1
|
Wilkinson DJ, Crossland H, Atherton PJ. Metabolomic and proteomic applications to exercise biomedicine. TRANSLATIONAL EXERCISE BIOMEDICINE 2024; 1:9-22. [PMID: 38660119 PMCID: PMC11036890 DOI: 10.1515/teb-2024-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
Objectives 'OMICs encapsulates study of scaled data acquisition, at the levels of DNA, RNA, protein, and metabolite species. The broad objectives of OMICs in biomedical exercise research are multifarious, but commonly relate to biomarker development and understanding features of exercise adaptation in health, ageing and metabolic diseases. Methods This field is one of exponential technical (i.e., depth of feature coverage) and scientific (i.e., in health, metabolic conditions and ageing, multi-OMICs) progress adopting targeted and untargeted approaches. Results Key findings in exercise biomedicine have led to the identification of OMIC features linking to heritability or adaptive responses to exercise e.g., the forging of GWAS/proteome/metabolome links to cardiovascular fitness and metabolic health adaptations. The recent addition of stable isotope tracing to proteomics ('dynamic proteomics') and metabolomics ('fluxomics') represents the next phase of state-of-the-art in 'OMICS. Conclusions These methods overcome limitations associated with point-in-time 'OMICs and can be achieved using substrate-specific tracers or deuterium oxide (D2O), depending on the question; these methods could help identify how individual protein turnover and metabolite flux may explain exercise responses. We contend application of these methods will shed new light in translational exercise biomedicine.
Collapse
Affiliation(s)
- Daniel J. Wilkinson
- Centre of Metabolism, Ageing & Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Hannah Crossland
- Centre of Metabolism, Ageing & Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| |
Collapse
|
2
|
Dengler F, Hammon HM, Liermann W, Görs S, Bachmann L, Helm C, Ulrich R, Delling C. Cryptosporidium parvumcompetes with the intestinal epithelial cells for glucose and impairs systemic glucose supply in neonatal calves. Vet Res 2023; 54:40. [PMID: 37138353 PMCID: PMC10156424 DOI: 10.1186/s13567-023-01172-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023] Open
Abstract
Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria.
- Institute of Veterinary Physiology, Leipzig University, An den Tierkliniken 7, Leipzig, Germany.
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Brodaer Strasse 2, Neubrandenburg, Germany
| | - Christiane Helm
- Institute of Veterinary Pathology, Leipzig University, An den Tierkliniken 33-37, Leipzig, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, An den Tierkliniken 33-37, Leipzig, Germany
| | - Cora Delling
- Institute of Parasitology, Leipzig University, An den Tierkliniken 35, Leipzig, Germany
| |
Collapse
|
3
|
Kim J, Seo S, Kim TY. Metabolic deuterium oxide (D 2O) labeling in quantitative omics studies: A tutorial review. Anal Chim Acta 2023; 1242:340722. [PMID: 36657897 DOI: 10.1016/j.aca.2022.340722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) is an invaluable tool for sensitive detection and characterization of individual biomolecules in omics studies. MS combined with stable isotope labeling enables the accurate and precise determination of quantitative changes occurring in biological samples. Metabolic isotope labeling, wherein isotopes are introduced into biomolecules through biosynthetic metabolism, is one of the main labeling strategies. Among the precursors employed in metabolic isotope labeling, deuterium oxide (D2O) is cost-effective and easy to implement in any biological systems. This tutorial review aims to explain the basic principle of D2O labeling and its applications in omics research. D2O labeling incorporates D into stable C-H bonds in various biomolecules, including nucleotides, proteins, lipids, and carbohydrates. Typically, D2O labeling is performed at low enrichment of 1%-10% D2O, which causes subtle changes in the isotopic distribution of a biomolecule, instead of the complete separation between labeled and unlabeled samples in a mass spectrum. D2O labeling has been employed in various omics studies to determine the metabolic flux, turnover rate, and relative quantification. Moreover, the advantages and challenges of D2O labeling and its future prospects in quantitative omics are discussed. The economy, versatility, and convenience of D2O labeling will be beneficial for the long-term omics studies for higher organisms.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
4
|
Borsche M, Märtens A, Hörmann P, Brückmann T, Lohmann K, Tunc S, Klein C, Hiller K, Balck A. In Vivo Investigation of Glucose Metabolism in Idiopathic and PRKN-Related Parkinson's Disease. Mov Disord 2023; 38:697-702. [PMID: 36717366 DOI: 10.1002/mds.29333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Alterations in mitochondrial dysfunction have been implicated in the pathogenesis of Parkinson's disease (PD). Mitochondrial energy production is linked to glucose metabolism, and diabetes is associated with PD. However, studies investigating glucose metabolism in vivo in genetically stratified PD patients and controls have yet to be performed. OBJECTIVES The objectives of this study were to explore glucose production, gluconeogenesis, and the contribution of gluconeogenesis to glucose production in idiopathic and PRKN PD compared with healthy controls with state-of-the-art biochemical methods. METHODS We applied a dried-blood sampling/gas chromatography/mass spectrometry approach to monitor fluxes in the Cori cycle in vivo. RESULTS The contribution of gluconeogenesis to total glucose production is increased in idiopathic PD patients (n = 33), but not in biallelic PRKN mutation carriers (n = 5) compared with healthy controls (n = 13). CONCLUSIONS We provide first-time in vivo evidence for alterations in glucose metabolism in idiopathic PD, in keeping with the epidemiological evidence for an association between PD and diabetes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany
| | | | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sinem Tunc
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Alexander Balck
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Moiz B, Li A, Padmanabhan S, Sriram G, Clyne AM. Isotope-Assisted Metabolic Flux Analysis: A Powerful Technique to Gain New Insights into the Human Metabolome in Health and Disease. Metabolites 2022; 12:1066. [PMID: 36355149 PMCID: PMC9694183 DOI: 10.3390/metabo12111066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 04/28/2024] Open
Abstract
Cell metabolism represents the coordinated changes in genes, proteins, and metabolites that occur in health and disease. The metabolic fluxome, which includes both intracellular and extracellular metabolic reaction rates (fluxes), therefore provides a powerful, integrated description of cellular phenotype. However, intracellular fluxes cannot be directly measured. Instead, flux quantification requires sophisticated mathematical and computational analysis of data from isotope labeling experiments. In this review, we describe isotope-assisted metabolic flux analysis (iMFA), a rigorous computational approach to fluxome quantification that integrates metabolic network models and experimental data to generate quantitative metabolic flux maps. We highlight practical considerations for implementing iMFA in mammalian models, as well as iMFA applications in in vitro and in vivo studies of physiology and disease. Finally, we identify promising new frontiers in iMFA which may enable us to fully unlock the potential of iMFA in biomedical research.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Andrew Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Surya Padmanabhan
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Uken KL, Vogel L, Gnott M, Görs S, Schäff CT, Tuchscherer A, Hoeflich A, Weitzel JM, Kanitz E, Tröscher A, Sauerwein H, Zitnan R, Bruckmaier RM, Gross JJ, Liermann W, Hammon HM. Effect of maternal supplementation with essential fatty acids and conjugated linoleic acid on metabolic and endocrine development in neonatal calves. J Dairy Sci 2021; 104:7295-7314. [PMID: 33715856 DOI: 10.3168/jds.2020-20039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
We tested the hypothesis that the maternal supply of essential fatty acids (EFA), especially α-linolenic acid, and conjugated linoleic acid (CLA), affects glucose metabolism, the endocrine regulation of energy metabolism and growth, and the intestinal development of neonatal calves. We studied calves from dams that received an abomasal infusion of 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n = 9), 38 g/d Lutalin (BASF SE) containing 27% cis-9,trans-11 and trans-10,cis-12 CLA (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) during the last 63 d of gestation and early lactation. Calves received colostrum and transition milk from their own dam for the first 5 d of life. Insulin-like growth factor (IGF)-I, leptin, and adiponectin concentrations were measured in milk. Blood samples were taken before first colostrum intake, 24 h after birth, and from d 3 to 5 of life before morning feeding to measure metabolic and endocrine traits in plasma. On d 3 of life, energy expenditure was evaluated by a bolus injection of NaH13CO3 and determination of CO2 appearance rate. On d 4, additional blood samples were taken to evaluate glucose first-pass uptake and 13CO2 enrichment after [13C6]-glucose feeding and intravenous [6,6-2H2]-glucose bolus injection, as well as postprandial changes in glucose, nonesterified fatty acids (NEFA), insulin, and glucagon. On d 5, calves were killed 2 h after feeding and samples of small intestinal mucosa were taken for histomorphometric measurements. The concentrations of IGF-I, adiponectin, and leptin in milk decreased during early lactation in all groups, and the concentrations of leptin in first colostrum was higher in EFA than in CTRL cows. Plasma glucose concentration before first colostrum intake was higher in EFA calves than in non-EFA calves and was lower in CLA calves than in non-CLA calves. Plasma IGF-I concentration was higher on d 1 before colostrum intake in EFA calves than in EFA+CLA calves and indicated an overall CLA effect, with lower plasma IGF-I in CLA than in non-CLA calves. Postprandial NEFA concentration was lowest in EFA and CLA calves. The postprandial rise in plasma insulin was higher in EFA than in non-EFA calves. Plasma adiponectin concentration increased from d 1 to d 2 in all groups and was higher on d 3 in CLA than in non-CLA calves. Plasma leptin concentration was higher on d 4 and 5 in EFA than in non-EFA calves. Maternal fatty acid treatment did not affect energy expenditure and first-pass glucose uptake, but glucose uptake on d 4 was faster in EFA than in non-EFA calves. Crypt depth was lower, and the ratio of villus height to crypt depth was higher in the ilea of CLA than non-CLA calves. Elevated plasma glucose and IGF-I in EFA calves immediately after birth may indicate an improved energetic status in calves when dams are supplemented with EFA. Maternal EFA and CLA supplementation influenced postprandial metabolic changes and affected factors related to the neonatal insulin response.
Collapse
Affiliation(s)
- K L Uken
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - S Görs
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C T Schäff
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Hoeflich
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - E Kanitz
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - R Zitnan
- Institute of Nutrition, Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Luzianky, Slovakia
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - W Liermann
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
7
|
Weber C, Schäff CT, Kautzsch U, Börner S, Erdmann S, Görs S, Röntgen M, Sauerwein H, Bruckmaier RM, Metges CC, Kuhla B, Hammon HM. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving. J Dairy Sci 2016; 99:6665-6679. [PMID: 27179866 DOI: 10.3168/jds.2016-11022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified fatty acids decreased during HGC and EGHIC, but in both clamps, pp nonesterified fatty acid concentrations did not reach the ap levels. The study demonstrated a minor influence of different degrees of body fat mobilization on insulin metabolism in cows during the transition period. The distinct decrease in the glucose-dependent release of insulin pp is the most striking finding that explains the impaired insulin action after calving, but does not explain differences in body fat mobilization between HLFC and LLFC cows.
Collapse
Affiliation(s)
- C Weber
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - C T Schäff
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - U Kautzsch
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - S Börner
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - S Erdmann
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - S Görs
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - M Röntgen
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53113 Bonn, Germany
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - C C Metges
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - B Kuhla
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany
| | - H M Hammon
- Institute of Nutritional Physiology ("Oskar Kellner"), 18196 Dummerstorf, Germany.
| |
Collapse
|
8
|
Gruse J, Görs S, Tuchscherer A, Otten W, Weitzel JM, Metges CC, Wolffram S, Hammon HM. The Effects of Oral Quercetin Supplementation on Splanchnic Glucose Metabolism in 1-Week-Old Calves Depend on Diet after Birth. J Nutr 2015; 145:2486-95. [PMID: 26400967 DOI: 10.3945/jn.115.218271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inadequate colostrum supply results in insufficient intake of macronutrients and bioactive factors, thereby impairing gastrointestinal development and the maturation of glucose metabolism in neonatal calves. The flavonoid quercetin has been shown to have health-promoting properties, including effects in diabetic animals. However, quercetin interacts with intestinal glucose absorption and might therefore exert negative effects in neonates. OBJECTIVE We evaluated the interaction between neonatal diet and quercetin feeding on splanchnic glucose metabolism in neonatal calves. METHODS Calves (n = 28) were assigned to 4 groups and fed either colostrum or a milk-based formula on days 1 and 2 and supplemented daily with 148 μmol quercetin aglycone/kg body weight [colostrum with quercetin (CQ+)/formula with quercetin (FQ+)] or without this substance [colostrum without quercetin (CQ-)/formula with quercetin (FQ-)] from days 2-8. From day 3 onward, all calves received milk replacer. A xylose absorption test was performed on day 3, and on day 7, blood samples were collected to study glucose first-pass uptake after [(13)C6]-glucose feeding and intravenous [6,6-(2)H2]-glucose bolus injection. Plasma concentrations of metabolites and hormones were measured by taking additional blood samples. A biopsy specimen of the liver was harvested on day 8 to measure the mRNA expression of gluconeogenic enzymes. RESULTS Higher postprandial plasma concentrations of glucose, lactate, urea, adrenaline, noradrenaline, insulin, and glucagon on day 7 in colostrum-fed calves indicate that metabolic processes were stimulated. Postabsorptive xylose and glucose plasma concentrations each increased by an additional 26%, and splanchnic glucose turnover decreased by 35% in colostrum-fed calves, suggesting improved glucose absorption and lower splanchnic glucose utilization in colostrum-fed calves. Quercetin supplementation resulted in higher noradrenaline concentrations and enhanced peak absorption and oxidation of [(13)C6]-glucose by 10%. Liver mitochondrial phosphoenolpyruvate carboxykinase mRNA abundance was reduced by 34% in colostrum-deprived calves. CONCLUSIONS Feeding colostrum during the first 2 d of life is crucial for maturation of splanchnic glucose metabolism in calves. Supplementing quercetin improves gastrointestinal absorption capacity, particularly in colostrum-deprived calves.
Collapse
Affiliation(s)
| | - Solvig Görs
- Institutes of Nutritional Physiology "Oskar Kellner"
| | | | | | - Joachim M Weitzel
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; and
| | | | - Siegfried Wolffram
- Institute of Animal Nutrition and Physiology, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | |
Collapse
|
9
|
Gohlke A, Ingelmann C, Nürnberg G, Weitzel J, Hammon H, Görs S, Starke A, Wolffram S, Metges C. Influence of 4-week intraduodenal supplementation of quercetin on performance, glucose metabolism, and mRNA abundance of genes related to glucose metabolism and antioxidative status in dairy cows. J Dairy Sci 2013; 96:6986-7000. [DOI: 10.3168/jds.2013-6852] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/04/2013] [Indexed: 12/24/2022]
|
10
|
Schönhusen U, Junghans P, Flöter A, Steinhoff-Wagner J, Görs S, Schneider F, Metges CC, Hammon HM. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding. J Dairy Sci 2013; 96:2400-2412. [PMID: 23415525 DOI: 10.3168/jds.2012-5933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022]
Abstract
The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase activities in proximal and mid jejunum and lactase activities in mid jejunum were lower in the CON than in the SPIA group. Activities of PEPCK were higher in the SPIA than in the SPI group. In conclusion, feeding milk diets with soy protein isolate seems to affect glucose status in kids, but has no effect on first-pass uptake and oxidation of glucose. The highest activities of lactase and maltase were observed after supplementation with AA. Higher PEPCK activities in the liver may point at elevated gluconeogenic activities after AA supplementation in soy-fed kids.
Collapse
Affiliation(s)
- U Schönhusen
- Department of Nutritional Physiology "Oskar Kellner," and.
| | - P Junghans
- Department of Nutritional Physiology "Oskar Kellner," and
| | - A Flöter
- Department of Nutritional Physiology "Oskar Kellner," and
| | | | - S Görs
- Department of Nutritional Physiology "Oskar Kellner," and
| | - F Schneider
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C C Metges
- Department of Nutritional Physiology "Oskar Kellner," and
| | - H M Hammon
- Department of Nutritional Physiology "Oskar Kellner," and
| |
Collapse
|
11
|
Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM. Maturation of endogenous glucose production in preterm and term calves. J Dairy Sci 2012; 94:5111-23. [PMID: 21943762 DOI: 10.3168/jds.2011-4355] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022]
Abstract
Glucose disposability is often impaired in neonatal calves and even more in preterm calves. The objective of this study was to investigate ontogenic maturation of endogenous glucose production (eGP) in calves and its effects on postnatal glucose homeostasis. Calves (n = 7 per group) were born preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery), or spontaneously born and fed colostrum for 4 d (TC). Blood samples were taken immediately after birth and before and 2h after feeding at 24h after birth (PT; T) or on d 4 of life (TC) to determine metabolic and endocrine changes. After birth (PT and T) or on d 3 of life (TC), fasted calves were gavaged with deuterium-labeled water to determine gluconeogenesis (GNG) and intravenously infused with [U(13)C]-glucose to measure eGP and glucose oxidation (GOx) in blood plasma. After slaughter at 26h after birth (PT, T) or on d 4 of life (TC), glycogen concentrations in liver and hepatic mRNA concentrations and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase were measured. Preterm calves had the lowest plasma concentrations of cortisol and 3,5,3'-triiodothyronine at birth. Plasma glucose concentrations from d 1 to 2 decreased more, but plasma concentrations of lactate and urea and glucagon:insulin ratio were higher in PT than in T and TC calves. The eGP, GNG, GOx, as well as hepatic glycogen concentrations and PEPCK activities, were lowest in PT calves. Results indicate impaired glucose homeostasis due to decreased eGP in PT calves and maturation of eGP with ontogenic development.
Collapse
|
12
|
Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM. Intestinal glucose absorption but not endogenous glucose production differs between colostrum- and formula-fed neonatal calves. J Nutr 2011; 141:48-55. [PMID: 21084656 DOI: 10.3945/jn.110.128652] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.
Collapse
|