1
|
Huang L, Liu L, Zhu J, Chen N, Chen J, Chan CF, Gao F, Yin Y, Sun J, Zhang R, Zhang K, Qi W, Yue J. Bis-benzylisoquinoline alkaloids inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy. Virol Sin 2024:S1995-820X(24)00140-8. [PMID: 39251138 DOI: 10.1016/j.virs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV), represent a substantial public health challenge as there are currently no approved treatments available. Here, we investigated the antiviral effects of bis-benzylisoquinoline alkaloids (BBAs) on flavivirus infections. We evaluated five specific BBAs-berbamine, tetrandrine, iso-tetrandrine, fangchinoline, and cepharanthine-and found that they effectively inhibited infections by ZIKV, DENV, or JEV by blocking virus entry and genome replication stages in the flavivirus life cycle. Furthermore, we synthesized a fluorophore-conjugated BBA and showed that BBAs targeted endolysosomes, causing lysosomal pH alkalization. Mechanistic studies on inhibiting ZIKV infection by BBAs revealed that these compounds blocked TRPML channels, leading to lysosomal dysfunction and reducing the expression of NCAM1, a key receptor for the entry of ZIKV into cells, thereby decreasing cells susceptibility to ZIKV infection. Additionally, BBAs inhibited the fusion of autophagosomes and lysosomes, significantly reducing viral RNA replication. Collectively, our results suggest that BBAs inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy, respectively, underscoring the potential of BBAs as therapeutic agents against flavivirus infections.
Collapse
Affiliation(s)
- Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lele Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Junhai Zhu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | - Jie Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Chuen-Fuk Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Youqin Yin
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China; Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Global Health Research Center, Duke Kunshan University, Kunshan, 215316, China; College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Liu Y, Wang M, Yu N, Zhao W, Wang P, Zhang H, Sun W, Jin N, Lu H. Trends and insights in dengue virus research globally: a bibliometric analysis (1995-2023). J Transl Med 2024; 22:818. [PMID: 39227968 PMCID: PMC11370300 DOI: 10.1186/s12967-024-05561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) is the most widespread arbovirus. The World Health Organization (WHO) declared dengue one of the top 10 global health threats in 2019. However, it has been underrepresented in bibliometric analyses. This study employs bibliometric analysis to identify research hotspots and trends, offering a comprehensive overview of the current research dynamics in this field. RESULTS We present a report spanning from 1995 to 2023 that provides a unique longitudinal analysis of Dengue virus (DENV) research, revealing significant trends and shifts not extensively covered in previous literature. A total of 10,767 DENV-related documents were considered, with a notable increase in publications, peaking at 747 articles in 2021. Plos Neglected Tropical Diseases has become the leading journal in Dengue virus research, publishing 791 articles in this field-the highest number recorded. Our bibliometric analysis provides a comprehensive mapping of DENV research across multiple dimensions, including vector ecology, virology, and emerging therapies. The study delineates a complex network of immune response genes, including IFNA1, DDX58, IFNB1, STAT1, IRF3, and NFKB1, highlighting significant trends and emerging themes, particularly the impacts of climate change and new outbreaks on disease transmission. Our findings detail the progress and current status of key vaccine candidates, including the licensed Dengvaxia, newer vaccines such as Qdenga and TV003, and updated clinical trials. The study underscores significant advancements in antiviral therapies and vector control strategies for dengue, highlighting innovative drug candidates such as AT-752 and JNJ-1802, and the potential of drug repurposing with agents like Ribavirin, Remdesivir, and Lopinavir. Additionally, it discusses biological control methods, including the introduction of Wolbachia-infected mosquitoes and gene-editing technologies. CONCLUSION This bibliometric study underscores the critical role of interdisciplinary collaboration in advancing DENV research, identifying key trends and areas needing further exploration, including host-virus dynamics, the development and application of antiviral drugs and vaccines, and the use of artificial intelligence. It advocates for strengthened partnerships across various disciplines to effectively tackle the challenges posed by DENV.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China.
| | - MengMeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China.
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
3
|
Phung NTN, Tran MN, Tran TT, Vo DM. Clinical Picture and Risk Factors for Severity of SARS-CoV-2 and Dengue Coinfection in Children: Experience From a Tertiary Hospital in Vietnam. Cureus 2024; 16:e66535. [PMID: 39246953 PMCID: PMC11381082 DOI: 10.7759/cureus.66535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Dengue is an infectious disease that is a burden in Asia-Pacific and Latin America. The COVID-19 pandemic in dengue-endemic areas has caused a "double burden" because of the possibility of coinfection, especially in children who are vulnerable to both COVID-19 and dengue. This study aimed to describe the characteristics and identify risk factors for the severity of the coinfection in Vietnamese children. Methods This was a retrospective cohort study, undertaken at Children's Hospital 1 (Ho Chi Minh City, Vietnam) during the fourth wave of the COVID-19 pandemic. All children under 16 years old who were admitted to the hospital from April 27, 2021 to June 30, 2022, and diagnosed with SARS-CoV-2 and dengue coinfection were included. Results From April 2021 to June 2022, a total of 31 patients with the coinfection were included, with 19 of them being male (61.3%). The median age was 10.8 years old (IQR, 5.1-14.1). Fourteen children (45.2%) had preexisting comorbidities, with the most common comorbidity being overweight/obesity (ten children). Nearly two-thirds of the children were diagnosed with dengue without/with warning signs (61.3%) and were classified as having mild COVID-19 (83.9%). The most frequently observed clinical characteristics were fever (n=29, 93.6%), followed by abdominal pain, vomiting, and petechiae. All patients had high serum ferritin, and 83.9% presented with thrombocytopenia. None of the cases died. Overweight/obesity, abdominal pain, and petechiae were factors independently associated with severe disease. Conclusion Most of the children had mild COVID-19 and disease progression similar to patients with dengue alone. However, some children may have severe COVID-19 and dengue coinfection. Obesity, abdominal pain, and petechiae were identified as independent risk factors for disease severity in pediatric cases. Further studies with multicenters and a larger sample size are needed to assess the coinfection more thoroughly.
Collapse
Affiliation(s)
| | - Minh Nhut Tran
- Infectious Diseases Intensive Care Unit, Children Hospital No. 1, Ho Chi Minh City, VNM
| | - Thanh Thuc Tran
- Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Duy Minh Vo
- Infectious Diseases Intensive Care Unit, Children Hospital No. 1, Ho Chi Minh City, VNM
| |
Collapse
|
4
|
Selvavinayagam ST, Sankar S, Yong YK, Anshad AR, Chandramathi S, Somasundaram A, Palani S, Kumarasamy P, Azhaguvel R, Kumar AB, Subramaniam S, Malathi M, Vijayalakshmi V, Rajeshkumar M, Kumaresan A, Pandey RP, Muruganandam N, Gopalan N, Kannan M, Murugesan A, Balakrishnan P, Byrareddy SN, Dash AP, Larsson M, Velu V, Shankar EM, Raju S. Serosurveillance of dengue infection and correlation with mosquito pools for dengue virus positivity during the COVID-19 pandemic in Tamil Nadu, India - A state-wide cross-sectional cluster randomized community-based study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.07.24308595. [PMID: 38883728 PMCID: PMC11178022 DOI: 10.1101/2024.06.07.24308595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Dengue is a vector-borne viral disease impacting millions across the globe. Nevertheless, akin to many other diseases, reports indicated a decline in dengue incidence and seroprevalence during the COVID-19 pandemic (2020-22). This presumably could be attributed to reduced treatment-seeking rates, under-reporting, misdiagnosis, disrupted health services and reduced exposure to vectors due to lockdowns. Scientific evidence on dengue virus (DENV) disease during the COVID-19 pandemic is limited globally. Methods A cross-sectional, randomized cluster sampling community-based survey was carried out to assess anti-dengue IgM and IgG and SARS-CoV-2 IgG seroprevalence across all 38 districts of Tamil Nadu, India. The prevalence of DENV in the Aedes mosquito pools during 2021 was analyzed and compared with previous and following years of vector surveillance for DENV by real-time PCR. Findings Results implicate that both DENV-IgM and IgG seroprevalence and mosquito viral positivity were reduced across all the districts. A total of 13464 mosquito pools and 5577 human serum samples from 186 clusters were collected. Of these, 3·76% of mosquito pools were positive for DENV. In the human sera, 4·12% were positive for DENV IgM and 6·4% were positive for DENV IgG. The anti-SARS-CoV-2 antibody titres correlated with dengue seropositivity with a significant association whereas vaccination status significantly correlated with dengue IgM levels. Interpretation Continuous monitoring of DENV seroprevalence, especially with the evolving variants of the SARS-CoV-2 virus and surge in COVID-19 cases will shed light on the transmission and therapeutic attributes of dengue infection.
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Sathish Sankar
- Centre for Infectious Diseases, Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Abdul R. Anshad
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | | | - Sampath Palani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Parthipan Kumarasamy
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Roshini Azhaguvel
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Ajith B. Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | | | - Manickam Malathi
- Institute of Vector Control and Zoonoses, Hosur, 635126, Tamil Nadu
| | | | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Nagarajan Muruganandam
- Regional Medical Research Centre, Indian Council of Medical Research, Port Blair, Andaman and Nicobar Islands, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, Tamil Nadu, India
| | - Pachamuthu Balakrishnan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Aditya P. Dash
- Asian Institute of Public Health University, Bhubaneswar, Odisha, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58 185 Linköping, Sweden
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Jal S, Chhotaray S, Pattnaik G, Mishra S, Mohapatra RK, Kandi V, Kudrat‐E‐Zahan M. Dengue fever coinfection in COVID-19 era: A public health concern. Health Sci Rep 2024; 7:e2089. [PMID: 38784250 PMCID: PMC11111600 DOI: 10.1002/hsr2.2089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Background and Aim Dengue and SARS-CoV-2 coinfection is commonly encountered and constantly reported in particularly the dengue-endemic regions thus posing a co-epidemic threat. Coinfection is also significantly associated with morbidity and mortality. Comorbidity risk during a coinfection is of a greater concern. Although the pathophysiologies of the two infections vary, their identical clinical symptoms during coinfection result in diagnostic and therapeutic complexities. Methods A literature search for the current relevant reports was carried out. The searched databases were Scopus, PubMed, Google Scholar and the Web of Science, with health agencies like the WHO. Based on the selection criteria, the most recent and pertinent reports published in English language were included for the ease of understanding, deciphering and analysing the secondary data. Results A delay in proper diagnosis of coinfection could result in serious complications with poor patient outcome. Whether it is a standalone dengue or COVID-19 infection or a coinfection, specific biomarkers may be utilized for its foolproof diagnosis. This article highlights the various diagnostic techniques and immune responses from the perspective of prompt and appropriate public health management for patients suffering from COVID-19 and dengue viral coinfections, both being independently or collectively capable of damaging a human body. Conclusion As coinfection poses significantly large burden on an already-fragile healthcare facility, constant monitoring of a coinfected patient is needed for prompt and suitable therapeutics. Also, to maintain high vigilance and invoke appropriate preventive measures particularly in dengue endemic regions, the government, healthcare authority and the general public need to collaborate and cooperate.
Collapse
Affiliation(s)
- Soumya Jal
- School of Paramedics and Allied Health SciencesCenturion University of Technology and ManagementBhubaneswarIndia
| | - Sangeeta Chhotaray
- School of Paramedics and Allied Health SciencesCenturion University of Technology and ManagementBhubaneswarIndia
| | - Gurudutta Pattnaik
- School of Pharmacy and Life SciencesCenturion University of Technology and ManagementBhubaneswarIndia
| | - Snehasish Mishra
- School of Biotechnology, Campus‐11KIIT Deemed‐to‐be‐UniversityBhubaneswarIndia
| | | | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarIndia
| | | |
Collapse
|
6
|
Tejo AM, Hamasaki DT, Menezes LM, Ho YL. Severe dengue in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:16-33. [PMID: 38263966 PMCID: PMC10800775 DOI: 10.1016/j.jointm.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 01/25/2024]
Abstract
Dengue fever is considered the most prolific vector-borne disease in the world, with its transmission rate increasing more than eight times in the last two decades. While most cases present mild to moderate symptoms, 5% of patients can develop severe disease. Although the mechanisms are yet not fully comprehended, immune-mediated activation leading to excessive cytokine expression is suggested as a cause of the two main findings in critical patients: increased vascular permeability that may shock and thrombocytopenia, and coagulopathy that can induce hemorrhage. The risk factors of severe disease include previous infection by a different serotype, specific genotypes associated with more efficient replication, certain genetic polymorphisms, and comorbidities such as diabetes, obesity, and cardiovascular disease. The World Health Organization recommends careful monitoring and prompt hospitalization of patients with warning signs or propensity for severe disease to reduce mortality. This review aims to update the diagnosis and management of patients with severe dengue in the intensive care unit.
Collapse
Affiliation(s)
- Alexandre Mestre Tejo
- Intensive Care Unit, Department of Intensive Medicine of the Cancer Institute of the State of São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Toshie Hamasaki
- Transfusion Medicine and Cell Therapy Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Letícia Mattos Menezes
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Yeh-Li Ho
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Das PR, Khan SA, Rahman JM, Dewan SMR. Effective Preventative Measures are Essential to Lower Disease Burden From Dengue and COVID-19 Co-infection in Bangladesh. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231212774. [PMID: 38035255 PMCID: PMC10685758 DOI: 10.1177/11786302231212774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023]
Abstract
Bangladesh is widely recognized as one of the dengue prone nations, and empirical evidence has consistently demonstrated an upward trend in the severity of the disease over time. With the persistent occurrence of dengue in Bangladesh and the ongoing presence of COVID-19, which has not been fully eradicated and may persist for an uncertain period of time, there is a high probability of co-infection between these 2 illnesses. Given the circumstances, the concurrent occurrence of the COVID-19 and dengue epidemics, along with the potential co-infection, may pose an overwhelming burden on healthcare systems that are already grappling with challenges in meeting the existing demand. Due to a lack of awareness, an inadequate health infrastructure, and ineffective disease prevention initiatives, the country is now more susceptible to the threat posed by a co-infection that has been found to be associated with more severe outcomes, marked by significant morbidity and mortality. The objective of this opinion piece is to explore the gravity of co-infection in Bangladesh, as well as the potential challenges to overcome and the preventative measures that need to be implemented to address the severity. This opinion piece proposes a set of modern preventative strategies that, when integrated with conventional methods, have the potential to mitigate disease severity, avert the occurrence of co-infection between COVID-19 and dengue, and halt the co-epidemics of COVID-19 and dengue.
Collapse
Affiliation(s)
- Proma Rani Das
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| | - Sakif Ahamed Khan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, Bangladesh
| | - Jannatul Mabia Rahman
- Department of Electrical and Electronic Engineering, University of Asia Pacific, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
Xu Y, Xu T, Chen S, Yao H, Chen Y, Zeng Y, Chen F, Zhang G. Evaluation of a novel lyophilized-pellet-based 2019-nCoV nucleic acid detection kit for the diagnosis of COVID-19. PLoS One 2023; 18:e0292902. [PMID: 37878570 PMCID: PMC10599558 DOI: 10.1371/journal.pone.0292902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swept the world and poses a serious threat to human health. In the post-pandemic-era, we must remain vigilant against the co-infection of SARS-CoV-2 and other respiratory viruses. More accurate and convenient detection methods are required for the diagnosis of SARS-CoV-2 due to its prolonged existence. In this study, the application value of a novel lyophilized-pellet-based 2019-nCoV nucleic acid diagnostic kit (PCoV-Kit) was evaluated by comparing it with a conventional liquid diagnostic kit (LCoV-Kit). We assessed the sensitivity, precision, accuracy, specificity, and amplification efficiency of PCoV-Kit and LCoV-Kit using diluted SARS-CoV-2 RNA reference materials. The results showed that both kits had high sensitivity, precision, accuracy, and specificity. A total of 2,033 oropharyngeal swab specimens collected during mass screening in Fuzhou in December 2022 were applied for the consistency analysis of the two reagents. In the detection of clinical oropharyngeal swab specimens, although the positive rate of PCoV-Kit (19.28%) was slightly lower than that of LCoV-Kit (20.86%), statistical analysis demonstrated a high degree of consistency between the test results obtained using both kit (χ2 = 1.57, P>0.05; Kappa coefficient = 0.90, 95%CI: 0.88-0.93). In conclusion, the use of lyophilized PCoV-Kit provides a non-inferior assay for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Yiyuan Xu
- Research and Development Department, Fujian CapitalBio Medical laboratory, Fuzhou, Fujian, China
| | - Tian Xu
- Research and Development Department, Fujian CapitalBio Medical laboratory, Fuzhou, Fujian, China
| | - Shaoting Chen
- Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Huakang Yao
- Medical Department, Fujian Provincial Yongtai County Hospital, Fuzhou, Fujian, China
| | - Yuxiang Chen
- Research and Development Department, Fujian CapitalBio Medical laboratory, Fuzhou, Fujian, China
| | - Yanfen Zeng
- Fujian Provincial Center for Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Falin Chen
- Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Guanbin Zhang
- Research and Development Department, Fujian CapitalBio Medical laboratory, Fuzhou, Fujian, China
- Research and Development Department, National Engineering Research Center for Beijing Biochip Technology, Beijing, China
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Duan L, Tang B, Luo S, Xiong D, Wang Q, Xu X, Zhang JZH. Entropy driven cooperativity effect in multi-site drug optimization targeting SARS-CoV-2 papain-like protease. Cell Mol Life Sci 2023; 80:313. [PMID: 37796323 PMCID: PMC11072831 DOI: 10.1007/s00018-023-04985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Papain-like protease (PLpro), a non-structural protein encoded by SARS-CoV-2, is an important therapeutic target. Regions 1 and 5 of an existing drug, GRL0617, can be optimized to produce cooperativity with PLpro binding, resulting in stronger binding affinity. This work investigated the origin of the cooperativity using molecular dynamics simulations combined with the interaction entropy (IE) method. The regions' improvement exhibits cooperativity by calculating the binding free energies between the complex of PLpro-inhibitor. The thermodynamic integration method further verified the cooperativity generated in the drug improvement. To further determine the specific source of cooperativity, enthalpy and entropy in the complexes were calculated using molecular mechanics/generalized Born surface area and IE. The results show that the entropic change is an important contributor to the cooperativity. Our study also identified residues P248, Q269, and T301 that play a significant role in cooperativity. The optimization of the inhibitor stabilizes these residues and minimizes the entropic loss, and the cooperativity observed in the binding free energy can be attributed to the change in the entropic contribution of these residues. Based on our research, the application of cooperativity can facilitate drug optimization, and provide theoretical ideas for drug development that leverage cooperativity by reducing the contribution of entropy through multi-locus binding.
Collapse
Affiliation(s)
- Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| |
Collapse
|
10
|
Urmi TJ, Mosharrafa RA, Hossain MJ, Rahman MS, Kadir MF, Islam MR. Frequent outbreaks of dengue fever in South Asian countries-A correspondence analyzing causative factors and ways to avert. Health Sci Rep 2023; 6:e1598. [PMID: 37779664 PMCID: PMC10539675 DOI: 10.1002/hsr2.1598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
| | - Rana Al Mosharrafa
- Department of Business AdministrationFaculty of Business Studies, Prime UniversityDhakaBangladesh
| | | | | | - Mohammad Fahim Kadir
- Department of PharmacologyLake Erie College of Osteopathic Medicine (LECOM)EriePennsylvaniaUSA
| | | |
Collapse
|
11
|
Unar A, Bertolino L, Patauner F, Gallo R, Durante-Mangoni E. Pathophysiology of Disseminated Intravascular Coagulation in Sepsis: A Clinically Focused Overview. Cells 2023; 12:2120. [PMID: 37681852 PMCID: PMC10486945 DOI: 10.3390/cells12172120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023] Open
Abstract
Sepsis is a major global health problem that results from a dysregulated and uncontrolled host response to infection, causing organ failure. Despite effective anti-infective therapy and supportive treatments, the mortality rate of sepsis remains high. Approximately 30-80% of patients with sepsis may develop disseminated intravascular coagulation (DIC), which can double the mortality rate. There is currently no definitive treatment approach for sepsis, with etiologic treatment being the cornerstone of therapy for sepsis-associated DIC. Early detection, diagnosis, and treatment are critical factors that impact the prognosis of sepsis-related DIC. Over the past several decades, researchers have made continuous efforts to better understand the mechanisms of DIC in sepsis, as well as improve its quantitative diagnosis and treatment. This article aims to provide a comprehensive overview of the current understanding of sepsis-related DIC, focusing on common causes and diagnoses, with the goal of guiding healthcare providers in the care of patients with sepsis.
Collapse
Affiliation(s)
- Ahsanullah Unar
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Fabian Patauner
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Raffaella Gallo
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
12
|
Abstract
Dengue is an important public health problem with a wide clinical spectrum. The World Health Organization classifies dengue into probable dengue, dengue with warning signs, and severe dengue. Severe dengue, characterized by plasma leakage, severe bleeding, or organ impairment, entails significant morbidity and mortality if not treated timely. There are no definitive curative medications for dengue; management is supportive. Judicious fluid resuscitation during the critical phase of dengue is the cornerstone of management. Crystalloids are the initial fluid of choice. Prophylactic platelet transfusion is not recommended. Organ involvement in severe dengue should be carefully looked for and managed. Secondary hemophagocytic lymphohistiocytosis is a potentially fatal complication of dengue that needs to be recognized, as specific management with steroids or intravenous immunoglobulin may improve outcomes. Several compounds with anti-dengue potential are being studied; no anti-dengue drug is available so far.
Collapse
Affiliation(s)
- Anshula Tayal
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
13
|
Gao S, Song L, Xu H, Fikatas A, Oeyen M, De Jonghe S, Zhao F, Jing L, Jochmans D, Vangeel L, Cheng Y, Kang D, Neyts J, Herdewijn P, Schols D, Zhan P, Liu X. Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010160. [PMID: 36615354 PMCID: PMC9822497 DOI: 10.3390/molecules28010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen 518057, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongtao Xu
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Antonios Fikatas
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Merel Oeyen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Correspondence: (H.X.); (D.S.); (P.Z.); (X.L.)
| |
Collapse
|
14
|
Liang W, Wang S, Wang H, Li X, Meng Q, Zhao Y, Zheng C. When 3D genome technology meets viral infection, including SARS-CoV-2. J Med Virol 2022; 94:5627-5639. [PMID: 35916043 PMCID: PMC9538846 DOI: 10.1002/jmv.28040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/09/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023]
Abstract
Mammalian chromosomes undergo varying degrees of compression to form three-dimensional genome structures. These three-dimensional structures undergo dynamic and precise chromatin interactions to achieve precise spatial and temporal regulation of gene expression. Most eukaryotic DNA viruses can invade their genomes into the nucleus. However, it is still poorly understood how the viral genome is precisely positioned after entering the host cell nucleus to find the most suitable location and whether it can specifically interact with the host genome to hijack the host transcriptional factories or even integrate into the host genome to complete its transcription and replication rapidly. Chromosome conformation capture technology can reveal long-range chromatin interactions between different chromosomal sites in the nucleus, potentially providing a reference for viral DNA-host chromatin interactions. This review summarized the research progress on the three-dimensional interaction between virus and host genome and the impact of virus integration into the host genome on gene transcription regulation, aiming to provide new insights into chromatin interaction and viral gene transcription regulation, laying the foundation for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Weizheng Liang
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Shuangqing Wang
- Department of NeurologyShenzhen University General Hospital, Shenzhen UniversityShenzhen, Guangdong ProvinceChina
| | - Hao Wang
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
| | - Xiushen Li
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen, GuangdongChina
- Shenzhen Key LaboratoryShenzhen University General HospitalShenzhen, GuangdongChina
| | - Qingxue Meng
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
| | - Yan Zhao
- Department of Mathematics and Computer ScienceFree University BerlinBerlinGermany
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
15
|
Cheng YL, Chao CH, Lai YC, Hsieh KH, Wang JR, Wan SW, Huang HJ, Chuang YC, Chuang WJ, Yeh TM. Antibodies against the SARS-CoV-2 S1-RBD cross-react with dengue virus and hinder dengue pathogenesis. Front Immunol 2022; 13:941923. [PMID: 36045680 PMCID: PMC9420930 DOI: 10.3389/fimmu.2022.941923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally since December 2019. Several studies reported that SARS-CoV-2 infections may produce false-positive reactions in dengue virus (DENV) serology tests and vice versa. However, it remains unclear whether SARS-CoV-2 and DENV cross-reactive antibodies provide cross-protection against each disease or promote disease severity. In this study, we confirmed that antibodies against the SARS-CoV-2 spike protein and its receptor-binding domain (S1-RBD) were significantly increased in dengue patients compared to normal controls. In addition, anti-S1-RBD IgG purified from S1-RBD hyperimmune rabbit sera could cross-react with both DENV envelope protein (E) and nonstructural protein 1 (NS1). The potential epitopes of DENV E and NS1 recognized by these antibodies were identified by a phage-displayed random peptide library. In addition, DENV infection and DENV NS1-induced endothelial hyperpermeability in vitro were inhibited in the presence of anti-S1-RBD IgG. Passive transfer anti-S1-RBD IgG into mice also reduced prolonged bleeding time and decreased NS1 seral level in DENV-infected mice. Lastly, COVID-19 patients’ sera showed neutralizing ability against dengue infection in vitro. Thus, our results suggest that the antigenic cross-reactivity between the SARS-CoV-2 S1-RBD and DENV can induce the production of anti-SARS-CoV-2 S1-RBD antibodies that cross-react with DENV which may hinder dengue pathogenesis.
Collapse
Affiliation(s)
- Yi-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Han Hsieh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Jyun Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc., Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Trai-Ming Yeh,
| |
Collapse
|
16
|
Sereno D. Epidemiology of Vector-Borne Diseases 2.0. Microorganisms 2022; 10:microorganisms10081555. [PMID: 36013973 PMCID: PMC9413013 DOI: 10.3390/microorganisms10081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Arthropods’ vectors—those of a large variety of families, including Culicidae, Simuliidae, Psychodidae, Ixodidae, Agarsidae, Pulicidae, Glossinidae, Reduviidae, and Tabanidae [...]
Collapse
Affiliation(s)
- Denis Sereno
- Institut de Recherche pour le Développement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, Parasite Infectiology and Public Health Group, 34032 Montpellier, France
| |
Collapse
|
17
|
Liang W, Li X, Wang H, Nie K, Meng Q, He J, Zheng C. Puerarin: A Potential Therapeutic for SARS-CoV-2 and Hantavirus Co-Infection. Front Immunol 2022; 13:892350. [PMID: 35663983 PMCID: PMC9161725 DOI: 10.3389/fimmu.2022.892350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Hantavirus-caused epidemic hemorrhagic fever (EHF) are at risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is currently no validated EHF/SARS-CoV-2 strategy. Several studies have recently shown Puerarin, a natural product, has potent antiviral properties. The goal of present study was to determine the mechanism of puerarin in patients with EHF/COVID-19. We use network pharmacology and bioinformatics to investigate the possible pharmacological targets, bioactivities, and molecular mechanisms of puerarin in the treatment of patients with EHF/SARS-CoV-2. The study investigated the pathogenesis of COVID-19 and EHF and the signaling pathway impacted by puerarin. 68 common genes linked to puerarin and EHF/SARS-CoV-2 were discovered during the investigation. By using protein-protein interaction (PPI) network, we identified RELA, JUN, NF-B1, NF-B2, and FOS as potential therapeutic targets. The bioactivity and signaling pathways of puerarin have also been demonstrated in the treatment of EHF and COVID-19. According to present study, puerarin could reduce excessive immune responses and inflammation through the NF-B, TNF, and HIF-1 signaling pathways. This study explored the potential therapeutic targets and mechanisms of Puerarin in the treatment of EHF/COVID-19.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.,Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital Shenzhen, Guangdong, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|