile and its estrogenic activity in Kadsura coccinea fruit. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116341. [PMID: 36889418 DOI: 10.1016/j.jep.2023.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Kadsura coccinea (Lem.) A. C. Smith is an ethnomedicine used to treat abnormal menstruation, menopausal syndrome, and female infertility among the Dong Nationality in China. AIM OF THE STUDY Our study aimed to identify the volatile oil profiles of the K. coccinea fruit and elucidate their estrogenic activity. MATERIALS AND METHODS The peel volatile oil (PeO), pulp volatile oil (PuO), and seed volatile oil (SeO) of K. coccinea were extracted using hydrodistillation and qualitatively analyzed using gas chromatography-mass spectrometry (GC-MS). Estrogenic activity was evaluated in vitro using cell assay and in vivo using immature female rats. Serum 17β-Estradiol (E2) and follicle-stimulating hormone (FSH) levels were detected using ELISA. RESULTS In total, 46 PeO, 27 PuO, and 42 SeO components representing 89.96%, 90.19%, and 97% of the total composition, respectively, were identified. The compounds with the highest content in PeO, PuO, and SeO were β-caryophyllene, γ-amorphene, and n-hexadecanoic acid, respectively. PeO induced proliferation of MCF-7 cells with an EC50 of 7.40 μg/mL. Subcutaneous administration of 10 mg/kg PeO significantly increased the weight of the uteri in immature female rats, with no effect on serum E2 and FSH levels. PeO acted as an agonist of ERα and ERβ. PuO and SeO showed no estrogenic activity. CONCLUSION The chemical compositions of PeO, PuO, and SeO of K. coccinea are different. PeO is the main effective fraction for estrogenic activities, providing a new source of phytoestrogen for the treatment of menopausal symptoms.
Collapse
Affiliation(s)
- Jin-Jin Dong
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie-Yao Ma
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Wei-Ye Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Cai
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China.
| | - Wei-Hua Wu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China; Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China.
| |
Collapse
|
14
|
Yuan S, Li Z, Huang W, Chen K, Li J. The phytoestrogenic potential of flavonoid glycosides from Selaginella moellendorffii via ERα-dependent signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116174. [PMID: 36669597 DOI: 10.1016/j.jep.2023.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella moellendorffii (SM) has been applied as an ethnic drug to treat conditions such as osteoporosis, idiopathic thrombocytopenic purpura, and chronic inflammation. It is known to be rich in flavonoids, including apigenin glycosides and unique elements of bioflavonoids. AIM OF THE STUDY To investigate estrogen-like constituents of SM and the possible mechanism. MATERIALS AND METHODS We identified the main components in liquid chromatography and liquid chromatography-mass spectrometry. The estrogenic effects were examined using a recombinant yeast screening assay, an E-screen cell proliferation assay, and an in vivo uterotrophic assay. RESULTS Flavonoid glycosides extract, some flavonoid glycosides, and apigenin showed estrogen agonistic activity in the yeast screening assay. They also induced cell proliferation in estrogen receptor-positive (ER+) cells but not in estrogen receptor-negative (ER-) cells. Consistently, the protein expression of ERα, phosphorylation protein kinase B (p-AKT), phosphatidylinositol 3 kinase (PI3K), phosphorylation mammalian target of rapamycin (p-mTOR), phosphorylation 38,000-Da protein (p-P38), and phosphorylation extracellular-regulated kinase 1/2 (p-ERK1/2) elevated following treatment with flavonoid glycoside extract (P < 0.01 or P < 0.05). These effects could be blocked by ER antagonist or ERα antagonist but not be blocked by ERβ antagonist. In vivo assay, flavonoid glycoside extract could significantly increase body weight, serum estradiol level, uterine wet weight, alter uterine morphology, and promote ERα protein expression (P < 0.01 or P < 0.05). CONCLUSIONS ERα induction via mitogen-activated protein kinases (MAPK) and PI3K/Akt/mTOR pathways might be the possible mechanism underlying the phytoestrogen effect of SM, and the flavonoid glycosides might be the critical estrogenic constituents.
Collapse
Affiliation(s)
- Shijun Yuan
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Zihan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Wei Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Keli Chen
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| |
Collapse
|
15
|
Farhat EK, Sher EK, Džidić-Krivić A, Banjari I, Sher F. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. J Nutr Biochem 2023; 118:109368. [PMID: 37100304 DOI: 10.1016/j.jnutbio.2023.109368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
The human gut is a host for trillions of microorganisms, divided into more than 3000 heterogeneous species, which is called the gut microbiota. The gut microbiota composition can be altered by many different endogenous and exogenous factors, especially diet and nutrition. A diet rich in phytoestrogens, a variable group of chemical compounds similar to 17-β-estradiol (E2), the essential female steroid sex hormone is potent to change the composition of gut microbiota. However, the metabolism of phytoestrogens also highly depends on the action of enzymes produced by gut microbiota. Novel studies have shown that phytoestrogens could play an important role in the treatment of different types of cancers, such as breast cancer in women, due to their potential to decrease estrogen levels. This review aims to summarize recent findings about the lively dialogue between phytoestrogens and the gut microbiota and to address their possible future application, especially in treating patients with diagnosed breast cancer. A potential therapeutic approach for the prevention and improving outcomes in breast cancer patients could be based on targeted probiotic supplementation with the use of soy phytoestrogens. A positive effect of probiotics on the outcome and survival of patients with breast cancer has been established. However, more in vivo scientific studies are needed to pave the way for the use of probiotics and phytoestrogens in the clinical practice of breast cancer treatment.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Oncology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
16
|
Huang P, Lu J, Jin L, Liu E, Li L. A DFT/TDDFT Investigation on Fluorescence and Electronic Properties of Chromone Derivatives. J Fluoresc 2023; 33:453-458. [PMID: 36441339 DOI: 10.1007/s10895-022-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
The development of quick and precise detection technologies for active compounds in vivo is critical for disease prevention, diagnosis and pathological investigation. The fluorescence signal of the fluorophore usually defines the probe's sensitivity to the chemical being examined. Many natural compounds containing flavone and isoflavone scaffolds exhibit a certain amount fluorescence, albeit with poor fluorescence quantum yields. Therefore, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations to investigate the fluorescence characteristics of chromium-derived fluorophores in more depth. Different substituents are introduced at different positions of the chromone. As weak electron donor groups, alkyl and aromatic groups were discovered to have varying quantum yields on the fluorophore scaffold, and longer alkyl chains are favorable to enhance fluorescence quantum yield. In comparison to the amino group, substituted amino group can avoid group rotation, and the introduction of cyclic amines such as pyrrolidine and heterocyclic amines can improve optical characteristics. The electron-donating methoxy group at position 6 helps to increase the fluorescence quantum yield.
Collapse
Affiliation(s)
- Pei Huang
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ernu Liu
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Li Li
- Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
17
|
Naringin Protects against Tau Hyperphosphorylation in A β 25-35-Injured PC12 Cells through Modulation of ER, PI3K/AKT, and GSK-3 β Signaling Pathways. Behav Neurol 2023; 2023:1857330. [PMID: 36844418 PMCID: PMC9946756 DOI: 10.1155/2023/1857330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 12/26/2022] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and a significant social and economic burden. Estrogens can exert neuroprotective effects and may contribute to the prevention, attenuation, or even delay in the onset of AD; however, long-term estrogen therapy is associated with harmful side effects. Thus, estrogen alternatives are of interest for countering AD. Naringin, a phytoestrogen, is a key active ingredient in the traditional Chinese medicine Drynaria. Naringin is known to protect against nerve injury induced by amyloid beta-protein (Aβ) 25-35, but the underlying mechanisms of this protection are unclear. To investigate the mechanisms of naringin neuroprotection, we observed the protective effect on Aβ 25-35-injured C57BL/6J mice's learning and memory ability and hippocampal neurons. Then, an Aβ 25-35 injury model was established with adrenal phaeochromocytoma (PC12) cells. We examined the effect of naringin treatment on Aβ 25-35-injured PC12 cells and its relationship with estrogen receptor (ER), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and glycogen synthase kinase (GSK)-3β signaling pathways. Estradiol (E2) was used as a positive control for neuroprotection. Naringin treatment resulted in improved learning and memory ability, the morphology of hippocampal neurons, increased cell viability, and reduced apoptosis. We next examined the expression of ERβ, p-AKT (Ser473, Thr308), AKT, p-GSK-3β (Ser9), GSK-3β, p-Tau (Thr231, Ser396), and Tau in PC12 cells treated with Aβ 25-35 and either naringin or E2, with and without inhibitors of the ER, PI3K/AKT, and GSK-3β pathways. Our results demonstrated that naringin inhibits Aβ 25-35-induced Tau hyperphosphorylation by modulating the ER, PI3K/AKT, and GSK-3β signaling pathways. Furthermore, the neuroprotective effects of naringin were comparable to those of E2 in all treatment groups. Thus, our results have furthered our understanding of naringin's neuroprotective mechanisms and indicate that naringin may comprise a viable alternative to estrogen therapy.
Collapse
|
18
|
Effects of phytoestrogens on reproductive organ health. Arch Pharm Res 2022; 45:849-864. [DOI: 10.1007/s12272-022-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
|
19
|
Anderson P, Kokole D, Jané Llopis E, Burton R, Lachenmeier DW. Lower Strength Alcohol Products-A Realist Review-Based Road Map for European Policy Making. Nutrients 2022; 14:3779. [PMID: 36145155 PMCID: PMC9500668 DOI: 10.3390/nu14183779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
This paper reports the result of a realist review based on a theory of change that substitution of higher strength alcohol products with lower strength alcohol products leads to decreases in overall levels of alcohol consumption in populations and consumer groups. The paper summarizes the results of 128 publications across twelve different themes. European consumers are increasingly buying and drinking lower strength alcohol products over time, with some two fifths doing so to drink less alcohol. It tends to be younger more socially advantaged men, and existing heavier buyers and drinkers of alcohol, who take up lower strength alcohol products. Substitution leads to a lower number of grams of alcohol bought and drunk. Although based on limited studies, buying and drinking lower strength products do not appear to act as gateways to buying and drinking higher strength products. Producer companies are increasing the availability of lower strength alcohol products, particularly for beer, with extra costs of production offset by income from sales. Lower strength alcohol products tend to be marketed as compliments to, rather than substitutes of, existing alcohol consumption, with, to date, the impact of such marketing not evaluated. Production of lower strength alcohol products could impair the impact of existing alcohol policy through alibi marketing (using the brand of lower strength products to promote higher strength products), broadened normalization of drinking cultures, and pressure to weaken policies. In addition to increasing the availability of lower strength products and improved labelling, the key policy that favours substitution of higher strength alcohol products with lower strength products is an alcohol tax based on the dose of alcohol across all products.
Collapse
Affiliation(s)
- Peter Anderson
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Daša Kokole
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Eva Jané Llopis
- ESADE Business School, Ramon Llull University, 08034 Barcelona, Spain
| | - Robyn Burton
- Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany
| |
Collapse
|
20
|
Beneficial Effects of Flaxseed and/or Mulberry Extracts Supplementation in Ovariectomized Wistar Rats. Nutrients 2022; 14:nu14153238. [PMID: 35956414 PMCID: PMC9370575 DOI: 10.3390/nu14153238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Low endogenous estrogen action causes several injuries. Medicinal plants, such as flaxseed and mulberry, contain substances that have been shown to be effective to the organism. The aim was to verify the effects of flaxseed and/or mulberry extracts on ovariectomized Wistar rats. The animals received supplements of extracts and estrogen or saline by gavage for 60 days and were weighed weekly. Vaginal wash, blood, pituitary, uterus, liver, and kidneys were collected. Phenolic compounds and the antioxidant activity of the extracts, lipid profile, uric acid, liver enzymes, and pituitary weight were measured. Histomorphometric for uterine wall and histopathological analyses for liver and kidney were performed. Flaxseed and mulberry extracts showed great antioxidant activity and large amounts of phenolic compounds. The treatment with extracts had less weight gain, increased pituitary weight, the predominance of vaginal epithelial cells, and reduced TC, LDL-c and lipase activity, similar to estrogen animals. Estrogen or flaxseed + mulberry animals reduced VLDL-c and TAG. HDL-c, uric acid, and liver enzymes did not differ. Estrogen or extracts demonstrated trophic action on the endometrial thickness and have not shown hepatotoxicity or nephrotoxicity. We suggested the beneficial effects of flaxseed and mulberry extract as an alternative to reduce and/or prevent the negative effects caused by low estrogenic action.
Collapse
|
21
|
Singh V, Park YJ, Lee G, Unno T, Shin JH. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 2022; 63:9961-9976. [PMID: 35635755 DOI: 10.1080/10408398.2022.2076651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally prevalent health issues among post-menopausal women. Menopause is an unavoidable condition characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary sexual characteristics in women. In addition to sexual dimorphism, estrogen also participates in glucose-lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female body. Estrogen level in the gut also regulates the microbiota composition, and even conjugated estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative stress, and T2D-associated pro-inflammatory cytokines (IL-1, IL-6). While gut dysbiosis is common among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also provided dietary recommendations to avoid T2D progression among post-menopausal women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Tatsuya Unno
- Department of Biotechnology, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
22
|
Xu Q, Zhang Y, He Z, Liu Z, Zhang Y, Xu W, Yang X. Constituents promoting osteogenesis from the fruits of Psoralea corylifolia and their structure-activity relationship study. PHYTOCHEMISTRY 2022; 196:113085. [PMID: 35007936 DOI: 10.1016/j.phytochem.2022.113085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The mature fruit of Psoralea corylifolia L. is a common traditional Chinese medicine used to tonify the kidney and yang, and as well as to treat osteoporosis. Systematic phytochemical investigations have established the most comprehensive constituent library to date, covering over 180 compounds. In this study, 109 chemical constituents containing 37 undescribed compounds were reported and incorrect structures of four known coumarins were corrected. The structures of these undescribed compounds were elucidated using spectroscopic methods, single-crystal X-ray diffraction, Rh2(OCOCF3)4 and Mo2(OAc)4-induced circular dichroism spectra. To identify potentially active compounds and investigate their structure-activity relationship (SAR), 89 constituents in the library were evaluated for their osteogenic differentiation and mineralisation activities in MC3T3-E1 cells. We found that coumarins, isoflavones, flavonones, and meroterpenoids were the material basis for Psoralea corylifolia-based treatment of osteoporosis, with some compounds exhibiting excellent activities. These compounds function via the estrogen receptor (ER) pathway and were natural phytoestrogen. Further SAR analysis showed that compounds with an intact isopentenyl replacement possessed superior activities, which was explained by their improved affinity with the ER.
Collapse
Affiliation(s)
- Qingxia Xu
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, PR China
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, PR China
| | - Zichao He
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, PR China
| | - Zhenyu Liu
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, PR China
| | - Yingtao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, PR China
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, PR China
| | - XiuWei Yang
- State Key Laboratory of Natural and Biomimetic Drugs (Peking University), Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
23
|
Bao T, Yao J, Zhou S, Ma Y, Dong J, Zhang C, Mi Y. Naringin prevents follicular atresia by inhibiting oxidative stress in the aging chicken. Poult Sci 2022; 101:101891. [PMID: 35561460 PMCID: PMC9111992 DOI: 10.1016/j.psj.2022.101891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an essential inducement in follicle atresia and ovarian aging, resulting in decline in female fecundity. As a natural and effective antioxidant, naringin was investigated to relieve chicken follicle atresia and ovarian aging. First, the cultured small white follicles (SWFs) from D280 hens were pretreated with 0.5 mM naringin for 24 h and then treated with H2O2 for 72 h to establish the oxidative stress model to evaluate the putative attenuating effects of naringin on follicle atresia. Meanwhile, SWFs of D580 hens were treated with naringin for 72 h to examine the attenuating effect on the physiological aging of SWFs. Finally, each hen was fed with naringin at a dose of 50 mg/kg every day to explore the effect of naringin on follicular development and laying performance in D580 hens. Results showed that naringin could rescue the antioxidant capacity decline by increasing the antioxidant-related indexes and expression of antioxidation-associated genes. It could also maintain the homeostasis of SWFs in both the H2O2-induced group and natural physiological aging group. In addition, naringin increased estrogen levels, capacity of antioxidants, and the laying performance in aged laying chickens. The thickness and strength of the eggshell were increased in the naringin-treated group as well. In conclusion, this study showed that naringin is capable of relieving SWFs atresia that was induced by oxidative stress and maintaining the laying performance of aging low-yielding hens by reducing oxidative stress.
Collapse
Affiliation(s)
- Tingting Bao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jinwei Yao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shuo Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanfen Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Juan Dong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
24
|
Sabry MM, Abdel-Rahman RF, El-Shenawy SM, Hassan AM, El-Gayed SH. Estrogenic activity of Sage (Salvia officinalis L.) aerial parts and its isolated ferulic acid in immature ovariectomized female rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114579. [PMID: 34499963 DOI: 10.1016/j.jep.2021.114579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 05/12/2023]
Abstract
ETNOPHARMACOLOGICAL RELEVANCE Common sage (Salvia officinalis L., Lamiaceae), a medicinal plant of Mediterranean origin, has been traditionally applied in cases of excessive sweating, and in menopausal complaints, including hot flushes. AIM OF THE STUDY This study aims to study the possible estrogenic effect of the aerial parts of S. officinalis ethanolic extract in immature ovariectomized female rats. MATERIALS AND METHODS The ethanolic extract was subjected to qualitative and quantitative HPLC analysis and phytochemical isolation. The estrogenic activity of S. officinalis ethanolic extract at oral doses of 50, 100 and 200 mg/kg b.wt. and its isolated ferulic acid at a dose of 50 mg/kg b.wt. for a week, was assessed on ovariectomized immature Wistar rats. The experiment was confirmed by luteinizing hormone (LH) and follicle stimulating hormone (FSH) serum levels determination, a histopathological examination and a histomorphometrical study. RESULTS HPLC/PDA analysis revealed fourteen phenolic compounds the major constituents were methyl rosmarinate (24.86 mg/100 g) and ferulic acid (6.06 mg/100 g) together with five flavonoids where the major constituents were rutin, naringenin and quercetin. Two compounds were isolated from the polar fraction and identified as methyl rosmarinate (1) and ferulic acid (2). Oral administration of sage ethanolic extract and ferulic acid revealed a significant increase in the uterine weight compared to ovariectomized control rats. Moreover, S. officinalis and ferulic acid showed different phases of estrus cycle denoting estrogenic activity, and significantly decreased the serum levels of FSH and LH. CONCLUSION From these results it could be concluded that S. officinalis ethanolic extract and its content of ferulic acid could be useful as a safe natural source for estrogenic activity, supporting its traditional use to improve postmenopausal symptoms.
Collapse
Affiliation(s)
- Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt.
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Research Division, National Research Centre, Giza, Egypt
| | - Siham M El-Shenawy
- Department of Pharmacology, Medical Research Division, National Research Centre, Giza, Egypt
| | - Azza M Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sabah H El-Gayed
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
25
|
Chen N, Li N, Jiang J, Yang X, Wu D. Urinary Phytoestrogen Metabolites Positively Correlate with Serum 25(OH)D Level Based on National Health and Nutrition Examination Survey 2009-2010. J Nutr Sci Vitaminol (Tokyo) 2022; 67:375-383. [PMID: 34980715 DOI: 10.3177/jnsv.67.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Studies showed that vitamin D (25-hydroxyvitamin D) level in the human blood circulation could be affected by exogenous estrogen exposure. This study aims to explore the relationships between urinary phytoestrogens metabolites and serum total 25(OH)D in general population, urinary phytoestrogens metabolites (daidzein, enterodiol, enterolactone, equol, genistein and o-desmethylangolensin). Totally 2,609 adults ≥6 y old from the 2009-2010 National Health and Nutrition Examination Surveys (NHANES) were recruited into the cross-sectional analyses and information including demographic, socioeconomic, examinations and laboratory test were collected. All analyses were performed using Stata13.0, one-way analysis of variance and multivariable regression were utilised according to data characteristics, respectively. It showed that age, race, education level, body mass index (BMI), and sampling season had significant effects on serum 25(OH)D level (all p<0.001). In the whole population, urinary enterodiol and equol were significantly positively associated with serum total 25(OH)D level (β=0.86, 95%CI=0.08-1.65, p<0.05; β=1.68, 95%CI=0.91-2.45, p<0.001). Equol was also found significantly positively correlated with total 25(OH)D in both female and male separately (β=1.69, 95%CI=0.51-2.87, p<0.05; β=1.66, 95%CI=0.63-2.69, p<0.05). Phytoestrogen concentrations in the urinary and 25(OH)D levels in the serum had proved a positive correlation in our study, which provide theoretical basis and reference for the dietary nutrient intake in the population.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Ningning Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Jin Jiang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| |
Collapse
|
26
|
Langa S, Landete JM. Strategies to achieve significant physiological concentrations of bioactive phytoestrogens in plasma. Crit Rev Food Sci Nutr 2021; 63:2203-2215. [PMID: 34470513 DOI: 10.1080/10408398.2021.1971946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The benefits to health attributed to the intake of phytoestrogens (PEs) have been demonstrated in previous studies with significant physiological concentrations of bioactive PEs, such as genistein, equol, enterolignans and urolithins in plasma. However, the achievement of high bioactive PE levels in plasma is restricted to a select population group, mainly due to the low intake of plant PEs and/or the absence, or inhibition, of the microbiota capable of producing these bioactive forms. In this study, the intake of plant PEs, the concentration of bioactive PEs in plasma, the ability of the intestinal microbiota to produce bioactive PEs, as well as the different mechanisms used by GRAS bacteria to increase the level of bioactive PEs were evaluated concluding that the use of GRAS bacteria bioactive PE producers and the development of fermented foods enriched in bioactive PEs in addition to a high intake of plant PEs and taking care of the intestinal microbiota, are some of the different strategies to achieve significant physiological concentrations of bioactive PEs in the intestine and, subsequently, in plasma and targets organs which are essential to improve menopausal symptoms or reduce the risk of some pathologies such as breast and colon cancer, or cardiovascular disease.
Collapse
Affiliation(s)
- Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José M Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
27
|
Mahmoudi Z, Saidi A, Iranshahi M, Dadgar N, Azizsoltani A, Behzad S, Mahmoudi L, Soleimani M, Parsa Khankandi H. In vitro evaluation of ferutinin on proliferation and osteogenesis differentiation in human unrestricted Somatic stem cells. Steroids 2021; 172:108862. [PMID: 34010709 DOI: 10.1016/j.steroids.2021.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
Osteoporosis is a common disease in post-menopausal women. The increased risk of breast cancer and malignancy with hormone replacement, hampers its wide-usage. Phytoestrogens are known to have selective estrogen receptor modulator activity. The present study aims to determine how ferutinin affects unrestricted human Somatic Stem Cells (USSCs) osteogenic differentiation. The effect of ferutinin on USSCs proliferation was assessed by MTT assay while osteogenesis was evaluated using Alkaline Phosphatase Activity (ALP), calcium deposition and Alizarin Red Staining. Quantitative real-time PCR was applied to examine the expression of bone specific genes such as osteocalcin, Runx2, and BMP-2. Ferutinin (5-15 µg/mL) could positively impact on the proliferation of cells in a dose-dependent manner. Also, ALP enzyme activity and calcium deposition were enhanced in the presence of ferutinin. Based on real-time PCR results, ferutinin could increase the expression of bone marker genes. The pattern of ferutinin effect on gene expression is similar to standard synthetic estrogen, 17-β-estradiol. In the presence of the estrogen activity inhibitor (ICI), the effect of ferutinin on ALP and gene level was diminished. In conclusion, ferutinin may be considered as a potential candidate for the stem cell therapy in osteoporosis.
Collapse
Affiliation(s)
- Zahra Mahmoudi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Dadgar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Arezou Azizsoltani
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ladan Mahmoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tabriz University, Tabriz, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Parsa Khankandi
- Department of Pharmacognosy, Facultyl of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
28
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
29
|
Zhang FL, Kong L, Zhao AH, Ge W, Yan ZH, Li L, De Felici M, Shen W. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. ENVIRONMENTAL RESEARCH 2021; 198:111225. [PMID: 33971129 DOI: 10.1016/j.envres.2021.111225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Natural and synthetic environmental estrogens (EEs), interfering with the physiological functions of the body's estrogens, are widespread and are rising much concern for their possible deleterious effects on human and animal health, in particular on reproduction. In fact, increasing evidence indicate that EEs can be responsible for a variety of disfunctions of the reproductive system especially in females such as premature ovarian insufficiency (POI). Because of their great structural diversity, the modes of action of EEs are controversial. One important way through which EEs exert their effects on reproduction is the induction of apoptosis in the ovary. In general, EEs can exert pro-and anti-apoptotic effects by agonizing or antagonizing numerous estrogen-dependent signaling pathways. In the present work, results concerning apoptotic pathways and diseases induced by representative EEs (such as zearalenone, bisphenol A and di-2-ethylhexyl phthalate), in ovaries throughout development are presented into an integrated network. By reviewing and elaborating these studies, we propose inflammatory factors, centered on the production of tumor necrosis factor (TNF), as a major cause of the induction of apoptosis by EEs in the mammalian ovary. As a consequence, potential strategies to prevent such EE effect are suggested.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
30
|
Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants (Basel) 2021; 10:antiox10071064. [PMID: 34209224 PMCID: PMC8301030 DOI: 10.3390/antiox10071064] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Soybeans are rich in proteins and lipids and have become a staple part of the human diet. Besides their nutritional excellence, they have also been shown to contain various functional components, including isoflavones, and have consequently received increasing attention as a functional food item. Isoflavones are structurally similar to 17-β-estradiol and bind to estrogen receptors (ERα and ERβ). The estrogenic activity of isoflavones ranges from a hundredth to a thousandth of that of estrogen itself. Isoflavones play a role in regulating the effects of estrogen in the human body, depending on the situation. Thus, when estrogen is insufficient, isoflavones perform the functions of estrogen, and when estrogen is excessive, isoflavones block the estrogen receptors to which estrogen binds, thus acting as an estrogen antagonist. In particular, estrogen antagonistic activity is important in the breast, endometrium, and prostate, and such antagonistic activity suppresses cancer occurrence. Genistein, an isoflavone, has cancer-suppressing effects on estrogen receptor-positive (ER+) cancers, including breast cancer. It suppresses the function of enzymes such as tyrosine protein kinase, mitogen-activated kinase, and DNA polymerase II, thus inhibiting cell proliferation and inducing apoptosis. Genistein is the most biologically active and potent isoflavone candidate for cancer prevention. Furthermore, among the various physiological functions of isoflavones, they are best known for their antioxidant activities. S-Equol, a metabolite of genistein and daidzein, has strong antioxidative effects; however, the ability to metabolize daidzein into S-equol varies based on racial and individual differences. The antioxidant activity of isoflavones may be effective in preventing dementia by inhibiting the phosphorylation of Alzheimer's-related tau proteins. Genistein also reduces allergic responses by limiting the expression of mast cell IgE receptors, which are involved in allergic responses. In addition, they have been known to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. Further, it also has positive effects on menstrual irregularity in non-menopausal women and relieving menopausal symptoms in middle-aged women. Recently, soybean consumption has shown steep increasing trend in Western countries where the intake was previously only 1/20-1/50 of that in Asian countries. In this review, I have dealt with the latest research trends that have shown substantial interest in the biological efficacy of isoflavones in humans and plants, and their related mechanisms.
Collapse
|
31
|
Bernatoniene J, Kazlauskaite JA, Kopustinskiene DM. Pleiotropic Effects of Isoflavones in Inflammation and Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22115656. [PMID: 34073381 PMCID: PMC8197878 DOI: 10.3390/ijms22115656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavones are phytoestrogens of plant origin, mostly found in the members of the Fabaceae family, that exert beneficial effects in various degenerative disorders. Having high similarity to 17-β-estradiol, isoflavones can bind estrogen receptors, scavenge reactive oxygen species, activate various cellular signal transduction pathways and modulate growth and transcription factors, activities of enzymes, cytokines, and genes regulating cell proliferation and apoptosis. Due to their pleiotropic activities isoflavones might be considered as a natural alternative for the treatment of estrogen decrease-related conditions during menopause. This review will focus on the effects of isoflavones on inflammation and chronic degenerative diseases including cancer, metabolic, cardiovascular, neurodegenerative diseases, rheumatoid arthritis and adverse postmenopausal symptoms.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
- Correspondence:
| | - Jurga Andreja Kazlauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| |
Collapse
|
32
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
33
|
Abstract
Phytoestrogens are a group of non-steroidal polyphenolic plant-based substances, commonly used for the treatment of menopause-related conditions. They have both genomic and non-genomic effects, displaying weak affinity for estrogen receptors (ER) and preferentially binding to ER-B over ER-A. However, evidence for the benefits of phytoestrogen consumption has been limited. We conducted a review of recent literature, focusing on systematic reviews and meta-analyses reporting on postreproductive health effects of phytoestrogens. While many trials concerning dietary and supplementary phytoestrogens have been conducted, evidence of clinical efficacy is heterogeneous and inconclusive. There appears to be reduction in the vasomotor symptoms of menopause with phytoestrogen intake; however, it is likely small and slow in onset. Phytoestrogens also appear to improve bone mineral density and markers of cardiovascular risk; however, there is inadequate research regarding long-term outcomes. There appear to be no harmful effects of phytoestrogens on breast, endometrial cancer or colorectal cancer and phytoestrogens intake may in fact be protective. Research regarding the effect of phytoestrogens on cognition is mixed, with most studies reporting no significant association. Overall, individual variations in the metabolism of phytoestrogens and age-related genomic effects may account for the considerable variability in the measured effects of phytoestrogens.
Collapse
Affiliation(s)
- I J Rowe
- Northern Clinical School, Sydney Medical Programme, Royal North Shore Hospital, Sydney, Australia
| | - R J Baber
- University of Sydney Faculty of Medicine and Health, The Royal North Shore Hospital Division of Women and Child Health, Sydney, Australia
| |
Collapse
|
34
|
Shuid A, Ahmad Hairi H, Jamal J, Aladdin N, Husain K, Mohd Sofi N, Mohamed N, Mohamed I. Demethylbelamcandaquinone B from Marantodes pumilum var. alata (Blume) Kuntze inhibits osteoclast differentiation in RAW264.7 cells. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.331269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|