1
|
Shiraishi K, Chong Y, Goto T, Ishimaru T, Shimono N, Ikematsu H, Akashi K. Correlation of patient symptoms with SARS-CoV-2 Omicron variant viral loads in nasopharyngeal and saliva samples and their influence on the performance of rapid antigen testing. Microbiol Spectr 2024; 12:e0093224. [PMID: 39382283 PMCID: PMC11536993 DOI: 10.1128/spectrum.00932-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Evaluating SARS-CoV-2 viral loads in nasopharyngeal (NP) and saliva samples, factors affecting viral loads, and the performance of rapid antigen testing (RAT) have not been comprehensively conducted during SARS-CoV-2 Omicron epidemic. This prospective study included outpatients enrolled during Omicron variant period in Japan. Paired NP swab and saliva samples were collected to measure viral loads by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The correlation between viral loads and clinical symptoms was examined. The performance of an immunochromatography-based RAT kit was also assessed. A total of 153 patients tested within 3 days of symptom onset were included. The mean viral load was 5.60 log10 copies/test and 3.65 log10 copies/test in NP and saliva samples, respectively, resulting in a significant difference (P < 0.0001). Fever over 37°C (axillary temperature) and total number of symptoms other than fever were identified as independent factors positively correlated with the viral loads in both NP and saliva samples. RAT sensitivity using NP and saliva samples was 92% and 68%, respectively, using positive RT-qPCR results as the reference. The sensitivity of RAT using NP and saliva samples was significantly higher in patients with fever ≥37°C and/or at least one symptom than in those with fever <37°C and/or no symptoms (97% vs 83% in NP swabs; 80% vs 50% in saliva). Distinct symptoms, including fever ≥37°C, may reflect high Omicron variant viral loads. Rapid antigen testing, not only using nasopharyngeal swabs but also using saliva, would be useful for COVID-19 diagnosis as point-of-care testing, particularly for symptomatic patients. IMPORTANCE We examined nasopharyngeal and salivary viral loads using samples collected from outpatients with SARS-CoV-2 infection during the Omicron epidemic in Japan and explored the outpatient factors correlated with viral loads. In addition, we evaluated the performance of an authorized rapid antigen testing (RAT) kit using nasopharyngeal and saliva samples with RT-PCR testing as the reference. Intriguingly, a correlation between fever and other symptoms and SARS-CoV-2 viral loads in nasopharyngeal and saliva samples was observed based on one COVID-19 outpatient visit. RAT sensitivity was influenced by viral loads. Nevertheless, nasopharyngeal RAT is considered useful for SARS-CoV-2 point-of-care diagnosis. In patients with distinct symptoms, including high-grade fever, salivary RAT could be a practical diagnostic tool because of the higher estimated viral loads. After the Omicron epidemic, outpatients with mild COVID-19 have become the main focus of diagnosis and treatment. Our study provides valuable information regarding the point-of-care diagnosis of these patients.
Collapse
Affiliation(s)
- Kenichiro Shiraishi
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | - Yong Chong
- Department of Clinical Immunology, Rheumatology, and Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Takeyuki Goto
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | - Toshiyuki Ishimaru
- Department of Infectious diseases, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Nobuyuki Shimono
- Center for the Study of Global Infection, Kyushu University Hospital, Fukuoka, Japan
| | | | - Koichi Akashi
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| |
Collapse
|
2
|
Iijima K, Osako H, Iwata K. Comparing the effectiveness of universal admission testing and risk-based testing at emergency admission for preventing nosocomial COVID-19: a multicenter retrospective cohort study in Japan. Infect Control Hosp Epidemiol 2024:1-9. [PMID: 39434373 DOI: 10.1017/ice.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE To compare the effectiveness of universal admission testing (UAT) and risk-based testing (RBT) in preventing nosocomial coronavirus disease 2019 (COVID-19) after the implementation of strict infection control measures. DESIGN Retrospective multicenter cohort study. SETTING Five community hospitals in Japan. PATIENTS 14,028 adult patients admitted emergently from June 1, 2022, to January 31, 2023. METHODS We calculated crude incidence density rates of community-acquired COVID-19 (positive test ≤4 days postadmission), hospital-acquired COVID-19 (positive test ≥8 days postadmission), total postadmission COVID-19 (all cases of positive test postadmission), and primary cases (sporadic and index cases). A generalized estimating equation model was used to adjust for local incidence (new COVID-19 patients per 100,000 population), single-bed room proportion, and admission proportion of patients older than 65 years. RESULTS The weekly local incidence in the study areas was less than 1,800 per 100,000 population (1.8%). Two hospitals implemented RBT and 3 implemented UAT. The median admission testing rate was higher in the UAT group than in the RBT group (95% vs 55%; difference 45.2%, 95% CI, 40.3%-48.8%). Crude and adjusted analyses revealed no significant associations between incidence density rates (IRR; >1 indicates higher incidence with UAT) and admission strategies for any of the outcomes: community-acquired cases (adjusted IRR = 1.23; 95% CI, 0.46-3.31), hospital-acquired cases (1.46; 0.80-2.66), total postadmission COVID-19 (1.22; 0.79-1.87), and primary cases (0.81; 0.59-1.12). CONCLUSIONS Compared with risk-based testing, universal admission testing may have limited additional benefits in preventing nosocomial COVID-19 transmission during a period of low-moderate local incidence.
Collapse
Affiliation(s)
- Kenta Iijima
- Department of Infectious Disease and General Internal Medicine, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Hitomi Osako
- Department of Infection Control, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kentaro Iwata
- Division of Infectious Disease, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
3
|
Qiu H, Yuan XY, Holloway K, Wood H, Cabral T, Grant C, McQueen P, Westmacott G, Beniac DR, Lin L, Carpenter M, Kobasa D, Gräfenhan T, Cheney IW. Development and characterization of monoclonal antibodies recognizing nucleocapsid protein of multiple SARS-CoV-2 variants. Heliyon 2024; 10:e35325. [PMID: 39170261 PMCID: PMC11336563 DOI: 10.1016/j.heliyon.2024.e35325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Rapid antigen test (RAT) is widely used for SARS-CoV-2 infection diagnostics. However, test sensitivity has decreased recently due to the emergence of the Omicron variant and its sublineages. Here we developed a panel of SARS-CoV-2 nucleocapsid protein (NP) specific mouse monoclonal antibodies (mAbs) and assessed their sensitivity and specificity to important SARS-CoV-2 variants. We identified seven mAbs that exhibited strong reactivity to SARS-CoV-2 variants and recombinant NP (rNP) by Western immunoblot or ELISA. Their specificity to SARS-CoV-2 was confirmed by negative or low reactivity to rNPs from SARS-CoV-1, MERS, and common human coronaviruses (HCoV-HKU1, HCoV-CO43, HCoV-NL63, and HCoV-229E). These seven mAbs were further tested by immunoplaque assay against selected variants of concern (VOCs), including two Omicron sublineages, and five mAbs (F461G13, F461G7, F459G7, F457G3, and F461G6), showed strong reactions, warranting further suitability testing for the development of diagnostic assay.
Collapse
Affiliation(s)
- Hongyu Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Xin-Yong Yuan
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Kimberly Holloway
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Heidi Wood
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Teresa Cabral
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Chris Grant
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Peter McQueen
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Garrett Westmacott
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Daniel R. Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Lisa Lin
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Michael Carpenter
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Darwyn Kobasa
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | | | - Ian Wayne Cheney
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| |
Collapse
|
4
|
Exner HM, Gregorchuk BSJ, Castor AG, Crisostomo L, Kolsun K, Giesbrecht S, Dust K, Alexander DC, Bolaji A, Quill Z, Head BM, Meyers AFA, Sandstrom P, Becker MG. Post-market surveillance of six COVID-19 point-of-care tests using pre-Omicron and Omicron SARS-CoV-2 variants. Microbiol Spectr 2024; 12:e0016324. [PMID: 38757955 PMCID: PMC11218491 DOI: 10.1128/spectrum.00163-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Post-market surveillance of test performance is a critical function of public health agencies and clinical researchers that ensures tests maintaining diagnostic characteristics following their regulatory approval. Changes in product quality, manufacturing processes over time, or the evolution of new variants may impact product performance. During the COVID-19 pandemic, a plethora of point-of-care tests (POCTs) was released onto the Canadian market. This study evaluated the performance characteristics of several of the most widely distributed POCTs in Canada, including four rapid antigen tests (Abbott Panbio, BTNX Rapid Response, SD Biosensor, and Quidel QuickVue) and two molecular tests (Abbott ID NOW and Lucira Check IT). All tests were challenged with 149 SARS-CoV-2 clinical positives, including multiple variants up to and including Omicron XBB.1.5, as well as 29 clinical negatives. Results were stratified based on whether the isolate was Omicron or pre-Omicron as well as by reverse transcriptase quantitative PCR Ct value. The test performance of each POCT was consistent with the manufacturers' claims and showed no significant decline in clinical performance against any of the variants tested. These findings provide continued confidence in the results of these POCTs as they continue to be used to support decentralized COVID-19 testing. This work demonstrates the essential role of post-market surveillance in ensuring reliability in diagnostic tools.IMPORTANCEPost-market surveillance of diagnostic test performance is critical to ensure their reliability after regulatory approval. This is especially critical in the context of the COVID-19 pandemic as the use of point-of-care tests (POCTs) became widespread. Our study focused on four rapid antigen tests (Abbott Panbio, BTNX Rapid Response, SD Biosensor, and Quidel QuickVue) and two molecular tests (Abbott ID NOW and Lucira Check IT) that were widely distributed across Canada, assessing their performance using many SARS-CoV-2 variants, including up to Omicron subvariant XBB.1.5. Overall, we found no significant difference in performance against any variant, reinforcing confidence in their use. As concerns in test efficacy have been raised by news outlets, particularly regarding the BTNX Rapid Response, this work is even more timely and crucial. Our research offers insights into the performance of widely used COVID-19 POCTs but also highlights the necessity for post-market surveillance.
Collapse
Affiliation(s)
- Hannah M Exner
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Branden S J Gregorchuk
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ac-Green Castor
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Leandro Crisostomo
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kurt Kolsun
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shayna Giesbrecht
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kerry Dust
- Cadham Provincial Laboratory, Winnipeg, Manitoba, Canada
| | | | | | - Zoe Quill
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Breanne M Head
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Adrienne F A Meyers
- Office of Population and Public Health, Indigenous Services Canada, Ottawa, Ontario, Canada
| | - Paul Sandstrom
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael G Becker
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Okada PA, Nuchnoi P, Buayai K, Phuygun S, Thongpramul N, Plabplueng C, Rojanawiwat A, Uppapong B, Sirilak S. Impact of Omicron variant sublineage BA.2.75 on the OnSite COVID-19 Ag Rapid Test: the applicability of rapid antigen test with universal transport media. Infect Dis (Lond) 2024; 56:138-144. [PMID: 37970722 DOI: 10.1080/23744235.2023.2280025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Rapid antigen testing (RAT) is one of the most powerful tools for SARS-CoV-2 detection. The OnSite COVID-19 Ag Rapid Test is an antigen-based, point-of-care test approved by the WHO for Emergency Use Listing. The Nucleocapsid (N) gene mutations found in the emerging Omicron sublineages lead to the question of RAT performance. OBJECTIVE To ensure the diagnostic performance of the study RAT during rapidly mutated Omicron variants. RESULTS We independently evaluated the performance of this assay in 1098 archived samples collected in Thailand during October 2022-February 2023, which were 798 and 300 COVID-19 real-time RT-PCR positive and negative, respectively. The assay performed with 100% sensitivity and 100% specificity using a cycle threshold (Ct) of <20 for the RT-PCR. The sensitivity decreased to 88% when using Ct <30. Most of the SARS-CoV-2 found were Omicron BA.2 (99%), harboring six known N mutations (P13L, E31del, S33del, R203K, G204R and S413R). Eight samples containing hybrid variants (XBB.1*, XBB.2 and XBJ) were detected by the study RAT. This RAT detects all Omicron sublineages known to be circulating in Thailand. CONCLUSIONS These results confirmed the good performance of the study RAT for detecting Omicron variants and its appropriateness for individual diagnosis and for genomic surveillance.
Collapse
Affiliation(s)
| | - Pornlada Nuchnoi
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Center for Research Innovation and Biomedical Informatics, Bangkok, Thailand
| | - Kampaew Buayai
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Siripaporn Phuygun
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nuttida Thongpramul
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chotiros Plabplueng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | | | - Ballang Uppapong
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Supakit Sirilak
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
6
|
Park SY, Trinh KTL, Song YJ, Lee NY. Pipette-free field-deployable molecular diagnostic kit for bimodal visual detection of infectious RNA viruses. Biotechnol J 2024; 19:e2300521. [PMID: 38403439 DOI: 10.1002/biot.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Here, we developed a field-deployable molecular diagnostic kit for the detection of RNA viruses that operates in a pipette-free manner. The kit is composed of acrylic sticks, PCR tubes, and palm-sized three-dimensional(3D)-printed heaters operated by batteries. The kit performs RNA extraction, reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), and visual detection in one kit. An acrylic stick was engraved with one shallow and one deep cylindrical chamber at each end for the insertion of an FTA card and ethidium homodimer-1 (EthD-1), respectively, to perform RNA extraction/purification and bimodal visual detection of the target amplicons. First, an intercalation of EthD-1 into the target DNA initially produces fluorescence upon UV illumination. Next, the addition of a strong oxidant, in this case sodium (meta) periodate (NaIO4 ), produces intense aggregates in the presence of EthD-1-intercalated DNA, realized by electrostatic interaction. In the absence of the target amplicon, no fluorescence or aggregates are observed. Using this kit, two major infectious viruses-severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus (SARS-CoV-2)-were successfully detected in 1 h, and the limits of detection (LOD) were approximately 1 virus μL-1 for SFTSV and 103 copies μL-1 for SARS-CoV-2 RNA. The introduced kit is portable, end-user-friendly, and can be operated in a pipette-free manner, paving the way for simple and convenient virus detection in resource-limited settings.
Collapse
Affiliation(s)
- So Yeon Park
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Cucina A, Contino F, Brunacci G, Orlando V, La Rocca M, Indelicato S, Di Gaudio F. The Suitability of RNA from Positive SARS-CoV-2 Rapid Antigen Tests for Whole Virus Genome Sequencing and Variant Identification to Maintain Genomic Surveillance. Diagnostics (Basel) 2023; 13:3618. [PMID: 38132202 PMCID: PMC10742923 DOI: 10.3390/diagnostics13243618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The COVID-19 pandemic has transformed laboratory management, with a surge in demand for diagnostic tests prompting the adoption of new diagnostic assays and the spread of variant surveillance tools. Rapid antigen tests (RATs) were initially used only for screening and later as suitable infection assessment tools. This study explores the feasibility of sequencing the SARS-CoV-2 genome from the residue of the nasopharyngeal swab extraction buffers of rapid antigen tests (RATs) to identify different COVID-19 lineages and sub-lineages. METHODS Viral RNA was extracted from the residue of the nasopharyngeal swab extraction buffers of RATs and, after a confirmation of positivity through a reaction of RT-PCR, viral genome sequencing was performed. RESULTS Overall, the quality of the sequences obtained from the RNA extracted from the residue of the nasopharyngeal swab extraction buffers of RATs was adequate and allowed us to identify the SARS-CoV-2 variants' circulation and distribution in a period when the use of molecular swabs had been drastically reduced. CONCLUSIONS This study demonstrates the potential for genomic surveillance by sequencing SARS-CoV-2 from the residue of the nasopharyngeal swab extraction buffers of RATs, highlighting alternative possibilities for tracking variants.
Collapse
Affiliation(s)
- Annamaria Cucina
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy; (A.C.); (F.C.); (G.B.); (V.O.)
| | - Flavia Contino
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy; (A.C.); (F.C.); (G.B.); (V.O.)
| | - Giuseppina Brunacci
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy; (A.C.); (F.C.); (G.B.); (V.O.)
| | - Valentina Orlando
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy; (A.C.); (F.C.); (G.B.); (V.O.)
| | - Mario La Rocca
- Regional Health Department, Department of Strategic Planning, Piazza Ottavio Ziino, 24, 90145 Palermo, Italy;
| | - Sergio Indelicato
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy; (A.C.); (F.C.); (G.B.); (V.O.)
| | - Francesca Di Gaudio
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy; (A.C.); (F.C.); (G.B.); (V.O.)
- PROMISE-Promotion of Health, Maternal-Childhood, Internal and Specialized Medicine of Excellence “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche, 2, 90127 Palermo, Italy
| |
Collapse
|
8
|
Rao A, Lin J, Parsons R, Greenleaf M, Westbrook A, Lai E, Bowers HB, McClendon K, O’Sick W, Baugh T, Sifford M, Sullivan JA, Lam WA, Bassit L. Standardization and Comparison of Emergency Use Authorized COVID-19 Assays and Testing Laboratories. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23297633. [PMID: 37986832 PMCID: PMC10659510 DOI: 10.1101/2023.11.08.23297633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Motivation The motivation for this work was the need to establish a predefined cutoff based on genome copies per ml (GE/ml) rather than Ct, which can vary depending on the laboratory and assay used. A GE/ml-based threshold was necessary to define what constituted 'low positives" for samples that were included in data sets submitted to the FDA for emergency use approval for SARS-CoV-2 antigen tests. Summary SARS-CoV-2, the causal agent of the global COVID-19 pandemic, made its appearance at the end of 2019 and is still circulating in the population. The pandemic led to an urgent need for fast, reliable, and widely available testing. After December 2020, the emergence of new variants of SARS-CoV-2 led to additional challenges since new and existing tests had to detect variants to the same extent as the original Wuhan strain. When an antigen-based test is submitted to the Food and Drug Administration (FDA) for Emergency Use Authorization (EUA) consideration it is benchmarked against PCR comparator assays, which yield cycle threshold (CT) data as an indirect indicator of viral load - the lower the CT, the higher the viral load of the sample and the higher the CT, the lower the viral load. The FDA mandates that 10-20% of clinical samples used to evaluate the antigen test have to be low positive. Low positive, as defined by the FDA, are clinical samples in which the CT of the SARS-CoV-2 target gene is within 3 CT of the mean CT value of the approved comparator test's Limit of Detection (LOD). While all comparator tests are PCR-based, the results from different PCR assays used are not uniform. Results vary depending on assay platform, target gene, LOD and laboratory methodology. The emergence and dominance of the Omicron variant further challenged this approach as the fraction of low positive clinical samples dramatically increased as compared to earlier SARS-CoV-2 variants. This led to 20-40% of clinical samples having high CT values and therefore assays vying for an EUA were failing to achieve the 80% Percent Positive Agreement (PPA) threshold required. Here we describe the methods and statistical analyses used to establish a predefined cutoff, based on genome copies per ml (GE/ml) to classify samples as low positive (less than the cutoff GE/ml) or high positive (greater than the cutoff GE/mL). CT 30 for the E gene target using Cobas® SARS-CoV-2-FluA/B platform performed at TriCore Reference Laboratories, and this low positive cutoff value was used for two EUA authorizations. Using droplet digital PCR and methods described here, a value 49,447.72 was determined as the GE/ml equivalent for the low positive cutoff. The CT cutoff corresponding to 49447.72 GE/ml was determined across other platforms and laboratories. The methodology and statistical analysis described here can now be used for standardization of all comparators used for FDA submissions with a goal towards establishing uniform criteria for EUA authorization.
Collapse
Affiliation(s)
- Anuradha Rao
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jessica Lin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Richard Parsons
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA USA
| | - Morgan Greenleaf
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory University School of Medicine, Atlanta, GA, USA
| | - Adrianna Westbrook
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric Lai
- Personalized Science San Diego CA 05403 USA
| | - Heather B. Bowers
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratory of Biochemical Pharmacology, Emory University, Atlanta, Georgia
| | - Kaleb McClendon
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory/Children’s Laboratory for Innovative Assay Development, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, GA USA
| | - William O’Sick
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory/Children’s Laboratory for Innovative Assay Development, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, GA USA
| | - Tyler Baugh
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory/Children’s Laboratory for Innovative Assay Development, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, GA USA
| | - Markayla Sifford
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Emory/Children’s Laboratory for Innovative Assay Development, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, GA USA
| | - Julie A. Sullivan
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wilbur A. Lam
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center at Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Leda Bassit
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratory of Biochemical Pharmacology, Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Pollak NM, Rawle DJ, Yan K, Buckley C, Le TT, Wang CYT, Ertl NG, van Huyssteen K, Crkvencic N, Hashmi M, Lyons RE, Whiley DM, Suhrbier A, Macdonald J. Rapid inactivation and sample preparation for SARS-CoV-2 PCR-based diagnostics using TNA-Cifer Reagent E. Front Microbiol 2023; 14:1238542. [PMID: 37869655 PMCID: PMC10590215 DOI: 10.3389/fmicb.2023.1238542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
RT-qPCR remains a key diagnostic methodology for COVID-19/SARS-CoV-2. Typically, nasal or saliva swabs from patients are placed in virus transport media (VTM), RNA is extracted at the pathology laboratory, and viral RNA is measured using RT-qPCR. In this study, we describe the use of TNA-Cifer Reagent E in a pre-clinical evaluation study to inactivate SARS-CoV-2 as well as prepare samples for RT-qPCR. Adding 1 part TNA-Cifer Reagent E to 5 parts medium containing SARS-CoV-2 for 10 min at room temperature inactivated the virus and permitted RT-qPCR detection. TNA-Cifer Reagent E was compared with established column-based RNA extraction and purification methodology using a panel of human clinical nasal swab samples (n = 61), with TNA-Cifer Reagent E showing high specificity (100%) and sensitivity (97.37%). Mixtures of SARS-CoV-2 virus and TNA-Cifer Reagent E could be stored for 3 days at room temperature or for 2 weeks at 4°C without the loss of RT-qPCR detection sensitivity. The detection sensitivity was preserved when TNA-Cifer Reagent E was used in conjunction with a range of VTM for saliva samples but only PBS (Gibco) and Amies Orange for nasal samples. Thus, TNA-Cifer Reagent E improves safety by rapidly inactivating the virus during sample processing, potentially providing a safe means for molecular SARS-CoV-2 testing outside traditional laboratory settings. The reagent also eliminates the need for column-based and/or automated viral RNA extraction/purification processes, thereby providing cost savings for equipment and reagents, as well as reducing processing and handling times.
Collapse
Affiliation(s)
- Nina M. Pollak
- Center for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- DMTC Limited, Kew, VIC, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Cameron Buckley
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Claire Y. T. Wang
- Queensland Paediatric Infectious Diseases Laboratory, Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Nicole G. Ertl
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | | | | | - Misha Hashmi
- Bio Molecular Systems, Potts Point, NSW, Australia
| | | | - David M. Whiley
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
- Microbiology Department, Pathology Queensland, Herston, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Herston, QLD, Australia
| | - Joanne Macdonald
- Center for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- BioCifer Pty Ltd., Auchenflower, QLD, Australia
| |
Collapse
|
10
|
Widyasari K, Kim S. Efficacy of novel SARS-CoV-2 rapid antigen tests in the era of omicron outbreak. PLoS One 2023; 18:e0289990. [PMID: 37561721 PMCID: PMC10414561 DOI: 10.1371/journal.pone.0289990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
Following the outbreak of Omicron and its subvariants, many of the currently available rapid Ag tests (RATs) showed a decrease in clinical performance. In this study, we evaluated the clinical sensitivity of the SARS-CoV-2 Rapid Antigen Test 2.0 for nasopharyngeal swabs and SARS-CoV-2 Rapid Antigen Test 2.0 Nasal for nasal swabs in 56 symptomatic individuals by comparing the results between RATs, RT-PCR, Omicron RT-PCR, and whole-genome sequencing (WGS). Furthermore, sequences of the Omicron subvariants' spike proteins were subjected to phylogenetic analysis. Both novel RATs demonstrated a high sensitivity of up to 92.86%, (95% CI 82.71%- 98.02%), 94.23%, (95% CI 83.07%- 98.49%), and 97.95% (95% CI 87.76%- 99.89%) compared to the RT-PCR, Omicron RT-PCR, and WGS, respectively. The clinical sensitivity of RATs was at its highest when the Ct value was restricted to 15≤Ct<25, with a sensitivity of 97.05% for RdRp genes. The Omicron RT-PCR analysis revealed subvariants BA.4 or BA.5 (76.8%) and BA.2.75 (16.1%). Subsequently, the WGS analysis identified BA.5 (65.5%) as the dominant subvariant. Phylogenetic analysis of the spike protein of Omicron's subvariants showed a close relationship between BA.4, BA.5, and BA.2.75. These results demonstrated that SARS-CoV-2 Rapid Antigen Test 2.0 and SARS-CoV-2 Rapid Antigen Test 2.0 Nasal are considered useful and efficient RATs for the detection of SARS-CoV-2, particularly during the current Omicron subvariants wave.
Collapse
Affiliation(s)
- Kristin Widyasari
- Gyeongsang Institute of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sunjoo Kim
- Gyeongsang Institute of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| |
Collapse
|
11
|
Yanagida N, Sugizaki C, Sato S, Ebisawa M. Hospital oral food challenge tests in the coronavirus disease 2019 pandemic: A nationwide survey. Clin Transl Allergy 2023; 13:e12273. [PMID: 37488735 PMCID: PMC10314275 DOI: 10.1002/clt2.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Affiliation(s)
- Noriyuki Yanagida
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Chizuko Sugizaki
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Sakura Sato
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Motohiro Ebisawa
- Department of Allergy, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| |
Collapse
|
12
|
Gao Y, Zhao Y, Zhang X, Tian J, Guyatt G, Hao Q. Comparing SARS-CoV-2 testing positivity rates and COVID-19 impact among different isolation strategies: a rapid systematic review and a modelling study. EClinicalMedicine 2023; 61:102058. [PMID: 37360963 PMCID: PMC10285308 DOI: 10.1016/j.eclinm.2023.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Background The optimal isolation duration for patients with COVID-19 remains unclear. To support an update of World Health Organization (WHO)'s Living Clinical management guidelines for COVID-19 (https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2022.2), this rapid systematic review and modelling study addresses the effects of different isolation periods for preventing onward transmission leading to hospitalisation and death among secondary cases. Methods We searched the WHO COVID-19 database for studies up to Feb 27, 2023. We included clinical studies of any design with COVID-19 patients confirmed by PCR test or rapid antigen test addressing the impact of any isolation strategy on preventing the spread of COVID-19. There were no restrictions on publication language, publication status, age of patients, severity of COVID-19, variants of SARS-COV-2, comorbidity of patients, isolation location, or co-interventions. We performed random-effects meta-analyses to summarise testing rates of persistent test positivity rates after COVID-19 infection. We performed pre-specified subgroup analyses by symptom status and meta-regression analyses for the proportion of fully vaccinated patients. We developed a model to compare the effects of three isolation strategies on onward transmission leading to hospitalisation and death. The three isolation strategies were (1) 5-day isolation, with no test to release; (2) removal of isolation based on a negative test; and (3) 10-day isolation, with no test to release. The model incorporates estimates of test positivity rates, effective reproduction number, isolation adherence, false negative rate, and hospitalisation rates or case fatality rates. To assess the impact of varying isolation adherence and false negative rates on rapid antigen testing, we conducted some sensitivity analyses. We used the Grading of Recommendations Assessment, Development and Evaluation approach to assess certainty of evidence. The protocol is registered with PROSPERO (CRD42022348626). Findings Fifteen studies addressing persistent test positivity rates including 4188 patients proved eligible. Asymptomatic patients (27.1%, 95% CI: 15.8%-40.0%) had a significantly lower rapid antigen test positive rate than symptomatic patients (68.1%, 95% CI: 40.6%-90.3%) on day 5. The rapid antigen test positive rate was 21.5% (95% CI: 0-64.1%; moderate certainty) on day 10. Our modelling study suggested that the risk difference (RD) for asymptomatic patients between 5-day isolation and 10-day isolation in hospitalisations (23 more hospitalisations of secondary cases per 10,000 patients isolated, 95% uncertainty interval (UI) 14 more to 33 more) and mortality (5 more per 10,000 patients, 95% UI 1 to 9 more) of secondary cases proved very small (very low certainty). For symptomatic patients, the potential impact of 5- versus 10-day isolation was much greater in hospitalisations (RD 186 more per 10,000 patients, 95% UI 113 more to 276 more; very low certainty) and mortality (RD 41 more per 10,000 patients, 95% UI 11 more to 73 more; very low certainty). There may be little or no difference between removing isolation based on a negative antigen test and 10-day isolation in the onward transmission leading to hospitalisation or death, but the average isolation period (mean difference -3 days) will be shorter for the removal of isolation based on a negative antigen test (moderate certainty). Interpretation 5 days versus 10 days of isolation in asymptomatic patients may result in a small amount of onward transmission and negligible hospitalisation and mortality; however, in symptomatic patients, the level of onward transmission is concerning and may lead to high hospitalisation and death rates. The evidence is, however, very uncertain. Funding This work was done in collaboration with WHO.
Collapse
Affiliation(s)
- Ya Gao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Yunli Zhao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Zhang
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gordon Guyatt
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Qiukui Hao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Rodrigues-da-Silva RN, Conte FP, da Silva G, Carneiro-Alencar AL, Gomes PR, Kuriyama SN, Neto AAF, Lima-Junior JC. Identification of B-Cell Linear Epitopes in the Nucleocapsid (N) Protein B-Cell Linear Epitopes Conserved among the Main SARS-CoV-2 Variants. Viruses 2023; 15:v15040923. [PMID: 37112903 PMCID: PMC10145278 DOI: 10.3390/v15040923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
The Nucleocapsid (N) protein is highlighted as the main target for COVID-19 diagnosis by antigen detection due to its abundance in circulation early during infection. However, the effects of the described mutations in the N protein epitopes and the efficacy of antigen testing across SARS-CoV-2 variants remain controversial and poorly understood. Here, we used immunoinformatics to identify five epitopes in the SARS-CoV-2 N protein (N(34-48), N(89-104), N(185-197), N(277-287), and N(378-390)) and validate their reactivity against samples from COVID-19 convalescent patients. All identified epitopes are fully conserved in the main SARS-CoV-2 variants and highly conserved with SARS-CoV. Moreover, the epitopes N(185-197) and N(277-287) are highly conserved with MERS-CoV, while the epitopes N(34-48), N(89-104), N(277-287), and N(378-390) are lowly conserved with common cold coronaviruses (229E, NL63, OC43, HKU1). These data are in accordance with the observed conservation of amino acids recognized by the antibodies 7R98, 7N0R, and 7CR5, which are conserved in the SARS-CoV-2 variants, SARS-CoV and MERS-CoV but lowly conserved in common cold coronaviruses. Therefore, we support the antigen tests as a scalable solution for the population-level diagnosis of SARS-CoV-2, but we highlight the need to verify the cross-reactivity of these tests against the common cold coronaviruses.
Collapse
Affiliation(s)
- Rodrigo N Rodrigues-da-Silva
- Laboratory of Immunological Technology, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Fernando P Conte
- Eukaryotic Pilot Laboratory, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Gustavo da Silva
- Laboratory of Immunological Technology, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Ana L Carneiro-Alencar
- Laboratory of Immunological Technology, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Paula R Gomes
- Getulio Vargas State Hospital, Rio de Janeiro 21070-061, Brazil
| | - Sergio N Kuriyama
- SENAI Innovation Institute for Green Chemistry, Rio de Janeiro 20271-030, Brazil
| | - Antonio A F Neto
- SENAI Innovation Institute for Green Chemistry, Rio de Janeiro 20271-030, Brazil
| | - Josué C Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|