1
|
Moshkunov K, Tomasetti B, Daphnis T, Delmez V, Vanvarenberg K, Préat V, Lorenz M, Quanico J, Baggerman G, Lemiere F, Dupont C, Delcorte A. Improvement of biomolecular analysis in thin films using in situ matrix enhanced secondary ion mass spectrometry. Analyst 2021; 146:6506-6519. [PMID: 34570146 DOI: 10.1039/d1an00727k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitivity to molecular ions remains a limiting factor for high resolution imaging mass spectrometry of organic and biological materials. Here, we investigate a variant of matrix-enhanced secondary ion mass spectrometry in which the transfer of matrix molecules to the analyte sample is carried out in situ (in situ ME-SIMS). This approach is therefore compatible with both 2D and 3D imaging by SIMS. In this exploratory study, nanoscale matrix layers were sputter-transferred inside our time-of-flight (ToF)-SIMS to a series of thin films of biomolecules (proteins, sugars, lipids) adsorbed on silicon, and the resulting layers were analyzed and depth-profiled. For this purpose, matrix molecules were desorbed from a coated target (obtained by drop-casting or sublimation) using 10 keV Ar3000+ ion beam sputtering, followed by redeposition on a collector carrying the sample to be analyzed. After evaluating the quality of the transfer of six different matrices on bare Si collectors, α-cyano-4-hydroxycinnamic acid (CHCA) was selected for further experiments. The mass spectra and depth profiles obtained from the organic layer prior to and after the sputter-transfer of CHCA were compared, along with those obtained from regular ME-SIMS samples (dried droplets) and, finally, with MALDI data for the same matrix-analyte combinations. Signal amplification factors were calculated by dividing the integrated molecular intensities obtained with or without matrix transfer. While the amplification factors are between 0.5 and 2 for molecules already detected with high intensities in SIMS, such as cholesterol or human angiotensin, other compounds show very large integrated signal amplification, even above two orders of magnitude. This is the case for D-glucose and cardiolipin, for which the molecular ion intensity is low (or very low) under normal SIMS analysis conditions. For such low ionization probability compounds, the beneficial effect of the matrix is unquestionable. Test experiments on mouse brain tissue sections also indicate signal enhancement with the matrix, especially for high mass lipid ions.
Collapse
Affiliation(s)
- Konstantin Moshkunov
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Benjamin Tomasetti
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Thomas Daphnis
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Vincent Delmez
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Kevin Vanvarenberg
- Louvain Drug Research Institute, Université catholique de Louvain, Avenue Mounier 73, 1200 Woluwe-Saint-Lambert, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Université catholique de Louvain, Avenue Mounier 73, 1200 Woluwe-Saint-Lambert, Belgium
| | - Matthias Lorenz
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.,Present address: PerkinElmer Inc., 6-501 Rowntree Dairy Rd, Woodbridge, ON L4L 8H1, Canada
| | - Jusal Quanico
- Centre for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, B2020 Antwerp, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, B2020 Antwerp, Belgium.,Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Filip Lemiere
- Centre for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, B2020 Antwerp, Belgium.,Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christine Dupont
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
2
|
Van Meter MI, Khan SM, Taulbee-Cotton BV, Dimmitt NH, Hubbard ND, Green AM, Webster GK, McVey PA. Diagnosis of Agglomeration and Crystallinity of Active Pharmaceutical Ingredients in Over the Counter Headache Medication by Electrospray Laser Desorption Ionization Mass Spectrometry Imaging. Molecules 2021; 26:molecules26030610. [PMID: 33503894 PMCID: PMC7865442 DOI: 10.3390/molecules26030610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Agglomeration of active pharmaceutical ingredients (API) in tablets can lead to decreased bioavailability in some enabling formulations. In a previous study, we determined that crystalline APIs can be detected as agglomeration in tablets formulated with amorphous acetaminophen tablets. Multiple method advancements are presented to better resolve agglomeration caused by crystallinity in standard tablets. In this study, we also evaluate three “budget” over-the-counter headache medications (subsequently labeled as brands A, B, and C) for agglomeration of the three APIs in the formulation: Acetaminophen, aspirin, and caffeine. Electrospray laser desorption ionization mass spectrometry imaging (ELDI-MSI) was used to diagnose agglomeration in the tablets by creating molecular images and observing the spatial distributions of the APIs. Brand A had virtually no agglomeration or clustering of the active ingredients. Brand B had extensive clustering of aspirin and caffeine, but acetaminophen was observed in near equal abundance across the tablet. Brand C also had extensive clustering of aspirin and caffeine, and minor clustering of acetaminophen. These results show that agglomeration with active ingredients in over-the-counter tablets can be simultaneously detected using ELDI-MS imaging.
Collapse
Affiliation(s)
- Mariann Inga Van Meter
- Department of Chemistry, Marian University, Indianapolis, IN 46222, USA; (M.I.V.M.); (B.V.T.-C.); (N.H.D.); (N.D.H.)
| | - Salah M. Khan
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (S.M.K.); (A.M.G.)
| | - Brynne V. Taulbee-Cotton
- Department of Chemistry, Marian University, Indianapolis, IN 46222, USA; (M.I.V.M.); (B.V.T.-C.); (N.H.D.); (N.D.H.)
| | - Nathan H. Dimmitt
- Department of Chemistry, Marian University, Indianapolis, IN 46222, USA; (M.I.V.M.); (B.V.T.-C.); (N.H.D.); (N.D.H.)
| | - Nathan D. Hubbard
- Department of Chemistry, Marian University, Indianapolis, IN 46222, USA; (M.I.V.M.); (B.V.T.-C.); (N.H.D.); (N.D.H.)
| | - Adam M. Green
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (S.M.K.); (A.M.G.)
| | | | - Patrick A. McVey
- Department of Chemistry, Marian University, Indianapolis, IN 46222, USA; (M.I.V.M.); (B.V.T.-C.); (N.H.D.); (N.D.H.)
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (S.M.K.); (A.M.G.)
- Correspondence: ; Tel.: +1-317-955-6481
| |
Collapse
|
3
|
Shiea J, Bhat SM, Su H, Kumar V, Lee CW, Wang CH. Rapid quantification of acetaminophen in plasma using solid-phase microextraction coupled with thermal desorption electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8564. [PMID: 31490602 DOI: 10.1002/rcm.8564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Solid-phase microextraction coupled with thermal desorption electrospray ionization tandem mass spectrometry (SPME-TD-ESI-MS/MS) is proposed as a novel method for the rapid quantification of acetaminophen in plasma samples from a pharmacokinetics (PK) study. METHODS Traces of acetaminophen were concentrated on commercial fused-silica fibers coated with a polar polyacrylate (PA) polymer using direct immersion SPME. No agitation, heating, addition of salt, or adjustment of the pH of the sample solution was applied during the extraction. Any acetaminophen absorbed on the SPME fibers was subsequently desorbed and detected by TD-ESI-MS/MS. RESULTS Parameters of the absorption, sensitivity, reproducibility, and linearity for the SPME-TD-ESI-MS/MS method were evaluated. The time required to complete a TD-ESI-MS/MS analysis was less than 30 seconds. Matrix-matching calibration was performed to calculate the concentration of acetaminophen in the sample. A linear calibration curve with a concentration range of 100-10,000 ng/mL was constructed to calculate the quantity of acetaminophen. The SPME-TD-ESI-MS quantification results for acetaminophen in plasma were in good agreement with those obtained by the conventional LC/MS/MS method. CONCLUSIONS With the proposed method, a 10-min SPME time was enough to achieve the lower limit of quantitation (i.e. 100 ng/mL) and for a complete PK profiling of acetaminophen. A shorter extraction time could be achieved by applying agitation, heating, adding salt, or adjusting the pH of the sample solution to enhance analyte absorption efficiency. The time required to detect acetaminophen on the SPME fiber was less than 30 s, allowing the rapid quantification of acetaminophen in plasma with good accuracy.
Collapse
Affiliation(s)
- Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Vinoth Kumar
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wei Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chin-Hsiung Wang
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
McVey PA, Webster GK, Galayda KJ, Houk RS. Rapid diagnosis of drug agglomeration and crystallinity in pharmaceutical preparations by electrospray laser desorption ionization mass spectrometry imaging. J Pharm Biomed Anal 2019; 179:112977. [PMID: 31810822 DOI: 10.1016/j.jpba.2019.112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
In this study we evaluate the applicability of electrospray laser desorption ionization mass spectrometry imaging (ELDI-MSI) to interrogate tablet formulations for the spatial distributions of ingredients. Tablet formulations with varying amounts of crystalline acetaminophen (the active pharmaceutical ingredient, API) were analyzed to determine if crystallinity could be evaluated via ELDI-MSI. ELDI-MSI concurrently imaged the (API, binders, and surfactants. The spatial distributions of amorphous API were very similar to that of the surfactants and different from that of crystalline API. The higher the crystallinity in the tablet formulation, the more agglomeration of the active ingredient was observed by ELDI-MSI. This study shows the capability of ELDI-MSI to diagnose agglomeration and crystallinity content in pharmaceutical preparations with little to no sample preparation. The ability to concurrently image APIs with other components provides valuable information as to their form in the tablet.
Collapse
Affiliation(s)
- Patrick A McVey
- Department of Chemistry, Iowa State University, Ames, IA, USA; Ames Laboratory-US Dept. of Energy, Iowa State University, Ames, IA, USA; Marian University, 3200 Cold Spring Road, Indianapolis, IN, 46222, USA.
| | | | - Katherine-Jo Galayda
- Department of Chemistry, Iowa State University, Ames, IA, USA; Ames Laboratory-US Dept. of Energy, Iowa State University, Ames, IA, USA
| | - R S Houk
- Department of Chemistry, Iowa State University, Ames, IA, USA; Ames Laboratory-US Dept. of Energy, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Trimpin S. Novel ionization processes for use in mass spectrometry: 'Squeezing' nonvolatile analyte ions from crystals and droplets. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:96-120. [PMID: 30138957 DOI: 10.1002/rcm.8269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 05/25/2023]
Abstract
Together with my group and collaborators, I have been fortunate to have had a key role in the discovery of new ionization processes that we developed into new flexible, sensitive, rapid, reliable, and robust ionization technologies and methods for use in mass spectrometry (MS). Our current research is focused on how best to understand, improve, and use these novel ionization processes which convert volatile and nonvolatile compounds from solids or liquids into gas-phase ions for analysis by MS using e.g. mass-selected fragmentation and ion mobility spectrometry to provide reproducible, accurate, and improved mass and drift time resolution. In my view, the apex was the discovery of vacuum matrix-assisted ionization (vMAI) in 2012 on an intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source without the use of a laser, high voltages, or any other added energy. Only exposure of the matrix:analyte to the sub-atmospheric pressure of the mass spectrometer was necessary to initiate ionization. These findings were initially rejected by three different scientific journals, with comments related to 'how can this work?', 'where do the charges come from?', and 'it is not analytically useful'. Meanwhile, we and others have demonstrated analytical utility without a complete understanding of the mechanism. In reality, MALDI and electrospray ionization are widely used in science and their mechanisms are still controversially discussed despite use and optimization of now 30 years. This Perspective covers the applications and mechanistic aspects of the novel ionization processes for use in MS that guided us in instrument developments, and provides our perspective on how they relate to traditional ionization processes.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- MSTM, LLC, Newark, DE, 19711, USA
| |
Collapse
|
6
|
Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H. Ambient mass spectrometry for food science and industry. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Wang H, Fei Z, Li Z, Xing R, Liu Z, Zhang Y, Ding H. Coupling laser desorption with corona beam ionization for ambient mass spectrometric analysis of solution and powder samples. Talanta 2018; 179:364-368. [DOI: 10.1016/j.talanta.2017.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/21/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022]
|
8
|
Zhang W, Wang X, Xia Y, Ouyang Z. Ambient Ionization and Miniature Mass Spectrometry Systems for Disease Diagnosis and Therapeutic Monitoring. Theranostics 2017; 7:2968-2981. [PMID: 28839457 PMCID: PMC5566099 DOI: 10.7150/thno.19410] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/06/2017] [Indexed: 12/26/2022] Open
Abstract
Mass spectrometry has become a powerful tool in the field of biomedicine. The combination of ambient ionization and miniature mass spectrometry systems could most likely fulfill a significant need in medical diagnostics, providing highly specific molecular information in real time for clinical and even point-of-care analysis. In this review, we discuss the recent development of ambient ionization and miniature mass spectrometers as well as their potential in disease diagnosis and therapeutic monitoring, with an emphasis on their capability in analysis of biofluids and tissues. We also speculate the future development of the integrated, miniature MS systems and provide our perspectives on the challenges in technical development as well as possible solutions for path forward.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 10084, China
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Quantification of monohydroxylated polycyclic aromatic hydrocarbons in human urine samples using solid-phase microextraction coupled with glass-capillary nanoelectrospray ionization mass spectrometry. Anal Chim Acta 2017; 973:68-74. [DOI: 10.1016/j.aca.2017.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 04/02/2017] [Indexed: 12/21/2022]
|
10
|
Jagerdeo E, Wriston A. Rapid analysis of forensic-related samples using two ambient ionization techniques coupled to high-resolution mass spectrometers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:782-790. [PMID: 28263006 DOI: 10.1002/rcm.7844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 05/05/2023]
Abstract
RATIONALE This paper highlights the versatility of interfacing two ambient ionization techniques, Laser Diode Thermal Desorption (LDTD) and Atmospheric Solids Analysis Probe (ASAP), to high-resolution mass spectrometers and demonstrate the method's capability to rapidly generate high-quality data from multiple sample types with minimal, if any, sample preparation. METHODS For ASAP-MS analysis of solid and liquid samples, the material was transferred to a capillary surface before being introduced into the mass spectrometer. For LDTD-MS analysis, samples were solvent extracted, spotted in a 96-well plate, and the solvent was evaporated before being introduced into the mass spectrometer. All analyses were performed using Atmospheric Pressure Chemical Ionization in positive mode. RESULTS Seven consumer "Spice" packets were combined and analyzed by both ASAP and LDTD, which identified 11 synthetic cannabinoids/cathinones by full MS and MS/MS experiments. To further show the usefulness of these techniques, black tar heroin was analyzed, which resulted in the identification of heroin and its impurities (monoacetylmorphine, papaverine, and noscapine). These experiments were performed on the LTQ-Orbitrap to demonstrate the ability to perform both parallel and serial MS and MSn experiments. CONCLUSIONS Interfacing LDTD and ASAP to high-resolution mass spectrometers allows for expeditious analysis of a wide range of samples, with minimal or no sample preparation. Both allow for rapid full scan, MS/MS, and/or MSn experiments from a single sample introduction. Published in 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Eshwar Jagerdeo
- Federal Bureau of Investigation Laboratory, Quantico, VA, 22135, USA
| | - Amanda Wriston
- Federal Bureau of Investigation Laboratory, Quantico, VA, 22135, USA
| |
Collapse
|
11
|
Meher AK, Chen YC. Electrospray Modifications for Advancing Mass Spectrometric Analysis. ACTA ACUST UNITED AC 2017; 6:S0057. [PMID: 28573082 DOI: 10.5702/massspectrometry.s0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022]
Abstract
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented.
Collapse
Affiliation(s)
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
12
|
van Geenen FAMG, Franssen MCR, Schotman AHM, Zuilhof H, Nielen MWF. Ambient Characterization of Synthetic Fibers by Laser Ablation Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:4031-4037. [PMID: 28252942 PMCID: PMC5388367 DOI: 10.1021/acs.analchem.6b04641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct analysis of synthetic fibers under ambient conditions is highly desired to identify the polymer, the finishes applied and irregularities that may compromise its performance and value. In this paper, laser ablation electrospray ionization ion mobility time-of-flight mass spectrometry (LAESI-IMS-TOF-MS) was used for the analysis of synthetic polymers and fibers. The key to this analysis was the absorption of laser light by aliphatic and aromatic nitrogen functionalities in the polymers. Analysis of polyamide (PA) 6, 46, 66, and 12 pellets and PA 6, 66, polyaramid and M5 fibers yielded characteristic fragment ions without any sample pretreatment, enabling their unambiguous identification. Synthetic fibers are, in addition, commonly covered with a surface layer for improved adhesion and processing. The same setup, but operated in a transient infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mode, allowed the detailed characterization of the fiber finish layer and the underlying polymer. Differences in finish layer distribution may cause variations in local properties of synthetic fibers. Here we also show the feasibility of mass spectrometry imaging (MSI) of the distribution of a finish layer on the synthetic fiber and the successful detection of local surface defects.
Collapse
Affiliation(s)
- Fred A M G van Geenen
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands.,RIKILT, Wageningen University & Research , P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
13
|
Ambient Desorption/Ionization. Mass Spectrom (Tokyo) 2017. [DOI: 10.1007/978-3-319-54398-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Abstract
Ambient ionization MS has become very popular in analytical science and has now evolved as an effective analytical tool in metabolomics, biological tissue imaging, protein and small molecule drug analysis, where biological samples are probed in a rapid and direct fashion with minimal sample preparation at ambient conditions. However, certain inherent challenges continue to hinder the vibrant prospects of these methods for in situ analyses or to replace conventional methods in bioanalysis. This review provides an introduction to the field and its application in bioanalysis, with an emphasis on the most recent developments and applications. Furthermore, ongoing challenges or limitations related to quantitation, sensitivity, selectivity, instrumentation and mass range of these ambient methods will also be discussed.
Collapse
|
15
|
Huang MZ, Jhang SS, Shiea J. Electrospray laser desorption ionization (ELDI) mass spectrometry for molecular imaging of small molecules on tissues. Methods Mol Biol 2015; 1203:107-116. [PMID: 25361671 DOI: 10.1007/978-1-4939-1357-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of an ambient ionization mass spectrometry technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS) for molecular imaging is described in this section. The technique requires little or no sample pretreatment and the application of matrix on sample surfaces is unnecessary. In addition, the technique is highly suitable for the analysis of hard and thick tissues compared to other molecular imaging methods because it does not require production of thin tissue slices via microtomes, which greatly simplifies the overall sample preparation procedure and prevents the redistribution of analytes during matrix desorption. In this section, the ELDI/MS technique was applied to the profiling and imaging of chemical compounds on the surfaces of dry plant slices. Analyte distribution on plant slices was obtained by moving the sample relative to a pulsed laser and an ESI capillary for analyte desorption and post-ionization, respectively. Images of specific ions on sample surfaces with resolutions of 250 μm were typically created within 4.2 h for tissues with sizes of approximately 57 mm × 10 mm.
Collapse
Affiliation(s)
- Min-Zong Huang
- Department of Chemistry, College of Science, National Sun Yat-Sen University, No. 70, Lienhai Rd., Kaohsiung, 80424, Taiwan
| | | | | |
Collapse
|
16
|
Kao YY, Cheng SC, Cheng CN, Shiea J, Ho HO. Detection of trace ink compounds in erased handwritings using electrospray-assisted laser desorption ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:445-451. [PMID: 24913397 DOI: 10.1002/jms.3356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Writings made with erasable pens on paper surfaces can either be rubbed off with an eraser or rendered invisible by changing the temperature of the ink. However, trace ink compounds still remain in the paper fibers even after rubbing or rendering. The detection of these ink compounds from erased handwritings will be helpful in knowing the written history of the paper. In this study, electrospray-assisted laser desorption ionization/mass spectrometry was used to characterize trace ink compounds remaining in visible and invisible ink lines. The ink compounds were desorbed from the paper surface by irradiating the handwritings with a pulsed laser beam; the desorbed analytes were subsequently ionized in an electrospray plume and detected by a quadrupole time-of-flight mass spectrometry mass analyzer. Because of the high spatial resolution of the laser beam, electrospray-assisted laser desorption ionization/mass spectrometry analysis resulted in minimal damage to the sample documents.
Collapse
Affiliation(s)
- Yi-Ying Kao
- College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Investigation Bureau, Ministry of Justice, New Taipei City, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Culzoni MJ, Dwivedi P, Green MD, Newton PN, Fernández FM. Ambient mass spectrometry technologies for the detection of falsified drugs. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00235g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Flanigan P, Levis R. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:229-256. [PMID: 25014343 DOI: 10.1146/annurev-anchem-071213-020343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.
Collapse
Affiliation(s)
- Paul Flanigan
- Center for Advanced Photonics Research, Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122; ,
| | | |
Collapse
|
19
|
Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: A review. Anal Chim Acta 2014; 808:70-82. [DOI: 10.1016/j.aca.2013.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/28/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
20
|
Abstract
This Review provides a general understanding of paper spray-MS, including the methodology and theory associated with a number of different related applications. This method has become a direct sampling/ionization method for mass spectrometric analysis at ambient conditions and, as a result, it has greatly simplified and increased the speed of mass-spectrum analysis. It has now become an increasingly popular and important method for MS. The first part of this review discusses the fundamentals of paper spray. Some modifications are also reviewed, including nib-assisted paper spray, droplet monitoring, high-throughput paper spray, leaf spray, tissue spray and wooden tip spray. The second part focuses on recent applications, including the analysis of DBS, foodstuffs, drugs and oil. These studies show that paper spray-MS has great potential for use as a fast sampling ionization method, and for the direct analysis of biological and chemical samples at ambient conditions.
Collapse
|
21
|
Cho YT, Huang MZ, Wu SY, Hou MF, Li J, Shiea J. Using electrospray laser desorption ionization mass spectrometry to rapidly examine the integrity of proteins stored in various solutions. Anal Bioanal Chem 2013; 406:577-86. [PMID: 24343451 DOI: 10.1007/s00216-013-7491-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022]
Abstract
Electrospray laser desorption ionization mass spectrometry (ELDI/MS) allows the rapid desorption and ionization of proteins from solutions under ambient conditions. In this study, we have demonstrated the use of ELDI/MS to efficiently examine the integrity of the proteins stored in various solutions before they were further used for other biochemical tests. The protein standards were prepared in the solutions containing buffers, organic salts, inorganic salts, strong acid, strong base, and organic solvents, respectively, to simulate those collected from solvent extraction, filtration, dialysis, or chromatographic separation. Other than the deposit of a drop of the sample solution on the metallic sample plate in an ELDI source, no additional sample pretreatment is needed. The sample drop was then irradiated with a pulsed laser; this led to desorption of the analyte molecules, which subsequently entered the ESI plume to undergo post-ionization. Because adjustment of the composition of the sample solution is unnecessary, this technique appears to be useful for rapidly evaluating the integrity of proteins after storage or prior to further biochemical treatment. In addition, when using acid-free and low-organic-solvent ESI solutions for ELDI/MS analysis, the native conformations of the proteins in solution could be detected.
Collapse
Affiliation(s)
- Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, No.15 Lane 420 Dachang 2nd Rd, Kaohsiung 807, Taiwan,
| | | | | | | | | | | |
Collapse
|
22
|
Kao YY, Cheng CN, Cheng SC, Ho HO, Shiea J. Distinguishing authentic and counterfeit banknotes by surface chemical composition determined using electrospray laser desorption ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1129-1135. [PMID: 24259201 DOI: 10.1002/jms.3263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
Electrospray laser desorption ionization mass spectrometry (ELDI/MS) was used to rapidly distinguish authentic banknotes from counterfeits of the US dollar and the New Taiwan dollar. The banknotes' surfaces were irradiated with a pulsed ultraviolet laser, after which the desorbed ink compounds entered an electrospray plume and formed ions via interactions with charged solvent species. Authentic banknotes were found to differ from their counterfeit equivalents in their surface chemical compositions. The detected chemical compounds included various polymers, plasticizers and inks; these results were comparable with those obtained using solvent extraction followed by electrospray ionization mass spectrometry analysis. Because of the high spatial resolution of the laser beam, ELDI/MS analysis resulted in minimal damage to the banknotes.
Collapse
Affiliation(s)
- Yi-Ying Kao
- College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Investigation Bureau, Ministry of Justice, New Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
So PK, Hu B, Yao ZP. Mass spectrometry: towards in vivo analysis of biological systems. MOLECULAR BIOSYSTEMS 2013; 9:915-29. [PMID: 23364350 DOI: 10.1039/c2mb25428j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vivo analysis is of paramount importance in monitoring physiological processes that take place in living organisms. Mass spectrometry, an analytical technique with high speed, sensitivity and specificity, is indispensable in biochemical studies nowadays. However, traditional mass spectrometric techniques are of limited applicability in direct analysis of living organisms due to various constraints, e.g., the necessity of ionization of analytes under vacuum and perturbation of physiological functions of living organisms during analysis. Recent development of mass spectrometry, particularly the development of ambient ionization techniques, has opened the door for direct analysis of living organisms. These new mass spectrometric techniques have the features that the ionization processes take place under atmospheric pressure and no or only little sample preparation is required, thus are well suited for analysis of living specimens without significantly perturbing their physiological states. The role of these mass spectrometric techniques in in vivo analysis has been increasingly important in recent years and is expected to be further expanded in the future. In this review, the use of various mass spectrometric techniques in in vivo analysis of biological systems is summarized and the prospects are discussed.
Collapse
Affiliation(s)
- Pui-Kin So
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | | | | |
Collapse
|
24
|
Huang MZ, Zhou CC, Liu DL, Jhang SS, Cheng SC, Shiea J. Rapid Characterization of Chemical Compounds in Liquid and Solid States Using Thermal Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2013; 85:8956-63. [DOI: 10.1021/ac401364k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Min-Zong Huang
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Chi-Chang Zhou
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - De-Lin Liu
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Siou-Sian Jhang
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Sy-Chyi Cheng
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Jentaie Shiea
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| |
Collapse
|
25
|
Trimpin S, Wang B, Lietz CB, Marshall DD, Richards AL, Inutan ED. New ionization processes and applications for use in mass spectrometry. Crit Rev Biochem Mol Biol 2013; 48:409-29. [DOI: 10.3109/10409238.2013.806887] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 2013; 52:329-53. [PMID: 23623802 DOI: 10.1016/j.plipres.2013.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated.
Collapse
|
27
|
Ren X, Liu J, Zhang C, Luo H. Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:613-620. [PMID: 23413220 DOI: 10.1002/rcm.6499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE With the rapid development of ambient mass spectrometry, the hybrid laser-based ambient ionization methods which can generate multiply charged ions of large biomolecules and also characterize small molecules with good signal-to-noise in both positive and negative ion modes are of particular interest. METHODS An ambient ionization method termed high-voltage-assisted laser desorption ionization (HALDI) is developed, in which a 1064 nm laser is used to desorb various liquid samples from the sample target biased at a high potential without the need for an organic matrix. The pre-charged liquid samples are desorbed by the laser to form small charged droplets which may undergo an electrospray-like ionization process to produce multiply charged ions of large biomolecules. RESULTS Various samples including proteins, oligonucleotides (ODNs), drugs, whole milk and chicken eggs have been analyzed by HALDI-MS in both positive and negative ion mode with little or no sample preparation. In addition, HALDI can generate intense signals with better signal-to-noise in negative ion mode than laser desorption spay post-ionization (LDSPI) from the same samples, such as ODNs and some carboxylic-group-containing small drug molecules. CONCLUSIONS HALDI-MS can directly analyze a variety of liquid samples including proteins, ODNs, pharmaceuticals and biological fluids in both positive and negative ion mode without the use of an organic matrix. This technique may be further developed into a useful tool for rapid analysis in many different fields such as pharmaceutical, food, and biological sciences.
Collapse
Affiliation(s)
- Xinxin Ren
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | |
Collapse
|
28
|
Trimpin S, Inutan ED. New Ionization Method for Analysis on Atmospheric Pressure Ionization Mass Spectrometers Requiring Only Vacuum and Matrix Assistance. Anal Chem 2013; 85:2005-9. [DOI: 10.1021/ac303717j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Ellen D. Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
29
|
Liu J, Zhang C, Sun J, Ren X, Luo H. Laser desorption dual spray post-ionization mass spectrometry for direct analysis of samples via two informative channels. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:250-254. [PMID: 23378098 DOI: 10.1002/jms.3145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/08/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
A laser desorption dual spray post-ionization mass spectrometry method is described, and its usefulness is demonstrated with the examples of selective detection of food components, manipulation of protein charge state distribution and investigation on the formation of magic number clusters. The method is carried out by adopting two spray emitters for post-ionization of analytes desorbed by a pulsed infrared laser. Various components in a complex sample or distinct behavior of an analyte in two different spray reagents can be rapidly probed by the method quasi-simultaneously, highlighting the potential applications of this method for protein characterization, reaction study and food analysis.
Collapse
Affiliation(s)
- Jia Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
30
|
Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem 2013; 64:481-505. [PMID: 23331308 DOI: 10.1146/annurev-physchem-040412-110026] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ambient ionization techniques allow complex chemical samples to be analyzed in their native state with minimal sample preparation. This brings the obvious advantages of simplicity, speed, and versatility to mass spectrometry: Desorption electrospray ionization (DESI), for example, is used in chemical imaging for tumor margin diagnosis. This review on the extractive methods of ambient ionization focuses on chemical aspects, mechanistic considerations, and the accelerated chemical reactions occurring in charged liquid droplets generated in the spray process. DESI uses high-velocity solvent droplets to extract analytes from surfaces. Nano-DESI employs liquid microjunctions for analyte dissolution, whereas paper-spray ionization uses DC potentials applied to wet porous material such as paper or biological tissue to field emit charged analyte-containing solvent droplets. These methods also operate in a reactive mode in which added reagents allow derivatization during ionization. The accelerated reaction rates seen in charged microdroplets are useful in small-scale rapid chemical synthesis.
Collapse
|
31
|
Ketola RA, Mauriala T. Mass spectrometric tools for cell and tissue studies. Eur J Pharm Sci 2012; 46:293-314. [DOI: 10.1016/j.ejps.2012.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/14/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
32
|
Cheng SC, Huang MZ, Wu LC, Chou CC, Cheng CN, Jhang SS, Shiea J. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology. Anal Chem 2012; 84:5864-8. [PMID: 22816777 DOI: 10.1021/ac301178w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
Collapse
Affiliation(s)
- Sy-Chyi Cheng
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Harris GA, Graf S, Knochenmuss R, Fernández FM. Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality. Analyst 2012; 137:3039-44. [DOI: 10.1039/c2an35431d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Liu J, Zhang C, Sun J, Luo H. Unexpected complexation reaction during analysis of proteins using laser desorption spray post-ionization mass spectrometry. Analyst 2012; 137:1764-7. [DOI: 10.1039/c2an16090k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Liu J, Cooks RG, Ouyang Z. Biological tissue diagnostics using needle biopsy and spray ionization mass spectrometry. Anal Chem 2011; 83:9221-5. [PMID: 22103750 DOI: 10.1021/ac202626f] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Needle biopsy is a routine medical procedure for examining tissue or biofluids for the presence of disease using standard methods of pathology. In this work, spray ionization directly from tissue in the biopsy needle is shown to provide highly specific molecular information through mass spectrometry analysis. The data are available within a minute after the tissue biopsy, a time scale that allows immediate medical decisions to be made. This method has been performed for tissues in a variety of organs including brain, liver, kidney, adrenal gland, stomach, and spinal cord. Amino acids, hormones, fatty acids, anesthetics, and phospholipids are detected from the tissues and identified using exact mass measurement and tandem mass spectrometry. Lipid profiles are rich in information and, as in imaging MS methods, they have the potential to serve to distinguish diseased from healthy tissue. Needle biopsies allow a crude form of depth profiling that is demonstrated with the analysis of tissue samples taken by a needle inserted into a porcine kidney at various depths.
Collapse
|
37
|
Chernetsova ES, Morlock GE. Determination of drugs and drug-like compounds in different samples with direct analysis in real time mass spectrometry. MASS SPECTROMETRY REVIEWS 2011; 30:875-83. [PMID: 24737631 DOI: 10.1002/mas.20304] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 05/05/2023]
Abstract
Direct analysis in real time (DART), a relatively new ionization source for mass spectrometry, ionizes small-molecule components from different kinds of samples without any sample preparation and chromatographic separation. The current paper reviews the published data available on the determination of drugs and drug-like compounds in different matrices with DART-MS, including identification and quantitation issues. Parameters that affect ionization efficiency and mass spectra composition are also discussed.
Collapse
Affiliation(s)
- Elena S Chernetsova
- Research and Educational Center of the Peoples' Friendship University of Russia, Miklucho-Maklay st., Bldg. 8/2, 117198 Moscow, Russia.
| | | |
Collapse
|
38
|
Huang MZ, Cheng SC, Cho YT, Shiea J. Ambient ionization mass spectrometry: A tutorial. Anal Chim Acta 2011; 702:1-15. [PMID: 21819855 DOI: 10.1016/j.aca.2011.06.017] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
39
|
Park SG, Murray KK. Infrared laser ablation sample transfer for MALDI and electrospray. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1352-1362. [PMID: 21953189 DOI: 10.1007/s13361-011-0163-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 05/31/2023]
Abstract
We have used an infrared laser to ablate materials under ambient conditions that were captured in solvent droplets. The droplets were either deposited on a MALDI target for off-line analysis by MALDI time-of-flight mass spectrometry or flow-injected into a nanoelectrospray source of an ion trap mass spectrometer. An infrared optical parametric oscillator (OPO) laser system at 2.94 μm wavelength and approximately 1 mJ pulse energy was focused onto samples for ablation at atmospheric pressure. The ablated material was captured in a solvent droplet 1-2 mm in diameter that was suspended from a silica capillary a few millimeters above the sample target. Once the sample was transferred to the droplet by ablation, the droplet was deposited on a MALDI target. A saturated matrix solution was added to the deposited sample, or in some cases, the suspended capture droplet contained the matrix. Peptide and protein standards were used to assess the effects of the number of IR laser ablation shots, sample to droplet distance, capture droplet size, droplet solvent, and laser pulse energy. Droplet collected samples were also injected into a nanoelectrospray source of an ion trap mass spectrometer with a 500 nL injection loop. It is estimated that pmol quantities of material were transferred to the droplet with an efficiency of approximately 1%. The direct analysis of biological fluids for off-line MALDI and electrospray was demonstrated with blood, milk, and egg. The implications of this IR ablation sample transfer approach for ambient imaging are discussed.
Collapse
Affiliation(s)
- Sung-Gun Park
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
40
|
Campbell IS, Ton AT, Mulligan CC. Direct detection of pharmaceuticals and personal care products from aqueous samples with thermally-assisted desorption electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1285-1293. [PMID: 21953111 DOI: 10.1007/s13361-011-0144-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/24/2011] [Accepted: 03/27/2011] [Indexed: 05/31/2023]
Abstract
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.
Collapse
Affiliation(s)
- Ian S Campbell
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | | | | |
Collapse
|
41
|
Li X, Hu B, Ding J, Chen H. Rapid characterization of complex viscous samples at molecular levels by neutral desorption extractive electrospray ionization mass spectrometry. Nat Protoc 2011; 6:1010-25. [PMID: 21720314 DOI: 10.1038/nprot.2011.337] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this protocol, the sample (which could be a bulk or heterogeneous fluid, or a greasy surface) is treated with a neutral desorption (ND) sampling gas beam, and the resulting analyte mixtures are directly characterized by extractive electrospray ionization mass spectrometry (EESI-MS). The ND device can be specifically constructed such that the sampling gas beam is bubbled through the liquid sample (microjet sampling) or directed to impact the sample surface (e.g., for the analysis of a material like cheese). The ND-EESI-MS analysis process requires no sample pretreatment because it can tolerate an extremely complex matrix. ND-EESI-MS allows real-time, online chemical profiling of highly viscous samples under ambient conditions. Both volatile and nonvolatile analytes from viscous samples can easily be detected and quantified by ND-EESI-MS, thereby providing an MS-based analytical platform for multiple disciplines (e.g., for the food industry, for drug discovery, and for the biological and life sciences). Here we describe the ND-EESI-MS protocol for viscous sample analysis, including the experimental design, equipment setup, reagent preparation, data acquisition and analysis steps. The data collection process takes <1 min per sample, although the time required for the whole procedure, which largely depends on the experimental preparation processes, might be considerably longer.
Collapse
Affiliation(s)
- Xue Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | | | | | | |
Collapse
|
42
|
Cheng SC, Huang MZ, Shiea J. Thin layer chromatography/mass spectrometry. J Chromatogr A 2011; 1218:2700-11. [DOI: 10.1016/j.chroma.2011.01.077] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/26/2022]
|
43
|
Brady JJ, Judge EJ, Levis RJ. Analysis of amphiphilic lipids and hydrophobic proteins using nonresonant femtosecond laser vaporization with electrospray post-ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:762-772. [PMID: 21472613 DOI: 10.1007/s13361-010-0066-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Amphiphilic lipids and hydrophobic proteins are vaporized at atmospheric pressure using nonresonant 70 femtosecond (fs) laser pulses followed by electrospray post-ionization prior to being transferred into a time-of-flight mass spectrometer for mass analysis. Measurements of molecules on metal and transparent dielectric surfaces indicate that vaporization occurs through a nonthermal mechanism. The molecules analyzed include the lipids 1-monooleoyl-rac-glycerol, 1,2-dihexanoyl-sn-glycero-3-phosphocholine, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, and the hydrophobic proteins gramicidin A, B, and C. Vaporization of lipids from blood and milk are also presented to demonstrate that lipids in complex systems can be transferred intact into the gas phase for mass analysis.
Collapse
Affiliation(s)
- John J Brady
- Center for Advanced Photonics Research, Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
44
|
Huang D, Luo L, Jiang C, Han J, Wang J, Zhang T, Jiang J, Zhou Z, Chen H. Sinapine detection in radish taproot using surface desorption atmospheric pressure chemical ionization mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2148-2156. [PMID: 21332204 DOI: 10.1021/jf103725f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant research and natural product detection are of sustainable interests. Benefited by direct detection with no sample preparation, sinapine, a bioactive chemical usually found in various seeds of Brassica plants, has been unambiguously detected in radish taproot (Raphanus sativus) tissue using a liquid-assisted surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). A methanol aqueous solution (1:1) was nebulized by a nitrogen sheath gas toward the corona discharge, resulting in charged ambient small droplets, which affected the radish tissue for desorption/ionization of analytes on the tissue surface. Thus, sinapine was directly detected and identified by tandem DAPCI-MS experiments without sample pretreatment. The typical relative standard deviation (RSD) of this method for sinapine detection was 5-8% for six measurements (S/N=3). The dynamic response range was 10(-12)-10(-7) g/cm2 for sinapine on the radish skin surface. The discovery of sinapine in radish taproot was validated by using HPLC-UV methods. The data demonstrated that DAPCI assisted by solvent enhanced the overall efficiency of the desorption/ionization process, enabling sensitive detection of bioactive compounds in plant tissue.
Collapse
Affiliation(s)
- Dejuan Huang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Science, East China Institute of Technology, Nanchang, Jiangxi Province 330013, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang H, Manicke NE, Yang Q, Zheng L, Shi R, Cooks RG, Ouyang Z. Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem 2011; 83:1197-201. [PMID: 21247069 PMCID: PMC3039116 DOI: 10.1021/ac103150a] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Paper spray mass spectrometry (PS-MS) is explored as a fast and convenient way for direct analysis of molecules in tissues with minimum sample pretreatment. This technique allows direct detection of different types of compounds such as hormones, lipids, and therapeutic drugs in short total analysis times (less than 1 min) using a small volume of tissue sample (typically 1 mm(3) or less). The tissue sample could be obtained by needle aspiration biopsy, by punch biopsy, or by rubbing a thin tissue section across the paper. There exists potential for the application of paper spray mass spectrometry together with tissue biopsy for clinical diagnostics.
Collapse
Affiliation(s)
- He Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Qian Yang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Lingxing Zheng
- Department of Basic Medical Science, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Riyi Shi
- Department of Basic Medical Science, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| | - Zheng Ouyang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Hou K, Xu W, Xu J, Cooks RG, Ouyang Z. Sampling Wand for an Ion Trap Mass Spectrometer. Anal Chem 2011; 83:1857-61. [PMID: 21299234 DOI: 10.1021/ac102962e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keyong Hou
- Department of Chemistry, ‡Weldon School of Biomedical Engineering, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47906, United States
| | - Wei Xu
- Department of Chemistry, ‡Weldon School of Biomedical Engineering, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jian Xu
- Department of Chemistry, ‡Weldon School of Biomedical Engineering, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47906, United States
| | - R. Graham Cooks
- Department of Chemistry, ‡Weldon School of Biomedical Engineering, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zheng Ouyang
- Department of Chemistry, ‡Weldon School of Biomedical Engineering, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
47
|
|
48
|
Chen R, Wang L, Xiong C, Zhou Y, Zhen C, Zhang N, Tang Y, Zhou X, Wang J, Nie Z, Chen Y. Direct analysis of oligosaccharides and alpha hydroxy acids in fruits using electrosonic spray ionization mass spectrometry. Analyst 2011; 136:3809-14. [DOI: 10.1039/c1an15390k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Asakawa D, Hiraoka K. Direct profiling of saccharides, organic acids and anthocyanins in fruits using electrospray droplet impact/secondary ion mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2431-2438. [PMID: 20658682 DOI: 10.1002/rcm.4660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from atmospheric-pressure electrospray are accelerated in vacuum by several kV and impact on the sample deposited on the metal substrate. In this study, we applied EDI/SIMS directly to fruits, such as bananas, strawberries, grapes and apples. The major components in the fruits--fructose, glucose, sucrose and organic acids--could be observed with strong signal intensities. EDI/SIMS was also applied to the analysis of different regions of strawberries and apples. Compared with matrix-assisted laser desorption/ionization (MALDI), ion signals with lower background signals could be obtained, particularly for the low molecular weight analytes.
Collapse
Affiliation(s)
- Daiki Asakawa
- Clean Energy Research Center, The University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
| | | |
Collapse
|
50
|
Judge EJ, Brady JJ, Dalton D, Levis RJ. Analysis of pharmaceutical compounds from glass, fabric, steel, and wood surfaces at atmospheric pressure using spatially resolved, nonresonant femtosecond laser vaporization electrospray mass spectrometry. Anal Chem 2010; 82:3231-8. [PMID: 20334359 DOI: 10.1021/ac902880q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser electrospray mass spectrometry (LEMS) is demonstrated for pharmaceutical samples at atmospheric pressure. A nonresonant, femtosecond duration laser pulse vaporizes native samples at atmospheric pressure into an electrospray plume for ionization with subsequent transfer into a time-of-flight mass spectrometer. The active ingredients in pharmaceutical tablets were detected in the presence of binders and fillers in intact formulations using LEMS. Mass spectra were also obtained for microgram amounts of the pharmaceutical compounds loratadine, oxycodone, and atenolol deposited on glass, wood, steel, and polyester fabric. The neutral capture efficiency by the electrospray plume for nonresonant laser vaporization of oxycodone and atenolol desorbed from steel is 2.4% +/- 1.5% and 0.25% +/- 0.18%, respectively. LEMS imaging of the spatial distribution of an oxycodone spot on a metal slide with resolution of 250 mum is also presented.
Collapse
Affiliation(s)
- Elizabeth J Judge
- Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|