1
|
Hu X, Wang J, Wang Y, Liu L, Miao J, Ren H, Wang J, Xu X. Uncovering the Prevalence and Genetic Characterization of Rabbit-Derived Paslahepevirus Balayani (Hepatitis E Virus) in Hebei Province, China. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:20. [PMID: 40032702 DOI: 10.1007/s12560-025-09636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Paslahepevirus balayani (hepatitis E virus) is a zoonotic pathogen, with rabbit Paslahepevirus balayani (HEV-3ra) being widely distributed among global rabbit populations. Notably, in China, rabbits constitute a significant HEV host, second only to swine. Emerging evidence suggests that HEV-3ra possesses the capability to cross species barriers and infect humans. Against this backdrop, our investigation aimed to delineate the HEV infection status and epidemiological patterns in the commercial rabbits of Hebei Province, China. We collected 386 liver and 100 fecal samples across four regions in Hebei Province. Detection of HEV RNA in these specimens was achieved by employing reverse transcription quantitative polymerase chain reaction (RT-qPCR) and reverse transcription nested PCR (RT-Nested PCR), focusing on the amplification of a segment of the open reading frame 2 (ORF2) and the complete genome. Among the 486 samples, 73 were tested positive for HEV RNA, resulting in an overall positive rate of 15.0%. The positive rates for liver and fecal samples were 11.7% (45/386) and 28.0% (28/100), respectively. The study successfully obtained 38 partial ORF2 sequences and 5 complete genome sequences. Sequence analysis revealed that the complete genome sequences shared 86.0-94.5% nucleotide identity with HEV-3ra sequences in GenBank. Phylogenetic analysis confirmed that all strains belonged to HEV-3ra and were closely related to previously reported sequences from China. This study provides the first comprehensive genomic overview of circulating HEV-3ra strains in Hebei, offering valuable insights into the infection dynamics and prevalence of HEV-3ra among commercial rabbits, which can inform public health strategies.
Collapse
Affiliation(s)
- Xinyue Hu
- School of Public Health, Hebei Medical University, Shijiazhuang, China, 050017
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China, 050051
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China, 050017
| | - Jinfeng Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China, 050051
| | - Yinuo Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, China, 050017
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China, 050051
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China, 050017
| | - Libing Liu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China, 050051
| | - Junjie Miao
- School of Public Health, Hebei Medical University, Shijiazhuang, China, 050017
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China, 050017
| | - Huan Ren
- School of Public Health, Hebei Medical University, Shijiazhuang, China, 050017
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China, 050017
| | - Jianchang Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, China, 050017.
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China, 050051.
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China, 050017.
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, China, 050017.
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China, 050017.
| |
Collapse
|
2
|
Liu T, Li J, Yin X, Lu F, Zhao H, Wang L, Qin CF. Establishment of enterically transmitted hepatitis virus animal models using lipid nanoparticle-based full-length viral genome RNA delivery system. Gut 2025; 74:467-476. [PMID: 39353724 DOI: 10.1136/gutjnl-2024-332784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Enterically transmitted hepatitis viruses, such as hepatitis A virus (HAV) and hepatitis E virus (HEV), remain notable threats to public health. However, stable and reliable animal models of HAV and HEV infection are lacking. OBJECTIVE This study aimed to establish HAV and HEV infections in multiple small animals by intravenously injecting lipid nanoparticle (LNP)-encapsulated full-length viral RNAs (LNP-vRNA). DESIGN In vitro transcribed and capped full-length HAV RNA was encapsulated into LNP and was intravenously inoculated to Ifnar-/- mice, and HEV RNA to rabbits and gerbils. Virological parameters were determined by RT-qPCR, ELISA and immunohistochemistry. Liver histopathological changes were analysed by H&E staining. Antiviral drug and vaccine efficacy were further evaluated by using the LNP-vRNA-based animal model. RESULTS On intravenous injection of LNP-vRNA, stable viral shedding was detected in the faeces and infectious HAV or HEV was recovered from the livers of the inoculated animals. Liver damage was observed in LNP-vRNA (HAV)-injected mice and LNP-vRNA (HEV)-injected rabbits. Mongolian gerbils were also susceptible to LNP-vRNA (HEV) injections. Finally, the antiviral countermeasures and in vivo function of HEV genome deletions were validated in the LNP-vRNA-based animal model. CONCLUSION This stable and standardised LNP-vRNA-based animal model provides a powerful platform to investigate the pathogenesis and evaluate countermeasures for enterically transmitted hepatitis viruses and can be further expanded to other viruses that are not easily cultured in vitro or in vivo.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lin Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
3
|
Müller MF, Sacur J, Brancher JM, Vera MD, Arce L, Raya-Tonetti MF, Kitazawa H, Villena J, Vizoso-Pinto MG. An experimental chimeric hepatitis E virus vaccine elicits both local and systemic immune responses. Front Microbiol 2024; 15:1512018. [PMID: 39777142 PMCID: PMC11704494 DOI: 10.3389/fmicb.2024.1512018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The development of a hepatitis E virus (HEV) vaccine is critical, with ORF2 capsid protein as the main target. We previously demonstrated that oral coadministration of recombinant ORF2 with immunomodulatory bacterium-like-particles (IBLP) induces a specific immune response in mice, particularly using IBLP derived from Lacticaseibacillus rhamnosus IBL027 (IBLP027), which was effective in eliciting a local humoral response. IBLP are non-live bacteria with adjuvant and carrier properties, serving as a platform for exposing proteins or antigens fused to LysM (lysine motif) domains, protein modules that bind to cell wall polysaccharides like peptidoglycan. Materials We cloned the most immunogenic domain of ORF2 (O2P2) fused to five LysM domains (LysM5O2P2) and displayed this chimeric protein on the surface of IBLP027 to create a prototype vaccine (IBLP027-LysM5O2P2). We evaluated its capacity to induce an immune response in vivo by immunizing mice with three doses of either the experimental vaccine or the chimeric protein alone, using an oral or a combined schedule with subcutaneous priming followed by oral boosting. Control groups received IBLP027. Sera and small intestine fluid were analyzed for humoral response, while Peyer's patches and spleen immune cells were used for ex vivo stimulation with capsid protein to assess cellular response. Results The oral scheme failed to elicit an IgG response, but this was overcome by a subcutaneous priming dose followed by oral boosters, which led to increasing IgG titers in the combined scheme. The highest IgG titers were seen in the vaccine prototype group. Most groups produced significantly higher IgA levels in intestinal fluid, especially in those that received the oral scheme. Cellular response studies showed increased tumor necrosis factor (TNF)-α, interferon (IFN)-γ interleukin (IL)-4, and IL-17 levels in groups receiving the chimeric protein via oral or combined schedules. Conclusion Further and continuous research is needed to better understand both the needs and expectations of students and supervisors in different academic realities, including in Veterinary Medicine schools, from which the information available on the subject is scarce.
Collapse
Affiliation(s)
- Melisa Florencia Müller
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina
| | - Julia Matias Brancher
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina
| | - María Daniela Vera
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina
| | - Lorena Arce
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina
| | | | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán, Argentina
| | - María Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONI-CET-UNT, Tucumán, Argentina
- Laboratorio Central de Ciencias Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
4
|
Li M, Wang Y, Wan W, Song Z, Wang P, Zhou H. Hepatitis E virus infection during pregnancy: Advances in animal models. Res Vet Sci 2024; 180:105429. [PMID: 39378754 DOI: 10.1016/j.rvsc.2024.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Hepatitis E virus (HEV) is one of the major pathogens causing acute viral hepatitis worldwide, which usually causes acute self-limited diseases in general individuals. However, it can lead to high mortality and adverse pregnancy outcomes in pregnant women. Due to the lack of effective and stable cell culture models for HEV, the establishment of suitable animal models for HEV infection during pregnancy is necessary. An electronic search of the relevant database was conducted to identify eligible articles. Main animal models for the study of HEV infection during pregnancy include rabbits, swine, nonhuman primates and Mongolian gerbils. These animal models have been used to study the prevention, treatment and possible mechanisms of HEV infection during pregnancy. Studies using these animal models have investigated the potential pathogenesis of HEV infection during pregnancy. It has been found that immune mechanism (changes in the CD4/CD8 ratio and cytokines), hormonal changes (increase in pregnancy-related hormones) and viral factors (different genotypes and genome structures) can lead to HEV-related adverse pregnancy outcomes in animal models. In this review, we aimed to comprehensively present the characteristics of different animal models and the pathogenesis of HEV-related adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Manyu Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China.
| | - Yan Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital/First Clinical College of Shanxi Medical University, No. 85, Jiefangnan Road, Yingze District, Taiyuan 030001, Shanxi, China
| | - Wenjun Wan
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China
| | - Zeyu Song
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China
| | - Peilong Wang
- Heji Hospital Affiliated to Changzhi Medical College, Gastroenterology Center Endoscopy Department, Changzhi 046000, Shanxi, China.
| | - Haiwei Zhou
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China.
| |
Collapse
|
5
|
Khan N, Kakakhel S, Malik A, Nigar K, Akhtar S, Khan AA, Khan A. Genetic substructure and host-specific natural selection trend across vaccine-candidate ORF-2 capsid protein of hepatitis-E virus. J Viral Hepat 2024; 31:524-534. [PMID: 38804127 DOI: 10.1111/jvh.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Hepatitis E virus is a primary cause of acute hepatitis worldwide. The present study attempts to assess the genetic variability and evolutionary divergence among HEV genotypes. A vaccine promising capsid-protein coding ORF-2 gene sequences of HEV was evaluated using phylogenetics, model-based population genetic methods and principal component analysis. The analyses unveiled nine distinct clusters as subpopulations for six HEV genotypes. HEV-3 genotype samples stratified into four different subgroups, while HEV-4 stratified into three additional subclusters. Rabbit-infectious HEV-3ra samples constitute a distinct cluster. Pairwise analysis identified marked genetic distinction of HEV-4c and HEV-4i subgenotypes compared to other genotypes. Numerous admixed, inter and intragenotype recombinant strains were detected. The MEME method identified several ORF-2 codon sites under positive selection. Some selection signatures lead to amino acid substitutions within ORF-2, resulting in altered physicochemical features. Moreover, a pattern of host-specific adaptive signatures was identified among HEV genotypes. The analyses conclusively depict that recombination and episodic positive selection events have shaped the observed genetic diversity among different HEV genotypes. The significant genetic diversity and stratification of HEV-3 and HEV-4 genotypes into subgroups, as identified in the current study, are noteworthy and may have implications for the efficacy of anti-HEV vaccines.
Collapse
Affiliation(s)
- Nasir Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sehrish Kakakhel
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Kiran Nigar
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| |
Collapse
|
6
|
Kobayashi T, Takahashi M, Ohta S, Hoshino Y, Yamada K, Jirintai S, Primadharsini PP, Nagashima S, Murata K, Okamoto H. Production and Characterization of Self-Assembled Virus-like Particles Comprising Capsid Proteins from Genotypes 3 and 4 Hepatitis E Virus (HEV) and Rabbit HEV Expressed in Escherichia coli. Viruses 2024; 16:1400. [PMID: 39339876 PMCID: PMC11437457 DOI: 10.3390/v16091400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The zoonotic transmission of hepatitis E virus (HEV) genotypes 3 (HEV-3) and 4 (HEV-4), and rabbit HEV (HEV-3ra) has been documented. Vaccination against HEV infection depends on the capsid (open reading frame 2, ORF2) protein, which is highly immunogenic and elicits effective virus-neutralizing antibodies. Escherichia coli (E. coli) is utilized as an effective system for producing HEV-like particles (VLPs). However, research on the production of ORF2 proteins from these HEV genotypes in E. coli to form VLPs has been modest. In this study, we constructed 21 recombinant plasmids expressing various N-terminally and C-terminally truncated HEV ORF2 proteins for HEV-3, HEV-3ra, and HEV-4 in E. coli. We successfully obtained nine HEV-3, two HEV-3ra, and ten HEV-4 ORF2 proteins, which were primarily localized in inclusion bodies. These proteins were solubilized in 4 M urea, filtered, and subjected to gel filtration. Results revealed that six HEV-3, one HEV-3ra, and two HEV-4 truncated proteins could assemble into VLPs. The purified VLPs displayed molecular weights ranging from 27.1 to 63.4 kDa and demonstrated high purity (74.7-95.3%), as assessed by bioanalyzer, with yields of 13.9-89.6 mg per 100 mL of TB medium. Immunoelectron microscopy confirmed the origin of these VLPs from HEV ORF2. Antigenicity testing indicated that these VLPs possess characteristic HEV antigenicity. Evaluation of immunogenicity in Balb/cAJcl mice revealed robust anti-HEV IgG responses, highlighting the potential of these VLPs as immunogens. These findings suggest that the generated HEV VLPs of different genotypes could serve as valuable tools for HEV research and vaccine development.
Collapse
Affiliation(s)
- Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan;
| | - Yu Hoshino
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Kentaro Yamada
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| |
Collapse
|
7
|
Wang X, Sheng Y, Ji P, Deng Y, Sun Y, Chen Y, Nan Y, Hiscox JA, Zhou EM, Liu B, Zhao Q. A Broad-specificity Neutralizing Nanobody against Hepatitis E Virus Capsid Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:442-455. [PMID: 38905108 PMCID: PMC11299488 DOI: 10.4049/jimmunol.2300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Usuda D, Kaneoka Y, Ono R, Kato M, Sugawara Y, Shimizu R, Inami T, Nakajima E, Tsuge S, Sakurai R, Kawai K, Matsubara S, Tanaka R, Suzuki M, Shimozawa S, Hotchi Y, Osugi I, Katou R, Ito S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Nomura T, Sugita M. Current perspectives of viral hepatitis. World J Gastroenterol 2024; 30:2402-2417. [PMID: 38764770 PMCID: PMC11099385 DOI: 10.3748/wjg.v30.i18.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/11/2024] Open
Abstract
Viral hepatitis represents a major danger to public health, and is a globally leading cause of death. The five liver-specific viruses: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus, each have their own unique epidemiology, structural biology, transmission, endemic patterns, risk of liver complications, and response to antiviral therapies. There remain few options for treatment, in spite of the increasing prevalence of viral-hepatitis-caused liver disease. Furthermore, chronic viral hepatitis is a leading worldwide cause of both liver-related morbidity and mortality, even though effective treatments are available that could reduce or prevent most patients' complications. In 2016, the World Health Organization released its plan to eliminate viral hepatitis as a public health threat by the year 2030, along with a discussion of current gaps and prospects for both regional and global eradication of viral hepatitis. Today, treatment is sufficiently able to prevent the disease from reaching advanced phases. However, future therapies must be extremely safe, and should ideally limit the period of treatment necessary. A better understanding of pathogenesis will prove beneficial in the development of potential treatment strategies targeting infections by viral hepatitis. This review aims to summarize the current state of knowledge on each type of viral hepatitis, together with major innovations.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuki Kaneoka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Rikuo Ono
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Masashi Kato
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuto Sugawara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Runa Shimizu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Tomotari Inami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Eri Nakajima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shiho Tsuge
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Riki Sakurai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kenji Kawai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shun Matsubara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Makoto Suzuki
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
- Department of Sports Medicine, Faculty of Medicine, Juntendo University, Bunkyo 113-8421, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| |
Collapse
|
9
|
Ren M, Lu C, Zhou M, Jiang X, Li X, Liu N. The intersection of virus infection and liver disease: A comprehensive review of pathogenesis, diagnosis, and treatment. WIREs Mech Dis 2024; 16:e1640. [PMID: 38253964 DOI: 10.1002/wsbm.1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Liver disease represents a significant global burden, placing individuals at a heightened risk of developing cirrhosis and liver cancer. Viral infections act as a primary cause of liver diseases on a worldwide scale. Infections involving hepatitis viruses, notably hepatitis B, C, and E viruses, stand out as the most prevalent contributors to acute and chronic intrahepatic adverse outcome, although the hepatitis C virus (HCV) can be effectively cured with antiviral drugs, but no preventative vaccination developed. Hepatitis B virus (HBV) and HCV can lead to both acute and chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma (HCC), which are principal causes of worldwide morbidity and mortality. Other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are capable of causing liver damage. Therefore, it is essential to recognize that virus infections and liver diseases are intricate and interconnected processes. A profound understanding of the underlying relationship between virus infections and liver diseases proves pivotal in the effective prevention, diagnosis, and treatment of these conditions. In this review, we delve into the mechanisms by which virus infections induce liver diseases, as well as explore the pathogenesis, diagnosis, and treatment of liver diseases. This article is categorized under: Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Meng Ren
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Chenxia Lu
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Mingwei Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Li
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Institute of Liver Diseases, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Ningning Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Klink P, Harms D, Altmann B, Dörffel Y, Morgera U, Zander S, Bock CT, Hofmann J. Molecular characterisation of a rabbit Hepatitis E Virus strain detected in a chronically HEV-infected individual from Germany. One Health 2023; 16:100528. [PMID: 37363232 PMCID: PMC10288053 DOI: 10.1016/j.onehlt.2023.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/28/2023] Open
Abstract
In immunocompromised individuals persisting viremia frequently leads to a chronic hepatitis E virus (HEV) infection. Zoonotic transmission of HEV from pigs and wild boar to humans is proven and sporadic infections with rabbit HEV (raHEV) have recently been reported. Here, the molecular characterisation of a raHEV strain isolated from an immunocompromised, chronically HEV-infected, heart-transplanted patient is described. After successful ribavirin (RBV) treatment of a HEV infection in 2019, the patient was again tested HEV positive in 2021 and received a second RBV therapy cycle. Full-length HEV genome amplification and next generation sequencing was performed on a plasma sample taken between first and second cycle of RBV therapy and a stool sample taken two months after starting the second cycle. The sequence of plasma (raHEV-83) and stool (raHEV-99) derived virus showed the highest nucleotide sequence identity to a Chinese raHEV and a phylogenetic relationship to a raHEV strain isolated from a French patient. Furthermore, sequence analysis revealed the presence of RBV-associated substitutions V1479I and G1634K in the HEV sequences from plasma and additionally K1398R from stool. The results underline the role of rabbits as putative sources of HEV infection and emphasize the need of a one health concept for a better understanding of HEV epidemiology and to develop tools for prevention and control of HEV infection.
Collapse
Affiliation(s)
- Patrycja Klink
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Britta Altmann
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Yvonne Dörffel
- Outpatient Clinic, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Morgera
- Outpatient Clinic, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen Zander
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - C. Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Jörg Hofmann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, German Centre for Infection Research, Berlin, Germany
- Labor Berlin, Charité-Vivantes GmbH, Berlin, Germany
| |
Collapse
|
12
|
Mahsoub HM, Heffron CL, Hassebroek AM, Sooryanarain H, Wang B, LeRoith T, Rodríguez GR, Tian D, Meng XJ. Fetal Loss in Pregnant Rabbits Infected with Genotype 3 Hepatitis E Virus Is Associated with Altered Inflammatory Responses, Enhanced Virus Replication, and Extrahepatic Virus Dissemination with Positive Correlations with Increased Estradiol Level. mBio 2023; 14:e0041823. [PMID: 36939322 PMCID: PMC10128027 DOI: 10.1128/mbio.00418-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/21/2023] Open
Abstract
Hepatitis E virus (HEV) causes adverse clinical outcomes in pregnant women, but the underlying mechanisms remain poorly understood. To delineate the mechanisms of pregnancy-associated adverse effects during HEV infection, we utilized a genotype 3 HEV from rabbit (HEV-3ra) and its cognate host (rabbits) to systematically investigate the clinical consequences, viral replication dynamics, and host immune and hormonal responses of HEV infection during pregnancy. We found a significant fetal loss of 23% in HEV-infected pregnant rabbits, indicating an early-stage miscarriage. HEV infection in pregnant rabbits was characterized by higher viral loads in feces, intestinal contents, liver, and spleen tissues, as well as a longer and earlier onset of viremia than in infected nonpregnant rabbits. HEV infection altered the pattern of cytokine gene expressions in the liver of pregnant rabbits and caused a transient increase of serum interferon gamma (IFN-γ) shortly after a notable increase in viral replication, which may contribute to early fetal loss. Histological lesions in the spleen were more pronounced in infected pregnant rabbits, although moderate liver lesions were seen in both infected pregnant and nonpregnant rabbits. Total bilirubin was elevated in infected pregnant rabbits. The serum levels of estradiol (E2) in HEV-infected pregnant rabbits were significantly higher than those in mock-infected pregnant rabbits at 14 days postinoculation (dpi) and correlated positively with higher viral loads in feces, liver, and spleen tissues at 28 dpi, suggesting that it may play a role in extrahepatic virus dissemination. The results have important implications for understanding the severe diseases associated with HEV infection during pregnancy. IMPORTANCE HEV causes adverse pregnancy outcomes, with a mortality rate of >30% in pregnant women, but the underlying mechanisms are poorly understood. In this study, we utilized HEV-3ra and its cognate host (pregnant rabbit) to delineate the potential underlying mechanisms of pregnancy-associated adverse outcomes during HEV infection. We found that infected pregnant rabbits had a fetal loss of 23%, which coincided with enhanced viral replication and an elevated systemic IFN-γ response, followed by longer viremia duration and extrahepatic viral dissemination. Estradiol levels were increased in infected pregnant rabbits and correlated positively with higher fecal viral shedding and higher viral loads in liver and spleen tissues. Infected pregnant rabbits had more pronounced splenic lesions, higher serum total bilirubin, and an altered cytokine gene expression profile in the liver. The results will contribute to our understanding of the mechanisms of HEV-associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Guillermo Raimundi Rodríguez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
13
|
Wang B, Mahsoub HM, Li W, Heffron CL, Tian D, Hassebroek AM, LeRoith T, Meng XJ. Ribavirin Treatment Failure-Associated Mutation, Y1320H, in the RNA-Dependent RNA Polymerase of Genotype 3 Hepatitis E Virus (HEV) Enhances Virus Replication in a Rabbit HEV Infection Model. mBio 2023; 14:e0337222. [PMID: 36809085 PMCID: PMC10128057 DOI: 10.1128/mbio.03372-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Chronic hepatitis E virus (HEV) infection has become a significant clinical problem that requires treatment in immunocompromised individuals. In the absence of an HEV-specific antiviral, ribavirin (RBV) has been used off-label, but treatment failure may occur due to mutations in the viral RNA-dependent RNA polymerase (RdRp), including Y1320H, K1383N, and G1634R. Chronic hepatitis E is mostly caused by zoonotic genotype 3 HEV (HEV-3), and HEV variants from rabbits (HEV-3ra) are closely related to human HEV-3. Here, we explored whether HEV-3ra, along with its cognate host, can serve as a model to study RBV treatment failure-associated mutations observed in human HEV-3-infected patients. By utilizing the HEV-3ra infectious clone and indicator replicon, we generated multiple single mutants (Y1320H, K1383N, K1634G, and K1634R) and a double mutant (Y1320H/K1383N) and assessed the role of mutations on replication and antiviral activity of HEV-3ra in cell culture. Furthermore, we also compared the replication of the Y1320H mutant with the wild-type HEV-3ra in experimentally infected rabbits. Our in vitro analyses revealed that the effects of these mutations on rabbit HEV-3ra are altogether highly consistent with those on human HEV-3. Importantly, we found that the Y1320H enhances virus replication during the acute stage of HEV-3ra infection in rabbits, which corroborated our in vitro results showing an enhanced viral replication of Y1320H. Taken together, our data suggest that HEV-3ra and its cognate host is a useful and relevant naturally occurring homologous animal model to study the clinical relevance of antiviral-resistant mutations observed in human HEV-3 chronically-infected patients. IMPORTANCE HEV-3 causes chronic hepatitis E that requires antiviral therapy in immunosuppressed individuals. RBV is the main therapeutic option for chronic hepatitis E as an off-label use. Several amino acid changes, including Y1320H, K1383N, and G1634R, in the RdRp of human HEV-3 have reportedly been associated with RBV treatment failure in chronic hepatitis E patients. In this study, we utilized an HEV-3ra from rabbit and its cognate host to investigate the effect of these RBV treatment failure-associated HEV-3 RdRp mutations on viral replication efficiency and antiviral susceptibility. The in vitro data using rabbit HEV-3ra was highly comparable to those from human HEV-3. We demonstrated that the Y1320H mutation significantly enhanced HEV-3ra replication in cell culture and enhanced virus replication during the acute stage of HEV-3ra infection in rabbits. The rabbit HEV-3ra infection model should be useful in delineating the role of human HEV-3 RBV treatment failure-associated mutations in antiviral resistance.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Wen Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
14
|
Sridhar S, Wu S, Situ J, Shun EHK, Li Z, Zhang AJX, Hui K, Fong CHY, Poon VKM, Chew NFS, Yip CCY, Chan WM, Cai JP, Yuen KY. A small animal model of chronic hepatitis E infection using immunocompromised rats. JHEP Rep 2022; 4:100546. [PMID: 36052220 PMCID: PMC9424580 DOI: 10.1016/j.jhepr.2022.100546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background & Aims HEV variants such as swine genotypes within Paslahepevirus species balayani (HEV-A) and rat HEV (Rocahepevirus ratti; HEV-C1) cause chronic hepatitis E in immunocompromised individuals. There are few reliable and accessible small animal models that accurately reflect chronic HEV infection. We aimed to develop an immunocompromised rat model of chronic hepatitis E infection. Methods In this animal model infection study, rats were immunosuppressed with a drug combination (prednisolone, tacrolimus, and mycophenolate mofetil) commonly taken by transplant recipients. Rats were challenged with human- and rat-derived HEV-C1 strains or a human-derived HEV-A strain. Viral load, liver function, liver histology, humoural, and cellular immune responses were monitored. Results A high-dose (HD) immunosuppressive regimen consistently prolonged human- and rat-derived HEV-C1 infection in rats (up to 12 weeks post infection) compared with transient infections in low-dose (LD) immunosuppressant-treated and immunocompetent (IC) rats. Mean HEV-C1 viral loads in stool, serum, and liver tissue were higher in HD regimen-treated rats than in LD or IC rats (p <0.05). Alanine aminotransferase elevation was observed in chronically infected rats, which was consistent with histological hepatitis and HEV-C1 antigen expression in liver tissue. None (0/6) of the HD regimen-treated, 5/6 LD regimen-treated, and 6/6 IC rats developed antibodies to HEV-C1 in species-specific immunoblots. Reversal of immunosuppression was associated with clearance of viraemia and restoration of HEV-C1-specific humoural and cellular immune responses in HD regimen-treated rats, mimicking patterns in treated patients with chronic hepatitis E. Viral load suppression was observed with i.p. ribavirin treatment. HD regimen-treated rats remained unsusceptible to HEV-A infection. Conclusions We developed a scalable immunosuppressed rat model of chronic hepatitis E that closely mimics this infection phenotype in transplant recipients. Lay summary Convenient small animal models are required for the study of chronic hepatitis E in humans. We developed an animal model of chronic hepatitis E by suppressing immune responses of rats with drugs commonly taken by humans as organ transplant rejection prophylaxis. This model closely mimicked features of chronic hepatitis E in humans. Chronic HEV infection is challenging to model with small animals. Rats can be immunocompromised by transplant rejection drugs taken by patients. This model supports chronic rat HEV infection robustly and consistently. Immunosuppression in this model is scalable, reversible, and responsive to ribavirin.
Collapse
Key Words
- ALT, alanine aminotransferase
- HD, high dose
- HEV
- HEV, hepatitis E virus
- HEV-A, Paslahepevirus balayani
- HEV-C1
- HEV-C1, Rocahepevirus ratti genotype 1
- IC, immunocompetent
- IFN-γ, interferon-γ
- Immunosuppression
- LD, low dose
- MMF, mycophenolate mofetil
- Orthohepevirus C
- PBS, phosphate buffered saline
- Rat hepatitis E
- Ribavirin
- Rocahepevirus ratti
- VTM, virus transport medium
- dpi, days post infection
- rRT-PCR, real-time reverse-transcription PCR
Collapse
Affiliation(s)
- Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Estie Hon-Kiu Shun
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiyu Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Jin-Xia Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kyle Hui
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carol Ho-Yan Fong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nicholas Foo-Siong Chew
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wan-Mui Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Jenckel M, Hall RN, Strive T. Pathogen profiling of Australian rabbits by metatranscriptomic sequencing. Transbound Emerg Dis 2022; 69:e2629-e2640. [PMID: 35687756 PMCID: PMC9796941 DOI: 10.1111/tbed.14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023]
Abstract
Australia is known for its long history of using biocontrol agents, such as myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV), to manage wild European rabbit populations. Interestingly, while undertaking RHDV surveillance of rabbits that were found dead, we observed that approximately 40% of samples were negative for RHDV. To investigate whether other infectious agents are responsible for killing rabbits in Australia, we subjected a subset of these RHDV-negative liver samples to metatranscriptomic sequencing. In addition, we investigated whether the host transcriptome data could provide additional differentiation between likely infectious versus non-infectious causes of death. We identified transcripts from several Clostridia species, Pasteurella multocida, Pseudomonas spp., and Eimeria stiedae, in liver samples of several rabbits that had died suddenly, all of which are known to infect rabbits and are capable of causing disease and mortality. In addition, we identified Hepatitis E virus and Cyniclomyces yeast in some samples, both of which are not usually associated with severe disease. In one-third of the sequenced total liver RNAs, no infectious agent could be identified. While metatranscriptomic sequencing cannot provide definitive evidence of causation, additional host transcriptome analysis provided further insights to distinguish between pathogenic microbes and commensals or environmental contaminants. Interestingly, three samples where no pathogen could be identified showed evidence of up-regulated host immune responses, while immune response pathways were not up-regulated when E. stiedae, Pseudomonas, or yeast were detected. In summary, although no new putative rabbit pathogens were identified, this study provides a robust workflow for future investigations into rabbit mortality events.
Collapse
Affiliation(s)
| | - Robyn N. Hall
- CSIRO Health and BiosecurityCanberraAustralia,Centre for Invasive Species SolutionsUniversity of CanberraBruceAustralia
| | - Tanja Strive
- CSIRO Health and BiosecurityCanberraAustralia,Centre for Invasive Species SolutionsUniversity of CanberraBruceAustralia
| |
Collapse
|
16
|
Performance Evaluation of a Preclinical SPECT Scanner with a Collimator Designed for Medium-Sized Animals. Mol Imaging 2022; 2022:9810097. [PMID: 35903250 PMCID: PMC9328189 DOI: 10.1155/2022/9810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Equipped with two stationary detectors, a large bore collimator for medium-sized animals has been recently introduced for dedicated preclinical single-photon emission computed tomography (SPECT) imaging. We aimed to evaluate the basic performance of the system using phantoms and healthy rabbits. Methods A general-purpose medium-sized animal (GP-MSA) collimator with 135 mm bore diameter and thirty-three holes of 2.5 mm diameter was installed on an ultrahigh-resolution scanner equipped with two large stationary detectors (U-SPECT5-E/CT). The sensitivity and uniformity were investigated using a point source and a cylinder phantom containing 99mTc-pertechnetate, respectively. Uniformity (in %) was derived using volumes of interest (VOIs) on images of the cylinder phantom and calculated as [(maximum count − minimum count)/(maximum count + minimum count) × 100], with lower values of % indicating superior performance. The spatial resolution and contrast-to-noise ratios (CNRs) were evaluated with images of a hot-rod Derenzo phantom using different activity concentrations. Feasibility of in vivo SPECT imaging was finally confirmed by rabbit imaging with the most commonly used clinical myocardial perfusion SPECT agent [99mTc]Tc-sestamibi (dynamic acquisition with a scan time of 5 min). Results In the performance evaluation, a sensitivity of 790 cps/MBq, a spatial resolution with the hot-rod phantom of 2.5 mm, and a uniformity of 39.2% were achieved. The CNRs of the rod size 2.5 mm were 1.37, 1.24, 1.20, and 0.85 for activity concentration of 29.2, 1.0, 0.5, and 0.1 MBq/mL, respectively. Dynamic SPECT imaging in rabbits allowed to visualize most of the thorax and to generate time-activity curves of the left myocardial wall and ventricular cavity. Conclusion Preclinical U-SPECT5-E/CT equipped with a large bore collimator demonstrated adequate sensitivity and resolution for in vivo rabbit imaging. Along with its unique features of SPECT molecular functional imaging is a superior collimator technology that is applicable to medium-sized animal models and thus may promote translational research for diagnostic purposes and development of novel therapeutics.
Collapse
|
17
|
Li B, Wu H, Miao Z, Lu Y. Using codon usage analysis to speculate potential animal hosts of hepatitis E virus: An exploratory study. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105284. [PMID: 35439638 DOI: 10.1016/j.meegid.2022.105284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
There has been an increase in the reported number of animals worldwide that carry the hepatitis E virus (HEV). This study aimed to explore potential animal hosts for HEV through codon usage analysis. Full-length HEV sequences of six genotypes as well as codon usage of potential animal hosts were collected. Moreover, nucleotide composition and codon usage bias were compared across HEV genotypes and animal hosts. Based on the analysis for human HEV-1 and humans, the results were basically consistent with epidemiology evidence. Among 17 potential animal hosts, all HEV genotypes exhibited a preference for guanine/cytosine in the third position of synonymous codons. Furthermore, non-human primates and humans have large high-frequency codons identical to HEV in addition to a high correlation of codon fraction with HEV. Some animals in close contact with humans showed high preference for HEV, including cattle, dogs, and rats with HEV-A, cats, dogs, and swine with HEV-C1. Codon usage bias has limited efficiency in determining the hosts for HEV, but it may provide indicative clues for potential animal hosts when combined with experimental and epidemiological evidence.
Collapse
Affiliation(s)
- Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310052, Zhejiang, China.
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Li M, Wang Y, Li K, Lan H, Zhou C. Characterization of highly expressed novel hub genes in hepatitis E virus chronicity in rabbits: a bioinformatics and experimental analysis. BMC Vet Res 2022; 18:239. [PMID: 35739587 PMCID: PMC9219159 DOI: 10.1186/s12917-022-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV), which is the leading cause of acute viral hepatitis worldwide, usually causes self-limited infections in common individuals. However, it can lead to chronic infection in immunocompromised individuals and its mechanisms remain unclear. Rabbits are the natural host of HEV, and chronic HEV infections have been observed in rabbits. Therefore, we aimed to investigate potential key genes in HEV chronicity process in rabbits. In this study, both bioinformatics and experimental analysis were performed to deepen the understanding of hub genes in HEV chronic infection in rabbits. RESULTS Ninety-four candidate differentially expressed genes (DEGs) and the pathways they enriched were identified to be related with HEV chronicity. A total of 10 hub genes were found by protein-protein interaction (PPI) network construction. Rabbits of group P (n = 4) which showed symptoms of chronic HEV infection were selected to be compared with HEV negative rabbits (group N, n = 6). By detecting the identified hub genes in groups P and N by real-time PCR, we found that the expressions of MX1, OAS2 and IFI44 were significantly higher in group P (P < 0.05). CONCLUSIONS In this work, we presented that MX1, OAS2 and IFI44 were significantly upregulated in HEV chronic infected rabbits, indicating that they may be involved in the pathogenesis of HEV chronicity.
Collapse
Affiliation(s)
- Manyu Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, 2 Tiantanxili Rd, Dongcheng District, 100050, Beijing, China.
| | - Yan Wang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Kejian Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, 2 Tiantanxili Rd, Dongcheng District, 100050, Beijing, China
| | - Haiyun Lan
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, 2 Tiantanxili Rd, Dongcheng District, 100050, Beijing, China
| | - Cheng Zhou
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, 2 Tiantanxili Rd, Dongcheng District, 100050, Beijing, China.
| |
Collapse
|
19
|
Characterization of Chronic Hepatitis E Virus Infection in Immunocompetent Rabbits. Viruses 2022; 14:v14061252. [PMID: 35746723 PMCID: PMC9229306 DOI: 10.3390/v14061252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic hepatitis E virus (HEV) infection is frequently reported in immunocompromised patients, but has also been increasingly reported in non-immunocompromised individuals. We characterized the course of chronic HEV infection in immunocompetent rabbits. In two independent experiments, 40 specific-pathogen-free rabbits were infected with a rabbit HEV genotype 3 strain in serial diluted titers (108 to 104 copies/mL). Serum and fecal samples were collected weekly and were tested for HEV RNA, antigen, anti-HEV and liver enzymes. Rabbits that spontaneously cleared the infection before 10 weeks post-inoculation (wpi) were kept to the end of the study as recovery control. Liver tissues were collected from HEV-infected rabbits at 5, 10 and 26 wpi for histopathological analysis. Nineteen rabbits (47.5%) developed chronic HEV infection with persistent viraemia and fecal HEV shedding for >6 months. Seroconversion to anti-HEV was observed in 84.2% (16/19) of the chronically infected rabbits. Serum levels of aminotransferase were persistently elevated in most of the rabbits. Characterizations of chronic HEV infection in immunocompetent settings could be recapitulated in rabbits, which can serve as a valuable tool for future studies on pathogenesis.
Collapse
|
20
|
Cierniak F, Ulrich RG, Groschup MH, Eiden M. A Modular Hepatitis E Virus Replicon System for Studies on the Role of ORF1-Encoded Polyprotein Domains. Pathogens 2022; 11:pathogens11030355. [PMID: 35335679 PMCID: PMC8948863 DOI: 10.3390/pathogens11030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/02/2022] Open
Abstract
Zoonotic hepatitis E virus (HEV) infection is an emerging cause of acute viral hepatitis in developed countries. Known reservoirs of zoonotic genotype 3 (HEV-3) are mainly pigs and wild boar, and to a lesser extent rabbits and deer. Rabbit hepatitis E virus (HEV-3ra) is prevalent in rabbits worldwide and represents a particular risk for zoonotic infection. Current understanding of the molecular mechanisms of HEV pathogenesis is incomplete, particularly due to the limited availability of efficient and reliable cell culture systems. In order to identify genomic regions responsible for HEV propagation in cell culture, we developed a modular chimeric reporter replicon system based on cell culture-adapted (Kernow-C1/p6 and 47832mc) and rabbit-derived HEV strains. Replication in HepG2 cells was monitored on the basis of a Gaussia luciferase reporter gene that was inserted in place of the open reading frame (ORF) 2 of the HEV genome. Luciferase activity of rabbit HEV-derived replicons was significantly lower than that of Kernow-C1/p6 and 47832mc replicons. Serial exchanges of defined ORF1 segments within the Kernow-C1/p6 replicon backbone indicated that HEV replication in HepG2 cells is not determined by a single domain but rather by an interplay of longer segments of the ORF1-derived nonstructural polyprotein. This implies that a specific combination of viral factors is required for efficient HEV propagation in cell culture.
Collapse
Affiliation(s)
- Filip Cierniak
- Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
- Partner Site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
- Partner Site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (F.C.); (R.G.U.); (M.H.G.)
- Correspondence:
| |
Collapse
|
21
|
Fonti N, Pacini MI, Forzan M, Parisi F, Periccioli M, Mazzei M, Poli A. Molecular and Pathological Detection of Hepatitis E Virus in Roe Deer (Capreolus capreolus) and Fallow Deer (Dama dama) in Central Italy. Vet Sci 2022; 9:vetsci9030100. [PMID: 35324829 PMCID: PMC8950858 DOI: 10.3390/vetsci9030100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) is a common causative agent of acute hepatitis in the world, with a serious public health burden in both developing and industrialized countries. Cervids, along with wild boars and lagomorphs, are the main wild hosts of HEV in Europe and constitute a documented source of infection for humans. The aim of this study was to evaluate the presence of HEV in roe deer (Capreolus capreolus) and fallow deer (Dama dama) living in Tuscany, Central Italy. Liver samples from 48 roe deer and 60 fallow deer were collected from carcasses during the hunting seasons. Following the results obtained from molecular and histopathologic studies, 5/48 (10.4%) roe deer and 1/60 (1.7%) fallow deer liver samples were positive for the presence of HEV RNA. All PCR-positive livers were also IHC-positive for viral antigen presence, associated with degenerative and inflammatory lesions with predominantly CD3+ cellular infiltrates. This study represents the first identification in Italy of HEV RNA in roe and fallow deer and the first study in literature describing liver alterations associated with HEV infection in cervids. These results demonstrate that HEV is present in wild cervid populations in Italy and confirm the potential zoonotic role of these species.
Collapse
Affiliation(s)
- Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Maria Irene Pacini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Mario Forzan
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Marcello Periccioli
- Unità Funzionale di Sanità Pubblica Veterinaria e Sicurezza Alimentare Zona Distretto Grossetana, Dipartimento di Prevenzione, Azienda USL Toscana Sud Est, Amiata Grossetana e Colline Metallifere, Viale Cimabue, 109-58100 Grosseto, Italy;
| | - Maurizio Mazzei
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
- Correspondence:
| |
Collapse
|
22
|
Distribution and Genetic Diversity of Hepatitis E Virus in Wild and Domestic Rabbits in Australia. Pathogens 2021; 10:pathogens10121637. [PMID: 34959591 PMCID: PMC8709427 DOI: 10.3390/pathogens10121637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
In 2020, Hepatitis E virus (HEV) was detected for the first time in Australian rabbits. To improve our understanding of the genetic diversity and distribution of the virus, 1635 rabbit liver samples from locations across Australia were screened via RT-qPCR for HEV. HEV genomes were amplified and sequenced from 48 positive samples. Furthermore, we tested 380 serum samples from 11 locations across Australia for antibodies against HEV. HEV was detected in rabbits from all states and territories, except the Northern Territory. Seroprevalence varied between locations (from 0% to 22%), demonstrating that HEV is widely distributed in rabbit populations across Australia. Phylogenetic analyses showed that Australian HEV sequences are genetically diverse and that HEV was likely introduced into Australia independently on several occasions. In summary, this study broadens our understanding of the genetic diversity of rabbit HEV globally and shows that the virus is endemic in both domestic and wild rabbit populations in Australia.
Collapse
|
23
|
Velavan TP, Pallerla SR, Johne R, Todt D, Steinmann E, Schemmerer M, Wenzel JJ, Hofmann J, Shih JWK, Wedemeyer H, Bock CT. Hepatitis E: An update on One Health and clinical medicine. Liver Int 2021; 41:1462-1473. [PMID: 33960603 DOI: 10.1111/liv.14912] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 03/09/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
The hepatitis E virus (HEV) is one of the main causes of acute hepatitis and the de facto global burden is underestimated. HEV-related clinical complications are often undetected and are not considered in the differential diagnosis. Convincing findings from studies suggest that HEV is clinically relevant not only in developing countries but also in industrialized countries. Eight HEV genotypes (HEV-1 to HEV-8) with different human and animal hosts and other HEV-related viruses are in circulation. Transmission routes vary by genotype and location, with large waterborne outbreaks in developing countries and zoonotic food-borne infections in developed countries. An acute infection can be aggravated in pregnant women, organ transplant recipients, patients with pre-existing liver disease and immunosuppressed patients. HEV during pregnancy affects the fetus and newborn with an increased risk of vertical transmission, preterm and stillbirth, neonatal jaundice and miscarriage. Hepatitis E is associated with extrahepatic manifestations that include neurological disorders such as neuralgic amyotrophy, Guillain-Barré syndrome and encephalitis, renal injury and haematological disorders. The risk of transfusion-transmitted HEV is increasingly recognized in Western countries where the risk may be because of a zoonosis. RNA testing of blood components is essential to determine the risk of transfusion-transmitted HEV. There are currently no approved drugs or vaccines for HEV infections. This review focuses on updating the latest developments in zoonoses, screening and diagnostics, drugs in use and under development, and vaccines.
Collapse
Affiliation(s)
- Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Srinivas R Pallerla
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, Regensburg, Germany
| | - Jürgen J Wenzel
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, Regensburg, Germany
| | - Jörg Hofmann
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, Berlin, Germany
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner Hannover-Braunschweig, Braunschweig, Germany
| | - Claus-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
24
|
Van de Perre P, Molès J, Nagot N, Tuaillon E, Ceccaldi P, Goga A, Prendergast AJ, Rollins N. Revisiting Koch's postulate to determine the plausibility of viral transmission by human milk. Pediatr Allergy Immunol 2021; 32:835-842. [PMID: 33594740 PMCID: PMC8359252 DOI: 10.1111/pai.13473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
As breastfeeding is of utmost importance for child development and survival, identifying whether breast milk is a route of transmission for human viruses is critical. Based on the principle of Koch's postulate, we propose an analytical framework to determine the plausibility of viral transmission by breast milk. This framework is based on five criteria: viral infection in children receiving breast milk from infected mothers; the presence of virus, viral antigen, or viral genome in the breast milk of infected mothers; the evidence for the virus in breast milk being infectious; the attempts to rule out other transmission modalities; and the reproduction of viral transmission by oral inoculation in an animal model. We searched for evidence in published reports to determine whether the 5 criteria are fulfilled for 16 human viruses that are suspected to be transmissible by breast milk. We considered breast milk transmission is proven if all 5 criteria are fulfilled, as probable if 4 of the 5 criteria are met, as possible if 3 of the 5 criteria are fulfilled, and as unlikely if less than 3 criteria are met. Only five viruses have proven transmission through breast milk: human T-cell lymphotropic virus 1, human immunodeficiency virus, human cytomegalovirus, dengue virus, and Zika virus. The other 11 viruses fulfilled some but not all criteria and were categorized accordingly. Our framework analysis is useful for guiding public health recommendations and for identifying knowledge gaps amenable to original experiments.
Collapse
Affiliation(s)
- Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Jean‐Pierre Molès
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Pierre‐Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus OncogènesCNRS UMR 3569Institut PasteurUniversité de ParisParisFrance
| | - Ameena Goga
- HIV Prevention Research UnitSouth African Medical Research CouncilCape TownSouth Africa
- Department of Paediatrics and Child HealthUniversity of PretoriaPretoriaSouth Africa
| | - Andrew J. Prendergast
- Blizard InstituteQueen Mary University of LondonUK
- Zvitambo Institute for Maternal and Child Health ResearchHarareZimbabwe
| | - Nigel Rollins
- Department of Maternal, Newborn, Child and Adolescent Health and AgeingWorld Health OrganizationGenevaSwitzerland
| |
Collapse
|
25
|
Prevalence of Hepatitis E Virus Infection among Laboratory Rabbits in China. Pathogens 2021; 10:pathogens10060780. [PMID: 34205738 PMCID: PMC8233994 DOI: 10.3390/pathogens10060780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
Hepatitis E virus (HEV) is zoonotic and the leading cause of acute viral hepatitis worldwide. Rabbit HEV can infect humans and is prevalent globally. It is reported that laboratory rabbits are also naturally infected with HEV. Therefore, it is important to investigate in a large scale the prevalence of HEV in laboratory rabbits. Serum samples were collected from 649 laboratory rabbits of 13 different commercial vendors in Beijing, China, from 2017 to 2019, and anti-HEV and HEV antigen (Ag) were tested. Fecal samples were collected from 50 laboratory rabbits from one of the vendors for HEV RNA detection. Six laboratory rabbits with natural HEV infection were euthanized and their liver, kidney, bile and urine samples were collected for HEV RNA quantification. Liver tissues were subjected to histopathology analysis. The overall positive rates of anti-HEV antibodies and HEV-Ag are 2.6% (15/588) and 7.9% (51/649), respectively. HEV RNA was detected in 12.0% (6/50) of the rabbits. High viral load of HEV RNA was detected in liver and bile samples. Liver inflammation was observed. HEV is circulating in laboratory rabbit population in China. Strict screening is crucial to ensure experimental accuracy and prevent zoonotic transmission to research personnel.
Collapse
|
26
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
27
|
Jenckel M, Hall RN, Strive T. First description of hepatitis E virus in Australian rabbits. Aust Vet J 2021; 99:356-358. [PMID: 33904188 DOI: 10.1111/avj.13073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 04/02/2021] [Indexed: 12/27/2022]
Abstract
We report the first detection of hepatitis E virus in rabbits in Australia. While conducting metatranscriptomic sequencing of liver samples collected from domestic rabbits that had died, we detected hepatitis E virus in three samples. Two viral genome sequences were obtained, which shared 96% nucleotide identity and clustered with hepatitis E strains isolated from rabbits and humans in Europe. This raises a potential public health risk in Australia, as the abundance of wild rabbits and the increasing popularity of domestic rabbits as pets represent a substantial human/rabbit interface to allow for potential zoonotic infections to occur.
Collapse
Affiliation(s)
- M Jenckel
- Health and Biosecurity, CSIRO, Canberra, Australian Capital Territory, 2601, Australia
| | - R N Hall
- Health and Biosecurity, CSIRO, Canberra, Australian Capital Territory, 2601, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australian Capital Territory, 2601, Australia
| | - T Strive
- Health and Biosecurity, CSIRO, Canberra, Australian Capital Territory, 2601, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australian Capital Territory, 2601, Australia
| |
Collapse
|
28
|
Yadav KK, Boley PA, Fritts Z, Kenney SP. Ectopic Expression of Genotype 1 Hepatitis E Virus ORF4 Increases Genotype 3 HEV Viral Replication in Cell Culture. Viruses 2021; 13:v13010075. [PMID: 33430442 PMCID: PMC7827316 DOI: 10.3390/v13010075] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) can account for up to a 30% mortality rate in pregnant women, with highest incidences reported for genotype 1 (gt1) HEV. Reasons contributing to adverse maternal-fetal outcome during pregnancy in HEV-infected pregnant women remain elusive in part due to the lack of a robust tissue culture model for some strains. Open reading frame (ORF4) was discovered overlapping ORF1 in gt1 HEV whose protein expression is regulated via an IRES-like RNA element. To experimentally determine whether gt3 HEV contains an ORF4-like gt1, gt1 and gt3 sequence comparisons were performed between the gt1 and the homologous gt3 sequence. To assess whether ORF4 protein could enhance gt3 replication, Huh7 cell lines constitutively expressing ORF4 were created and used to assess the replication of the Kernow-C1 gt3 and sar55 gt1 HEV. Virus stocks from transfected Huh7 cells with or without ORF4 were harvested and infectivity assessed via infection of HepG2/C3A cells. We also studied the replication of gt1 HEV in the ORF4-expressing tunicamycin-treated cell line. To directly show that HEV transcripts have productively replicated in the target cells, we assessed events at the single-cell level using indirect immunofluorescence and flow cytometry. Despite not naturally encoding ORF4, replication of gt3 HEV was enhanced by the presence of gt1 ORF4 protein. These results suggest that the function of ORF4 protein from gt1 HEV is transferrable, enhancing the replication of gt3 HEV. ORF4 may be utilized to enhance replication of difficult to propagate HEV genotypes in cell culture. IMPORTANCE: HEV is a leading cause of acute viral hepatitis (AVH) around the world. The virus is a threat to pregnant women, particularly during the second and third trimester of pregnancy. The factors enhancing virulence to pregnant populations are understudied. Additionally, field strains of HEV remain difficult to culture in vitro. ORF4 was recently discovered in gt1 HEV and is purported to play a role in pregnancy related pathology and enhanced replication. We present evidence that ORF4 protein provided in trans enhances the viral replication of gt3 HEV even though it does not encode ORF4 naturally in its genome. These data will aid in the development of cell lines capable of supporting replication of non-cell culture adapted HEV field strains, allowing viral titers sufficient for studying these strains in vitro. Furthermore, development of gt1/gt3 ORF4 chimeric virus may shed light on the role that ORF4 plays during pregnancy.
Collapse
Affiliation(s)
- Kush K. Yadav
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA; (K.K.Y.); (P.A.B.)
| | - Patricia A. Boley
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA; (K.K.Y.); (P.A.B.)
| | - Zachary Fritts
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Scott P. Kenney
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA; (K.K.Y.); (P.A.B.)
- Correspondence:
| |
Collapse
|
29
|
Li S, Li M, He Q, Liang Z, Shu J, Wang L, Wang L. Characterization of hepatitis E virus natural infection in farmed rabbits. J Viral Hepat 2021; 28:186-195. [PMID: 32853437 DOI: 10.1111/jvh.13387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Rabbit hepatitis E virus (HEV3-ra) is widely distributed in rabbits worldwide and several recent reports found that HEV3-ra can infect humans. Therefore, people exposed to rabbits are at high risk of HEV infection. This study was conducted to investigate the characteristics and outcomes of HEV3-ra natural infection in rabbits. Seventy farmed rabbits (3-month-old) were surveyed in a farm in Beijing, China. Rabbits tested positive for HEV RNA were followed weekly for testing of HEV RNA, antigen, antibody and alanine aminotransferase (ALT) level. Liver and kidney tissue was collected for histopathology. Complete genome sequencing of the isolated HEV3-ra strain was performed (CHN-BJ-r4, GenBank: MT364355). The infectivity of CHN-BJ-r4 was tested in ten naïve rabbits by intravenous injection or gavage. Anti-HEV antibody and HEV RNA were tested positive in 7.14% (5/70) and 11.4% (8/70) of rabbits, respectively. Eight naturally infected rabbits were followed, and 37.5% (3/8) of the observed rabbits were found to have fecal shedding of HEV ranging from 3-22 weeks with high viral load (105 -107 copies/g). Two out of eight rabbits showed temporary viremia. Naturally infected rabbits presented elevated ALT level, seroconversion, and liver histopathology. Complete genome of HEV3-ra isolated in this study shared 84.61%-94.36% nucleotide identity with known HEV3-ra complete genomes. The isolated HEV3-ra strain was infectious and could infect other rabbits through intravenous and fecal-oral route. Naturally infected rabbits showed up to 22-week fecal virus shedding with high viral load. These features increased the risk of rabbit-to-rabbit and rabbit-to-human transmission.
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Manyu Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyu He
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhaochao Liang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyi Shu
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Wang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
30
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
31
|
Lopes AM, Abrantes J. Hepatitis E virus is likely circulating in wild rabbits from Iberian Peninsula. Transbound Emerg Dis 2020; 67:1761-1763. [PMID: 32598572 DOI: 10.1111/tbed.13702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ana M Lopes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Wang B, Meng XJ. Hepatitis E virus: host tropism and zoonotic infection. Curr Opin Microbiol 2020; 59:8-15. [PMID: 32810801 DOI: 10.1016/j.mib.2020.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV), the causative agent of hepatitis E, is an understudied but important pathogen. HEV typically causes self-limiting acute viral hepatitis, however chronic infection with neurological and other extrahepatic manifestations has increasingly become a significant clinical problem. The discovery of swine HEV from pigs and demonstration of its zoonotic potential led to the genetic identification of very diverse HEV strains from more than a dozen other animal species. HEV strains from pig, rabbit, deer, camel, and rat have been shown to cross species barriers and infect humans. Zoonotic HEV infections through consumption of raw or undercooked animal meat or direct contact with infected animals have been reported. The discovery of a large number of animal HEV variants does provide an opportunity to develop useful animal models for HEV. In this mini-review, we discuss recent advances in HEV host range, and cross-species and zoonotic transmission.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
33
|
Synthetic Peptides Containing Three Neutralizing Epitopes of Genotype 4 Swine Hepatitis E Virus ORF2 induced Protection against Swine HEV Infection in Rabbit. Vaccines (Basel) 2020; 8:vaccines8020178. [PMID: 32294910 PMCID: PMC7348971 DOI: 10.3390/vaccines8020178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Genotype 4 hepatitis E virus (HEV) is a zoonotic pathogen transmitted to humans through food and water. Previously, three genotype 4 swine HEV ORF2 peptides (407EPTV410, 410VKLYTS415, and 458PSRPF462) were identified as epitopes of virus-neutralizing monoclonal antibodies that partially blocked rabbit infection with swine HEV. Here, individual and tandem fused peptides were synthesized, conjugated to keyhole limpet hemocyanin (KLH), then evaluated for immunoprotection of rabbits against swine HEV infection. Forty New Zealand White rabbits were randomly assigned to eight groups; groups 1 thru 5 received three immunizations with EPTV-KLH, VKLYTS-KLH, PSRPF-KLH, EPTVKLYTS-KLH, or EPTVKLYTSPSRPF-KLH, respectively; group 6 received truncated swine HEV ORF2 protein (sp239), and group 7 received phosphate-buffered saline. After an intravenous swine HEV challenge, all group 7 rabbits exhibited viremia and fecal virus shedding by 2–4 weeks post challenge (wpc), seroconversion by 4–9 wpc, elevated alanine aminotransferase (ALT) at 2 wpc, and severe liver lymphocytic venous periphlebitis. Only 1–2 rabbits/group in groups 1–4 exhibited delayed viremia, fecal shedding, seroconversion, increased ALT levels, and slight liver lymphocytic venous periphlebitis; groups 5–6 showed no pathogenic effects. Collectively, these results demonstrate that immunization with a polypeptide containing three genotype 4 HEV ORF2 neutralizing epitopes completely protected rabbits against swine HEV infection.
Collapse
|
34
|
Caballero-Gómez J, García Bocanegra I, Gómez-Guillamón F, Camacho-Sillero L, Zorrilla I, Lopez-Lopez P, Cano-Terriza D, Jiménez-Ruiz S, Frias M, Rivero-Juarez A. Absence of Hepatitis E virus circulation in wild rabbits (Oryctolagus cuniculus) and Iberian hares (Lepus granatensis) in Mediterranean ecosystems in Spain. Transbound Emerg Dis 2020; 67:1422-1427. [PMID: 31930690 DOI: 10.1111/tbed.13478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 01/13/2023]
Abstract
In recent decades, cases of autochthonous hepatitis E (HE) have sharply increased in European countries where foodborne transmission is considered the main route of HE virus (HEV) transmission. Although rabbits are considered the main reservoir of the zoonotic HEV-3ra subtype, information on the role of wild lagomorphs in the epidemiology of HEV remains scarce. The aim of this study therefore was to assess the circulation of HEV in European wild rabbits (Oryctolagus cuniculus) and Iberian hares (Lepus granatensis), the most important lagomorph species in Spanish Mediterranean ecosystems. Liver samples from 372 wild rabbits and 78 Iberian hares were analysed using a broad-spectrum RT-PCR that detects HEV genotypes 1-8. None of the 450 lagomorphs tested were positive for HEV infection. To the best of our knowledge, this is the first study to assess HEV circulation in wild rabbits in Spain and the first to evaluate HEV infection in Iberian hares. Our results indicate absence of HEV circulation in wild rabbits and Iberian hares in southern Spain during the study period, which suggests that the risk of transmission of HEV from wild lagomorphs to other species, including humans, is low.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | | | - Félix Gómez-Guillamón
- Programa de Vigilancia Epidemiológica de la Fauna Silvestre (PVE), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - Leonor Camacho-Sillero
- Programa de Vigilancia Epidemiológica de la Fauna Silvestre (PVE), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - Irene Zorrilla
- Centro de Análisis y Diagnóstico de la Fauna Silvestre en Andalucía (CAD), Agencia de Medio Ambiente y Agua (AMAYA), Junta de Andalucía, Málaga, Spain
| | - Pedro Lopez-Lopez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Saúl Jiménez-Ruiz
- Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain.,Grupo de Sanidad y Biotecnología, Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla la Mancha, (SaBio-IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Mario Frias
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Antonio Rivero-Juarez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
35
|
Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11:E456. [PMID: 31109076 PMCID: PMC6563261 DOI: 10.3390/v11050456] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. Modes of transmission range from the classic fecal-oral route or zoonotic route, to relatively recently recognized but increasingly common routes, such as via the transfusion of blood products or organ transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological abnormalities, have been documented in some limited cases, typically in patients with immune suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have been identified worldwide from human populations as well as growing numbers of animal species. The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, global genotype distribution, clinical significance of HEV genotype and genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| |
Collapse
|
36
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|
37
|
Luk KC, Coller KE, Dawson GJ, Cloherty GA. Identification of a putative novel genotype 3/rabbit hepatitis E virus (HEV) recombinant. PLoS One 2018; 13:e0203618. [PMID: 30204796 PMCID: PMC6133284 DOI: 10.1371/journal.pone.0203618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted by the fecal-oral route and is a major cause of waterborne acute hepatitis in many developing countries. In addition to infecting humans, HEV has been identified in swine, wild boars, rabbits and other mammals; with swine and wild boars being main reservoirs for zoonotic transmission of HEV. There are four major HEV genotypes known to infect humans; genotypes 1 (HEV-1) and 2 (HEV-2) are restricted to humans, and genotypes 3 (HEV-3) and 4 (HEV-4) are zoonotic. Herein, three human HEV strains originating in France were sequenced and near full-length genomes were characterized. Phylogenetic analysis showed that two strains were genotype 3 and closely grouped (a 100% bootstrap value) with subtype 3i reference strains. In percent nucleotide identities, these two strains were 94% identical to each other, 90–93% identical to subtype 3i strains, 82–86% identical to other HEV-3, and 77–79% identical to rabbit HEV strains excluding the two divergent strains KJ013414 and KJ013415 (74%); these two strains were less than 77% identical to strains of HEV genotypes 1, 2 and 4. The third strain was found distinct from any known HEV strains in the database, and located between the clusters of HEV-3 and rabbit HEV strains. This unique strain was 74–75% identical to HEV-1, 73% to HEV-2, 81–82% to HEV-3, 77–79% to rabbit HEV again excluding the two divergent strains KJ013414 and KJ013415 (74%), and 74–75% to HEV-4, suggesting a novel unclassified strain associated with HEV-3 and rabbit HEV. SimPlot and BootScan analyses revealed a putative recombination of HEV-3 and rabbit HEV sequences at four breakpoints. Phylogenetic trees of the five fragments of the genome confirmed the presence of two HEV-3 derived and three unclassified sequences. Analyses of the amino acid sequences of the three open reading frames (ORF1-3) encoded proteins of these three novel strains showed that some amino acid residues specific to rabbit HEV strains were found solely in this unclassified strain but not in the two newly identified genotype 3i strains. The results obtained by SimPlots, BootScans, phylogenetic analyses, and amino acid sequence comparisons in this study all together appear to suggest that this novel unclassified strain is likely carrying a mosaic genome derived from HEV-3 and rabbit HEV sequences, and is thus designated as a putative genotype 3/rabbit HEV recombinant.
Collapse
Affiliation(s)
- Ka-Cheung Luk
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
- * E-mail:
| | - Kelly E. Coller
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - George J. Dawson
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Gavin A. Cloherty
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| |
Collapse
|
38
|
Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus. J Virol 2018; 92:JVI.00251-18. [PMID: 29669835 DOI: 10.1128/jvi.00251-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625DFCP628, 458PSRPF462, and 407EPTV410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design.IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts.
Collapse
|