1
|
Qader HA, Sh Mohammed Ameen S, Qader IB, Omer KM. Portable on-off visual-mode detection using intrinsic fluorescent zinc-based metal-organic framework for detection of diclofenac in pharmaceutical tablets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124791. [PMID: 38986257 DOI: 10.1016/j.saa.2024.124791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
On-site, robust, and quantitative detection of diclofenac (DCF) is highly significant in bioanalysis and quality control. Fluorescence-based metal-organic frameworks (MOFs) play a pivotal role in biochemical sensing, offering a versatile platform for detecting various biomolecules. However, conventional fluorescent MOF sensors often rely on lanthanide metals, which can pose challenges in terms of cost, accessibility, and environmental impact. Herein, an intrinsic blue fluorescent zinc-based metal-organic framework (FMOF-5) was prepared free from lanthanide metals. Coordination-induced emission as an effective strategy was followed wherein a non-fluorescent ligand is converted to a fluorescent one after insertion in a framework. Conventional fluorometry and smartphone-assisted visual methods were employed for the detection of DCF. The fluorescence emission of the FMOF-5 was effectively quenched upon the addition of the DCF, endowing it an "off" condition, which permits the construction of a calibration curve with a wide linear range of 30-670 µM and a detection limit of about 4.1 µM. Other analytical figures of merit, such as linearity, sensitivity, selectivity, accuracy, and precision were studied and calculated. Furthermore, the proposed sensor was successfully applied to quantify DCF in pharmaceutical tablets with reliable recovery and precision. Importantly, the elimination of lanthanide metals from the fluorescence detection system enhances its practicality and sustainability, making it a promising alternative for DCF detection in pharmaceutical analysis applications.
Collapse
Affiliation(s)
- Hemn A Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, 44001, Kurdistan Region, Iraq
| | | | - Idrees B Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, 44001, Kurdistan Region, Iraq; Department of Pharmacy, College of Medicine, University of Kurdistan-Hawler, Erbil, Kurdistan Region, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science University of Sulaimani, Qliasan Street, Sulaymaniyah, 46002, Kurdistan Region, Iraq.
| |
Collapse
|
2
|
Chen JL, Njoku DI, Tang C, Gao Y, Chen J, Peng YK, Sun H, Mao G, Pan M, Tam NFY. Advances in Microfluidic Paper-Based Analytical Devices (µPADs): Design, Fabrication, and Applications. SMALL METHODS 2024; 8:e2400155. [PMID: 38781604 DOI: 10.1002/smtd.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Microfluidic Paper-based Analytical Devices (µPADs) have emerged as a new class of microfluidic systems, offering numerous advantages over traditional microfluidic chips. These advantages include simplicity, cost-effectiveness, stability, storability, disposability, and portability. As a result, various designs for different types of assays are developed and investigated. In recent years, µPADs are combined with conventional detection methods to enable rapid on-site detection, providing results comparable to expensive and sophisticated large-scale testing methods that require more time and skilled personnel. The application of µPAD techniques is extensive in environmental quality control/analysis, clinical diagnosis, and food safety testing, paving the way for on-site real-time diagnosis as a promising future development. This review focuses on the recent research advancements in the design, fabrication, material selection, and detection methods of µPADs. It provides a comprehensive understanding of their principles of operation, applications, and future development prospects.
Collapse
Affiliation(s)
- Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Demian Ifeanyi Njoku
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Cui Tang
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yaru Gao
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Jiayu Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yung-Kang Peng
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Hongyan Sun
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Min Pan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Nora Fung-Yee Tam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
3
|
Carole NVD, Sheng L, Ji J, Zhang Y, Sun X. Multispectral pathogens detection in food using multiplex hyperbranched saltatory rolling circle amplification. Talanta 2024; 279:126618. [PMID: 39116729 DOI: 10.1016/j.talanta.2024.126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Foodborne illnesses caused by Salmonella and Staphylococcus aureus are a significant public health concern, leading to societal and economic repercussions. It is important to develop a simple and straightforward bacteria detection and identification method. A triple-probe multiplex rolling circle amplification technique has been developed to simultaneously detect Salmonella Typhimurium and S. aureus. This method utilizes fluorophore-labeled long padlock probes targeting S. Typhimurium invA and S. aureus glnA specific genes, along with a pH-based detection approach for direct visual identification. The multiplex hyperbranched saltatory rolling circle amplification assay at 30 °C has showed promising results with synthetic targets within 30 min and real bacteria within 2 h after establishing the detection settings. The assay is specific for S. aureus and S. Typhimurium, with a limit of detection of 39 μM for fluorescence and 78 μM for colorimetric. In the simulative test of this method for the detection of S. Typhimurium and S. aureus in milk, the limit of detection for the fluorescence signal after 2 h of amplification was 10 CFU/mL and 5 CFU/mL, respectively. The detection method was evaluated to be stable enough to detect pathogen for 3.29 months. Consequently, this triple-probe-multiplex rolling circle amplification method displays notable specificity, sensitivity, as well as ease of interpretation when testing food samples for harmful pathogens.
Collapse
Affiliation(s)
- Nanfack V D Carole
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
4
|
Martínez-Pérez GZ, Adetunji TA, Salas Noriega FJL, Amoo OS, Ugarte-Gil C, Ajeigbe AK, Adefehinti O, Akinroye KK, Kolawole B, Odeyemi K, Shilton S, Vetter B, Reipold EI, Foláyan MNO. Point-of-care biochemistry for primary healthcare in low-middle income countries: a qualitative inquiry. BMC PRIMARY CARE 2024; 25:362. [PMID: 39394596 PMCID: PMC11468262 DOI: 10.1186/s12875-024-02604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Access to essential diagnostics is crucial for primary healthcare (PHC) in low-and-middle income countries (LMICs). Many LMICs have invested in equipping PHC with point-of-care (PoC) diagnostics for infectious diseases, however there has been no similar investment to improve PHC capacities for clinical chemistry. The biochemistry gap is among the deterrents to universal health coverage. METHODS A social sciences project was conducted with the aim to understand the key PHC stakeholders' insights on the pertinence of PoC biochemistry for PHC in LMICs. Data generation was conducted between July-November 2023 in Mongolia, Nigeria and Peru. Decision-makers in healthcare delivery, healthcare professionals, and patient and community advocates were engaged using a combination of sampling techniques. Unstructured individual and group conversations, and non-participant observation were conducted. Analysis involved an inductive line-by-line coding on printed transcripts, followed by a deductive coding and theme-by-theme analysis on digitized transcripts. RESULTS Fifteen, 51 and 20 informants from Mongolia, Nigeria and Peru, respectively, participated. Fifty-five of the 94 informants were female. Most informants considered that PoC biochemistry in PHC would be pertinent, from a clinical and a resources-saving perspective. Those households that currently bear the burden of referrals (i.e., the poor, the bedridden, the older adults) would benefit the most from the deployment of PoC biochemistry for essential biochemistry parameters. Improved access to PoC glycated hemoglobin (HbA1c), lipid, liver and kidney profile was perceived as helpful to inform clinicians' decision-taking. The value of PoC biochemistry for the management of noncommunicable diseases (diabetes, hypertension) and infectious conditions (dengue, malaria, tuberculosis), to improve child health outcomes (severe dehydration in children with diarrhea and/or malnutrition) and to reduce preventable causes of death (dengue-related renal failure) was highlighted. CONCLUSIONS PoC biochemistry holds potential to revert the impact that the biochemistry gap has for patient care in some LMICs' PHC settings. PoC equipment for parameters such as HbA1c, urea, creatinine or electrolytes could enhance community-level management of preventable causes of mortality, improve service delivery for patients affected by locally-prevalent infectious conditions, and improve the psychosocial and economic wellbeing of patients facing the burden of referrals to remote biochemistry-equipped centers. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
| | | | | | - Olufemi Samuel Amoo
- Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Cesar Ugarte-Gil
- Department of Epidemiology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Olufemi Adefehinti
- Department of Paediatrics and Child Health, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Babatope Kolawole
- Department of Medicine, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Kofoworola Odeyemi
- Department of Community Health and Primary Care, University of Lagos, Lagos, Nigeria
| | | | | | | | | |
Collapse
|
5
|
Sujith S, Solomon AP, Rayappan JBB. Comprehensive insights into UTIs: from pathophysiology to precision diagnosis and management. Front Cell Infect Microbiol 2024; 14:1402941. [PMID: 39380727 PMCID: PMC11458535 DOI: 10.3389/fcimb.2024.1402941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Urinary tract infections (UTIs) are the second most common infectious disease, predominantly impacting women with 150 million individuals affected globally. It increases the socio-economic burden of society and is mainly caused by Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter spp., and Staphylococcus spp. The severity of the infection correlates with the host factors varying from acute to chronic infections. Even with a high incidence rate, the diagnosis is mainly based on the symptoms, dipstick analysis, and culture analysis, which are time-consuming, labour-intensive, and lacking sensitivity and specificity. During this period, medical professionals prescribe empirical antibiotics, which may increase the antimicrobial resistance rate. Timely and precise UTI diagnosis is essential for addressing antibiotic resistance and improving overall quality of life. In response to these challenges, new techniques are emerging. The review provides a comprehensive overview of the global burden of UTIs, associated risk factors, implicated organisms, traditional and innovative diagnostic methods, and approaches to UTI treatment and prevention.
Collapse
Affiliation(s)
- Swathi Sujith
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - John Bosco Balaguru Rayappan
- Nanosensors Laboratory, School of Electrical & Electronics Engineering, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
6
|
Adami ME, Giamarellos-Bourboulis EJ, Polyzogopoulou E. Towards improved point-of-care (POC) testing for patients with suspected sepsis: POC tests for host biomarkers and possible microbial pathogens. Expert Rev Mol Diagn 2024; 24:829-839. [PMID: 39135402 DOI: 10.1080/14737159.2024.2392283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Sepsis is a heterogeneous syndrome often misdiagnosed. Point-of-care (POC) diagnostic tests are commonly used to guide decision and include host biomarkers and molecular diagnostics. AREAS COVERED The diagnostic and prognostic accuracy of established and emerging biomarkers for sepsis, including procalcitonin (PCT) soluble urokinase plasminogen activator receptor (suPAR), presepsin, TRAIL/IP-10/CRP, MxA, and MxA-CRP, are analyzed in this review. The clinical utility of the two prevalent molecular techniques for pathogens identification using polymerase chain reaction (PCR) assays is also presented: FILMARRAY and QIAstat-Dx RP. EXPERT OPINION The rising benefits of the combined use of POC biomarkers with molecular diagnostics in daily clinical routine appear to outperform conventional practices in terms of reduced turnaround time, timely diagnosis, and prompt administration of the appropriate treatment. Yet, this must be further demonstrated in future investigations. However, the cost-effectiveness of POC tests and the high rate of false positive and negative results, indicate the need for a comprehensive clinical evaluation.
Collapse
Affiliation(s)
- Maria-Evangelia Adami
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Effie Polyzogopoulou
- Department of Emergency Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
7
|
Theonest NO, Ngowi K, Kussaga ER, Lyimo A, Kuchaka D, Kiwelu I, Machuve D, Vianney JM, Reboud J, Mmbaga BT, Cooper JM, Buza J. Status and future prospects for mobile phone-enabled diagnostics in Tanzania. PLOS DIGITAL HEALTH 2024; 3:e0000565. [PMID: 39121031 PMCID: PMC11315315 DOI: 10.1371/journal.pdig.0000565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/28/2024] [Indexed: 08/11/2024]
Abstract
INTRODUCTION Diagnosis is a key step towards the provision of medical intervention and saving lives. However, in low- and middle-income countries, diagnostic services are mainly centralized in large cities and are costly. Point of care (POC) diagnostic technologies have been developed to fill the diagnostic gap for remote areas. The linkage of POC testing onto smartphones has leveraged the ever-expanding coverage of mobile phones to enhance health services in low- and middle-income countries. Tanzania, like most other middle-income countries, is poised to adopt and deploy the use of mobile phone-enabled diagnostic devices. However, there is limited information on the situation on the ground with regard to readiness and capabilities of the veterinary and medical professionals to make use of this technology. METHODS In this study we survey awareness, digital literacy and prevalent health condition to focus on in Tanzania to guide development and future implementation of mobile phoned-enable diagnostic tools by veterinary and medical professionals. Data was collected using semi-structured questionnaire with closed and open-ended questions, guided in-depth interviews and focus group discussion administered to the participants after informed consent was obtained. RESULTS A total of 305 participants from six regions of Tanzania were recruited in the study. The distribution of participants across the six regions was as follows: Kilimanjaro (37), Arusha (31), Tabora (68), Dodoma (61), Mwanza (58), and Iringa (50). Our analysis reveals that only 48.2% (126/255) of participants demonstrated significant awareness of mobile phone-enabled diagnostics. This awareness varies significantly across age groups, professions and geographical locations. Interestingly, while 97.4% of participants own and can operate a smartphone, 62% have never utilized their smartphones for health services, including disease diagnosis. Regarding prevalent health condition to focus on when developing mobile phone -enabled diagnostics tools for Tanzania; there was disparity between medical and veterinary professionals. For medical professionals the top 4 priority diseases were Malaria, Urinary Tract Infections, HIV and Diabetes, while for veterinary professionals they were Brucellosis, Anthrax, Newcastle disease and Rabies. DISCUSSION Despite the widespread ownership of smartphones among healthcare providers (both human and animal), only a small proportion have utilized these devices for healthcare practices, with none reported for diagnostic purposes. This limited utilization may be attributed to factors such as a lack of awareness, absence of policy guidelines, limited promotion, challenges related to mobile data connectivity, and adherence to cultural practices. CONCLUSION The majority of medical and veterinary professionals in Tanzania possess the necessary digital literacy to utilize mobile phone-enabled diagnostics and demonstrate readiness to adopt digital technologies and innovations to enhance diagnosis. However, effective implementation will require targeted training and interventions to empower them to effectively apply such innovations for disease diagnosis and other healthcare applications.
Collapse
Affiliation(s)
| | - Kennedy Ngowi
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | | - Allen Lyimo
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Davis Kuchaka
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Irene Kiwelu
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Dina Machuve
- Schools of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - John-Mary Vianney
- Schools of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Julien Reboud
- Division of Biomedical Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jonathan M. Cooper
- Division of Biomedical Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Joram Buza
- Schools of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
8
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
9
|
Griffith A, Chande C, Kulkarni S, Morel J, Cheng YH, Shimizu E, Cugini C, Basuray S, Kumar V. Point-of-care diagnostic devices for periodontitis - current trends and urgent need. SENSORS & DIAGNOSTICS 2024; 3:1119-1134. [PMID: 39007012 PMCID: PMC11238172 DOI: 10.1039/d3sd00317e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
Point of care (POC) diagnostic devices provide a method for rapid accurate identification of disease through analysis of biologically relevant substances. This review focuses on the utility of POC testing for early detection of periodontitis, a critical factor in treating the disease. Accessing the oral cavity for biological sampling is less invasive when compared to other internal test sites, and oral fluids contain biomarkers indicative of periodontitis. The ease of access makes the mouth an excellent target location for the development of POC devices. In this review, accepted standards in industry by which these devices must adhere, provided by the World Health Organization such as REASSURED and CLIA, are discussed. An overview is provided for many periodontal biomarkers currently being investigated as a means of predicting periodontal disease and its progression. POC devices currently being investigated for the identification and monitoring of periodontal disease such as paper-based and lab-on-a-chip based devices are outlined. Limitations of current POC devices on the market are provided and future directions in leveraging biomarkers as an adjunctive method for oral diagnosis along with AI-based analysis systems are discussed. Here, we present the ESSENCE sensor platform, which combines a porous non-planar electrode with enhanced shear flow to achieve unprecedented sensitivity and selectivity. The combination of the ESENCE chip with an automated platform allows us to meet the WHO's ASSURED criteria. This platform promises to be an exciting POC candidate for early detection of periodontitis.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Charmi Chande
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Sahitya Kulkarni
- Department of Biological Sciences, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Josuel Morel
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Yu-Hsuan Cheng
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Emi Shimizu
- Department of Endodontics, Rutgers School of Dental Medicine Newark NJ 07103 USA
- Department of Oral Biology, Rutgers School of Dental Medicine Newark NJ 07103 USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine Newark NJ 07103 USA
| | - Sagnik Basuray
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Biological Sciences, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Endodontics, Rutgers School of Dental Medicine Newark NJ 07103 USA
| |
Collapse
|
10
|
Kway VB, Castillo Reyther RA, Rios Sauceda CG, Castro Martinez IV. Maternal screening for sexually transmitted infections in pregnant patients in low-resource facilities: A call to action. Int J Gynaecol Obstet 2024; 166:135-137. [PMID: 38481107 DOI: 10.1002/ijgo.15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 06/27/2024]
Abstract
SynopsisASSURED criteria for POC test evaluation and rapid test analysis for STIs are discussed for cost‐effective screening, especially in low‐resource settings. Universal antepartum screening is advocated, with rapid tests as a viable option in low‐resource settings.
Collapse
Affiliation(s)
- Venance Basil Kway
- Department of Obstetrics and Gynecology, Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosi, Mexico
| | | | - Cynthia Guadalupe Rios Sauceda
- Faculty of Nursing and Nutrition, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Department of Obstetrics and Gynecology, Women and Children's Hospital, San Luis Potosi, Mexico
| | | |
Collapse
|
11
|
Ansu-Mensah M, Bawontuo V, Kuupiel D, Ginindza TG. Sustainable solutions to barriers of point-of-care diagnostic testing services in health facilities without laboratories in the bono region, Ghana: a qualitative study. BMC PRIMARY CARE 2024; 25:179. [PMID: 38778307 PMCID: PMC11110428 DOI: 10.1186/s12875-024-02406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND A sustainable point-of-care (POC) diagnostic testing implementation in low-resourced facilities enhances quick diagnostic investigation and halts unnecessary referrals. This study identified the barriers impeding the implementation of POC diagnostic testing in health facilities without laboratories in the Bono Region of Ghana; as well as explored potential solutions that could enhance the accessibility and effectiveness of POC diagnostic testing, ultimately improving the quality of healthcare delivery. METHODS A total of twenty-eight participants were purposively selected from health facilities in low-resourced settings in the Bono Region for a descriptive qualitative study. Of the twenty-eight participants, seventeen including ten healthcare providers from CHPS facilities, six district health depot managers, and one regional depot manager were engaged in in-depth interviews. Additional eleven including nine healthcare providers and two district depot managers were also engaged in focus group discussions. NVivo version 12 software was employed for condensation, labelling, and grouping of themes. Data was analysed narratively. RESULTS Work overloads, limited POC testing services, stock-outs of POC tests at the facilities, and supply-related challenges of POC test kits were identified as major barriers to POC testing services. To solve these barriers, adequate funding, an effective delivery system, stakeholders' engagement and advocacy, and in-service and refresher training courses were suggested as potential solutions to POC diagnostic testing services implementation by the stakeholders. CONCLUSIONS This study's findings emphasize the need to address the barriers hindering the implementation of POC diagnostic testing in health facilities without laboratories in the Bono Region of Ghana. The suggested solutions provide a roadmap for improving the accessibility and effectiveness of POC testing, which has the potential to enhance the quality of healthcare delivery, reduce unnecessary referrals, and ultimately improve patient health outcomes in underserved settings.
Collapse
Affiliation(s)
- Monica Ansu-Mensah
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa.
- The University Clinic, Sunyani Technical University, Sunyani, Ghana.
| | - Vitalis Bawontuo
- Department of Health Services Management and Administration, School of Business, SD Dombo University of Business and Integrated Development Studies, Wa, Ghana
| | - Desmond Kuupiel
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
- Faculty of Health Sciences, Durban University of Technology, Durban, 4001, South Africa
| | - Themba G Ginindza
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
- Cancer & Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Ramachandran L, Abul Rub F, Hajja A, Alodhaibi I, Arai M, Alfuwais M, Makhzoum T, Yaqinuddin A, Al-Kattan K, Assiri AM, Broering DC, Chinnappan R, Mir TA, Mani NK. Biosensing of Alpha-Fetoprotein: A Key Direction toward the Early Detection and Management of Hepatocellular Carcinoma. BIOSENSORS 2024; 14:235. [PMID: 38785709 PMCID: PMC11117836 DOI: 10.3390/bios14050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is currently one of the most prevalent cancers worldwide. Associated risk factors include, but are not limited to, cirrhosis and underlying liver diseases, including chronic hepatitis B or C infections, excessive alcohol consumption, nonalcoholic fatty liver disease (NAFLD), and exposure to chemical carcinogens. It is crucial to detect this disease early on before it metastasizes to adjoining parts of the body, worsening the prognosis. Serum biomarkers have proven to be a more accurate diagnostic tool compared to imaging. Among various markers such as nucleic acids, circulating genetic material, proteins, enzymes, and other metabolites, alpha-fetoprotein (AFP) is a protein marker primarily used to diagnose HCC. However, current methods need a large sample and carry a high cost, among other challenges, which can be improved using biosensing technology. Early and accurate detection of AFP can prevent severe progression of the disease and ensure better management of HCC patients. This review sheds light on HCC development in the human body. Afterward, we outline various types of biosensors (optical, electrochemical, and mass-based), as well as the most relevant studies of biosensing modalities for non-invasive monitoring of AFP. The review also explains these sensing platforms, detection substrates, surface modification agents, and fluorescent probes used to develop such biosensors. Finally, the challenges and future trends in routine clinical analysis are discussed to motivate further developments.
Collapse
Affiliation(s)
- Lohit Ramachandran
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Lung Health Center Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| |
Collapse
|
13
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
14
|
Bachmann I, Behrmann O, Klingenberg-Ernst M, Rupnik M, Hufert FT, Dame G, Weidmann M. Rapid Isothermal Detection of Pathogenic Clostridioides difficile Using Recombinase Polymerase Amplification. Anal Chem 2024; 96:3267-3275. [PMID: 38358754 DOI: 10.1021/acs.analchem.3c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nosocomial-associated diarrhea due to Clostridioides difficile infection (CDI) is diagnosed after sample precultivation by the detection of the toxins in enzyme immunoassays or via toxin gene nucleic acid amplification. Rapid and direct diagnosis is important for targeted treatment to prevent severe cases and recurrence. We developed two singleplex and a one-pot duplex fluorescent 15 min isothermal recombinase polymerase amplification (RPA) assays targeting the toxin genes A and B (tcdA and tcdB). Furthermore, we adapted the singleplex RPA to a 3D-printed microreactor device. Analytical sensitivity was determined using a DNA standard and DNA extracts of 20 C. difficile strains with different toxinotypes. Nineteen clostridial and gastrointestinal bacteria strains were used to determine analytical specificity. Adaptation of singleplex assays to duplex assays in a 50 μL volume required optimized primer and probe concentrations. A volume reduction by one-fourth (12.4 μL) was established for the 3D-printed microreactor. Mixing of RPA was confirmed as essential for optimal analytical sensitivity. Detection limits (LOD) ranging from 119 to 1411 DNA molecules detected were similar in the duplex tube format and in the singleplex 3D-printed microreactor format. The duplex RPA allows the simultaneous detection of both toxins important for the timely and reliable diagnosis of CDI. The 3D-printed reaction chamber can be developed into a microfluidic lab-on-a-chip system use at the point of care.
Collapse
Affiliation(s)
- Iris Bachmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Ole Behrmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
| | | | - Maja Rupnik
- Center for Medical Microbiology, Department for Microbiological Research, National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
- Faculty of Medicine, Maribor, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Frank T Hufert
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
- Department of Virology, University Medical Center, Kreuzbergring 57, 37075 Göttingen, Germany
- Brandenburg University of Technology Cottbus - Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gregory Dame
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
- Department of Virology, University Medical Center, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
15
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
16
|
Ansu-Mensah M, Kuupiel D, Bawontuo V, Ginindza TG. Availability, stock levels and usage of In-vitro diagnostics in the Bono region, Ghana: A cross-sectional study. Afr J Prim Health Care Fam Med 2023; 15:e1-e10. [PMID: 37916723 PMCID: PMC10623501 DOI: 10.4102/phcfm.v15i1.4114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Point-of-care (POC) diagnostic tests play essential roles in diagnosis, surveillance, and disease management in health settings. Nevertheless, implementation challenges may hamper POC test accessibility. This study evaluated the availability and stock levels of the World Health Organization (WHO) prequalified existing in-vitro diagnostics (IVDs) for use in health facilities without laboratories. AIM To evaluate the availability, stock levels, and usage of POC diagnostic tests. SETTING Bono Region, Ghana. METHODS This cross-sectional survey involved 102 randomly selected Community Health-based and Planning Services (CHPS), 12 district health depots, and a regional medical depot. Using a survey tool, data were collected on clinic staffing, availability and stock levels of tests, and funding sources. STATA 17 was employed for data analysis. RESULTS Majority (37.3%) of the respondents were community health nurses, with 4.4 mean years of work experience and 38 working hours per week. Of the 18 existing WHO prequalified POC tests for use at facilities without laboratories, 10 (56%), 2 (11%) and 0 (0%) were found at CHPS, regional, and district depots, respectively. Majority (183 out of 301) stock levels were low. Of the 10 available tests found, 7 scored 111 (36%) of 'high use'. Supply chain management compliance was 5 (31%) out of 16. All CHPS received government funding with 25.5% of them receiving additional donor or internally generated funding. CONCLUSION This study found poor supply chain management compliance, and low availability of POC tests in the Bono Region of Ghana.Contribution: The study outlines POC tests availability and usage in low-resourced setting.
Collapse
Affiliation(s)
- Monica Ansu-Mensah
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa; and, Health Economics and HIV and AIDS Research Division (HEARD), University of KwaZulu-Natal, Durban, South Africa; and, Clinic, Sunyani Technical University, Sunyani.
| | | | | | | |
Collapse
|
17
|
Rossetto A, Torres T, Platton S, Vulliamy P, Curry N, Davenport R. A new global fibrinolysis capacity assay for the sensitive detection of hyperfibrinolysis and hypofibrinogenemia in trauma patients. J Thromb Haemost 2023; 21:2759-2770. [PMID: 37207863 DOI: 10.1016/j.jtha.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Conventional clotting tests are not expeditious enough to allow timely targeted interventions in trauma, and current point-of-care analyzers, such as rotational thromboelastometry (ROTEM), have limited sensitivity for hyperfibrinolysis and hypofibrinogenemia. OBJECTIVES To evaluate the performance of a recently developed global fibrinolysis capacity (GFC) assay in identifying fibrinolysis and hypofibrinogenemia in trauma patients. METHODS Exploratory analysis of a prospective cohort of adult trauma patients admitted to a single UK major trauma center and of commercially available healthy donor samples was performed. Lysis time (LT) was measured in plasma according to the GFC manufacturer's protocol, and a novel fibrinogen-related parameter (percentage reduction in GFC optical density from baseline at 1 minute) was derived from the GFC curve. Hyperfibrinolysis was defined as a tissue factor-activated ROTEM maximum lysis of >15% or LT of ≤30 minutes. RESULTS Compared to healthy donors (n = 19), non-tranexamic acid-treated trauma patients (n = 82) showed shortened LT, indicative of hyperfibrinolysis (29 minutes [16-35] vs 43 minutes [40-47]; p < .001). Of the 63 patients without overt ROTEM-hyperfibrinolysis, 31 (49%) had LT of ≤30 minutes, with 26% (8 of 31) of them requiring major transfusions. LT showed increased accuracy compared to maximum lysis in predicting 28-day mortality (area under the receiver operating characteristic curve, 0.96 [0.92-1.00] vs 0.65 [0.49-0.81]; p = .001). Percentage reduction in GFC optical density from baseline at 1 minute showed comparable specificity (76% vs 79%) to ROTEM clot amplitude at 5 minutes from tissue factor-activated ROTEM with cytochalasin D in detecting hypofibrinogenemia but correctly reclassified >50% of the patients with false negative results, leading to higher sensitivity (90% vs 77%). CONCLUSION Severe trauma patients are characterized by a hyperfibrinolytic profile upon admission to the emergency department. The GFC assay is more sensitive than ROTEM in capturing hyperfibrinolysis and hypofibrinogenemia but requires further development and automation.
Collapse
Affiliation(s)
- Andrea Rossetto
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK; Barts Health National Health Service Trust, London, UK.
| | - Tracy Torres
- Barts Health National Health Service Trust, London, UK
| | - Sean Platton
- Barts Health National Health Service Trust, London, UK
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK; Barts Health National Health Service Trust, London, UK
| | - Nicola Curry
- Oxford Haemophilia & Thrombosis Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | - Ross Davenport
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK; Barts Health National Health Service Trust, London, UK
| |
Collapse
|
18
|
Economou A, Kokkinos C, Bousiakou L, Hianik T. Paper-Based Aptasensors: Working Principles, Detection Modes, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:7786. [PMID: 37765843 PMCID: PMC10536119 DOI: 10.3390/s23187786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Aptamers are short oligonucleotides designed to possess high binding affinity towards specific target compounds (ions, molecules, or cells). Due to their function and unique advantages, aptamers are considered viable alternatives to antibodies as biorecognition elements in bioassays and biosensors. On the other hand, paper-based devices (PADs) have emerged as a promising and powerful technology for the fabrication of low-cost analytical tools, mainly intended for on-site and point-of-care applications. The present work aims to provide a comprehensive overview of paper-based aptasensors. The review describes the fabrication methods and working principles of paper-based devices, the properties of aptamers as bioreceptors, the different modes of detection used in conjunction with aptasensing PADs, and representative applications for the detection of ions, small molecules, proteins, and cells. The future challenges and prospects of these devices are also discussed.
Collapse
Affiliation(s)
- Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Leda Bousiakou
- IMD Laboratories Co., R&D Section, Lefkippos Technology Park, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, P.O. Box 60037, 15130 Athens, Greece;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 84248 Bratislava, Slovakia;
| |
Collapse
|
19
|
Kim EYS, Imamura LM, Winkert Raddatz B, Timm Soares SP, Alves Ribeiro VH, Rinaldi Pavesi Nicollete D, Bergamo Santiago E, Mazega Figueredo MV, Montesanti Machado de Almeida B, Renato Rogal S. Data treatment methods for real-time colorimetric loop-mediated isothermal amplification reactions. Sci Rep 2023; 13:14397. [PMID: 37658115 PMCID: PMC10474118 DOI: 10.1038/s41598-023-40737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
With the SARS-CoV-2 pandemic and the need for affordable and rapid mass testing, colorimetric isothermal amplification reactions such as Loop-Mediated Isothermal Amplification (LAMP) are quickly rising in importance. The technique generates data that is similar to quantitative Polymerase Chain Reaction (qPCR), but instead of an endpoint color visualization, it is possible to construct a signal over a time curve. As the number of works using time-course analysis of isothermal reactions increases, there is a need to analyze data and standardize their related treatments quantitatively. Here, we take a step forward toward this goal by evaluating different available data treatments (curve models) for amplification curves, which allows for a cycle threshold-like parameter extraction. In this study, we uncover evidence of a double sigmoid equation as the most adequate model to describe amplification data from our remote diagnostics system and discuss possibilities for similar setups. We also demonstrate the use of multimodal Gompertz regression models. Thus, this work provides advances toward standardized and unbiased data reporting of Reverse Transcription (RT) LAMP reactions, which may facilitate and quicken assay interpretation, potentially enabling the application of machine learning techniques for further optimization and classification.
Collapse
Affiliation(s)
- Edson Yu Sin Kim
- Hilab, Rua José Altair Possebom, 800-CIC, Curitiba, Paraná, 81270-185, Brazil
| | | | | | | | | | | | | | | | | | - Sergio Renato Rogal
- Hilab, Rua José Altair Possebom, 800-CIC, Curitiba, Paraná, 81270-185, Brazil
| |
Collapse
|
20
|
Ochwo S, Perez AM, Pérez Aguirreburualde MS. Beyond accuracy: leveraging ASSURED criteria for field evaluation of point-of-care tests for food animal diseases. Front Vet Sci 2023; 10:1239111. [PMID: 37720479 PMCID: PMC10500061 DOI: 10.3389/fvets.2023.1239111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
The growing availability of point-of-care tests (POCTs) for food-animal diseases offers opportunities for timely diagnosis, facilitating the efficient implementation of control measures. However, field assessment of new POCTs are yet to be standardized. This paper discusses the opportunity of expanding the current approach for the evaluation and validation of POCTs in food animal disease diagnosis, highlighting the limitations of traditional practice that primarily relies on estimating diagnostic accuracy (sensitivity and specificity). Here, the use of a protocol referred to as FIT-REASSURED, a modified framework combining the ASSURED and REASSURED criteria, is proposed to comprehensively assess POCTs. FIT-REASSURED encompasses key criteria such as fitness for purpose, real-time connectivity, ease of specimen collection, affordability, sensitivity, specificity, user-friendliness, rapidity and robustness, equipment-free operation, and deliverability. By incorporating these attributes, FIT-REASSURED provides a customizable approach to assess the accuracy, affordability, and utility of POCTs. Through collaborative efforts among stakeholders, the implementation of a standardized scorecard based on these FIT-REASSURED criteria can improve the reliability and practicality of POCTs in food-animal health.
Collapse
Affiliation(s)
- Sylvester Ochwo
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | | | | |
Collapse
|
21
|
Trinh KTL, Do HDK, Lee NY. Recent Advances in Molecular and Immunological Diagnostic Platform for Virus Detection: A Review. BIOSENSORS 2023; 13:490. [PMID: 37185566 PMCID: PMC10137144 DOI: 10.3390/bios13040490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate, timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in general. Currently, traditional virus screening methods such as plate culturing and real-time PCR are considered the gold standard with accurate and sensitive results. However, these methods still require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability to perform sample preparation and simultaneous detection of many analyses in one platform. High sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved using a single platform. This review presents recent advances in microfluidic-based biosensors from many works to demonstrate the advantages of merging the two technologies for sensing viruses. Different platforms for virus detection are classified into two main sections: immunoassays and molecular assays. Moreover, available commercial sensing tests are analyzed.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
22
|
Nielsen LE, Mahlen S, Sutter DE. Will Antigen Testing Remain Relevant in the Point-of-Care Testing Environment? Clin Lab Med 2023; 43:167-179. [PMID: 37169440 DOI: 10.1016/j.cll.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Before the molecular age, cell culture was the gold standard for confirmatory diagnosis of viral and atypical infectious diseases. Typical cell culture methodologies are costly, require days (or weeks) for results, and require significant technical expertise. As a result, cell culture is impractical for timely diagnostic testing in most of the health care environments. Traditional bacterial culture methods, also have disadvantages due to the need for incubation, subsequent identification of pathogens, and significant technical expertise. This article discusses the general considerations of antigen and molecular assays and the merits and factors to consider when implementing diagnostic assays for several common pathogens.
Collapse
|
23
|
Duah E, Mathebula EM, Mashamba-Thompson T. Quality Assurance for Hepatitis C Virus Point-of-Care Diagnostics in Sub-Saharan Africa. Diagnostics (Basel) 2023; 13:684. [PMID: 36832172 PMCID: PMC9955859 DOI: 10.3390/diagnostics13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
As part of a multinational study to evaluate the Bioline Hepatitis C virus (HCV) point-of-care (POC) testing in sub-Saharan Africa (SSA), this narrative review summarises regulatory standards and quality indicators for validating and approving HCV clinical diagnostics. In addition, this review also provides a summary of their diagnostic evaluations using the REASSURED criteria as the benchmark and its implications on the WHO HCV elimination goals 2030.
Collapse
Affiliation(s)
- Evans Duah
- Faculty of Health Science, School of Health Systems and Public Health, University of Pretoria, Pretoria 0002, South Africa
| | | | | |
Collapse
|
24
|
Rink S, Baeumner AJ. Progression of Paper-Based Point-of-Care Testing toward Being an Indispensable Diagnostic Tool in Future Healthcare. Anal Chem 2023; 95:1785-1793. [PMID: 36608282 DOI: 10.1021/acs.analchem.2c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Point-of-care (POC) diagnostics in particular focuses on the timely identification of harmful conditions close to the patients' needs. For future healthcare these diagnostics could be an invaluable tool especially in a digitalized or telemedicine-based system. However, while paper-based POC tests, with the most prominent example being the lateral flow assay (LFA), have been especially successful due to their simplicity and timely response, the COVID-19 pandemic highlighted their limitations, such as low sensitivity and ambiguous responses. This perspective discusses strategies that are currently being pursued to evolve such paper-based POC tests toward a superior diagnostic tool that provides high sensitivities, objective result interpretation, and multiplexing options. Here, we pinpoint the challenges with respect to (i) measurability and (ii) public applicability, exemplified with select cases. Furthermore, we highlight promising endeavors focused on (iii) increasing the sensitivity, (iv) multiplexing capability, and (v) objective evaluation to also ready the technology for integration with machine learning into digital diagnostics and telemedicine. The status quo in academic research and industry is outlined, and the likely highly relevant role of paper-based POC tests in future healthcare is suggested.
Collapse
Affiliation(s)
- Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Knuutila A, Rautanen C, Barkoff AM, Mertsola J, He Q. Whole blood based point-of-care assay for the detection of anti-pertussis toxin IgG antibodies. J Immunol Methods 2022; 510:113361. [PMID: 36179606 DOI: 10.1016/j.jim.2022.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022]
Abstract
Current serological diagnosis of pertussis is usually done by ELISA to determine serum specific anti-pertussis toxin (PT) IgG antibodies. However, the ELISAs are often central-laboratory based, require trained staff, and have long turnaround times. A rapid point-of-care (POC) assay for pertussis serology would aid in both diagnosis and surveillance of the disease. In this study, a quantitative lateral flow assay (LFA) with fluorescent Eu-nanoparticle reporters was used for the detection of anti-PT antibodies from whole blood. The assay was evaluated by testing overall 141 samples including 25 before and 116 one month after acellular pertussis booster vaccination. LFA results were compared to those obtained with standardized anti-PT IgG ELISAs with paired serum samples. Correlation between the assays was high (Pearson R = 0.832), and the achieved analytical sensitivity of the LFA was 29 IU/mL, which would be sufficient for clinically relevant cutoffs for determining recent infections. The paired samples, collected pre- and post-booster, demonstrated a significant increase in anti-PT IgG antibodies similar to that detected by ELISA. The developed LFA opens up several alternatives for a suitable POC test also in middle- and low-income countries.
Collapse
Affiliation(s)
- Aapo Knuutila
- Institute of Biomedicine, Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Carita Rautanen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Alex-Mikael Barkoff
- Institute of Biomedicine, Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Jussi Mertsola
- Department of Pediatric and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Qiushui He
- Institute of Biomedicine, Centre for Infections and Immunity, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
26
|
Viral Diagnosis of Hepatitis B and Delta: What We Know and What Is Still Required? Specific Focus on Low- and Middle-Income Countries. Microorganisms 2022; 10:microorganisms10112096. [PMID: 36363693 PMCID: PMC9694472 DOI: 10.3390/microorganisms10112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
To achieve the World Health Organization's (WHO) goals of eradicating viral hepatitis globally by 2030, the regional prevalence and epidemiology of hepatitis B virus (HBV) and hepatitis delta virus (HDV) coinfection must be known in order to implement preventiveon and treatment strategies. HBV/HDV coinfection is considered the most severe form of vira l hepatitis due to it's rapid progression towards cirrhosis, hepatocellular carcinoma, and liver-related death. The role of simplified diagnosticsis tools for screening and monitoring HBV/HDV-coinfected patients is crucial. Many sophisticated tools for diagnoses have been developed for detection of HBV alone as well as HBV/HDV coinfection. However, these advanced techniques are not widely available in low-income countries and there is no standardization for HDV detection assays, which are used for monitoring the response to antiviral therapy. More accessible and affordable alternative methods, such as rapid diagnostic tests (RDTs), are being developed and validated for equipment-free and specific detection of HBV and HDV. This review will provide some insight into both existing and diagnosis tools under development, their applicability in developing countries and how they could increase screening, patient monitoring and treatment eligibility.
Collapse
|
27
|
Boutal H, Moguet C, Pommiès L, Simon S, Naas T, Volland H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics (Basel) 2022; 12:1744. [PMID: 35885647 PMCID: PMC9317642 DOI: 10.3390/diagnostics12071744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global spread of antimicrobial resistant (AMR) bacteria represents a considerable public health concern, yet their detection and identification of their resistance mechanisms remain challenging. Optimal diagnostic tests should provide rapid results at low cost to enable implementation in any microbiology laboratory. Lateral flow assays (LFA) meet these requirements and have become essential tools to combat AMR. This review presents the versatility of LFA developed for the AMR detection field, with particular attention to those directly triggering β-lactamases, their performances, and specific limitations. It considers how LFA can be modified by detecting not only the enzyme, but also its β-lactamase activity for a broader clinical sensitivity. Moreover, although LFA allow a short time-to-result, they are generally only implemented after fastidious and time-consuming techniques. We present a sample processing device that shortens and simplifies the handling of clinical samples before the use of LFA. Finally, the capacity of LFA to detect amplified genetic determinants of AMR by isothermal PCR will be discussed. LFA are inexpensive, rapid, and efficient tools that are easy to implement in the routine workflow of laboratories as new first-line tests against AMR with bacterial colonies, and in the near future directly with biological media.
Collapse
Affiliation(s)
- Hervé Boutal
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Christian Moguet
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Lilas Pommiès
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Thierry Naas
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
- Team Resist, UMR1184, Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 91190 Gif-sur-Yvette, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| |
Collapse
|
28
|
Otoo JA, Schlappi TS. REASSURED Multiplex Diagnostics: A Critical Review and Forecast. BIOSENSORS 2022; 12:bios12020124. [PMID: 35200384 PMCID: PMC8869588 DOI: 10.3390/bios12020124] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 05/05/2023]
Abstract
The diagnosis of infectious diseases is ineffective when the diagnostic test does not meet one or more of the necessary standards of affordability, accessibility, and accuracy. The World Health Organization further clarifies these standards with a set of criteria that has the acronym ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users). The advancement of the digital age has led to a revision of the ASSURED criteria to REASSURED: Real-time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free or simple, and Deliverable to end-users. Many diagnostic tests have been developed that aim to satisfy the REASSURED criteria; however, most of them only detect a single target. With the progression of syndromic infections, coinfections and the current antimicrobial resistance challenges, the need for multiplexed diagnostics is now more important than ever. This review summarizes current diagnostic technologies for multiplexed detection and forecasts which methods have promise for detecting multiple targets and meeting all REASSURED criteria.
Collapse
|