1
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Huang J, Tengvall K, Lima IB, Hedström AK, Butt J, Brenner N, Gyllenberg A, Stridh P, Khademi M, Ernberg I, Al Nimer F, Manouchehrinia A, Hillert J, Alfredsson L, Andersen O, Sundström P, Waterboer T, Olsson T, Kockum I. Genetics of immune response to Epstein-Barr virus: prospects for multiple sclerosis pathogenesis. Brain 2024; 147:3573-3582. [PMID: 38630618 PMCID: PMC11449136 DOI: 10.1093/brain/awae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Epstein-Barr virus (EBV) infection has been advocated as a prerequisite for developing multiple sclerosis (MS) and possibly the propagation of the disease. However, the precise mechanisms for such influences are still unclear. A large-scale study investigating the host genetics of EBV serology and related clinical manifestations, such as infectious mononucleosis (IM), may help us better understand the role of EBV in MS pathogenesis. This study evaluates the host genetic factors that influence serological response against EBV and history of IM and cross-evaluates them with MS risk and genetic susceptibility in the Swedish population. Plasma IgG antibody levels against EBV nuclear antigen-1 [EBNA-1, truncated = amino acids (aa) (325-641), peptide = aa(385-420)] and viral capsid antigen p18 (VCAp18) were measured using bead-based multiplex serology for 8744 MS cases and 7229 population-matched control subjects. The MS risk association for high/low EBV antibody levels and history of IM was compared to relevant clinical measures along with sex, age at sampling, and associated HLA allele variants. Genome-wide and HLA allele association analyses were also performed to identify genetic risk factors for EBV antibody response and IM history. Higher antibody levels against VCAp18 [odds ratio (OR) = 1.74, 95% confidence interval (CI) = 1.60-1.88] and EBNA-1, particularly the peptide (OR = 3.13, 95% CI = 2.93-3.35), were associated with an increased risk for MS. The risk increased with higher anti-EBNA-1 IgG levels up to 12× the reference risk. We also identified several independent HLA haplotypes associated with EBV serology overlapping with known MS risk alleles (e.g. DRB1*15:01). Although there were several candidates, no variants outside the HLA region reached genome-wide significance. Cumulative HLA risk for anti-EBNA-1 IgG levels, particularly the peptide fragment, was strongly associated with MS. In contrast, the genetic risk for high anti-VCAp18 IgG levels was not as strongly associated with MS risk. IM history was not associated with class II HLA genes but negatively associated with A*02:01, which is protective against MS. Our findings emphasize that the risk association between anti-EBNA-1 IgG levels and MS may be partly due to overlapping HLA associations. Additionally, the increasing MS risk with increasing anti-EBNA-1 levels would be consistent with a pathogenic role of the EBNA-1 immune response, perhaps through molecular mimicry. Given that high anti-EBNA-1 antibodies may reflect a poorly controlled T-cell defence against the virus, our findings would be consistent with DRB1*15:01 being a poor class II antigen in the immune defence against EBV. Last, the difference in genetic control of IM supports the independent roles of EBNA-1 and IM in MS susceptibility.
Collapse
Affiliation(s)
- Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Katarina Tengvall
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Izaura Bomfim Lima
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Alexandra Gyllenberg
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, SE-171 77 Stockholm, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburgh, Sweden
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), DE-69120 Heidelberg, Germany
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Centrum for Molecular Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Fang M, Li S, Mao Z, Liu X, Wang X, Lu S. A retrospective study on intracranial mixed infection with tuberculous meningitis in Shenzhen, China. Microbiol Spectr 2024; 12:e0374723. [PMID: 38767391 PMCID: PMC11218455 DOI: 10.1128/spectrum.03747-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Tuberculous meningitis (TBM) is a prevalent global intracranial infection and the most lethal and disabling form of tuberculosis. TBM with mixed intracranial infections is clinically rare but has a higher mortality rate. To investigate the clinical characteristics of TBM with mixed intracranial infections, demographic and clinical data of TBM and pulmonary tuberculosis (PTB) patients admitted to Shenzhen Third People's Hospital between January 2015 and October 2022 were collected anonymously. A total of 207 cases of TBM were diagnosed, of which 16 cases (7.73%) were TBM with mixed intracranial infections. The overall mortality rate of TBM cases was 16.4%, while the mortality rate of TBM cases with mixed intracranial infections was as high as 35.7%. Compared to simple TBM cases, TBM cases with mixed intracranial infections had severer clinical symptoms. The percentage of human immune deficiency virus (HIV)-positive TBM cases with mixed intracranial infections reached up to 68.8%. HIV co-infection, CD4+/CD8+ T-cell counts less than 1, cranial nerve impairment, paralysis, cerebral infarction, PRO less than 450 mg/L, WBC less than 10 × 106 /L, and CL more than 120 mmol/L were risk factors for TBM cases with mixed intracranial infections. Compared to PTB, HIV co-infection, CD4+ T cell less than 550 /uL, and age less than 45 years were risk factors for TBM, and TBM was associated with higher mortality rates. Our study provides additional data to better understand single TBM and TBM with mixed intracranial infections. More than two-thirds of TBM cases with mixed intracranial infections were HIV-positive. Clinicians should consider the possibility of multiple infections in people with TBM/HIV co-infection. IMPORTANCE TBM can cause severe neurological damage and death, and TBM with mixed intracranial infections can exacerbate the damage and poor prognosis of the disease. TBM with mixed intracranial infections is a rare disease, which has led to an incomplete understanding of its clinical features. This study investigated the clinical features of TBM and its associated factors by comparing the characteristics of TBM with mixed intracranial infections, single TBM and pulmonary tuberculosis. This information will help to improve the understanding of TBM, diagnostic accuracy and treatment outcomes.
Collapse
Affiliation(s)
- Mutong Fang
- Department of Pulmonary Medicine, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Sinian Li
- Department of Pulmonary Medicine, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Zhi Mao
- Department of Pulmonary Medicine, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Xuhui Liu
- Department of Pulmonary Medicine, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- Department of Pulmonary Medicine, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Buchmiller K, Smith MG, Valentine MJ, Turner KK, Pickett B. Acute Appendicitis in the Setting of Infectious Mononucleosis: A Case Report. Cureus 2024; 16:e61619. [PMID: 38966467 PMCID: PMC11222108 DOI: 10.7759/cureus.61619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Infectious mononucleosis (IM) is a viral illness caused by the Epstein-Barr virus that typically manifests with pharyngitis, lymphadenopathy, and fatigue. In rare cases, IM can cause acute appendicitis. We present the case of an 18-year-old female who arrived at the emergency department with worsening abdominal pain and an ongoing cough. Initial imaging showed a questionably dilated appendix, and a follow-up examination revealed cervical lymphadenopathy. She later returned to the ED with severe abdominal pain, clinical signs of acute appendicitis, and a positive monospot test, which led to an appendectomy. This case illustrates the need for complete history taking and thorough physical examination in patients with acute appendicitis, as their condition may be due to an atypical underlying cause.
Collapse
Affiliation(s)
- Kaedon Buchmiller
- College of Osteopathic Medicine, Kansas City University, Kansas City, USA
| | - Michael G Smith
- College of Osteopathic Medicine, Kansas City University, Kansas City, USA
| | | | - Kyle K Turner
- College of Osteopathic Medicine, Kansas City University, Kansas City, USA
| | - Brent Pickett
- Department of Orthopaedics, Logan Regional Orthopedics, Intermountain Health, Logan, USA
| |
Collapse
|
5
|
Tralongo P, Bakacs A, Larocca LM. EBV-Related Lymphoproliferative Diseases: A Review in Light of New Classifications. Mediterr J Hematol Infect Dis 2024; 16:e2024042. [PMID: 38882456 PMCID: PMC11178045 DOI: 10.4084/mjhid.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent virus that can be detected in the vast majority of the population. Most people are asymptomatic and remain chronically infected throughout their lifetimes. However, in some populations, EBV has been linked to a variety of B-cell lymphoproliferative disorders (LPDs), such as Burkitt lymphoma, classic Hodgkin lymphoma, and other LPDs. T-cell LPDs have been linked to EBV in part of peripheral T-cell lymphomas, angioimmunoblastic T-cell lymphomas, extranodal nasal natural killer/T-cell lymphomas, and other uncommon histotypes. This article summarizes the current evidence for EBV-associated LPDs in light of the upcoming World Health Organization classification and the 2022 ICC classification.
Collapse
Affiliation(s)
- Pietro Tralongo
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Arianna Bakacs
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Luigi Maria Larocca
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| |
Collapse
|
6
|
Wallace Z, Heunis T, Paterson RL, Suckling RJ, Grant T, Dembek M, Donoso J, Brener J, Long J, Bunjobpol W, Gibbs-Howe D, Kay DP, Leneghan DB, Godinho LF, Walker A, Singh PK, Knox A, Leonard S, Dorrell L. Instability of the HLA-E peptidome of HIV presents a major barrier to therapeutic targeting. Mol Ther 2024; 32:678-688. [PMID: 38219014 PMCID: PMC10928138 DOI: 10.1016/j.ymthe.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.
Collapse
Affiliation(s)
- Zoë Wallace
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK.
| | - Tiaan Heunis
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Jose Donoso
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Joshua Long
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | - Daniel P Kay
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Andrew Knox
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Lucy Dorrell
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| |
Collapse
|
7
|
Gutiérrez-Guerrero A, Espinosa-Padilla SE, Lugo-Reyes SO. [Anything that can go wrong: cytotoxic cells and their control of Epstein-Barr virus]. REVISTA ALERGIA MÉXICO 2024; 71:29-39. [PMID: 38683066 DOI: 10.29262/ram.v71i1.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 05/01/2024] Open
Abstract
Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Gutiérrez-Guerrero
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Sara Elva Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Saúl Oswaldo Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| |
Collapse
|
8
|
Wei X, Yu S, Wang J, Xiang Z, Liu L, Min Y. Association between time from diagnosis to treatment and survival of patients with nasopharyngeal carcinoma: A population-based cohort study. Curr Probl Cancer 2024; 48:101060. [PMID: 38211418 DOI: 10.1016/j.currproblcancer.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Treatment delays have frequently been observed in cancer patients. Whether the treatment delays would impair the survival of patients with nasopharyngeal carcinoma (NPC) is still unclear. METHODS The data were derived from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015. Patients were divided into groups of timely treatment (<1 month), intermediate delay (1 and 2 months), and long delay (3-6 months). The influence of different treatment delay intervals on long-term survival was evaluated by multivariate Cox regression analysis. RESULTS In total, 2,048 patients with NPC were included in our study. There were 551 patients in the early stage (I, II stage: 26.9 %) and 1,497 patients in the advanced stage (III, IV stage: 73.1 %). No significant difference in overall survival (OS) or cancer-specific survival (CSS) was observed among the groups with various treatment delay intervals (p = 0.48 in OS and p = 0.43 in CSS, respectively). However, upon adjusting for covariates, a significantly improved OS probability emerged in patients with intermediate treatment delays compared to those who received timely interventions in both the entire study population (adjustedHazard Ratio (aHR)=0.86, 95 % CI: 0.74-0.99, p = 0.043) and the subgroup with advanced stage (aHR=0.85, 95 % CI: 0.72-1.00, p = 0.049). Regarding the CSS probability, similar associations were also observed in the entire study population (aHR=0.84, 95 % CI: 0.71-0.98, p = 0.030) as well as the advanced-stage patients (aHR=0.83, 95 % CI: 0.70-0.99, p = 0.038). CONCLUSIONS Our results revealed that treatment delays are not associated with worse survival of NPC patients. Tumor-specific characteristics and subsequent treatment modalities play more pivotal roles in the prognosis of NPC.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Siting Yu
- Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jun Wang
- Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lei Liu
- Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yu Min
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
9
|
Holt EA, Waytashek CM, Sessions KJ, Asarian L, Lahue KG, Usherwood EJ, Teuscher C, Krementsov DN. Host Genetic Variation Has a Profound Impact on Immune Responses Mediating Control of Viral Load in Chronic Gammaherpesvirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1526-1539. [PMID: 37819784 PMCID: PMC10841120 DOI: 10.4049/jimmunol.2300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Chronic infection with the gammaherpesvirus EBV is a risk factor for several autoimmune diseases, and poor control of EBV viral load and enhanced anti-EBV responses elevate this risk further. However, the role of host genetic variation in the regulation of immune responses to chronic gammaherpesvirus infection and control of viral replication remains unclear. To address this question, we infected C57BL/6J (B6) and genetically divergent wild-derived inbred PWD/PhJ (PWD) mice with murine gammaherpesvirus-68 (MHV-68), a gammaherpesvirus similar to EBV, and determined the effect of latent gammaherpesvirus infection on the CD4 T cell transcriptome. Chronic MHV-68 infection of B6 mice resulted in a dramatic upregulation of genes characteristic of a cytotoxic Th cell phenotype, including Gzmb, Cx3cr1, Klrg1, and Nkg7, a response that was highly muted in PWD mice. Flow cytometric analyses revealed an expansion of CX3CR1+KLRG1+ cytotoxic Th cell-like cells in B6 but not PWD mice. Analysis of MHV-68 replication demonstrated that in spite of muted adaptive responses, PWD mice had superior control of viral load in lymphoid tissue, despite an absence of a defect in MHV-68 in vitro replication in PWD macrophages. Depletion of NK cells in PWD mice, but not B6 mice, resulted in elevated viral load, suggesting genotype-dependent NK cell involvement in MHV-68 control. Taken together, our findings demonstrate that host genetic variation can regulate control of gammaherpesvirus replication through disparate immunological mechanisms, resulting in divergent long-term immunological sequelae during chronic infection.
Collapse
Affiliation(s)
- Emily A. Holt
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Courtney M. Waytashek
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Katherine J. Sessions
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Loredana Asarian
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Cory Teuscher
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Zealiyas K, Teshome S, Haile AF, Weigel C, Alemu A, Amogne W, Yimer G, Abebe T, Berhe N, Ahmed EH, Baiocchi RA. Genotype characterization of Epstein-Barr virus among adults living with human immunodeficiency virus in Ethiopia. Front Microbiol 2023; 14:1270824. [PMID: 38029140 PMCID: PMC10644458 DOI: 10.3389/fmicb.2023.1270824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epstein-Barr virus (EBV) is a human lymphotropic herpesvirus with a causative agent in cancer. There are two genotypes of EBV (EBV genotype 1 and EBV genotype 2) that have been shown to infect humans. This study aimed to characterize the EBV genotype among people with human immunodeficiency virus (PWH) and HIV-negative individuals in Ethiopia. Methods DNA was extracted from peripheral blood mononuclear cells (PBMCs). Conventional polymerase chain reaction (cPCR) targeting EBNA3C genes was performed for genotyping. A quantitative real-time PCR (q-PCR) assay for EBV DNA (EBNA1 ORF) detection and viral load quantification was performed. Statistical significance was determined at a value of p < 0.05. Result In this study, 155 EBV-seropositive individuals were enrolled, including 128 PWH and 27 HIV-negative individuals. Among PWH, EBV genotype 1 was the most prevalent (105/128, 82.0%) genotype, followed by EBV genotype 2 (17/128, 13.3%), and mixed infection (6/128, 4.7%). In PWH, the median log10 of EBV viral load was 4.23 copies/ml [interquartile range (IQR): 3.76-4.46], whereas it was 3.84 copies/ml (IQR: 3.74-4.02) in the HIV-negative group. The EBV viral load in PWH was significantly higher than that in HIV-negative individuals (value of p = 0.004). In PWH, the median log10 of EBV viral load was 4.25 copies/ml (IQR: 3.83-4.47) in EBV genotype 1 and higher than EBV genotype 2 and mixed infection (p = 0.032). Conclusion In Ethiopia, EBV genotype 1 was found to be the most predominant genotype, followed by EBV genotype 2. Understanding the genotype characterization of EBV in PWH is essential for developing new and innovative strategies for preventing and treating EBV-related complications in this population.
Collapse
Affiliation(s)
- Kidist Zealiyas
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Seifegebriel Teshome
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Christoph Weigel
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ayinalem Alemu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Wondwossen Amogne
- Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Yimer
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Genetics, Penn Center for Global Genomics & Health Equity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nega Berhe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Elshafa Hassan Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Wan Z, Chen Y, Hui J, Guo Y, Peng X, Wang M, Hu C, Xie Y, Su J, Huang Y, Xu X, Xu Y, Zhu B. Epstein-Barr virus variation in people living with human immunodeficiency virus in southeastern China. Virol J 2023; 20:107. [PMID: 37259131 DOI: 10.1186/s12985-023-02078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Patients infected with HIV are at high risk of developing Epstein-Barr Virus (EBV)-related diseases. The genotype and viral biological behavior of EBV infection in patients with human immunodeficiency virus-1 (HIV) in China remain unclear. This study analyzed the characteristics of EBV in patients infected with HIV in southeastern China. METHODS A total of 162 HIV-infected patients and 52 patients without HIV were enrolled in this study. EBV viral load in blood was determined by fluorescence quantitative PCR. EBV typing was performed using saliva according to polymorphisms in the EBNA3C region. EBV LMP-1 carboxy terminus (C-ter) was sequenced, and compared with the epidemic strains in the world. RESULTS Among HIV infected patients, the EBV strain variant was mainly EBV-1, while EBV-2 had a higher viral load than EBV-1 (P = 0.001) and EBV-1/2 (P = 0.002). HIV infected patients had higher active virus replication. The EBV LMP-1 variants were mainly the China1 variant. HIV-infected patients had different nucleic acid positions of 30-bp deletion (del30) and had a higher incidence of high 33-bp tandem repeats (rep33) copies than non-HIV-infected patients. There was a difference in the mutations of EBV LMP-1 C-ter del30 and ins15 between HIV infected patients and the control group (P < 0.001). CONCLUSION In southeastern China, EBV in HIV-infected patients had higher active virus replication; EBV infection was mainly EBV-1, and EBV-2 infection has higher EBV virus load; hotspot mutations of LMP-1 C-ter were different between HIV-infected patients and non-HIV-infected patients. TRIAL REGISTRATION This study was approved by the ethics committee of the First Affiliated Hospital of Zhejiang University School of Medicine (Approval No. 2018764), and registered in Chinese Clinical Trial Registry on 3 June 2019 (ChiCTR, ChiCTR1900023600, http://www.chictr.org.cn/usercenter.aspx ).
Collapse
Affiliation(s)
- Zhikai Wan
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Ying Chen
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Jiangjin Hui
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Yongzheng Guo
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Xiaorong Peng
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Mengyan Wang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Caiqin Hu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Yirui Xie
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Junwei Su
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Xiaoke Xu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Yan Xu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Vietzen H, Furlano PL, Cornelissen JJ, Böhmig GA, Jaksch P, Puchhammer-Stöckl E. HLA-E-restricted immune responses are crucial for the control of EBV infections and the prevention of PTLD. Blood 2023; 141:1560-1573. [PMID: 36477802 PMCID: PMC10651774 DOI: 10.1182/blood.2022017650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Primary Epstein-Barr virus (EBV) infections may cause infectious mononucleosis (IM), whereas EBV reactivations in solid organ and hematopoietic stem cell transplant recipients are associated with posttransplantation lymphoproliferative disorders (PTLDs). It is still unclear why only a minority of primary EBV-infected individuals develop IM, and why only some patients progress to EBV+PTLD after transplantation. We now investigated whether nonclassic human leukocyte antigen E (HLA-E)-restricted immune responses have a significant impact on the development of EBV diseases in the individual host. On the basis of a large study cohort of 1404 patients and controls as well as on functional natural killer (NK) and CD8+ T-cell analyses, we could demonstrate that the highly expressed HLA-E∗0103/0103 genotype is protective against IM, due to the induction of potent EBV BZLF1-specific HLA-E-restricted CD8+ T-cell responses, which efficiently prevent the in vitro viral dissemination. Furthermore, we provide evidence that the risk of symptomatic EBV reactivations in immunocompetent individuals as well as in immunocompromised transplant recipients depends on variations in the inhibitory NKG2A/LMP-1/HLA-E axis. We show that EBV strains encoding for the specific LMP-1 peptide variants GGDPHLPTL or GGDPPLPTL, presented by HLA-E, elicit strong inhibitory NKG2A+ NK and CD8+ T-cell responses. The presence of EBV strains encoding for both peptides was highly associated with symptomatic EBV reactivations. The further progression to EBV+PTLD was highly associated with the presence of both peptide-encoding EBV strains and the expression of HLA-E∗0103/0103 in the host. Thus, HLA-E-restricted immune responses and the NKG2A/LMP-1/HLA-E axis are novel predictive markers for EBV+PTLD in transplant recipients and should be considered for future EBV vaccine design.
Collapse
Affiliation(s)
- Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Jan J. Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
14
|
Soldan S, Su C, Monaco MC, Brown N, Clauze A, Andrada F, Feder A, Planet P, Kossenkov A, Schäffer D, Ohayon J, Auslander N, Jacobson S, Lieberman P. Unstable EBV latency drives inflammation in multiple sclerosis patient derived spontaneous B cells. RESEARCH SQUARE 2023:rs.3.rs-2398872. [PMID: 36778367 PMCID: PMC9915775 DOI: 10.21203/rs.3.rs-2398872/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiological studies have demonstrated that Epstein-Barr virus (EBV) is a known etiologic risk factor, and perhaps prerequisite, for the development of MS. EBV establishes life-long latent infection in a subpopulation of memory B cells. Although the role of memory B cells in the pathobiology of MS is well established, studies characterizing EBV-associated mechanisms of B cell inflammation and disease pathogenesis in EBV (+) B cells from MS patients are limited. Accordingly, we analyzed spontaneous lymphoblastoid cell lines (SLCLs) from multiple sclerosis patients and healthy controls to study host-virus interactions in B cells, in the context of an individual's endogenous EBV. We identify differences in EBV gene expression and regulation of both viral and cellular genes in SLCLs. Our data suggest that EBV latency is dysregulated in MS SLCLs with increased lytic gene expression observed in MS patient B cells, especially those generated from samples obtained during "active" disease. Moreover, we show increased inflammatory gene expression and cytokine production in MS patient SLCLs and demonstrate that tenofovir alafenamide, an antiviral that targets EBV replication, decreases EBV viral loads, EBV lytic gene expression, and EBV-mediated inflammation in both SLCLs and in a mixed lymphocyte assay. Collectively, these data suggest that dysregulation of EBV latency in MS drives a pro-inflammatory, pathogenic phenotype in memory B cells and that this response can be attenuated by suppressing EBV lytic activation. This study provides further support for the development of antiviral agents that target EBV-infection for use in MS.
Collapse
Affiliation(s)
| | | | - Maria Chiara Monaco
- National Institutes of Health - National Institute of Neurological Disorders and Stroke
| | | | | | | | | | | | | | - Daniel Schäffer
- Computational Biology Department, Carnegie Mellon University
| | | | | | | | | |
Collapse
|
15
|
Cheragh M, Sadeghizadeh M, Pouriayevali MH, Parsania M. Dendrosomal nanocurcumin prevents EBV-associated cell transformation by targeting the lytic cycle genes of the Epstein-Barr virus in the generation of lymphoblastoid cell line. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1220-1226. [PMID: 37736518 PMCID: PMC10510484 DOI: 10.22038/ijbms.2023.69839.15199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/15/2023] [Indexed: 09/23/2023]
Abstract
Objectives Targeting the lytic cycle of the Epstein-Barr virus (EBV) has been considered a new treatment strategy for malignancies caused by this virus. This study aimed to investigate the effect of Dendrosomal NanoCurcumin (DNC) to prevent cell transformation and inhibit the expression of viral lytic gene expression in the generation of lymphoblastoid cell line (LCL). Materials and Methods Cell viability of LCLs and PBMCs was performed by MTT assay, and flow cytometry (Annexin/PI) was used for evaluation of apoptosis. CD markers on the surface of generated LCL (CD19) cells were examined for cell validation. The effect of DNC on transformation was evaluated by examining cell morphology and determining the expression level of lytic genes BZLF1, Zta, BHRF1, and BRLF1 of EBV using Real-time PCR. Student's t-test was used for statistical analysis. Results The MTT assay showed that DNC can inhibit the proliferation of LCL in a dose-dependent manner. The 50% cytotoxic concentration (CC50) of DNC and curcumin for LCL was determined 38.8 µg/ml and 75 µg/ml, respectively after 72 hr. Also, Real-time PCR data analysis showed that DNC in 30 µg/ml concentration significantly inhibited cell transformation in the LCL and significantly reduced viral lytic genes such as BZLF1, Zta, BHRF1, and BRLF1expression compared to control. Conclusion Overall, these findings show that DNC reduces the expression of the viral lytic cycle genes and also the induction of cell apoptosis and finally prevents the generation of LCL.
Collapse
Affiliation(s)
- Mahboobeh Cheragh
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Parsania
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Cai K, Zhou B, Huang H, Tao R, Sun J, Yan C, Lee PMY, Svendsen K, Fu B, Li J, Huang L. Risk of malignancy following exposure to Epstein-Barr Virus associated infectious mononucleosis: A nationwide population-based cohort study. Front Oncol 2022; 12:991069. [PMID: 36591501 PMCID: PMC9795179 DOI: 10.3389/fonc.2022.991069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose Epstein-Barr virus (EBV) infection has been shown to contribute to oncogenesis and often causes acute clinical manifestation of Infectious mononucleosis (IM). It is unknown whether IM could increase the risk of subsequent malignancies. We aimed to evaluate the association of IM caused by EBV (EBV-IM) with overall and subtypes of malignancy in a large population-based cohort study. Methods This study included 1,419,407 individuals born in Denmark between 1973 and 2016 identified from national registers and 23,057 individuals had IM. The 5,394 of them had confirmed EBV-IM and they were birth date- and sex- matched (1:63) to 1,396,350 non-IM individuals. Cox regression was used to examine the associations of EBV-IM with malignancy. Results Individuals with a history of confirmed EBV-IM had an 88% increased overall risk of malignancy (hazard ratio [HR]:1·88, 95% confidence interval [CI]: 1·42-2·49) and a five-fold risk of hematologic malignancies (HR 5·04, 95% CI: 3·07-8·25), compared to those without IM. Similar estimates were observed in the sibling analysis. The overall risk of malignancy was greater for EBV-IM with complications (HR 8·93, 95% CI: 3·35-23·81) than that for EBV-IM without complications (HR 1·35, 95% CI: 1·20-1·53). EBV-IM duration was related to increased risk of malignancy in a dose-response way. Notably, the significant elevated risk of overall malignancy was observed in the first two years after EBV-IM onset (rate ratio [RR] 4·44, 95% CI: 2·75-7·17) and attenuated thereafter. Conclusion EBV-IM was associated with an increased risk in malignancy, particularly hematologic malignancies and in the first two years following IM exposure. Our findings suggest an important time-window for early screening of the EBV-attributed malignancy.
Collapse
Affiliation(s)
- Kang Cai
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baosong Zhou
- School of Data Science, Fudan University, Shanghai, China
| | - Heyu Huang
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Tao
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Sun
- School of Data Science, Fudan University, Shanghai, China
| | - Chonghuai Yan
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Priscilla Ming Yi Lee
- Department of Clinical Epidemiology-Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Svendsen
- Research Unit for Mental Public Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Bo Fu
- School of Data Science, Fudan University, Shanghai, China
| | - Jiong Li
- Department of Clinical Epidemiology-Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lisu Huang
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
17
|
Mao S, Diao C, Cao L. Primary small intestinal extranodal NK/T cell lymphoma, nasal type with kidney involvement: a rare case report and literature review. Diagn Pathol 2022; 17:75. [PMID: 36199094 PMCID: PMC9533626 DOI: 10.1186/s13000-022-01254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Extranodal NK/T cell lymphoma, nasal type (EN-NK/T-NT) is a rare and aggressive type of non-Hodgkin’s lymphoma. EN-NK/T-NT seldom occurs in the gastrointestinal tract, and renal involvement is relatively rare. Case presentation Here we report a case of primary small intestinal EN-NK/T-NT with kidney involvement. We present the case of a 71-year-old female who was admitted to our hospital for coronary heart disease with a fever of unknown origin. Laboratory examination showed renal impairment and PET/CT showed a locally thickened wall of the small intestine, abnormally increased FDG metabolism in the right lower abdomen, and multiple slightly high-density masses with abnormal increased FDG metabolism in the right kidney. The gross specimen showed a grayish-white lump located in the ileum approximately 15 cm away from the ileocecum, and two grayish-white lumps located in the upper and lower poles of the right kidney, respectively. The pathological diagnosis was EN-NK/T-NT. The patient died approximately 10 months after the operation. Conclusion EN-NK/T-NT is a rare type of non-Hodgkin’s lymphoma and may develop insidiously, with fever as the only clinical manifestation. The disease was found to be difficult to diagnose in the early stage, resulting in a highly aggressive clinical course and short survival time.
Collapse
Affiliation(s)
- Shuyan Mao
- Department of Pathology, Shanghai Pudong New Area People's Hospital, No.490, Chuanhuan South Road, Chuansha town, 200120, Shanghai, China
| | - Changying Diao
- Department of Pathology, Xuzhou Central Hospital, No.199, Jiefang South Road, 221009, Xuzhou, Jiangsu, China.
| | - Lei Cao
- Department of Pathology, Shanghai Pudong New Area People's Hospital, No.490, Chuanhuan South Road, Chuansha town, 200120, Shanghai, China
| |
Collapse
|
18
|
Lopez-Rivera DO, Castano-Jaramillo LM, Yamazaki-Nakashimada MA, Ramirez Uribe RMN, Corcuera Delgado CT, Ignorosa-Arellano KR, Medina-Torres EA, Berrón Ruiz L, Espinosa-Padilla SE, Scheffler-Mendoza SC, López-Velázquez G, Cruz-Munoz ME, Lugo Reyes SO. Not enough by half: NFAT5 haploinsufficiency in two patients with Epstein-Barr virus susceptibility. Front Immunol 2022; 13:959733. [PMID: 36238298 PMCID: PMC9552184 DOI: 10.3389/fimmu.2022.959733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction The transcription factor Nuclear factor of activated T cells 5 (NFAT5), pivotal in immune regulation and function, can be induced by osmotic stress and tonicity-independent signals. Objective We aimed to investigate and characterize two unrelated patients with Epstein-Barr virus susceptibility and no known genetic etiology. Methods After informed consent, we reviewed the electronic charts, extracted genomic DNA, performed whole-exome sequencing, filtered, and prioritized their variants, and confirmed through Sanger sequencing, family segregation analysis, and some functional assays, including lymphoproliferation, cytotoxicity, and characterization of natural killer cells. Results We describe two cases of pediatric Mexican patients with rare heterozygous missense variants in NFAT5 and EBV susceptibility, a school-age girl with chronic-active infection of the liver and bowel, and a teenage boy who died of hemophagocytic lymphohistiocytosis. Discussion NFAT5 is an important regulator of the immune response. NFAT5 haploinsufficiency has been described as an immunodeficiency syndrome affecting both innate and adaptive immunity. EBV susceptibility might be another manifestation in the spectrum of this disease.
Collapse
Affiliation(s)
- Daniela Olivia Lopez-Rivera
- Molecular Immunology laboratory at the Faculty of Medicine, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lina Maria Castano-Jaramillo
- Pediatric Immunology Department, Fundación Hospital de la Misericordia (HOMI) Hospital de la Misericordia, Bogotá, Colombia
- Clinical Immunology Service, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | | | | | | | | | | | - Laura Berrón Ruiz
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | - Sara Elva Espinosa-Padilla
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | | | - Gabriel López-Velázquez
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | - Mario Ernesto Cruz-Munoz
- Molecular Immunology laboratory at the Faculty of Medicine, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico
| | - Saul O. Lugo Reyes
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
- *Correspondence: Saul O. Lugo Reyes,
| |
Collapse
|
19
|
Musukuma-Chifulo K, Siddiqi OK, Chilyabanyama ON, Bates M, Chisenga CC, Simuyandi M, Sinkala E, Dang X, Koralnik IJ, Chilengi R, Munsaka S. Epstein-Barr Virus Detection in the Central Nervous System of HIV-Infected Patients. Pathogens 2022; 11:1080. [PMID: 36297137 PMCID: PMC9607430 DOI: 10.3390/pathogens11101080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 09/13/2022] [Indexed: 11/01/2023] Open
Abstract
Simply detecting Epstein-Barr virus deoxyribonucleic acid (EBV-DNA) is insufficient to diagnose EBV-associated diseases. The current literature around EBV-DNA detection from cerebrospinal fluid (CSF) in human immunodeficiency virus (HIV)-positive non-lymphoma patients was systematically reviewed and a meta-analysis reporting the estimated pooled prevalence in this population when PCR methods are employed, targeting different sequence segments within the EBV genome, was conducted. Using a combination of three key concepts-Epstein-Barr virus detection, central nervous system disease, and human cerebrospinal fluid-and their MeSH terms, the PubMed database was searched. A total of 273 papers reporting the detection of EBV in CNS were screened, of which 13 met the inclusion criteria. The meta-analysis revealed a pooled prevalence of EBV-DNA in CSF of 20% (CI: 12-31%). The highest pooled prevalence was from studies conducted on the African population at 39% (CI: 27-51%). The investigation of the presence of EBV-DNA in the CSF was also very varied, with several gene targets used. While most patients from the articles included in this review and meta-analysis were symptomatic of CNS disorders, the pathogenicity of EBV in non-lymphoma HIV patients when detected in CSF has still not been determined. The presence of EBV-DNA in the CNS remains a concern, and further research is warranted to understand its significance in causing CNS disorders.
Collapse
Affiliation(s)
- Kalo Musukuma-Chifulo
- Department of Biomedical Science, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Department of Research, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia
| | - Omar Khalik Siddiqi
- Global Neurology Program, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Internal Medicine, Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | | | - Matthew Bates
- School of Life & Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, UK
- HerpeZ Infection Research and Training, University Teaching Hospital, Lusaka Private Bag RW1X Ridgeway, Lusaka P.O. Box 10101, Zambia
| | | | - Michelo Simuyandi
- Department of Research, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia
| | - Edford Sinkala
- Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Xin Dang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Igor Jerome Koralnik
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roma Chilengi
- Department of Research, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia
| | - Sody Munsaka
- Department of Biomedical Science, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| |
Collapse
|
20
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
21
|
Liu Z, Sarathkumara YD, Chan JKC, Kwong YL, Lam TH, Ip DKM, Chiu BCH, Xu J, Su YC, Proietti C, Cooper MM, Yu KJ, Bassig B, Liang R, Hu W, Ji BT, Coghill AE, Pfeiffer RM, Hildesheim A, Rothman N, Doolan DL, Lan Q. Characterization of the humoral immune response to the EBV proteome in extranodal NK/T-cell lymphoma. Sci Rep 2021; 11:23664. [PMID: 34880297 PMCID: PMC8655014 DOI: 10.1038/s41598-021-02788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy that has been etiologically linked to Epstein-Barr virus (EBV) infection, with EBV gene transcripts identified in almost all cases. However, the humoral immune response to EBV in NKTCL patients has not been well characterized. We examined the antibody response to EBV in plasma samples from 51 NKTCL cases and 154 controls from Hong Kong and Taiwan who were part of the multi-center, hospital-based AsiaLymph case–control study. The EBV-directed serological response was characterized using a protein microarray that measured IgG and IgA antibodies against 202 protein sequences representing the entire EBV proteome. We analyzed 157 IgG antibodies and 127 IgA antibodies that fulfilled quality control requirements. Associations between EBV serology and NKTCL status were disproportionately observed for IgG rather than IgA antibodies. Nine anti-EBV IgG responses were significantly elevated in NKTCL cases compared with controls and had ORshighest vs. lowest tertile > 6.0 (Bonferroni-corrected P-values < 0.05). Among these nine elevated IgG responses in NKTCL patients, three IgG antibodies (all targeting EBNA3A) are novel and have not been observed for other EBV-associated tumors of B-cell or epithelial origin. IgG antibodies against EBNA1, which have consistently been elevated in other EBV-associated tumors, were not elevated in NKTCL cases. We characterize the antibody response against EBV for patients with NKTCL and identify IgG antibody responses against six distinct EBV proteins. Our findings suggest distinct serologic patterns of this NK/T-cell lymphoma compared with other EBV-associated tumors of B-cell or epithelial origin.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA.
| | - Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Yok-Lam Kwong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China
| | - Tai Hing Lam
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Dennis Kai Ming Ip
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Brian C-H Chiu
- Department of Public Health Sciences, University of Chicago, Chicago, USA
| | - Jun Xu
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Yu-Chieh Su
- Department of Medicine, School of Medicine, I-Shou University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Raymond Liang
- Hong Kong Sanatorium & Hospital, Hong Kong, SAR, China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Anna E Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| |
Collapse
|
22
|
Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021; 21:90-102. [PMID: 34402498 PMCID: PMC8385967 DOI: 10.1093/bfgp/elab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen’s genome architecture. Modern genomic tools and techniques have been crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible subgroups and better disease management. Nevertheless, many challenges to a general understanding of host–pathogen interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The need to understand the role of human genetic variants in disease severity and clinical outcome has been further highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our future pandemic preparedness.
Collapse
Affiliation(s)
- Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
23
|
Knerr JM, Kledal TN, Rosenkilde MM. Molecular Properties and Therapeutic Targeting of the EBV-Encoded Receptor BILF1. Cancers (Basel) 2021; 13:4079. [PMID: 34439235 PMCID: PMC8392491 DOI: 10.3390/cancers13164079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The γ-herpesvirus Epstein-Barr Virus (EBV) establishes lifelong infections in approximately 90% of adults worldwide. Up to 1,000,000 people yearly are estimated to suffer from health conditions attributed to the infection with this virus, such as nasopharyngeal and gastric carcinomas as well as several forms of B, T and NK cell lymphoma. To date, no EBV-specific therapeutic option has reached the market, greatly reducing the survival prognoses of affected patients. Similar to other herpesviruses, EBV encodes for a G protein-coupled receptor (GPCR), BILF1, affecting a multitude of cellular signaling pathways. BILF1 has been identified to promote immune evasion and tumorigenesis, effectively ensuring a life-long persistence of EBV in, and driving detrimental health conditions to its host. This review summarizes the epidemiology of EBV-associated malignancies, their current standard-of-care, EBV-specific therapeutics in development, GPCRs and their druggability, and most importantly consolidates the findings of over 15 years of research on BILF1 in the context of EBV-specific drug development. Taken together, BILF1 constitutes a promising target for the development of novel EBV-specific therapeutics.
Collapse
Affiliation(s)
- Julius Maximilian Knerr
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| | | | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| |
Collapse
|
24
|
Rafiee N, Ravanshad M, Asadi B, Kianfar R, Maleki A. Investigation of IL-2 and IFN-γ to EBV Peptides in Stimulated Whole Blood among Multiple Sclerosis Patients and Healthy Individuals. Intervirology 2021; 64:203-208. [PMID: 34175848 DOI: 10.1159/000517002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Epstein-Barr virus (EBV), a double-stranded DNA virus, has 2 phases of lytic and latent infection in host cells. After infecting B lymphocytes, EBV becomes persistent in these cells. In healthy individuals, T lymphocytes play a key role in killing EBV-infected B cells. Statistical studies have shown that symptomatic EBV infection increases the risk of MS. METHODS This study intended to measure the immune system's response against the different components of EBV, focusing particularly on T lymphocytes' reaction. Consequently, the mRNA level of IL-2 and IFN-γ, liable for impressing autoimmune diseases and as indicators of T-cell function, was compared in EBNA1- and BRLF1-treated whole blood (WB) cultures of 10 healthy individuals and 10 MS patients using real-time RT-PCR. RESULTS The analysis of the results demonstrated a significant increased level of IL-2 in MS patients than healthy subjects after exposure to both peptides. Also, the mRNA level of IFN-γ increased in MS patients in EBNA1-treated WB culture. CONCLUSION According to the study's results, EBV peptides can reactivate immune cells, especially T lymphocytes, and may indirectly induce inflammation and develop MS; however, it seems that long-time exposure to these peptides has reducing effect on T-cell function and faces the control of infected B lymphocytes with difficulties.
Collapse
Affiliation(s)
- Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahador Asadi
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Roya Kianfar
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Maleki
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Molecular Genetics in Epstein-Barr Virus-Associated Malignancies. Life (Basel) 2021; 11:life11070593. [PMID: 34206255 PMCID: PMC8306230 DOI: 10.3390/life11070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Abstract
Global genomic studies have detected the role of genomic alterations in the pathogenesis of Epstein–Barr virus (EBV)-associated tumors. EBV oncoproteins cause a vital shift of EBV from an infectious virus to an oncogenic form during the latent and lytic phase within the lymphoid B cells and epithelial cells. This epigenetic alteration modulates the virus and host genomes and inactivates and disrupts numerous tumor suppressors and signaling pathways. Genomic profiling has played the main role in identifying EBV cancer pathogenesis and its related targeted therapies. This article reviews the role of genetic changes in EBV-associated lymphomas and carcinomas. This includes the prolific molecular genesis, key diagnostic tools, and target-specific drugs that have been in recent clinical use.
Collapse
|
26
|
Soldan SS, Su C, Lamontagne RJ, Grams N, Lu F, Zhang Y, Gesualdi JD, Frase DM, Tolvinski LE, Martin K, Messick TE, Fingerut JT, Koltsova E, Kossenkov A, Lieberman PM. Epigenetic Plasticity Enables CNS-Trafficking of EBV-infected B Lymphocytes. PLoS Pathog 2021; 17:e1009618. [PMID: 34106998 PMCID: PMC8216538 DOI: 10.1371/journal.ppat.1009618] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/21/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Subpopulations of B-lymphocytes traffic to different sites and organs to provide diverse and tissue-specific functions. Here, we provide evidence that epigenetic differences confer a neuroinvasive phenotype. An EBV+ B cell lymphoma cell line (M14) with low frequency trafficking to the CNS was neuroadapted to generate a highly neuroinvasive B-cell population (MUN14). MUN14 B cells efficiently infiltrated the CNS within one week and produced neurological pathologies. We compared the gene expression profiles of viral and cellular genes using RNA-Seq and identified one viral (EBNA1) and several cellular gene candidates, including secreted phosphoprotein 1/osteopontin (SPP1/OPN), neuron navigator 3 (NAV3), CXCR4, and germinal center-associated signaling and motility protein (GCSAM) that were selectively upregulated in MUN14. ATAC-Seq and ChIP-qPCR revealed that these gene expression changes correlated with epigenetic changes at gene regulatory elements. The neuroinvasive phenotype could be attenuated with a neutralizing antibody to OPN, confirming the functional role of this protein in trafficking EBV+ B cells to the CNS. These studies indicate that B-cell trafficking to the CNS can be acquired by epigenetic adaptations and provide a new model to study B-cell neuroinvasion associated CNS lymphoma and autoimmune disease of the CNS, including multiple sclerosis (MS).
Collapse
Affiliation(s)
- Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Chenhe Su
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Nicholas Grams
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Yue Zhang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - James D. Gesualdi
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Drew M. Frase
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lois E. Tolvinski
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kayla Martin
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Troy E. Messick
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Ekaterina Koltsova
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Andrew Kossenkov
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
27
|
Su CY, Shigeishi H, Murodumi H, SugiyaMa M, Ohta K, Takemoto T. Association of oral Epstein-Barr virus with periodontal health in Japanese adults. Exp Ther Med 2021; 22:767. [PMID: 34055066 DOI: 10.3892/etm.2021.10199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that oral Epstein-Barr virus (EBV) is associated with periodontitis. However, the relationship between periodontitis and oral EBV has not been fully elucidated by reducing the effects of confounding factors. The aim of the present study was to clarify the association between oral Epstein-Barr virus (EBV) and oral health status among middle-aged and older Japanese individuals. A total of 124 patients (46 males and 78 females; mean age, 69.2 years; age range, 35-90 years) who visited Hiroshima University Hospital between October 2018 and December 2019 were recruited into the present study. EBV DNA positivity was determined in 124 oral rinse samples using quantitative PCR. Periodontal disease-related bacteria were also detected by PCR analysis. EBV DNA was determined as positive in 16 of the 124 enrolled patients (12.9%). No significant difference was identified between EBV DNA and clinical factors (sex, age, remaining teeth, denture use, smoking or medical history). Of the 38 patients with periodontal pockets ≥6 mm, 10 were EBV DNA positive (26.3%). There was a significant association between EBV DNA positivity and probing depth (P=0.01). Additionally, a significant association was identified between bleeding on probing (BOP) and EBV DNA positivity (P=0.03). To investigate the relationship between EBV and periodontal health status, propensity score-matching was determined between participants without ≥4 mm periodontal pockets and BOP (participants with good periodontal health) and those with ≥4 mm periodontal pockets, BOP or both (participants with poor periodontal health). A total of 35 matched pairs were identified among the patients. Patients with poor periodontal health exhibited a higher EBV DNA positivity rate (25.7%) than those with good periodontal health (0.0%). Additionally, there was a significant association between EBV DNA positivity and periodontal health status (P=0.001). T. denticola-positive participants exhibited a higher EBV DNA positivity rate than negative participants (17.6 vs. 9.6%). However, there was no significant difference. The results indicated that oral EBV may be markedly associated with periodontitis in middle-aged and older Japanese individuals.
Collapse
Affiliation(s)
- Cheng-Yih Su
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroshi Murodumi
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masaru SugiyaMa
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Toshinobu Takemoto
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
28
|
Skoric J, Pavković B. INFECTIOUS MONONUCLEOSIS AND AUTOIMMUNE HEPATITIS. SANAMED 2021. [DOI: 10.24125/sanamed.v16i1.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Oral and Maxillo-Facial Manifestations of Systemic Diseases: An Overview. ACTA ACUST UNITED AC 2021; 57:medicina57030271. [PMID: 33809659 PMCID: PMC8002330 DOI: 10.3390/medicina57030271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Many systemic (infective, genetic, autoimmune, neoplastic) diseases may involve the oral cavity and, more generally, the soft and hard tissues of the head and neck as primary or secondary localization. Primary onset in the oral cavity of both pediatric and adult diseases usually represents a true challenge for clinicians; their precocious detection is often difficult and requires a wide knowledge but surely results in the early diagnosis and therapy onset with an overall better prognosis and clinical outcomes. In the current paper, as for the topic of the current Special Issue, the authors present an overview on the most frequent clinical manifestations at the oral and maxillo-facial district of systemic disease.
Collapse
|
30
|
Reappraisal of the prognostic value of Epstein-Barr virus status in monomorphic post-transplantation lymphoproliferative disorders-diffuse large B-cell lymphoma. Sci Rep 2021; 11:2880. [PMID: 33536508 PMCID: PMC7859229 DOI: 10.1038/s41598-021-82534-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
The role of the Epstein-Barr virus (EBV) status in the blood for predicting survival in post-transplantation lymphoproliferative disorders-diffuse large B-cell lymphoma (PTLD-DLBCL) is unknown. We evaluated the prognostic values of pre-treatment EBV-encoded small RNA (EBER) detected with in situ hybridization in tissues and EBV DNA in the whole blood (WB) and plasma in 58 patients with monomorphic PTLD-DLBCL after solid organ transplantation. There were no significant differences in the rates of overall response, complete response, and survival according to EBER EBV and WB EBV status. In contrast, patients with positive plasma EBV DNA had significantly lower rates of overall response (60.0% vs. 94.4%, P = 0.043) and complete response (40.0% vs. 88.9%, P = 0.019) as well as worse progression-free survival (PFS) (P = 0.035) and overall survival (OS) (P = 0.039) compared with patients with negative plasma EBV DNA. In multivariate analysis, plasma EBV DNA positivity was a significantly unfavorable prognostic factor for PFS [hazard ratio (HR) 4.92, 95% confidence interval (CI) 1.22-19.86, P = 0.025] and OS (HR 4.48, 95% CI 1.14-17.63, P = 0.032). Despite small number of 6 patients with plasma EBV positivity, plasma EBV DNA positivity might be more prognostic for survival than EBER or WB EBV DNA positivity in patients with monomorphic PTLD-DLBCL.
Collapse
|
31
|
Zaki A. Primary Epstein-Barr Virus Infection in Healthy Children in Saudi Arabia: A Single Hospital-Based Study. J Trop Pediatr 2021; 67:6044375. [PMID: 33351945 DOI: 10.1093/tropej/fmaa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Primary Epstein-Barr virus (EBV) infection presents typically with features of infectious mononucleosis (IM) but it may present with atypical symptoms. We aim to evaluate the epidemiological, clinical and laboratory characteristics of primary EBV infection in children in western Saudi Arabia. METHODS A retrospective analysis of the electronic data of all children who were admitted to the hospital and were tested for EBV-viral capsid antigen (VCA) IgM in the period from 1 January 2018 to 31 December 2019. All data of the children with positive EBV-VCA IgM were collected. Patients were divided into two groups; IM and the non-typical presentations groups. RESULTS Fort-two patients had positive EBV-VCA IgM; 71% had IM and 29% had non-typical presentations. IM was more common in early childhood (46.7%). The non-typical presentations were more in infants below 1 year (50%). Adolescents were less affected (6.7% and 16.7%, respectively). Time to diagnose EBV in the non-typical presentations group was longer than IM group; [3.4 (3.2-4.6) vs. 4.7 (4.1-5.5), p = 0.039]. The total leucocytes count was higher in the IM syndrome group compared to the non-typical presentation group [11 (10.3-17.7) vs. 5.5 (4.5-6.4), p < 0.0001]. CONCLUSIONS Primary EBV infection in healthy children in Saudi Arabia occurs more frequently in the younger age groups. IM syndrome occurs more frequently in early childhood. The non-typical presentation occurs more frequently in infants. While adolescents are less commonly affected by primary EBV.
Collapse
Affiliation(s)
- Ahmed Zaki
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Pediatrics, Al-Jedaani Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol 2021; 11:587380. [PMID: 33488588 PMCID: PMC7817975 DOI: 10.3389/fimmu.2020.587380] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr Virus (EBV) is an extremely successful human herpes virus, which infects essentially all human beings at some time during their life span. EBV infection and the associated immune response results in production of antibodies (seroconversion), which occurs mainly during the first years of life, but may also happen during adolescence or later in life. Infection of adolescents can result in infectious mononucleosis, an acute serious condition characterized by massive lymphocytosis. Transmission of EBV mainly occurs through saliva but can rarely be spread through semen or blood, e.g. through organ transplantations and blood transfusions. EBV transmission through oral secretions results in infection of epithelial cells of the oropharynx. From the epithelial cells EBV can infect B cells, which are the major reservoir for the virus, but other cell types may also become infected. As a result, EBV can shuttle between different cell types, mainly B cells and epithelial cells. Moreover, since the virus can switch between a latent and a lytic life cycle, EBV has the ability to cause chronic relapsing/reactivating infections. Chronic or recurrent EBV infection of epithelial cells has been linked to systemic lupus erythematosus and Sjögren’s syndrome, whereas chronic/recurrent infection of B cells has been associated with rheumatoid arthritis, multiple sclerosis and other diseases. Accordingly, since EBV can shuttle between epithelial cells and B cells, the systemic autoimmune diseases often occur as overlapping syndromes with symptoms and characteristic autoantibodies (e.g. antinuclear antibodies and rheumatoid factors) reflecting epithelial and/or B cell infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | |
Collapse
|
33
|
Nomura M, Sumiya R, Ono H, Nagai T, Kumazawa K, Shimizu A, Endo D, Aoyanagi N. Cessation of methotrexate and a small intestinal resection provide a good clinical course for a patient with a jejunum perforation induced by a methotrexate-associated lymphoproliferative disorder: a case report. World J Surg Oncol 2021; 19:4. [PMID: 33388058 PMCID: PMC7778788 DOI: 10.1186/s12957-020-02114-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023] Open
Abstract
Background Methotrexate (MTX) is a frequently used drug in the treatment of rheumatoid arthritis (RA), but occurrences of lymphoproliferative disorders (LPD) have been reported in patients undergoing an MTX regimen. Almost half of the patients with methotrexate-associated lymphoproliferative disorders (MTX-LPD) have extranodal lesions; moreover, although extremely rare, digestive tract perforations resulting from the extranodal lesions of MTX-LPD have also been reported. Case presentation We describe the case of an 81-year-old woman with RA who had been prescribed MTX at 6 mg per week for the past 11 years. She was admitted to our hospital with occasional abdominal pain and was first diagnosed with enteritis. Her abdominal pain did not improve, and a computed tomography scan showed abdominal effusion and free air in the abdominal cavity. She was diagnosed with a digestive tract perforation and underwent emergency surgery. The perforation site was identified in the jejunum, and she underwent small intestinal resection around the perforated region. The pathological findings showed an ulcer in the jejunum and infiltration of large atypical lymphocytes around the perforated region. An immunohistochemical examination revealed the expression of a cluster of differentiation 20 and latent membrane protein 1. Considering the patient’s history of RA treated with MTX, she was diagnosed as having Epstein–Barr virus (EBV)-related MTX-LPD with a histological diagnosis of EBVMCU. MTX was discontinued after the surgery, and her soluble interleukin-2 receptor (sIL-2R) levels had returned to normal 1 year later. She has had a good course for the 2 years since surgery and remains asymptomatic with no recurrence of MTX-LPD, as confirmed by the sIL-2R levels. Conclusion We experienced a rare case of the jejunum perforation induced by MTX-LPD. Since only a few cases have been reported of a patient with small intestinal perforation induced by MTX-LPD, further research is necessary to evaluate the clinicopathological features of MTX-LPD. The patient had disease remission after surgery and by discontinuing MTX treatment; our case did not require chemotherapy. EBV-positive patients, especially those with a pathological presentation of EBVMCU, could have a higher likelihood of remission, which could have been a factor in the present case.
Collapse
Affiliation(s)
- Masahiro Nomura
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan
| | - Ryusuke Sumiya
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan.
| | - Hayato Ono
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan
| | - Takeshi Nagai
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan
| | - Keigo Kumazawa
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan
| | - Atsushi Shimizu
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan
| | - Daisuke Endo
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan
| | - Nobuyoshi Aoyanagi
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Konodai, Ichikawa-shi, Chiba, 272-8156, Japan
| |
Collapse
|
34
|
Keil T, Liu D, Lloyd M, Coombs W, Moffat J, Visalli R. DNA Encapsidation and Capsid Assembly Are Underexploited Antiviral Targets for the Treatment of Herpesviruses. Front Microbiol 2020; 11:1862. [PMID: 32903425 PMCID: PMC7434925 DOI: 10.3389/fmicb.2020.01862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Although there are effective nucleoside analogs to treat HSV, VZV, and HCMV disease, herpesvirus infections continue to contribute to significant morbidity and mortality. Acyclovir is the drug of choice for HSV encephalopathy, yet there is an estimated 6-19% mortality rate with half of the survivors experiencing moderate to severe chronic neurological deficits. For VZV, current treatments are inadequate to prevent acute and persistent pain due to zoster. Treatment of HCMV with GCV requires close monitoring particularly in patients with impaired renal function and there are no approved treatments for congenital HCMV infections. New therapeutic options to control cytomegalovirus reactivation in bone marrow and stem cell transplant patients are needed to improve patient outcome. No successful chemotherapeutic options are available for EBV, HHV-6, 7, and 8. Drug resistance is a concern for HCMV, HSV, and VZV since approved drugs share common mechanisms of action. Targeting DNA encapsidation or capsid assembly provide additional options for the development of non-nucleoside, small molecule anti-herpesviral drugs.
Collapse
Affiliation(s)
- Tara Keil
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Dongmei Liu
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Megan Lloyd
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Wanda Coombs
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Jennifer Moffat
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Robert Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| |
Collapse
|
35
|
Jondle CN, Tarakanova VL. Innate immunity and alpha/gammaherpesviruses: first impressions last a lifetime. Curr Opin Virol 2020; 44:81-89. [PMID: 32777757 DOI: 10.1016/j.coviro.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/26/2022]
Abstract
Innate immune system is considered the first line of defense during viral invasion, with the wealth of the literature demonstrating innate immune control of diverse viruses during acute infection. What is far less clear is the role of innate immune system during chronic virus infections. This short review focuses on alphaherpesviruses and gammaherpesviruses, two highly prevalent herpesvirus subfamilies that, following a brief, once in a lifetime period of acute lytic infection, establish life-long latent infection that is characterized by sporadic reactivation in an immunocompetent host. In spite of many similarities, these two viral families are characterized by distinct cellular tropism and pathogenesis. Here we focus on the published in vivo studies to review known interactions of these two viral subfamilies with the innate immunity of the intact host, both during acute and, particularly, chronic virus infection.
Collapse
Affiliation(s)
- Christopher N Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
36
|
Winter JR, Jackson C, Lewis JEA, Taylor GS, Thomas OG, Stagg HR. Predictors of Epstein-Barr virus serostatus and implications for vaccine policy: A systematic review of the literature. J Glob Health 2020; 10:010404. [PMID: 32257152 PMCID: PMC7125428 DOI: 10.7189/jogh.10.010404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an important human pathogen; it infects >90% people globally and is linked to infectious mononucleosis and several types of cancer. Vaccines against EBV are in development. In this study we present the first systematic review of the literature on risk factors for EBV infection, and discuss how they differ between settings, in order to improve our understanding of EBV epidemiology and aid the design of effective vaccination strategies. METHODS MEDLINE, Embase, and Web of Science were searched on 6th March 2017 for observational studies of risk factors for EBV infection. Studies were excluded if they were published before 2008 to ensure relevance to the modern day, given the importance of influencing future vaccination policies. There were no language restrictions. After title, abstract and full text screening, followed by checking the reference lists of included studies to identify further studies, data were extracted into standardised spreadsheets and quality assessed. A narrative synthesis was undertaken. RESULTS Seventy-seven papers met our inclusion criteria, including data from 31 countries. There was consistent evidence that EBV seroprevalence was associated with age, increasing throughout childhood and adolescence and remaining constant thereafter. EBV was generally acquired at younger ages in Asia than Europe/North America. There was also compelling evidence for an association between cytomegalovirus infection and EBV. Additional factors associated with EBV seroprevalence, albeit with less consistent evidence, included ethnicity, socioeconomic status, other chronic viral infections, and genetic variants of HLA and immune response genes. CONCLUSIONS Our study is the first systematic review to draw together the global literature on the risk factors for EBV infection and includes an evaluation of the quality of the published evidence. Across the literature, the factors examined are diverse. In Asia, early vaccination of infants would be required to prevent EBV infection. In contrast, in Western countries a vaccine could be deployed later, particularly if it has only a short duration of protection and the intention was to protect against infectious mononucleosis. There is a lack of high-quality data on the prevalence and age of EBV infection outside of Europe, North America and South-East Asia, which are essential for informing effective vaccination policies in these settings.
Collapse
Affiliation(s)
- Joanne R Winter
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
| | - Charlotte Jackson
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
- MRC Clinical Trials Unit, University College London, London, UK
| | - Joanna EA Lewis
- National Institute for Health Research (NIHR) Health Protection Research Unit in Modelling Methodology and Medical Research Council Centre for Outbreak Analysis and Public Health, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Contributed equally and listed alphabetically
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Contributed equally and listed alphabetically
| | - Olivia G Thomas
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Helen R Stagg
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Wadé NB, Chang CM, Conti D, Millstein J, Skibola C, Nieters A, Wang SS, De Sanjose S, Kane E, Spinelli JJ, Bracci P, Zhang Y, Slager S, Wang J, Hjalgrim H, Smedby KE, Brown EE, Jarrett RF, Cozen W. Infectious mononucleosis, immune genotypes, and non-Hodgkin lymphoma (NHL): an InterLymph Consortium study. Cancer Causes Control 2020; 31:451-462. [PMID: 32124188 PMCID: PMC7534692 DOI: 10.1007/s10552-020-01266-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE We explored the interaction between non-Hodgkin lymphoma (NHL), infectious mononucleosis (IM) history, and immune-related genotypes in a pooled case-control analysis. METHODS A total of 7,926 NHL patients and 10,018 controls from 12 case-control studies were included. Studies were conducted during various time periods between 1988 and 2008, and participants were 17-96 years of age at the time of ascertainment/recruitment. Self-reported IM history and immune response genotypes were provided by the InterLymph Data Coordinating Center at Mayo Clinic. Odds ratios (OR) were estimated using multivariate logistic regression, and interactions were estimated using the empirical Bayes method. PACT was used to account for multiple comparisons. RESULTS There was evidence of an interaction effect between IM history and two variants on T-cell lymphoma (TCL) risk: rs1143627 in interleukin-1B (IL1B) (pinteraction = 0.04, ORinteraction = 0.09, 95% confidence interval [CI] 0.01, 0.87) and rs1800797 in interleukin-6 (IL6) (pinteraction = 0.03, ORinteraction = 0.08, 95% CI 0.01, 0.80). Neither interaction effect withstood adjustment for multiple comparisons. There were no statistically significant interactions between immune response genotypes and IM on other NHL subtypes. CONCLUSIONS Genetic risk variants in IL1B and IL6 may affect the association between IM and TCL, possibly by influencing T-cell activation, growth, and differentiation in the presence of IM, thereby decreasing risk of immune cell proliferation.
Collapse
Affiliation(s)
- Niquelle Brown Wadé
- Department of Preventive Medicine, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Cigna Health and Life Insurance Company (Cigna), Bloomfield, CT, USA
| | - Cindy M Chang
- Division of Population Health Sciences, Center for Tobacco Products, Food and Drug Administration, Bethesda, MD, USA
| | - David Conti
- Department of Preventive Medicine, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Millstein
- Department of Preventive Medicine, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Sophia S Wang
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Silvia De Sanjose
- Sexual and Reproductive Health, PATH, Seattle, WA, USA
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - John J Spinelli
- Population Oncology, BC Cancer Agency, Vancouver, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Yawei Zhang
- Department of Surgery, Yale School of Medicine and Yale School of Public Health, New Haven, CT, USA
| | - Susan Slager
- Department of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Jun Wang
- Department of Preventive Medicine, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Karin Ekstrom Smedby
- Karolinska Institutet, Sweden University Hospital, Karolinska University, Stockholm, Sweden
| | - Elizabeth E Brown
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruth F Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland
| | - Wendy Cozen
- Department of Preventive Medicine, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
38
|
Roy Chattopadhyay N, Chatterjee K, Tiwari N, Chakrabarti S, Sahu SK, Deb Roy S, Ghosh A, Reddy RR, Das P, Mal S, Karnar BB, Das AK, Tsering S, Riba K, Puii Z, Zomawia E, Singh YI, Suryawanshi AR, Kumar A, Ganguly D, Goswami C, Choudhuri T. TLR9 Polymorphisms Might Contribute to the Ethnicity Bias for EBV-Infected Nasopharyngeal Carcinoma. iScience 2020; 23:100937. [PMID: 32179470 PMCID: PMC7068130 DOI: 10.1016/j.isci.2020.100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy in most parts of the world, but is endemic in some ethnic groups. The association of NPC with the Epstein-Barr virus (EBV) is firmly established; however, the mechanism is still unclear. TLR9 is well known for its essential role in viral pathogen recognition and activation of innate immunity. Here, we report a set of TLR9 polymorphisms in the TIR-2 domain of the TLR9 protein collected from the EBV-infected NPC samples from northeast Indian populations sharing the aforesaid ethnicity. The occurrence of mutations is significantly high in these samples as we found a p value of <0.0001 at a significance level of 0.05. These might play an important role for the lack of function of TLR9 and thus for the higher occurrence of EBV-mediated NPC in such ethnic groups. EBV-associated nasopharyngeal carcinoma (NPC) is endemic in Mongoloids TLR9 is essential for virus recognition and immunity against cancers Polymorphisms are common in TLR9 protein in EBV-infected Mongoloids with NPC NPC susceptibility prediction by TLR9 mutation screening in people for prevention
Collapse
Affiliation(s)
| | - Koustav Chatterjee
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Nikhil Tiwari
- School of Biological Science, National Institute of Science Education and Research, Padnpur, Odisha 752050, India
| | | | - Sushil Kumar Sahu
- Depatrment of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sankar Deb Roy
- Department of Radiation Oncology, Eden Medical Center, Dimapur, Nagaland 797112, India
| | - Arijit Ghosh
- School of Biological Science, National Institute of Science Education and Research, Padnpur, Odisha 752050, India
| | - R Rajendra Reddy
- Clinical Proteomics, Institute of Life Sciences, 751023 Bhubaneswar, India
| | - Piyanki Das
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Sudipa Mal
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Basab Bijay Karnar
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Ashok Kumar Das
- Dr B. Borooah Cancer Institute, ENT Department, Guwahati, Assam 781016, India
| | - Sam Tsering
- Tertiary Cancer Center, TomoRiba Institute of Health and Medical Sciences, Naharlagun, Arunachal Pradesh 791110, India
| | - Komri Riba
- Tertiary Cancer Center, TomoRiba Institute of Health and Medical Sciences, Naharlagun, Arunachal Pradesh 791110, India
| | - Zoreng Puii
- State Referral Hospital, Falkawn, Mizoram 796005, India
| | - Eric Zomawia
- State Referral Hospital, Falkawn, Mizoram 796005, India
| | - Y Indibar Singh
- Department of Radiotherapy, Regional Institute of Medical Sciences, Imphal, Manipur 795004, India
| | | | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, 560100 Bangalore, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Dipyaman Ganguly
- Dendritic Cell Laboratory, Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, 700032 Kolkata, India
| | - Chandan Goswami
- School of Biological Science, National Institute of Science Education and Research, Padnpur, Odisha 752050, India
| | - Tathagata Choudhuri
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India.
| |
Collapse
|
39
|
Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y, Zhang X, Xu B, Qian WB, Tao R, Yan F, Hu JD, Hou M, Ma XJ, Wang X, Liu YH, Zhu ZM, Huang XB, Liu L, Wu CY, Huang L, Shen YF, Huang RB, Xu JY, Wang C, Wu DP, Yu L, Li JF, Xu PP, Wang L, Huang JY, Chen SJ, Zhao WL. Genomic and Transcriptomic Characterization of Natural Killer T Cell Lymphoma. Cancer Cell 2020; 37:403-419.e6. [PMID: 32183952 DOI: 10.1016/j.ccell.2020.02.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Natural killer/T cell lymphoma (NKTCL) is an aggressive and heterogeneous entity of non-Hodgkin lymphoma, strongly associated with Epstein-Barr virus (EBV) infection. To identify molecular subtypes of NKTCL based on genomic structural alterations and EBV sequences, we performed multi-omics study on 128 biopsy samples of newly diagnosed NKTCL and defined three prominent subtypes, which differ significantly in cell of origin, EBV gene expression, transcriptional signatures, and responses to asparaginase-based regimens and targeted therapy. Our findings thus identify molecular networks of EBV-associated pathogenesis and suggest potential clinical strategies on NKTCL.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Bo-Wen Cui
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Nan Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Yu-Ting Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Juan Zhong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Bin-Shen Ou-Yang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bin Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wen-Bin Qian
- Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Tao
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Department of Hematology, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, People's Republic of China
| | - Jian-Da Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Jun Ma
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Hematology, Shandong Province Hospital of Shandong University, Jinan, China
| | - Yuan-Hua Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Zun-Min Zhu
- Department of Hematology, Henan Province People's Hospital, Zhengzhou, China
| | - Xiao-Bin Huang
- Department of Hematology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chong-Yang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Li Huang
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Yun-Feng Shen
- Department of Hematology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Rui-Bin Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing-Yan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Chun Wang
- Department of Hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - De-Pei Wu
- Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian-Feng Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Peng-Peng Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Jin-Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China.
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
40
|
Lupia T, Milia MG, Atzori C, Gianella S, Audagnotto S, Imperiale D, Mighetto L, Pirriatore V, Gregori G, Lipani F, Ghisetti V, Bonora S, Di Perri G, Calcagno A. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS 2020; 34:373-380. [PMID: 31764071 PMCID: PMC7773520 DOI: 10.1097/qad.0000000000002442] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The current study aimed to investigate whether cerebrospinal fluid (CSF) Epstein-Barr virus (EBV) or cytomegalovirus (CMV) DNA was associated with viral, inflammatory and neuronal damage biomarkers in people living with HIV (PLWH). DESIGN A cross-sectional diagnostic study on CSF fluid samples in patients undergoing lumbar punctures for clinical reasons, to better understand the role of EBV and CMV in the CNS on HIV RNA replication, blood-brain-barrier (BBB) damage and biomarkers of neuronal damage/inflammation. METHODS EBV, CMV DNA and HIV RNA were measured on CSF, through real time (RT)-PCR, from PLWHs undergoing lumbar punctures for clinical reasons (excluding oncho-haematological comorbidities). Immune-enzymatic assays evaluated blood-brain barrier inflammation and damage. Patients were stratified according to plasma HIV RNA levels in viremic (≥50 copies/ml) and aviremic (<50 copies/ml). RESULTS We included 297 participants. Among 167 viremic patients CSF EBV and CMV DNA were detectable in 42 (25.1%) and 10 (6.3%) participants; among 130 aviremic individuals CSF EBV and CMV DNA were detectable in 12 (9.2%) and 0 (0%) participants, respectively. In viremic group detectable CSF EBV DNA was associated with CSF pleocytosis (P < 0.001), higher CSF HIV RNA (P < 0.001) and neopterin levels (P = 0.002). In aviremic participants detectable EBV DNA was associated with pleocytosis (P = 0.056), higher neopterin (P = 0.027) and immune globulins (P = 0.016) in the CSF; CSF escape was more common in those with detectable EBV DNA (50 vs. 21.2%, P = 0.036). CONCLUSION EBV DNA was frequently detected in the CSF of viremic and fewer aviremic patients on antiretroviral treatment. In PLWH without clinical evidence of encephalitis CSF EBV DNA was associated with higher biomarkers levels of neuronal damage/inflammation. The role of EBV reactivation in HIV-associated central nervous system disorders warrants further studies.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Maria Grazia Milia
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Cristiana Atzori
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Sara Gianella
- University of California San Diego, La Jolla, California, USA
| | - Sabrina Audagnotto
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Daniele Imperiale
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Lorenzo Mighetto
- Laboratory of Immunology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Veronica Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Gabriella Gregori
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Filippo Lipani
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Valeria Ghisetti
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| |
Collapse
|
41
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
42
|
Zhao J, Guo C, Xiong F, Yu J, Ge J, Wang H, Liao Q, Zhou Y, Gong Q, Xiang B, Zhou M, Li X, Li G, Xiong W, Fang J, Zeng Z. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett 2020; 477:131-143. [PMID: 32061950 DOI: 10.1016/j.canlet.2020.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most malignant tumors in Southern China and southeast Asia, which is characterized by a dense lymphocyte infiltration and a poor prognosis. The emergence of single-cell sequencing represents a powerful tool to resolve tumor heterogeneity and delineate the complex communication among the tumor cells with neighboring stromal and immune cells in the tumor microenvironment (TME). Here, we performed single cell RNA-seq and analyzed tumor cells together with the infiltrating immune cells from three NPC tumor tissues. In our study, the malignant cells display the intra- and inter-tumoral heterogeneity among the individual patients. Analysis of the immune cells reveal the heterogeneous composition of the distinct immune cells and the various functional states of T cells in NPC tumors. Additionally, coupled with the reconstruct of the T cell receptor (TCR) sequences from immune cells full-length single-cell sequence data, we identify the diverse T cell clonotypes and expansion distribution in individual tumors. Overall, we firstly reveal the landscape of tumor and infiltrating immune cells in nasopharyngeal cancer. These results provide deeper insights on the mechanisms of tumor clearance by immune cells in the surrounding microenvironment, which will be helpful in improving the targeted and immune therapies for NPC.
Collapse
Affiliation(s)
- Jin Zhao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jianjun Yu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qian Gong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jian Fang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
43
|
M A, Chatterjee S, A P, S M, Davuluri S, Ar AK, T A, M P, Cs P, Sinha M, Chugani A, R VP, Kk A, R S J. Natural Killer cell transcriptome during primary EBV infection and EBV associated Hodgkin Lymphoma in children-A preliminary observation. Immunobiology 2020; 225:151907. [PMID: 32044149 DOI: 10.1016/j.imbio.2020.151907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 01/22/2023]
Abstract
Epstein Barr Viral infection is a common childhood infection in India and is also nearly 100 % etiologically associated with pediatric Hodgkin Lymphoma (HL). The main question in EBV immunobiology has been, why only a small subset of infected individuals develop EBV associated malignancies, while the vast majority carry this virus asymptomatically for life. Natural Killer (NK) cells, with a phenotype of CD56dim CD16+ exhibit potent cytotoxicity towards both virus infected cells and transformed cells and hence have been considered to be crucial in preventing the development of symptomatic EBV infection and lymphoma. In order to get an insight into the various possible molecular aspects of NK cells, in the pathogenesis of both these EBV mediated diseases in children we studied the whole transcriptome of MACS sorted CD56dim CD16 + NK cells from four patients from each of the three groups of children viz. Infectious Mononucleosis (IM), HL and age matched controls by using a massively parallel sequencing approach. NK cells from both IM and HL had down-regulated innate immunity and chemokine signaling genes. While down-regulation of genes responsible for polarization of the secretory apparatus, activated NK cell signaling and MAP kinase signaling were exclusive to NK cells in patients with IM, in NK cells of HL, specifically, genes involved in extracellular matrix (ECM) - receptor interaction, cytokine-cytokine receptor interaction, TNF signaling, Toll-like receptor signaling pathway and cytosolic DNA-sensing pathways were significantly down-regulated. Enrichment analysis showed STAT3 to be the most significant transcription factor (TF) for the down-regulated genes in IM, whereas, GATA1 was found to be the most significant TF for the genes down-regulated in HL. Analysis of protein interaction network identified functionally important protein clusters. Top clusters, comprised of down-regulated genes, involved in signaling and ubiquitin-related processes and pathways. These may perhaps be responsible for the hypo-responsiveness of NK cells in both diseases. These possibly point to different deficiencies in NK cell activation, loss of activating receptor signaling and degranulation in IM, versus loss of cytokine and chemokine signaling in HL, in the two EBV associated pathologies investigated. Various suppressed molecules and pathways were novel, which have not been reported earlier and could therefore be potential targets for immunotherapy of NK cell reactivation in both the diseases in future.
Collapse
Affiliation(s)
- Alka M
- Departments of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | | | - Parchure A
- Departments of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Mahantesh S
- Departments of Microbiology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Sravanthi Davuluri
- Biological Data Analyzers' Association (BdataA), Electronic City, Phase I, Bangalore, India
| | - Arun Kumar Ar
- Departments of Pediatric Oncology, Kidwai Memorial Institute of Oncology, India
| | - Avinash T
- Departments of Pediatric Oncology, Kidwai Memorial Institute of Oncology, India
| | - Padma M
- Departments of Pediatric Oncology, Kidwai Memorial Institute of Oncology, India
| | - Premalata Cs
- Departments of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Mahua Sinha
- Departments of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | | | | | - Acharya Kk
- Biological Data Analyzers' Association (BdataA), Electronic City, Phase I, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Jayshree R S
- Departments of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India.
| |
Collapse
|
44
|
Winter JR, Taylor GS, Thomas OG, Jackson C, Lewis JEA, Stagg HR. Predictors of Epstein-Barr virus serostatus in young people in England. BMC Infect Dis 2019; 19:1007. [PMID: 31779585 PMCID: PMC6883578 DOI: 10.1186/s12879-019-4578-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an important human pathogen which causes lifelong infection of > 90% people globally and is linked to infectious mononucleosis (arising from infection in the later teenage years) and several types of cancer. Vaccines against EBV are in development. In order to determine the most cost-effective public health strategy for vaccine deployment, setting-specific data on the age at EBV acquisition and risk factors for early infection are required. Such data are also important to inform mathematical models of EBV transmission that can determine the required target product profile of vaccine characteristics. We thus aimed to examine risk factors for EBV infection in young people in England, in order to improve our understanding of EBV epidemiology and guide future vaccination strategies. METHODS The Health Survey for England (HSE) is an annual, cross-sectional representative survey of households in England during which data are collected via questionnaires and blood samples. We randomly selected individuals who participated in the HSE 2002, aiming for 25 participants of each sex in each single year age group from 11 to 24 years. Stored samples were tested for EBV and cytomegalovirus (CMV) antibodies. We undertook descriptive and regression analyses of EBV seroprevalence and risk factors for infection. RESULTS Demographic data and serostatus were available for 732 individuals. EBV seroprevalence was strongly associated with age, increasing from 60.4% in 11-14 year olds throughout adolescence (68.6% in 15-18 year olds) and stabilising by early adulthood (93.0% in those aged 22-24 years). In univariable and multivariable logistic regression models, ethnicity was associated with serostatus (adjusted odds ratio for seropositivity among individuals of other ethnicity versus white individuals 2.33 [95% confidence interval 1.13-4.78]). Smoking was less strongly associated with EBV seropositivity. CONCLUSIONS By the age of 11 years, EBV infection is present in over half the population, although age is not the only factor associated with serostatus. Knowledge of the distribution of infection in the UK population is critical for determining future vaccination policies, e.g. comparing general versus selectively targeted vaccination strategies.
Collapse
Affiliation(s)
- Joanne R Winter
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Olivia G Thomas
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Charlotte Jackson
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
- Current address: MRC Clinical Trials Unit, University College London, London, UK
| | - Joanna E A Lewis
- National Institute for Health Research (NIHR) Health Protection Research Unit in Modelling Methodology, and Medical Research Council Centre for Outbreak Analysis and Public Health, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Helen R Stagg
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK.
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
45
|
Roy Chattopadhyay N, Das P, Chatterjee K, Choudhuri T. Higher incidence of nasopharyngeal carcinoma in some regions in the world confers for interplay between genetic factors and external stimuli. Drug Discov Ther 2019; 11:170-180. [PMID: 28867748 DOI: 10.5582/ddt.2017.01030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a rare variety of head and neck cancers. The risk factors include three major causes: genetic factors, viral infection, and environmental and dietary factors. The types of NPC show strong ethnic and geographic variations. The keratinizing and non-keratinizing types are prevalent in the lower incidence regions like North America and Europe; whereas the undifferentiated type is mostly found in the regions with higher incidences like China, North Africa, Arctic, and Nagaland of North-East India. These suggest a possible major role of the internal genetic factors for generation and promotion of this disease. Viral infections might accelerate the process of carcinogenesis by helping in cellular proliferation and loss of apoptosis. Diet and other environmental factors promote these neoplastic processes and further progression of the disease occurs.
Collapse
Affiliation(s)
| | - Piyanki Das
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana
| | | | | |
Collapse
|
46
|
Visalli RJ, Schwartz AM, Patel S, Visalli MA. Identification of the Epstein Barr Virus portal. Virology 2019; 529:152-159. [PMID: 30710799 DOI: 10.1016/j.virol.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Little is known about Epstein Barr Virus (EBV) proteins that participate in viral DNA cleavage and packaging. Genes encoding potential terminase subunit and portal protein homologs include BGRF1/BDRF1, BALF3, BFRF1A and BBRF1 respectively. EBV mutants with deletions in one or more of these genes were impaired for DNA packaging (Pavlova et al., 2013). In the current study, BBRF1 oligomers were purified from recombinant baculovirus infected insect cell extracts. Transmission electron microscopy revealed that purified EBV portals retained features typically found in other portals including a central channel with clip, stem and wing/crown domains. Although compounds have been identified that target DNA encapsidation in human cytomegalovirus, herpes simplex viruses and varicella-zoster virus, the identification of new EBV targets has lagged significantly. Characterization of the EBV portal will direct studies aimed at developing potential small molecular inhibitors of the EBV encapsidation process.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Adam M Schwartz
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Shivam Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Melissa A Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
47
|
Prediction of MicroRNAs in the Epstein-Barr Virus Reveals Potential Targets for the Viral Self-Regulation. Indian J Microbiol 2018; 59:73-80. [PMID: 30728633 DOI: 10.1007/s12088-018-0775-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
Studies involving miRNAs have opened discussions about their broad participation in viral infections. Regarding the Human gammaherpesvirus 4 or Epstein-Barr virus (EBV), miRNAs are important regulators of viral and cellular gene expression during the infectious process, promoting viral persistence and, in some cases, oncogenic processes. We identified 55 miRNAs of EBV type 2 and inferred the viral mRNA target to self-regulate. This data indicate that gene self-repression is an important strategy for maintenance of the viral latent phase. In addition, a protein network was constructed to establish essential proteins in the self-regulation process. We found ten proteins that work as hubs, highlighting BTRF1 and BSRF1 as the most important proteins in the network. These results open a new way to understand the infection by EBV type 2, where viral genes can be targeted for avoiding oncogenic processes, as well as new therapies to suppress and combat the persistent viral infection.
Collapse
|
48
|
The Microenvironment in Epstein-Barr Virus-Associated Malignancies. Pathogens 2018; 7:pathogens7020040. [PMID: 29652813 PMCID: PMC6027429 DOI: 10.3390/pathogens7020040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022] Open
Abstract
The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
Collapse
|
49
|
Sallah N, Carstensen T, Wakeham K, Bagni R, Labo N, Pollard MO, Gurdasani D, Ekoru K, Pomilla C, Young EH, Fatumo S, Asiki G, Kamali A, Sandhu M, Kellam P, Whitby D, Barroso I, Newton R. Whole-genome association study of antibody response to Epstein-Barr virus in an African population: a pilot. Glob Health Epidemiol Genom 2017; 2:e18. [PMID: 29868224 PMCID: PMC5870407 DOI: 10.1017/gheg.2017.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 02/02/2023] Open
Abstract
Epstein Barr virus (EBV) infects 95% of the global population and is associated with up to 2% of cancers globally. Immunoglobulin G (IgG) antibody levels to EBV have been shown to be heritable and associated with developing malignancies. We, therefore, performed a pilot genome-wide association analysis of anti-EBV IgG traits in an African population, using a combined approach including array genotyping, whole-genome sequencing and imputation to a panel with African sequence data. In 1562 Ugandans, we identify a variant in human leukocyte antigen (HLA)-DQA1, rs9272371 (p = 2.6 × 10-17) associated with anti-EBV nuclear antigen-1 responses. Trans-ancestry meta-analysis and fine-mapping with European-ancestry individuals suggest the presence of distinct HLA class II variants driving associations in Uganda. In addition, we identify four putative, novel, very rare African-specific loci with preliminary evidence for association with anti-viral capsid antigen IgG responses which will require replication for validation. These findings reinforce the need for the expansion of such studies in African populations with relevant datasets to capture genetic diversity.
Collapse
Affiliation(s)
- N. Sallah
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - T. Carstensen
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - K. Wakeham
- MRC/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - R. Bagni
- Protein Expression Lab, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - N. Labo
- Viral Oncology Section, Aids and Cancer Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - M. O. Pollard
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - D. Gurdasani
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - K. Ekoru
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - C. Pomilla
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - E. H. Young
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - S. Fatumo
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- H3Africa Bioinformatics Network (H3ABioNet) Node, National Biotechnology Development Agency (NABDA), Federal Ministry of Science and Technology (FMST), Abuja, Nigeria
| | - G. Asiki
- MRC/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - A. Kamali
- MRC/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - M. Sandhu
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - P. Kellam
- Department of Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - D. Whitby
- Viral Oncology Section, Aids and Cancer Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - I. Barroso
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - R. Newton
- MRC/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| |
Collapse
|
50
|
Mandage R, Telford M, Rodríguez JA, Farré X, Layouni H, Marigorta UM, Cundiff C, Heredia-Genestar JM, Navarro A, Santpere G. Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples. PLoS One 2017; 12:e0179446. [PMID: 28654678 PMCID: PMC5487016 DOI: 10.1371/journal.pone.0179446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/29/2017] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr virus (EBV), human herpes virus 4, has been classically associated with infectious mononucleosis, multiple sclerosis and several types of cancers. Many of these diseases show marked geographical differences in prevalence, which points to underlying genetic and/or environmental factors. Those factors may include a different susceptibility to EBV infection and viral copy number among human populations. Since EBV is commonly used to transform B-cells into lymphoblastoid cell lines (LCLs) we hypothesize that differences in EBV copy number among individual LCLs may reflect differential susceptibility to EBV infection. To test this hypothesis, we retrieved whole-genome sequenced EBV-mapping reads from 1,753 LCL samples derived from 19 populations worldwide that were sequenced within the context of the 1000 Genomes Project. An in silico methodology was developed to estimate the number of EBV copy number in LCLs and validated these estimations by real-time PCR. After experimentally confirming that EBV relative copy number remains stable over cell passages, we performed a genome wide association analysis (GWAS) to try detecting genetic variants of the host that may be associated with EBV copy number. Our GWAS has yielded several genomic regions suggestively associated with the number of EBV genomes per cell in LCLs, unraveling promising candidate genes such as CAND1, a known inhibitor of EBV replication. While this GWAS does not unequivocally establish the degree to which genetic makeup of individuals determine viral levels within their derived LCLs, for which a larger sample size will be needed, it potentially highlighted human genes affecting EBV-related processes, which constitute interesting candidates to follow up in the context of EBV related pathologies.
Collapse
Affiliation(s)
- Rajendra Mandage
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Marco Telford
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Juan Antonio Rodríguez
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Xavier Farré
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Hafid Layouni
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, Barcelona, Spain
| | - Urko M. Marigorta
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
- Georgia Institute of Technology, Department of Biology, Atlanta, Georgia, United States of America
| | - Caitlin Cundiff
- Georgia Institute of Technology, Department of Biology, Atlanta, Georgia, United States of America
| | - Jose Maria Heredia-Genestar
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
- National Institute for Bioinformatics (INB), PRBB, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), PRBB, Barcelona, Catalonia, Spain
- Center for Genomic Regulation (CRG), PRBB, Barcelona, Catalonia, Spain
- * E-mail: (AN); (GS)
| | - Gabriel Santpere
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States of America
- * E-mail: (AN); (GS)
| |
Collapse
|