1
|
Zhang B, Wang J, Chen X, Xue T, Xin J, Liu Y, Wang X, Li X. Laminaria japonica Polysaccharide Regulates Fatty Hepatosis Through Bile Acids and Gut Microbiota in Diabetes Rat. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1165-1178. [PMID: 39207652 DOI: 10.1007/s10126-024-10365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In this study, we examined the effect of Laminaria japonica polysaccharide (fucoidan) on the regulation of lipid metabolism. A rat model of diabetes mellitus (DM) was established by a high-sugar and high-fat diet combined with streptozotocin. Changes in the rats' body weight and blood glucose level during the experiment were recorded. Before the end of the experiment, an automatic biochemical analyzer was used to detect the fasting blood glucose (FBG), lipid content in serum, and insulin content, and calculate the insulin resistance index. Oil red O staining was used to detect lipid deposition in the liver. H&E staining, Masson staining, and PASM staining were used to observe the pathological structural changes in the liver. 16 s RNA sequencing and targeted metabolomics were used to detect intestinal microbiota and bile acid content. The results showed that fucoidan was able to inhibit weight loss in the DM rats and reduce the content of triglycerides (TG), cholesterol (TC), and low-density lipoprotein (LDL-C) in serum. Oil red O staining showed a decrease in liver fat accumulation after fucoidan treatment. 16 s RNA sequencing demonstrated that fucoidan increased the abundance of Bacteroidia, Campylobacteria, Clostridia, Gammaproteobacteria, Negativicutes, and Verrucomicrobi. Fucoidan also increased the secretion of secondary bile acids (Nor-DCA, TLCA, β-UDCA) and alleviated lipid metabolism disorders. The expression of α-SMA was inhibited by fucoidan, whereas the expression of FXR and TGR5 was promoted. Fucoidan shows good activity in regulating lipid metabolism by regulating the expression of FXR and TGR5 and acting on the intestinal flora-bile acid axis.
Collapse
Affiliation(s)
- Bo Zhang
- Linyi University, Linyi, Shandong, China
| | - Jiacai Wang
- Linyi University, Linyi, Shandong, China
- Guizhou University, Guiyang, Guizhou, China
| | | | - Tao Xue
- Linyi University, Linyi, Shandong, China
| | - Jie Xin
- Linyi University, Linyi, Shandong, China
| | | | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xinpeng Li
- Linyi University, Linyi, Shandong, China.
| |
Collapse
|
2
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
3
|
Zhong Z, Zhang Y, Wei Y, Li X, Ren L, Li Y, Zhang X, Chen C, Yin X, Liu R, Wang Q. Fucoidan Improves Early Stage Diabetic Nephropathy via the Gut Microbiota-Mitochondria Axis in High-Fat Diet-Induced Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9755-9767. [PMID: 38635872 DOI: 10.1021/acs.jafc.3c08503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of diabetes. Fucoidan, a polysaccharide containing fucose and sulfate group, ameliorates DN. However, the underlying mechanism has not been fully understood. This study aimed to explore the effects and mechanism of fucoidan on DN in high-fat diet-induced diabetic mice. A total of 90 C57BL/6J mice were randomly assigned to six groups (n = 15) as follows: normal control (NC), diabetes mellitus (DM), metformin (MTF), low-dose fucoidan (LFC), medium-dose fucoidan (MFC), and high-dose fucoidan (HFC). A technique based on fluorescein isothiocyanate (FITC-sinistin) elimination kinetics measured percutaneously was applied to determine the glomerular filtration rate (GFR). After 24 weeks, the mice were sacrificed and an early stage DN model was confirmed by GFR hyperfiltration, elevated urinary creatinine, normal urinary albumin, tubulointerstitial fibrosis, and glomerular hypertrophy. Fucoidan significantly improved the GFR hyperfiltration and renal fibrosis. An enriched SCFAs-producing bacteria and increased acetic concentration in cecum contents were found in fucoidan groups, as well as increased renal ATP levels and improved mitochondrial dysfunction. The renal inflammation and fibrosis were ameliorated through inhibiting the MAPKs pathway. In conclusion, fucoidan improved early stage DN targeting the microbiota-mitochondria axis by ameliorating mitochondrial oxidative stress and inhibiting the MAPKs pathway.
Collapse
Affiliation(s)
- Zhaoyi Zhong
- School of Public health, Qingdao University, Qingdao 266071, China
- . Hedong District Center for Disease Control and Prevention, Tianjin 300171, China
| | - Yangting Zhang
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Yuan Wei
- . Qingdao Eighth People's Hospital, Qingdao 266041, China
| | - Xiaona Li
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Lisheng Ren
- . The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yan Li
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Xueqian Zhang
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Chengyu Chen
- School of Public health, Qingdao University, Qingdao 266071, China
| | - Xueru Yin
- School of Public health, Qingdao University, Qingdao 266071, China
| | - Run Liu
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Qiuzhen Wang
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Wu L, Zhang X, Zhao J, Yang M, Yang J, Qiu P. The therapeutic effects of marine sulfated polysaccharides on diabetic nephropathy. Int J Biol Macromol 2024; 261:129269. [PMID: 38211917 DOI: 10.1016/j.ijbiomac.2024.129269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Marine sulfated polysaccharide (MSP) is a natural high molecular polysaccharide containing sulfate groups, which widely exists in various marine organisms. The sources determine structural variabilities of MSPs which have high security and wide biological activities, such as anticoagulation, antitumor, antivirus, immune regulation, regulation of glucose and lipid metabolism, antioxidant, etc. Due to the structural similarities between MSP and endogenous heparan sulfate, a majority of studies have shown that MSP can be used to treat diabetic nephropathy (DN) in vivo and in vitro. In this paper, we reviewed the anti-DN activities, the dominant mechanisms and structure-activity relationship of MSPs in order to provide the overall scene of MSPs as a modality of treating DN.
Collapse
Affiliation(s)
- Lijuan Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xiaonan Zhang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jun Zhao
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Menglin Yang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
5
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
6
|
Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun 2023; 679:37-46. [PMID: 37666046 DOI: 10.1016/j.bbrc.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The virulence of SARS-CoV-2 decreases with increasing infectivity, the primary approaches for antiviral treatments will be preventing or minimizing the complications resulting from virus infection. ADAM metallopeptidase domain 17 (ADAM17) activation by SARS-CoV-2 infection has a dual effect on the development of the disease: increased release of inflammatory cytokines and dysregulation of Angiotensin converting enzyme II (ACE2) on cell surfaces, inflammatory cytokine infiltration and loss of ACE2 protective function lead to a significant increase in the incidence of related complications. Importantly, pathologically activated ADAM17 showed superior features than S protein in regulating ACE2 expression and participating in the intra cellular replication of SARS-CoV-2. In short, SARS-CoV-2 elicits only a limited immune response when it promotes its own replication and pathogenicity through ADAM17. Therefore, the pathological activation of ADAM17 may also represent a diminished innate antiviral defense and an altered strategy of SARS-CoV-2 infection. In this review, we summarized recent advances in our understanding of the pathophysiology of ADAM17, with a focus on the new findings that SARS-CoV-2 affects ADAM17 expression through Furin protein converting enzyme and Mitogen-activated protein kinase (MAPK) pathway, and raises the hypothesis that SARS-CoV-2 may mediates the pathological activation of ADAM17 by hijacking the actin regulatory pathway, and discussed the underlying biological principles.
Collapse
Affiliation(s)
| | - Hao Yang
- Zunyi Medical University Guizhou, China
| | | | - Yi Zhang
- Zunyi Medical University Guizhou, China
| | - Yan Li
- Zunyi Medical University Guizhou, China
| | - Jida Li
- Zunyi Medical University Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
| |
Collapse
|
7
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Tang L, Xiao M, Cai S, Mou H, Li D. Potential Application of Marine Fucosyl-Polysaccharides in Regulating Blood Glucose and Hyperglycemic Complications. Foods 2023; 12:2600. [PMID: 37444337 DOI: 10.3390/foods12132600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes mellitus (DM) has become the world's third major disease after tumors and cardiovascular disease. With the exploitation of marine biological resources, the efficacy of using polysaccharides isolated from marine organisms in blood glucose regulation has received widespread attention. Some marine polysaccharides can reduce blood glucose by inhibiting digestive enzyme activity, eliminating insulin resistance, and regulating gut microbiota. These polysaccharides are mainly fucose-containing sulphated polysaccharides from algae and sea cucumbers. It follows that the hypoglycemic activity of marine fucosyl-polysaccharides is closely related to their structure, such as their sulfate group, monosaccharide composition, molecular weight and glycosidic bond type. However, the structure of marine fucosyl-polysaccharides and the mechanism of their hypoglycemic activity are not yet clear. Therefore, this review comprehensively covers the effects of marine fucosyl-polysaccharides sources, mechanisms and the structure-activity relationship on hypoglycemic activity. Moreover, the potential regulatory effects of fucosyl-polysaccharides on vascular complications caused by hyperglycemia are also summarized in this review. This review provides rationales for the activity study of marine fucosyl-polysaccharides and new insights into the high-value utilization of marine biological resources.
Collapse
Affiliation(s)
- Luying Tang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Shenyuan Cai
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| |
Collapse
|
9
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
10
|
Molecular Mechanism of Fucoidan Nanoparticles as Protector on Endothelial Cell Dysfunction in Diabetic Rats' Aortas. Nutrients 2023; 15:nu15030568. [PMID: 36771275 PMCID: PMC9920843 DOI: 10.3390/nu15030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Antioxidants have an important role in protecting against diabetes complications such as vascular endothelial cell damage. Fucoidan has strong antioxidant properties, therefore the aim of this study was to investigate the protective mechanism of fucoidan nanoparticles through the pathway of antioxidant activity against streptozotocin-induced diabetic aortic endothelial cell dysfunction in rats. Fucoidan nanoparticles are made utilizing high-energy ball milling. This research consists of five groups, namely: control rats, rats were administered aquadest; diabetic rats, rats were administered streptozotocin (STZ); fucoidan nanoparticle rats, rats were administered STZ and fucoidan nanoparticles. Aortic tissue was collected for the evaluation of ROS (reactive oxygen species), Malondialdehyde (MDA), superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), Nuclear factor erythroid-2-related factor 2 (Nrf2), Nitric Oxide (NO), cyclic Guanosine Monophosphate (cGMP), relaxation response of acetylcholine (Ach), and the diameter of the aorta. The size distribution of the fucoidan nanoparticles was 267.2 ± 42.8 nm. Administration of fucoidan nanoparticles decreased the levels of ROS and MDA, and increased the levels of SOD, levels of GPx, Nrf2 expression, NO levels, cGMP expression, the relaxation response of Ach, and lumen diameter of the aorta, which are significantly different when compared with diabetic rats, p < 0.05. In this study, we concluded that the mechanism pathway of fucoidan nanoparticles prevents aortic endothelial cell dysfunction in diabetic rats through antioxidant activity by reducing ROS and MDA and incrementing SOD levels, GPx levels, and Nrf2 expression. All of these can lead to an elevated relaxation response effect of Ach and an increase in the lumen diameter of the aorta, which indicates a protective effect of fucoidan nanoparticles on aortic endothelial cells.
Collapse
|
11
|
Wang J, Feng Y, Zhang Y, Liu J, Gong L, Zhang X, Liao H. TNF-α and IL-1β Promote Renal Podocyte Injury in T2DM Rats by Decreasing Glomerular VEGF/eNOS Expression Levels and Altering Hemodynamic Parameters. J Inflamm Res 2022; 15:6657-6673. [PMID: 36532651 PMCID: PMC9748123 DOI: 10.2147/jir.s391473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 07/01/2024] Open
Abstract
PURPOSE Diabetic nephropathy (DN) is a serious microvascular complication in those with type 2 diabetes mellitus (T2DM). Evidence confirms that serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the T2DM stage are proposed as prognostic markers for DN development, but it is unclear how they affect renal podocyte-associated nephrin and WT-1 expression. In the presence of podocyte injury, glomerular vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS) and hemodynamic parameters are dysregulated. The current research aimed to clarify the relationship of TNF-α and IL-1β with podocyte injury by altering VEGF/eNOS expression and hemodynamic parameters. METHODS A high-fat diet/streptozotocin-induced DN rat model was established. Serum TNF-α and IL-1β levels were tracked in the pre-T2DM, T2DM and DN stages. In the DN stage, the mRNA and protein expression levels of renal TNF-α, IL-1β, VEGF, eNOS, nephrin and WT-1 were studied. Renal hemodynamic parameters, including peak systolic velocity, end-diastolic flow velocity and mean velocity were measured with a color Doppler ultrasound technique. RESULTS Compared to those in the normal control (CTL) group, serum TNF-α and IL-1β levels increased significantly in the pre-T2DM stage (obesity, insulin resistance and hyperlipidemia), T2DM stage (hyperglycemia) and DN stage (abnormal renal functions) (all: P < 0.05) in the DN group. Serum TNF-α and IL-1β levels in the T2DM stage were significantly higher than those in the pre-T2DM stage (two: P < 0.05). Compared to the CTL group, renal nephrin, WT-1, TNF-α, IL-1β, eNOS and VEGF expression and hemodynamic parameters in the DN stage all showed significant differences separately (all: P < 0.05). CONCLUSION Increased serum and renal TNF-α and IL-1β levels played important roles in reducing renal nephrin and WT-1 expression levels, which may be related to the fact that the former affected renal VEGF/eNOS expression and blood flow parameters in the DN rats.
Collapse
Affiliation(s)
- Jufang Wang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yan Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaohong Zhang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Hui Liao
- Department of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| |
Collapse
|
12
|
Lee IS, Ko SJ, Lee YN, Lee G, Rahman MH, Kim B. The Effect of Laminaria japonica on Metabolic Syndrome: A Systematic Review of Its Efficacy and Mechanism of Action. Nutrients 2022; 14:3046. [PMID: 35893900 PMCID: PMC9370431 DOI: 10.3390/nu14153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolic syndrome (MetS) is a medical condition characterized by abdominal obesity, insulin resistance, high blood pressure, and hyperlipidemia. An increase in the incidence of MetS provokes an escalation in health care costs and a downturn in quality of life. However, there is currently no cure for MetS, and the absence of immediate treatment for MetS has prompted the development of novel therapies. In accordance with recent studies, the brown seaweed Laminaria japonica (LJP) has anti-inflammatory and antioxidant properties, and so forth. LJP contains bioactive compounds used as food globally, and it has been used as a medicine in East Asian countries. We conducted a systematic review to examine whether LJP could potentially be a useful therapeutic drug for MetS. The following databases were searched from initiation to September 2021: PubMed, Web of Science, EMBASE, and Cochrane Central Register of Controlled Trials Library. Clinical trials and in vivo studies evaluating the effects of LJP on MetS were included. LJP reduces the oxidative stress-related lipid mechanisms, inflammatory cytokines and macrophage-related chemokines, muscle cell proliferation, and migration. Bioactive-glucosidase inhibitors reduce diabetic complications, a therapeutic target in obesity and type 2 diabetes. In obesity, LJP increases AMP-activated protein kinase and decreases acetyl-CoA carboxylase. Based on our findings, we suggest that LJP could treat MetS, as it has pharmacological effects on MetS.
Collapse
Affiliation(s)
- In-Seon Lee
- Department of Meridians and Acupoints, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea;
| | - Yu Na Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Gahyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Md. Hasanur Rahman
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 05253, Korea; (Y.N.L.); (G.L.); (M.H.R.)
| |
Collapse
|
13
|
Prognostic Value of Serum Interleukin-6, NF- κB plus MCP-1 Assay in Patients with Diabetic Nephropathy. DISEASE MARKERS 2022; 2022:4428484. [PMID: 35756496 PMCID: PMC9232375 DOI: 10.1155/2022/4428484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
Objective To assess the prognostic value of serum interleukin-6 (IL-6), nuclear factor-κB (NF-κB), and monocyte chemoattractant protein 1(MCP-1) assay in patients with diabetic nephropathy. Methods From May 2019 to March 2020, 104 patients with diabetic nephropathy treated in our institution assessed for eligibility were recruited and assigned at a ratio of 1 : 1 to either the observation group ([urinary albumin excretion rate (UAER)] of 30 mg-300 mg/24 h) or the research group ([UAER] >300 mg/24 h). IL-6, MCP-1, renal function indices, and NF-κB levels were determined, and their correlation with DN was analyzed. Logistic regression was used to analyze the influencing factors of end-stage renal disease in patients with diabetic nephropathy. The receiver operating characteristic (ROC) curve was drawn, and the area under the curve (AUC) was calculated to analyze the predictive value of combined detection of IL-6, MCP-1, and NF-κB in the prognosis of patients with diabetic nephropathy. Results The eligible patients with UAER of 30 mg-300 mg/24 h were associated with significantly higher levels of IL-6, MCP-1, NF-κB, blood urea nitrogen (BUN), and serum creatinine (Scr) versus those with UAER >300 mg/24 h (P < 0.05). During the follow-up, a total of 38 patients progressed to end-stage renal diseases. Eligible patients with end-stage renal diseases showed significantly higher serum IL-6, MCP-1, and NF-κB levels versus those without end-stage renal diseases (P < 0.05). Serum IL-6, MCP-1, and NF-κB are independent risk factors for the occurrence of end-stage renal disease in patients with diabetic nephropathy. The AUCs of IL-6, MCP-1, and NF-κB for predicting the prognosis of patients with diabetic nephropathy were 0.562, 0.634, and 0.647, respectively, and the AUC of the three combined detection for predicting the prognosis of patients with diabetic nephropathy was 0.889. Conclusion Serum IL-6, NF-κB, and MCP-1 levels are closely related to renal injury and poor prognosis in patients with diabetic nephropathy, and the combined assay is valuable for assessing patients' condition and prognosis.
Collapse
|
14
|
Low Molecular Weight Fucoidan Inhibits Pulmonary Fibrosis In Vivo and In Vitro via Antioxidant Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7038834. [PMID: 35281460 PMCID: PMC8906950 DOI: 10.1155/2022/7038834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 12/05/2022]
Abstract
In this study, sulfated polysaccharides extracted from Laminaria japonica were degraded by free radicals to obtain low molecular weight fucoidan (LMWF). The in vivo and in vitro effects of LMWF on bleomycin-treated pulmonary fibrosis mice and TGF-treated A549 cells, respectively, were evaluated, and the role of antioxidant activity was assessed. H&E, Masson's trichrome, and Sirius red staining results showed that bleomycin induced obvious pathological changes and collagen deposition in the lung tissue of mice. However, LMWF effectively inhibited collagen deposition, and based on immunohistochemistry analyses, LMWF can also inhibit the expression of fibrosis markers. At the same time, LMWF could regulate related antioxidant factors in the lung tissue of pulmonary fibrosis mice and reduce the pressure of oxidative stress. Moreover, LMWF could improve the morphology of cells induced with TGF, which confirmed that LMWF could inhibit fibrosis via antioxidant activity modulation.
Collapse
|
15
|
Lin HJ, Mahendran R, Huang HY, Chiu PL, Chang YM, Day CH, Chen RJ, Padma VV, Liang-Yo Y, Kuo WW, Huang CY. Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114728. [PMID: 34634367 DOI: 10.1016/j.jep.2021.114728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum, commonly known as Makoi or black shade has been traditionally used in Asian countries and other regions of world to treat liver disorders, diarrhoea, inflammatory conditions, chronic skin ailments (psoriasis and ringworm), fever, hydrophobia, painful periods, eye diseases, etc. It has been observed that S. nigrum contains substances, like steroidal saponins, total alkaloid, steroid alkaloid, and glycoprotein, which show anti-tumor activity. However; there is no scientific evidence of the efficacy of S. nigrum in the treatment of cardiac hypertrophy. AIM To investigate the ability of S. nigrum to attenuate Angiotensin II - induced cardiac hypertrophy and improve cardiac function through the suppression of protein kinase PKC-ζ and Mel-18-IGF-IIR signaling leading to the restoration of HSF2 desumolyation. MATERIALS AND METHODS Cardiomyoblast cells (H9c2) were challenged with 100 nM Angiotensin-II (AngII) for 24 h and were then treated with different concentration of S.nigrum or Calphostin C for 24 h. The hypertrophic effect in cardiomyoblast cells were determined by immunofluorescence staining and the modulations in hypertrophic protein marker along with Protein Kinase C-ζ, MEL18, HSF2, and Insulin like growth factor II (IGFIIR), markers were analyzed by western blotting. In vivo experiments were performed using 12 week old male Wistar Kyoto rats (WKY) and Spontaneously hypertensive rats (SHR) separated into five groups. [1]Control WKY, [2] WKY -100 mg/kg of S.nigrum treatment, [3] SHR, [4] SHR-100 mg/kg of S.nigrum treatment, [5] SHR-300 mg/kg of S.nigrum treatment. S. nigrum was administered intraperitoneally for 8 week time interval. RESULTS Western blotting results indicate that S. nigrum significantly attenuates AngII induced cardiac hypertrophy. Furthermore, actin staining confirmed the ability of S. nigrum to ameliorate AngII induced cardiac hypertrophy. Moreover, S. nigrum administration suppressed the hypertrophic signaling mediators like Protein Kinase C-ζ, Mel-18, and IGFIIR in a dose-dependent manner and HSF2 activation (restore deSUMOlyation) that leads to downregulation of IGF-IIR expression. Additionally in vivo experiments demonstrate the reduced heart sizes of S. nigrum treated SHRs rats when compared to control WKY rats. CONCLUSION Collectively, the data reveals the cardioprotective effect of S. nigrum inhibiting PKC-ζ with alleviated IGF IIR level in the heart that profoundly remits cardiac hypertrophy for hypertension-induced heart failure.
Collapse
Affiliation(s)
- Hung-Jen Lin
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ramasamy Mahendran
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsiang-Yen Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan, ROC
| | - Ping-Ling Chiu
- Ept Douliu Chinese Medical Clinic, Douliu, Taiwan; 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Yung-Ming Chang
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Yang Liang-Yo
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
16
|
Zhang B, Yuan Y, Xin J, Chen M, Wang Z, Li X, Xue T. Study of Water- and Organic-Soluble Extracts from Trichosanthes on Type 1 Diabetes Mellitus. J Diabetes Res 2022; 2022:3250016. [PMID: 35224106 PMCID: PMC8872669 DOI: 10.1155/2022/3250016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigates the effects of the water-soluble and organic-soluble Trichosanthes extracts on the hyperglycemic condition in streptozotocin- (STZ-) induced diabetic rats. The blood glucose levels, body weights, water intake, and urine volumes of rats in different experimental groups were monitored throughout the experiment, and the results obtained indicate that the two extracts can effectively reduce blood sugar levels, increase body weights, and improve water intake and urine volumes in diabetic rats. Based on blood biochemical analyses, the two extracts play an important role in regulating the diabetes-induced lipid metabolism disorder, increasing the levels of insulin and C-peptide, and alleviating the symptoms of diabetes. The variation in the liver glycogen contents of the water-soluble fraction and ethanol fraction groups suggests that the mechanisms underlying the hypoglycemic effects of the two extracts are different. Indeed, the water-soluble fraction alleviates diabetes symptoms in rats mainly by antioxidative activity, unlike the ethanol fraction.
Collapse
Affiliation(s)
- Bo Zhang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Yanli Yuan
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Jie Xin
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Min Chen
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
- Chinese Academy of Traditional Chinese Medicine, China
| | - Xinpeng Li
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Tao Xue
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| |
Collapse
|
17
|
Luan F, Zou J, Rao Z, Ji Y, Lei Z, Peng L, Yang Y, He X, Zeng N. Polysaccharides from Laminaria japonica: an insight into the current research on structural features and biological properties. Food Funct 2021; 12:4254-4283. [PMID: 33904556 DOI: 10.1039/d1fo00311a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Laminaria japonica, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for treating weight loss, phlegm elimination, and detumescence for more than 2000 years. Numerous studies have found that the polysaccharides play an indispensable role in the nutritional and medicinal value of L. japonica. Water extraction and alcohol precipitation method is the most used method. Approximately 56 LJPs were successfully isolated and purified from L. japonica, whereas only few of them were well characterized. Modern pharmacological studies have shown that L. japonica polysaccharides (LJPs) have high-order structural features and multiple biological activities, including anti-tumor, anti-thrombotic, anti-atherosclerosis, hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, renoprotective, and immunomodulatory. In addition, the structural characteristics of LJPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, and structure-activity relationships of LJPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of LJPs were also outlined. Furthermore, the clinical settings and structure-activity functions of LJPs were highlighted. Some research perspectives and challenges in the study of LJPs were also proposed.
Collapse
Affiliation(s)
- Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Sun Y, Shao F, Zhang B, Wang Z, Li X. Low Molecular Weight Fucoidan Can Inhibit the Fibrosis of Diabetic Kidneys by Regulating the Kidney Lipid Metabolism. J Diabetes Res 2021; 2021:7618166. [PMID: 34869779 PMCID: PMC8635909 DOI: 10.1155/2021/7618166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, a diabetic kidney disease model was established by placing the test rats on a high-sugar/high-fat diet combined with streptozotocin induction. Histopathological examination (H&E, Masson, and PASM stain) showed pathological changes in the diabetic rat kidneys, in addition to fibrotic symptoms and collagen deposition. Immunohistochemistry and western blot analyses indicated that the diabetic condition significantly increased the expressions of fibrotic markers including collagen, α-SMA, and fibronectin. The levels of cholesterol, triglyceride, and low-density lipoprotein were also increased in diabetic kidney disease (DKD) rat blood, while the level of high-density lipoprotein was decreased. The results of Oil red O staining experiments indicated that the kidneys of diabetic rats exhibited appreciable fat deposition, with high contents of triglyceride and cholesterol. To inhibit fibrosis and reduce fat deposition, low molecular weight fucoidan (LMWF) may be used. Based on PCR and western blot analyses, LMWF can regulate the expression levels of important lipid metabolism regulators, thereby impeding the development of kidney fibrosis. Through the vitro model, it also be indicated that LMWF could inhibit fibrosis process through regulating lipid metabolism which induced by palmitic acid.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Yanlei Sun
- Linyi Tumor Hospital, Linyi, Shandong, China
| | - Fengli Shao
- College of Life Sciences, Linyi University, Linyi, Shandong, China
| | - Bo Zhang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
- Chinese Academy of Traditional Chinese Medicine, China
| | - Xinpeng Li
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| |
Collapse
|