1
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
2
|
Gabler AM, Kreißl J, Schweiger J, Frank O, Dawid C. NMR-Based Studies on Odorant Polymer Interactions and the Influence on the Aroma Perception of Red Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18466-18477. [PMID: 37970809 DOI: 10.1021/acs.jafc.3c04015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The aroma of red wine is suggested to be influenced by interactions with nonvolatile polymers. To investigate this aroma binding effect in red wine, the key aroma compounds of a Primitivo red wine were quantified using GC-MS and an aroma recombinant with 27 odorants was prepared. In sensory experiments, an overall strong effect on the odor perception of the aroma recombinant was observed when high-molecular-weight (HMW) polymers of Primitivo red wine were added. An 1H NMR-based approach was developed to get an insight into the molecular mechanisms of this aroma binding effect in red wine. Evaluation of qualitative changes in the NMR spectra and quantitative time-dependent measurements revealed a clear distinction between different molecular interaction types: (i) no interactions for esters, alcohols, furanones, ketones, and C13-norisoprenoids, (ii, iii) noncovalent interactions for acids, aldehydes, and lactones, and (iv) π-π interactions for pyrazines and phenols. Additionally, the influence of the molecular weight of polymers was evaluated, where the HMW fraction 30-50 kDa showed the highest interaction activity, for example for π-π interactions. Based on these results, the new approach allowed the direct analysis of noncovalent interactions between odorants and HMW polymers and therefore allowed for the first time the description of the aroma binding effect on a molecular basis.
Collapse
Affiliation(s)
- Anna Maria Gabler
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising Germany
| | - Johanna Kreißl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising Germany
| | - Julia Schweiger
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising Germany
| |
Collapse
|
3
|
Verma J, Subbarao N. In silico identification of small molecule protein-protein interaction inhibitors: targeting hotspot regions at the interface of MXRA8 and CHIKV envelope protein. J Biomol Struct Dyn 2022; 41:3349-3367. [PMID: 35272566 DOI: 10.1080/07391102.2022.2048080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chikungunya virus (CHIKV) is an arthritogenic arbovirus responsible for re-emerging epidemics of Chikungunya fever around the world for centuries. Chikungunya has become endemic in Africa, Southeast Asia, the Indian subcontinent, and subtropical regions of the Americas. The unavailability of antiviral therapy or vaccine against the CHIKV and its continuous re-emergence demands an urgent need to develop potential candidate therapeutics. CHIKV entry into the host cell is mediated by its envelope proteins engaging the cellular receptor MXRA8 to invade the susceptible cells. We report here two essential target binding sites at the CHIKV E1-E2 proteins by identifying hotspot regions at the E1-E2-MXRA8 binding interface. Further, we employed high throughput computational screening to identify potential small molecule protein-protein interaction (PPI) modulators which could effectively bind at the identified target sites. Molecular dynamics simulations and binding free energy calculations confirmed the stability of three compounds, viz., ZINC299817498, ZINC584908978, and LAS52155651, at both the predicted interface binding sites. The polar and charged residues at the interface were responsible for energetically holding the ligands at the binding sites. Altogether, our findings suggest that the predicted target binding sites at the E1-E2 dimer could be essential to block the receptor interaction as well as the fusion process of the CHIKV particles. Thus, we identified a few small molecule PPI inhibitors with great potential to block the E1-E2-MXRA8 interaction and act as promising templates to design anti-CHIKV drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Gigl M, Hofmann T, Frank O. NMR-Based Studies on Odorant-Melanoidin Interactions in Coffee Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15334-15344. [PMID: 34874702 DOI: 10.1021/acs.jafc.1c06163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A quantitative 1H NMR-based approach was established, which allowed the direct and noninvasive analysis of molecular interactions between key coffee odorants and high-molecular-weight (HMW) melanoidin polymers. A clear distinction between covalent and noncovalent interactions was achieved by monitoring the time dependency of odorant-polymer interactions, resulting in four scenarios: covalent, π-π, covalent and π-π-, as well as no interactions. Evaluation of temperature influence on e.g. 2-furfurylthiol (FFT), revealed an altered behavior with increased π-π stacking at lower temperatures and accelerated covalent interactions at higher temperatures. Human sensory experiments with HMW material and a coffee aroma reconstitution model showed a drastic reduction of "roasty/sulfury" aroma notes, as well as an increased "sweetish/caramel-like" flavor. The lack of interactions between the "sweetish/caramel" smelling 4-hydroxy-2,5-dimethyl-3(2H)-furanone with the HMW melanoidins in combination with the high binding affinity of coffee thiols explains the sensory evaluation and is obviously the reason for the fast disappearance of the typical "roasty/sulfury" aroma impressions of a freshly prepared coffee brew.
Collapse
Affiliation(s)
- Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, Freising D-85354, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, Freising D-85354, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, Freising D-85354, Germany
| |
Collapse
|
5
|
Wang P, Zhang G, Yu ZG, Huang G. A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites. Front Genet 2021; 12:752732. [PMID: 34764983 PMCID: PMC8576272 DOI: 10.3389/fgene.2021.752732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Knowledge about protein-protein interactions is beneficial in understanding cellular mechanisms. Protein-protein interactions are usually determined according to their protein-protein interaction sites. Due to the limitations of current techniques, it is still a challenging task to detect protein-protein interaction sites. In this article, we presented a method based on deep learning and XGBoost (called DeepPPISP-XGB) for predicting protein-protein interaction sites. The deep learning model served as a feature extractor to remove redundant information from protein sequences. The Extreme Gradient Boosting algorithm was used to construct a classifier for predicting protein-protein interaction sites. The DeepPPISP-XGB achieved the following results: area under the receiver operating characteristic curve of 0.681, a recall of 0.624, and area under the precision-recall curve of 0.339, being competitive with the state-of-the-art methods. We also validated the positive role of global features in predicting protein-protein interaction sites.
Collapse
Affiliation(s)
- Pan Wang
- School of Electrical Engineering, Shaoyang University, Shaoyang, China
| | - Guiyang Zhang
- School of Electrical Engineering, Shaoyang University, Shaoyang, China
| | - Zu-Guo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, China
| | - Guohua Huang
- School of Electrical Engineering, Shaoyang University, Shaoyang, China
| |
Collapse
|
6
|
Messa L, Celegato M, Bertagnin C, Mercorelli B, Alvisi G, Banks L, Palù G, Loregian A. The Dimeric Form of HPV16 E6 Is Crucial to Drive YAP/TAZ Upregulation through the Targeting of hScrib. Cancers (Basel) 2021; 13:cancers13164083. [PMID: 34439242 PMCID: PMC8393709 DOI: 10.3390/cancers13164083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Understanding the mechanisms of action of HPV oncoproteins is pivotal for the rationale development of anti-cancer drugs to treat HPV-related malignancies. The aim of the present study was to explore more in detail the mechanism of action of the HPV16 oncoprotein E6 that directly fosters the YAP/TAZ signaling pathway, a conserved cascade highly active in HPV-related cancers. We confirmed previous evidence about the importance of the PDZ-protein targeting in this process, highlighting here the importance of hScrib degradation, and discovered that the targeting of the Scribble module involves the dimeric form of HPV16 E6. The findings here presented extend our knowledge about the mechanism through which the oncoprotein E6 targets a PDZ-host factor to degradation in cancer cells. Abstract Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein–protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.
Collapse
Affiliation(s)
- Lorenzo Messa
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Marta Celegato
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Beatrice Mercorelli
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
- Correspondence: ; Tel.: +39-049-8272363
| |
Collapse
|
7
|
Ghassabian H, Falchi F, Timmoneri M, Mercorelli B, Loregian A, Palù G, Alvisi G. Divide et impera: An In Silico Screening Targeting HCMV ppUL44 Processivity Factor Homodimerization Identifies Small Molecules Inhibiting Viral Replication. Viruses 2021; 13:v13050941. [PMID: 34065234 PMCID: PMC8160850 DOI: 10.3390/v13050941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a leading cause of severe diseases in immunocompromised individuals, including AIDS patients and transplant recipients, and in congenitally infected newborns. The utility of available drugs is limited by poor bioavailability, toxicity, and emergence of resistant strains. Therefore, it is crucial to identify new targets for therapeutic intervention. Among the latter, viral protein–protein interactions are becoming increasingly attractive. Since dimerization of HCMV DNA polymerase processivity factor ppUL44 plays an essential role in the viral life cycle, being required for oriLyt-dependent DNA replication, it can be considered a potential therapeutic target. We therefore performed an in silico screening and selected 18 small molecules (SMs) potentially interfering with ppUL44 homodimerization. Antiviral assays using recombinant HCMV TB4-UL83-YFP in the presence of the selected SMs led to the identification of four active compounds. The most active one, B3, also efficiently inhibited HCMV AD169 strain in plaque reduction assays and impaired replication of an AD169-GFP reporter virus and its ganciclovir-resistant counterpart to a similar extent. As assessed by Western blotting experiments, B3 specifically reduced viral gene expression starting from 48 h post infection, consistent with the inhibition of viral DNA synthesis measured by qPCR starting from 72 h post infection. Therefore, our data suggest that inhibition of ppUL44 dimerization could represent a new class of HCMV inhibitors, complementary to those targeting the DNA polymerase catalytic subunit or the viral terminase complex.
Collapse
Affiliation(s)
- Hanieh Ghassabian
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | | | - Martina Timmoneri
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Beatrice Mercorelli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
- Correspondence:
| |
Collapse
|
8
|
Dube T, Ghosh A, Mishra J, Kompella UB, Panda JJ. Repurposed Drugs, Molecular Vaccines, Immune-Modulators, and Nanotherapeutics to Treat and Prevent COVID-19 Associated with SARS-CoV-2, a Deadly Nanovector. ADVANCED THERAPEUTICS 2021; 4:2000172. [PMID: 33173808 PMCID: PMC7645867 DOI: 10.1002/adtp.202000172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 02/07/2023]
Abstract
The deadly pandemic, coronavirus disease 2019 (COVID-19), caused due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has paralyzed the world. Although significant methodological advances have been made in the field of viral detection/diagnosis with 251 in vitro diagnostic tests receiving emergency use approval by the US-FDA, little progress has been made in identifying curative or preventive therapies. This review discusses the current trends and potential future approaches for developing COVID-19 therapeutics, including repurposed drugs, vaccine candidates, immune-modulators, convalescent plasma therapy, and antiviral nanoparticles/nanovaccines/combinatorial nanotherapeutics to surmount the pandemic viral strain. Many potent therapeutic candidates emerging via drug-repurposing could significantly reduce the cost and duration of anti-COVID-19 drug development. Gene/protein-based vaccine candidates that could elicit both humoral and cell-based immunity would be on the frontlines to prevent the disease. Many emerging nanotechnology-based interventions will be critical in the fight against the deadly virus by facilitating early detection and enabling target oriented multidrug therapeutics. The therapeutic candidates discussed in this article include remdesivir, dexamethasone, hydroxychloroquine, favilavir, lopinavir/ritonavir, antibody therapeutics like gimsilumab and TJM2, anti-viral nanoparticles, and nanoparticle-based DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Taru Dube
- Institute of Nano Science and TechnologyMohaliPunjab160062India
| | - Amrito Ghosh
- Institute of Nano Science and TechnologyMohaliPunjab160062India
| | - Jibanananda Mishra
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjab144411India
| | - Uday B. Kompella
- Nanomedicine and Drug Delivery LaboratoryDepartment of Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Jiban Jyoti Panda
- Institute of Nano Science and TechnologyMohaliPunjab160062India
- Nanomedicine and Drug Delivery LaboratoryDepartment of Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| |
Collapse
|
9
|
Nannetti G, Massari S, Mercorelli B, Bertagnin C, Desantis J, Palù G, Tabarrini O, Loregian A. Potent and broad-spectrum cycloheptathiophene-3-carboxamide compounds that target the PA-PB1 interaction of influenza virus RNA polymerase and possess a high barrier to drug resistance. Antiviral Res 2019; 165:55-64. [PMID: 30885750 DOI: 10.1016/j.antiviral.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Influenza viruses are major respiratory pathogens responsible for both seasonal epidemics and occasional pandemics worldwide. The current available treatment options have limited efficacy and thus the development of new antivirals is highly needed. We previously reported the identification of a series of cycloheptathiophene-3-carboxamide compounds as influenza A virus inhibitors that act by targeting the protein-protein interactions between the PA-PB1 subunits of the viral polymerase. In this study, we characterized the antiviral properties of the most promising compounds as well as investigated their propensity to induce drug resistance. Our results show that some of the selected compounds possess potent, broad-spectrum anti-influenza activity as they efficiently inhibited the replication of several strains of influenza A and B viruses, including an oseltamivir-resistant clinical isolate, with nanomolar or low-micromolar potency. The most promising compounds specifically inhibited the PA-PB1 binding in vitro and interfered with the influenza A virus polymerase activity in a cellular context, without showing cytotoxicity. The most active PA-PB1 inhibitors showed to possess a drug resistance barrier higher than that of oseltamivir. Indeed, no viral variants with reduced susceptibility to the selected compounds emerged after serial passages of influenza A virus under drug selective pressure. Overall, our studies identified potent PA-PB1 inhibitors as promising candidates for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Giulio Nannetti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
10
|
Crystal Structure of the Dimerized N Terminus of Porcine Circovirus Type 2 Replicase Protein Reveals a Novel Antiviral Interface. J Virol 2018; 92:JVI.00724-18. [PMID: 29976661 DOI: 10.1128/jvi.00724-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023] Open
Abstract
Two replicase (Rep) proteins, Rep and Rep', are encoded by porcine circovirus (PCV) ORF1; Rep is a full ORF1 transcript, and Rep' is a truncated transcript generated by splicing. These two proteins are crucial for the rolling-circle replication (RCR) of PCV. The N-terminal sequences of Rep and Rep' are identical and interact to form homo- or heterodimers. The three types of dimers perform different functions during replication. A structural examination of the interfacing termini has not been performed. In this study, a crystal structure of dimerized Rep protein N termini was resolved at 2.7 Å. The dimerized protein was maintained by nine intermolecular hydrogen bonds and 15 pairs of hydrophobic interactions. The amino acid residue Ile37 participates in 11 of the hydrophobic interactions, mostly with its side chain. To find the predominant sites for protein dimerization and virus replication, a series of mutant proteins and virus replicons were generated by alanine substitution. Of all the single amino acid substitutions, the mutation at Ile37 showed the greatest effect on protein dimerization and virus replication. A double mutation at Leu35 and Ile37 almost eliminated protein dimerization and had the greatest negative effect on virus replication. These studies demonstrate that Leu35 and Ile37 are the most important residues for protein dimerization and are crucial for virus replication. Our results also show that PCV replication can be decreased by disrupting the dimerization of Rep or Rep' at the N terminus, suggesting that the structural interface responsible for dimerization offers a promising antiviral target.IMPORTANCE Porcine circovirus type 2 (PCV2) is one of the most economically damaging pathogens affecting the swine industry. Although vaccines have been available for more than 10 years, the virus still remains prevalent. More effective strategies for disease prevention are clearly required. The Rep and Rep' proteins of the virus have identical N-terminal regions that interact with each other, allowing the formation of homo- or heterodimers. The heterodimer has crucial functions during different stages of viral replication. Here, we resolved the crystal structure of the Rep (Rep') dimerization domain. The individual residues involved in the intermolecular interaction were visualized in the protein structure, and several interactions were verified by mutant analysis. Our studies show that disrupting the interaction decreases viral replication, thus revealing a new target for the design of antiviral agents.
Collapse
|
11
|
Desantis J, Nannetti G, Massari S, Barreca ML, Manfroni G, Cecchetti V, Palù G, Goracci L, Loregian A, Tabarrini O. Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity. Eur J Med Chem 2017; 138:128-139. [PMID: 28666191 DOI: 10.1016/j.ejmech.2017.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/13/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022]
Abstract
With the aim to identify small molecules able to disrupt PA-PB1 subunits interaction of influenza virus (flu) RNA-dependent RNA polymerase, and based on previous structural and computational information, in this paper we have designed and synthesized a new series of cycloheptathiophene-3-carboxamide (cHTC) derivatives. Their biological evaluation led to highlight important structural insights along with new interesting compounds, such as the 2-hydroxybenzamido derivatives 29, 31, and 32, and the 4-aminophenyl derivative 54, which inhibited viral growth in the low micromolar range (EC50 = 0.18-1.2 μM) at no toxic concentrations (CC50 > 250 μM). This study permitted to obtain among the most potent anti-flu compounds within the PA-PB1 interaction inhibitors, confirming the cHTC scaffold as particularly suitable to achieve innovative anti-flu agents.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Giulio Nannetti
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | | | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy.
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
12
|
Gurung AB, Das AK, Bhattacharjee A. Disruption of redox catalytic functions of peroxiredoxin-thioredoxin complex in Mycobacterium tuberculosis H37Rv using small interface binding molecules. Comput Biol Chem 2017; 67:69-83. [DOI: 10.1016/j.compbiolchem.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/19/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
|
13
|
Screening for Novel Small-Molecule Inhibitors Targeting the Assembly of Influenza Virus Polymerase Complex by a Bimolecular Luminescence Complementation-Based Reporter System. J Virol 2017; 91:JVI.02282-16. [PMID: 28031371 DOI: 10.1128/jvi.02282-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 11/20/2022] Open
Abstract
Influenza virus RNA-dependent RNA polymerase consists of three viral protein subunits: PA, PB1, and PB2. Protein-protein interactions (PPIs) of these subunits play pivotal roles in assembling the functional polymerase complex, which is essential for the replication and transcription of influenza virus RNA. Here we developed a highly specific and robust bimolecular luminescence complementation (BiLC) reporter system to facilitate the investigation of influenza virus polymerase complex formation. Furthermore, by combining computational modeling and the BiLC reporter assay, we identified several novel small-molecule compounds that selectively inhibited PB1-PB2 interaction. Function of one such lead compound was confirmed by its activity in suppressing influenza virus replication. In addition, our studies also revealed that PA plays a critical role in enhancing interactions between PB1 and PB2, which could be important in targeting sites for anti-influenza intervention. Collectively, these findings not only aid the development of novel inhibitors targeting the formation of influenza virus polymerase complex but also present a new tool to investigate the exquisite mechanism of PPIs. IMPORTANCE Formation of the functional influenza virus polymerase involves complex protein-protein interactions (PPIs) of PA, PB1, and PB2 subunits. In this work, we developed a novel BiLC assay system which is sensitive and specific to quantify both strong and weak PPIs between influenza virus polymerase subunits. More importantly, by combining in silico modeling and our BiLC assay, we identified a small molecule that can suppress influenza virus replication by disrupting the polymerase assembly. Thus, we developed an innovative method to investigate PPIs of multisubunit complexes effectively and to identify new molecules inhibiting influenza virus polymerase assembly.
Collapse
|
14
|
Trist IML, Nannetti G, Tintori C, Fallacara AL, Deodato D, Mercorelli B, Palù G, Wijtmans M, Gospodova T, Edink E, Verheij M, de Esch I, Viteva L, Loregian A, Botta M. 4,6-Diphenylpyridines as Promising Novel Anti-Influenza Agents Targeting the PA-PB1 Protein-Protein Interaction: Structure-Activity Relationships Exploration with the Aid of Molecular Modeling. J Med Chem 2016; 59:2688-703. [PMID: 26924568 DOI: 10.1021/acs.jmedchem.5b01935] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Influenza is an infectious disease that represents an important public health burden, with high impact on the global morbidity, mortality, and economy. The poor protection and the need of annual updating of the anti-influenza vaccine, added to the rapid emergence of viral strains resistant to current therapy make the need for antiviral drugs with novel mechanisms of action compelling. In this regard, the viral RNA polymerase is an attractive target that allows the design of selective compounds with reduced risk of resistance. In previous studies we showed that the inhibition of the polymerase acidic protein-basic protein 1 (PA-PB1) interaction is a promising strategy for the development of anti-influenza agents. Starting from the previously identified 3-cyano-4,6-diphenyl-pyridines, we chemically modified this scaffold and explored its structure-activity relationships. Noncytotoxic compounds with both the ability of disrupting the PA-PB1 interaction and antiviral activity were identified, and their mechanism of target binding was clarified with molecular modeling simulations.
Collapse
Affiliation(s)
- Iuni M L Trist
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via A. Moro, I-53100 Siena, Italy
| | - Giulio Nannetti
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova , Via A. Gabelli 63, I-35121 Padova, Italy
| | - Cristina Tintori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via A. Moro, I-53100 Siena, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via A. Moro, I-53100 Siena, Italy
| | - Davide Deodato
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via A. Moro, I-53100 Siena, Italy
| | - Beatrice Mercorelli
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova , Via A. Gabelli 63, I-35121 Padova, Italy
| | - Giorgio Palù
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova , Via A. Gabelli 63, I-35121 Padova, Italy
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Tzveta Gospodova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences , Acad. Georgy Bonchev str. BI. 9, 1113 Sofia, Bulgaria
| | - Ewald Edink
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Mark Verheij
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Iwan de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Lilia Viteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences , Acad. Georgy Bonchev str. BI. 9, 1113 Sofia, Bulgaria
| | - Arianna Loregian
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova , Via A. Gabelli 63, I-35121 Padova, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via A. Moro, I-53100 Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Temple University , BioLife Science Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
15
|
Gurung AB, Bhattacharjee A, Ajmal Ali M, Al-Hemaid F, Lee J. Binding of small molecules at interface of protein-protein complex - A newer approach to rational drug design. Saudi J Biol Sci 2016; 24:379-388. [PMID: 28149177 PMCID: PMC5272936 DOI: 10.1016/j.sjbs.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 01/03/2016] [Indexed: 01/07/2023] Open
Abstract
Protein–protein interaction is a vital process which drives many important physiological processes in the cell and has also been implicated in several diseases. Though the protein–protein interaction network is quite complex but understanding its interacting partners using both in silico as well as molecular biology techniques can provide better insights for targeting such interactions. Targeting protein–protein interaction with small molecules is a challenging task because of druggability issues. Nevertheless, several studies on the kinetics as well as thermodynamic properties of protein–protein interactions have immensely contributed toward better understanding of the affinity of these complexes. But, more recent studies on hot spots and interface residues have opened up new avenues in the drug discovery process. This approach has been used in the design of hot spot based modulators targeting protein–protein interaction with the objective of normalizing such interactions.
Collapse
Affiliation(s)
- A B Gurung
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - A Bhattacharjee
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - F Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
16
|
Caly L, Ghildyal R, Jans DA. Respiratory virus modulation of host nucleocytoplasmic transport; target for therapeutic intervention? Front Microbiol 2015; 6:848. [PMID: 26322040 PMCID: PMC4536372 DOI: 10.3389/fmicb.2015.00848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
The respiratory diseases caused by rhinovirus, respiratory syncytial virus, and influenza virus represent a large social and financial burden on healthcare worldwide. Although all three viruses have distinctly unique properties in terms of infection and replication, they share the ability to exploit/manipulate the host-cell nucleocytoplasmic transport system in order to replicate effectively and efficiently. This review outlines the various ways in which infection by these viruses impacts on the host nucleocytoplasmic transport system, and examples where inhibition thereof in turn decreases viral replication. The highly conserved nature of the nucleocytoplasmic transport system and the viral proteins that interact with it make this virus–host interface a prime candidate for the development of specific antiviral therapeutics in the future.
Collapse
Affiliation(s)
- Leon Caly
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia
| | - Reena Ghildyal
- Faculty of ESTeM, University of Canberra, Bruce, ACT Australia
| | - David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia
| |
Collapse
|
17
|
Massari S, Nannetti G, Desantis J, Muratore G, Sabatini S, Manfroni G, Mercorelli B, Cecchetti V, Palù G, Cruciani G, Loregian A, Goracci L, Tabarrini O. A Broad Anti-influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein–Basic Protein 1 (PA-PB1) Subunits. J Med Chem 2015; 58:3830-42. [DOI: 10.1021/acs.jmedchem.5b00012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Serena Massari
- Department
of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Giulio Nannetti
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Jenny Desantis
- Department
of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Giulia Muratore
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Stefano Sabatini
- Department
of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department
of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | | | - Violetta Cecchetti
- Department
of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Giorgio Palù
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Gabriele Cruciani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Arianna Loregian
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
18
|
Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein. J Virol 2015; 89:4421-33. [PMID: 25653447 DOI: 10.1128/jvi.03619-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The minimum requirement for an active RNA-dependent RNA polymerase of respiratory syncytial virus (RSV) is a complex made of two viral proteins, the polymerase large protein (L) and the phosphoprotein (P). Here we have investigated the domain on P that is responsible for this critical P-L interaction. By use of recombinant proteins and serial deletions, an L binding site was mapped in the C-terminal region of P, just upstream of the N-RNA binding site. The role of this molecular recognition element of about 30 amino acid residues in the L-P interaction and RNA polymerase activity was evaluated in cellula using an RSV minigenome system and site-directed mutagenesis. The results highlighted the critical role of hydrophobic residues located in this region. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine and no good antivirals against RSV are available, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. Like all negative-strand RNA viruses, RSV codes for its own machinery to replicate and transcribe its genome. The core of this machinery is composed of two proteins, the phosphoprotein (P) and the large protein (L). Here, using recombinant proteins, we have mapped and characterized the P domain responsible for this L-P interaction and the formation of an active L-P complex. These findings extend our understanding of the mechanism of action of RSV RNA polymerase and allow us to define a new target for the development of drugs against RSV.
Collapse
|
19
|
Wilson KA, Kellie JL, Wetmore SD. DNA-protein π-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar. Nucleic Acids Res 2014; 42:6726-41. [PMID: 24744240 PMCID: PMC4041443 DOI: 10.1093/nar/gku269] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Four hundred twenty-eight high-resolution DNA-protein complexes were chosen for a bioinformatics study. Although 164 crystal structures (38% of those searched) contained no interactions, 574 discrete π-contacts between the aromatic amino acids and the DNA nucleobases or deoxyribose were identified using strict criteria, including visual inspection. The abundance and structure of the interactions were determined by unequivocally classifying the contacts as either π-π stacking, π-π T-shaped or sugar-π contacts. Three hundred forty-four nucleobase-amino acid π-π contacts (60% of all interactions identified) were identified in 175 of the crystal structures searched. Unprecedented in the literature, 230 DNA-protein sugar-π contacts (40% of all interactions identified) were identified in 137 crystal structures, which involve C-H···π and/or lone-pair···π interactions, contain any amino acid and can be classified according to sugar atoms involved. Both π-π and sugar-π interactions display a range of relative monomer orientations and therefore interaction energies (up to -50 (-70) kJ mol(-1) for neutral (charged) interactions as determined using quantum chemical calculations). In general, DNA-protein π-interactions are more prevalent than perhaps currently accepted and the role of such interactions in many biological processes may yet to be uncovered.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| | - Jennifer L Kellie
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
20
|
Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions. Antiviral Res 2013; 99:318-27. [DOI: 10.1016/j.antiviral.2013.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
|
21
|
Atzori A, Baker AE, Chiu M, Bryce RA, Bonnet P. Effect of sequence and stereochemistry reversal on p53 peptide mimicry. PLoS One 2013; 8:e68723. [PMID: 23922660 PMCID: PMC3726663 DOI: 10.1371/journal.pone.0068723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 06/01/2013] [Indexed: 11/18/2022] Open
Abstract
Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29) using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29) result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids) and side-chain orientation (for reversed sequences). A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.
Collapse
Affiliation(s)
- Alessio Atzori
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | - Audrey E. Baker
- Biologics Research, Janssen Research and Development Inc., Radnor, Pennsylvania, United States of America
| | - Mark Chiu
- Biologics Research, Janssen Research and Development Inc., Radnor, Pennsylvania, United States of America
| | - Richard A. Bryce
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RB); (PB)
| | - Pascal Bonnet
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
- * E-mail: (RB); (PB)
| |
Collapse
|
22
|
Tan CSE, Hobson-Peters JM, Stoermer MJ, Fairlie DP, Khromykh AA, Hall RA. An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. J Gen Virol 2013; 94:1961-1971. [PMID: 23740481 DOI: 10.1099/vir.0.054395-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The flavivirus nonstructural protein 5 (NS5) is a large protein that is structurally conserved among members of the genus, making it an attractive target for antiviral drug development. The protein contains a methyltransferase (MTase) domain and an RNA dependent RNA polymerase (POL) domain. Previous studies with dengue viruses have identified a genetic interaction between residues 46-49 in the αA3-motif in the MTase and residue 512 in POL. These genetic interactions are consistent with structural modelling of these domains in West Nile virus (WNV) NS5 that predict close proximity of these regions of the two domains, and potentially a functional interaction mediated via the αA3-motif. To demonstrate an interaction between the MTase and POL domains of the WNV NS5 protein, we co-expressed affinity-tagged recombinant MTase and POL proteins in human embryonic kidney cells with simian virus 40 large T antigen (HEK293T cells) and performed pulldown assays using an antibody to the flag tag on POL. Western blot analysis with an anti-MTase mAb revealed that the MTase protein was specifically co-immunoprecipitated with POL, providing the first evidence of a specific interaction between these domains. To further assess the role of the αA3 helix in this interaction, selected residues in this motif were mutated in the recombinant MTase and the effect on POL interaction determined by the pulldown assay. These mutations were also introduced into a WNV infectious clone (FLSDX) and the replication properties of these mutant viruses assessed. While none of the αA3 mutations had a significant effect on the MTase-POL association in pulldown assays, suggesting that these residues were not specific to the interaction, an E46L mutation completely abolished virus viability indicating a critical requirement of this residue in replication. Failure to generate compensatory mutations in POL to rescue replication, even after several passages of the transfection supernatant in Vero cells, precluded further conclusion of the role of this residue in the context of MTase-POL interactions.
Collapse
Affiliation(s)
- Cindy S E Tan
- Institute of Molecular Biosciences, University of Queensland, St Lucia 4072, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Jody M Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Martin J Stoermer
- Institute of Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - David P Fairlie
- Institute of Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
23
|
Haridas V, Rajgokul KS, Sadanandan S, Agrawal T, Sharvani V, Gopalakrishna MVS, Bijesh MB, Kumawat KL, Basu A, Medigeshi GR. Bispidine-amino acid conjugates act as a novel scaffold for the design of antivirals that block Japanese encephalitis virus replication. PLoS Negl Trop Dis 2013; 7:e2005. [PMID: 23350007 PMCID: PMC3547849 DOI: 10.1371/journal.pntd.0002005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 11/28/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a major cause of viral encephalitis in South and South-East Asia. Lack of antivirals and non-availability of affordable vaccines in these endemic areas are a major setback in combating JEV and other closely related viruses such as West Nile virus and dengue virus. Protein secondary structure mimetics are excellent candidates for inhibiting the protein-protein interactions and therefore serve as an attractive tool in drug development. We synthesized derivatives containing the backbone of naturally occurring lupin alkaloid, sparteine, which act as protein secondary structure mimetics and show that these compounds exhibit antiviral properties. METHODOLOGY/PRINCIPAL FINDINGS In this study we have identified 3,7-diazabicyclo[3.3.1]nonane, commonly called bispidine, as a privileged scaffold to synthesize effective antiviral agents. We have synthesized derivatives of bispidine conjugated with amino acids and found that hydrophobic amino acid residues showed antiviral properties against JEV. We identified a tryptophan derivative, Bisp-W, which at 5 µM concentration inhibited JEV infection in neuroblastoma cells by more than 100-fold. Viral inhibition was at a stage post-entry and prior to viral protein translation possibly at viral RNA replication. We show that similar concentration of Bisp-W was capable of inhibiting viral infection of two other encephalitic viruses namely, West Nile virus and Chandipura virus. CONCLUSIONS/SIGNIFICANCE We have demonstrated that the amino-acid conjugates of 3,7-diazabicyclo[3.3.1]nonane can serve as a molecular scaffold for development of potent antivirals against encephalitic viruses. Our findings will provide a novel platform to develop effective inhibitors of JEV and perhaps other RNA viruses causing encephalitis.
Collapse
Affiliation(s)
- V. Haridas
- Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | | | - Sandhya Sadanandan
- Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Tanvi Agrawal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, India
| | - Vats Sharvani
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, India
| | | | - M. B. Bijesh
- Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | | | - Anirban Basu
- National Brain Research Center, Manesar, Haryana, India
| | - Guruprasad R. Medigeshi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, India
| |
Collapse
|
24
|
Targeting herpetic keratitis by gene therapy. J Ophthalmol 2012; 2012:594869. [PMID: 23326647 PMCID: PMC3541562 DOI: 10.1155/2012/594869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/30/2012] [Indexed: 01/15/2023] Open
Abstract
Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.
Collapse
|
25
|
Flusin O, Saccucci L, Contesto-Richefeu C, Hamdi A, Bardou C, Poyot T, Peinnequin A, Crance JM, Colas P, Iseni F. A small molecule screen in yeast identifies inhibitors targeting protein-protein interactions within the vaccinia virus replication complex. Antiviral Res 2012; 96:187-95. [PMID: 22884885 DOI: 10.1016/j.antiviral.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
Genetic and biochemical data have identified at least four viral proteins essential for vaccinia virus (VACV) DNA synthesis: the DNA polymerase E9, its processivity factor (the heterodimer A20/D4) and the primase/helicase D5. These proteins are part of the VACV replication complex in which A20 is a central subunit interacting with E9, D4 and D5. We hypothesised that molecules able to modulate protein-protein interactions within the replication complex may represent a new class of compounds with anti-orthopoxvirus activities. In this study, we adapted a forward duplex yeast two-hybrid assay to screen more than 27,000 molecules in order to identify inhibitors of A20/D4 and/or A20/D5 interactions. We identified two molecules that specifically inhibited both interactions in yeast. Interestingly, we observed that these compounds displayed a similar antiviral activity to cidofovir (CDV) against VACV in cell culture. We further showed that these molecules were able to inhibit the replication of another orthopoxvirus (i.e. cowpox virus), but not the herpes simplex virus type 1 (HSV-1), an unrelated DNA virus. We also demonstrated that the antiviral activity of both compounds correlated with an inhibition of VACV DNA synthesis. Hence, these molecules may represent a starting point for the development of new anti-orthopoxvirus drugs.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées (IRBA), 24 avenue des Maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Caly L, Wagstaff KM, Jans DA. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals? Antiviral Res 2012; 95:202-6. [PMID: 22750233 DOI: 10.1016/j.antiviral.2012.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses.
Collapse
Affiliation(s)
- Leon Caly
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, VIC, Australia
| | | | | |
Collapse
|
27
|
Yang CW. A comparative study of short linear motif compositions of the influenza A virus ribonucleoproteins. PLoS One 2012; 7:e38637. [PMID: 22715401 PMCID: PMC3371030 DOI: 10.1371/journal.pone.0038637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions through short linear motifs (SLiMs) are an emerging concept that is different from interactions between globular domains. The SLiMs encode a functional interaction interface in a short (three to ten residues) poorly conserved sequence. This characteristic makes them much more likely to arise/disappear spontaneously via mutations, and they may be more evolutionarily labile than globular domains. The diversity of SLiM composition may provide functional diversity for a viral protein from different viral strains. This study is designed to determine the different SLiM compositions of ribonucleoproteins (RNPs) from influenza A viruses (IAVs) from different hosts and with different levels of virulence. The 96 consensus sequences (regular expressions) of SLiMs from the ELM server were used to conduct a comprehensive analysis of the 52,513 IAV RNP sequences. The SLiM compositions of RNPs from IAVs from different hosts and with different levels of virulence were compared. The SLiM compositions of 845 RNPs from highly virulent/pandemic IAVs were also analyzed. In total, 292 highly conserved SLiMs were found in RNPs regardless of the IAV host range. These SLiMs may be basic motifs that are essential for the normal functions of RNPs. Moreover, several SLiMs that are rare in seasonal IAV RNPs but are present in RNPs from highly virulent/pandemic IAVs were identified. The SLiMs identified in this study provide a useful resource for experimental virologists to study the interactions between IAV RNPs and host intracellular proteins. Moreover, the SLiM compositions of IAV RNPs also provide insights into signal transduction pathways and protein interaction networks with which IAV RNPs might be involved. Information about SLiMs might be useful for the development of anti-IAV drugs.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Soochow University, Shih-Lin, Taipei, Taiwan, Republic of China.
| |
Collapse
|
28
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
29
|
A mammalian two-hybrid system-based assay for small-molecular HIV fusion inhibitors targeting gp41. Antiviral Res 2011; 90:54-63. [DOI: 10.1016/j.antiviral.2011.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/14/2011] [Accepted: 02/17/2011] [Indexed: 11/19/2022]
|
30
|
McGregor A, Choi KY, Schleiss MR. Guinea pig cytomegalovirus GP84 is a functional homolog of the human cytomegalovirus (HCMV) UL84 gene that can complement for the loss of UL84 in a chimeric HCMV. Virology 2010; 410:76-87. [PMID: 21094510 DOI: 10.1016/j.virol.2010.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/23/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
The guinea pig cytomegalovirus (GPCMV) co-linear gene and potential functional homolog of HCMV UL84 (GP84) was investigated. The GP84 gene had delayed early transcription kinetics and transient expression studies of GP84 protein (pGP84) demonstrated that it targeted the nucleus and co-localized with the viral DNA polymerase accessory protein as described for HCMV pUL84. Additionally, pGP84 exhibited a transdominant inhibitory effect on viral growth as described for HCMV. The inhibitory domain could be localized to a minimal peptide sequence of 99 aa. Knockout of GP84 generated virus with greatly impaired growth kinetics. Lastly, the GP84 ORF was capable of complementing for the loss of the UL84 coding sequence in a chimeric HCMV. Based on this research and previous studies we conclude that GPCMV is similar to HCMV by encoding single copy co-linear functional homologs of HCMV UL82 (pp71), UL83 (pp65) and UL84 genes.
Collapse
Affiliation(s)
- A McGregor
- Center for Infectious Diseases and Microbiology, Translational Research and Division of Infectious Diseases, University of Minnesota Medical School, Department of Pediatrics, 2001 Sixth Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
31
|
Paul S, Piontkivska H. Frequent associations between CTL and T-Helper epitopes in HIV-1 genomes and implications for multi-epitope vaccine designs. BMC Microbiol 2010; 10:212. [PMID: 20696039 PMCID: PMC2924856 DOI: 10.1186/1471-2180-10-212] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/09/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Epitope vaccines have been suggested as a strategy to counteract viral escape and development of drug resistance. Multiple studies have shown that Cytotoxic T-Lymphocyte (CTL) and T-Helper (Th) epitopes can generate strong immune responses in Human Immunodeficiency Virus (HIV-1). However, not much is known about the relationship among different types of HIV epitopes, particularly those epitopes that can be considered potential candidates for inclusion in the multi-epitope vaccines. RESULTS In this study we used association rule mining to examine relationship between different types of epitopes (CTL, Th and antibody epitopes) from nine protein-coding HIV-1 genes to identify strong associations as potent multi-epitope vaccine candidates. Our results revealed 137 association rules that were consistently present in the majority of reference and non-reference HIV-1 genomes and included epitopes of two different types (CTL and Th) from three different genes (Gag, Pol and Nef). These rules involved 14 non-overlapping epitope regions that frequently co-occurred despite high mutation and recombination rates, including in genomes of circulating recombinant forms. These epitope regions were also highly conserved at both the amino acid and nucleotide levels indicating strong purifying selection driven by functional and/or structural constraints and hence, the diminished likelihood of successful escape mutations. CONCLUSIONS Our results provide a comprehensive systematic survey of CTL, Th and Ab epitopes that are both highly conserved and co-occur together among all subtypes of HIV-1, including circulating recombinant forms. Several co-occurring epitope combinations were identified as potent candidates for inclusion in multi-epitope vaccines, including epitopes that are immuno-responsive to different arms of the host immune machinery and can enable stronger and more efficient immune responses, similar to responses achieved with adjuvant therapies. Signature of strong purifying selection acting at the nucleotide level of the associated epitopes indicates that these regions are functionally critical, although the exact reasons behind such sequence conservation remain to be elucidated.
Collapse
Affiliation(s)
- Sinu Paul
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA
| | | |
Collapse
|
32
|
Castel G, Tordo N. [New strategies for the development of antiviral molecules]. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2009; 2009:91-100. [PMID: 32288807 PMCID: PMC7140268 DOI: 10.1016/s1773-035x(09)70313-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/30/2009] [Indexed: 11/29/2022]
Abstract
Antiviral research is a recent discipline and the number of molecules available to fight against viral infections remains still insufficient. However, both diseases caused by emerging endemic viruses and the existence of resistance from some viruses against antiviral make necessary a constant search for new antiviral drugs. Parallel to the development of traditional molecules such as nucleoside analogues, whose effectiveness is well demonstrated, pharmaceutical industry is now turning to new solutions such as antiviral peptides, which constitute a new exploration field in therapy. The recent progress in disciplines such as genomics, proteomics and structural biology have improved our fundamental understanding of the viral world. These advances can be used to efficiently create new drugs more selective and more effective. Identification and development of these molecules require the use of newer techniques such as high-throughput screening of combinatorial compound libraries and the use of new bioinformatics tools. This review aims to present some recent methods for the development of antiviral molecules.
Collapse
Affiliation(s)
- Guillaume Castel
- Unité postulante des stratégies antivirales – CNRS URA-3015, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15
| | - Noël Tordo
- Unité postulante des stratégies antivirales – CNRS URA-3015, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15
| |
Collapse
|
33
|
Caporuscio F, Tafi A, González E, Manetti F, Esté JA, Botta M. A dynamic target-based pharmacophoric model mapping the CD4 binding site on HIV-1 gp120 to identify new inhibitors of gp120-CD4 protein-protein interactions. Bioorg Med Chem Lett 2009; 19:6087-91. [PMID: 19783140 DOI: 10.1016/j.bmcl.2009.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/06/2009] [Accepted: 09/09/2009] [Indexed: 11/19/2022]
Abstract
A dynamic target-based pharmacophoric model mapping the CD4 binding site on HIV-1 gp120 was built and used to identify new hits able to inhibit gp120-CD4 protein-protein interactions. Two compounds showed micromolar inhibition of HIV-1 replication in cells attributable to an interference with the entry step of infection, by direct interaction with gp120. Inactivity of compounds toward a M475I strain suggested specific contacts with the Phe43 cavity of gp120.
Collapse
Affiliation(s)
- Fabiana Caporuscio
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi, 2, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Paul S, Piontkivska H. Discovery of novel targets for multi-epitope vaccines: screening of HIV-1 genomes using association rule mining. Retrovirology 2009; 6:62. [PMID: 19580659 PMCID: PMC2716299 DOI: 10.1186/1742-4690-6-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/06/2009] [Indexed: 11/24/2022] Open
Abstract
Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1) regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL) epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007), we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms). The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations) that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines) and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges associated with viral escape.
Collapse
Affiliation(s)
- Sinu Paul
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA.
| | | |
Collapse
|
35
|
Guda C, King BR, Pal LR, Guda P. A top-down approach to infer and compare domain-domain interactions across eight model organisms. PLoS One 2009; 4:e5096. [PMID: 19333396 PMCID: PMC2659750 DOI: 10.1371/journal.pone.0005096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/10/2009] [Indexed: 11/22/2022] Open
Abstract
Knowledge of specific domain-domain interactions (DDIs) is essential to understand the functional significance of protein interaction networks. Despite the availability of an enormous amount of data on protein-protein interactions (PPIs), very little is known about specific DDIs occurring in them. Here, we present a top-down approach to accurately infer functionally relevant DDIs from PPI data. We created a comprehensive, non-redundant dataset of 209,165 experimentally-derived PPIs by combining datasets from five major interaction databases. We introduced an integrated scoring system that uses a novel combination of a set of five orthogonal scoring features covering the probabilistic, evolutionary, evidence-based, spatial and functional properties of interacting domains, which can map the interacting propensity of two domains in many dimensions. This method outperforms similar existing methods both in the accuracy of prediction and in the coverage of domain interaction space. We predicted a set of 52,492 high-confidence DDIs to carry out cross-species comparison of DDI conservation in eight model species including human, mouse, Drosophila, C. elegans, yeast, Plasmodium, E. coli and Arabidopsis. Our results show that only 23% of these DDIs are conserved in at least two species and only 3.8% in at least 4 species, indicating a rather low conservation across species. Pair-wise analysis of DDI conservation revealed a ‘sliding conservation’ pattern between the evolutionarily neighboring species. Our methodology and the high-confidence DDI predictions generated in this study can help to better understand the functional significance of PPIs at the modular level, thus can significantly impact further experimental investigations in systems biology research.
Collapse
Affiliation(s)
- Chittibabu Guda
- GenNYsis Center for Excellence in Cancer Genomics and Department of Epidemiology & Biostatistics, State University of New York at Albany, Rensselaer, NY, USA.
| | | | | | | |
Collapse
|
36
|
Role of homodimerization of human cytomegalovirus DNA polymerase accessory protein UL44 in origin-dependent DNA replication in cells. J Virol 2008; 82:12574-9. [PMID: 18842734 DOI: 10.1128/jvi.01193-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presumed processivity subunit of human cytomegalovirus (HCMV) DNA polymerase, UL44, forms homodimers. The dimerization of UL44 is important for binding to DNA in vitro; however, whether it is also important for DNA replication in a cellular context is unknown. Here we show that UL44 point mutants that are impaired for dimerization, but not for nuclear localization or interaction with the C terminus of the polymerase catalytic subunit, are not capable of supporting HCMV oriLyt-dependent DNA replication in cells. These data suggest that the disruption of UL44 homodimers could represent a novel anti-HCMV strategy.
Collapse
|
37
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
38
|
Liu F, Stephen AG, Waheed AA, Aman MJ, Freed EO, Fisher RJ, Burke TR. SAR by oxime-containing peptide libraries: application to Tsg101 ligand optimization. Chembiochem 2008; 9:2000-4. [PMID: 18655064 PMCID: PMC2581409 DOI: 10.1002/cbic.200800281] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Indexed: 11/10/2022]
Abstract
HIV-1 viral assembly requires a direct interaction between a Pro-Thr-Ala-Pro ("PTAP") motif in the viral protein Gag-p6 and the cellular endosomal sorting factor Tsg101. In an effort to develop competitive inhibitors of this interaction, an SAR study was conducted based on the application of post solid-phase oxime formation involving the sequential insertion of aminooxy-containing residues within a nonamer parent peptide followed by reaction with libraries of aldehydes. Approximately 15-20-fold enhancement in binding affinity was achieved by this approach.
Collapse
Affiliation(s)
- Fa Liu
- Dr. F. Liu, Dr. T. R. Burke, Jr., Laboratory of Medicinal Chemistry, CCR, NCI-Frederick, Building 376 Boyles Street, Frederick, MD 21702 (USA)
| | - Andrew G. Stephen
- Dr. A. G. Stephen, Dr. R. J. Fisher, Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc. NCI-Frederick, Frederick, MD 21702 (USA)
| | - Abdul A. Waheed
- Dr. A. A. Waheed, Dr. E. O. Freed, HIV Drug Resistance Program, CCR, NCI-Frederick, Frederick, MD 21702 (USA)
| | - M. Javad Aman
- Dr. M. J. Aman, U.S. Army Medical Research Institute for Infectious Diseases, Frederick, MD 21702 (USA)
| | - Eric O. Freed
- Dr. A. A. Waheed, Dr. E. O. Freed, HIV Drug Resistance Program, CCR, NCI-Frederick, Frederick, MD 21702 (USA)
| | - Robert J. Fisher
- Dr. A. G. Stephen, Dr. R. J. Fisher, Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc. NCI-Frederick, Frederick, MD 21702 (USA)
| | - Terrence R. Burke
- Dr. F. Liu, Dr. T. R. Burke, Jr., Laboratory of Medicinal Chemistry, CCR, NCI-Frederick, Building 376 Boyles Street, Frederick, MD 21702 (USA)
| |
Collapse
|
39
|
Schweigert FJ. Nutritional Proteomics: Methods and Concepts for Research in Nutritional Science. ANNALS OF NUTRITION AND METABOLISM 2007; 51:99-107. [PMID: 17476098 DOI: 10.1159/000102101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nutritional proteomics or nutriproteomics is the application of proteomics methodology to nutrition-related research but also represents the interaction of bioactive food ingredients with proteins, whereby the interaction with proteins occurs in two basically specific ways. Firstly, the effect of nutrients on protein expression, which can be monitored by protein mapping, and secondly, the interaction of nutrients with proteins by post-translational modifications or small-molecule protein interactions. These interactions result in changes to the three-dimensional structure of such effected proteins. As a consequence, their original functions are modulated, resulting for example in reduced activity in the case of enzymes or changes in ability of recognition between molecules such as protein-protein interactions and ligand-receptor interactions. The characterization of such modifications together with functional data from established biochemical and physiological methods will result in a better understanding of the interplay between bioactive dietary components and diet-related diseases such as cancer, diabetes or neurodegenerative diseases. The occurrence of such modifications can possibly be additionally used as biomarkers in the diagnosis and therapy of these diseases as well as biomarkers for the efficacy or safety of selected nutrients.
Collapse
Affiliation(s)
- Florian J Schweigert
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Germany.
| |
Collapse
|
40
|
Figueiredo A, Moore KL, Mak J, Sluis-Cremer N, de Bethune MP, Tachedjian G. Potent nonnucleoside reverse transcriptase inhibitors target HIV-1 Gag-Pol. PLoS Pathog 2006; 2:e119. [PMID: 17096588 PMCID: PMC1635531 DOI: 10.1371/journal.ppat.0020119] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/25/2006] [Indexed: 11/19/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) target HIV-1 reverse transcriptase (RT) by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzyme's inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation. HIV-1 encodes reverse transcriptase (RT), an enzyme that is essential for virus replication. Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 RT. In HIV-1-infected cells NNRTIs block the RT-catalyzed synthesis of a double-stranded DNA copy of the viral genomic RNA, which is an early step in the virus life cycle. Potent NNRTIs have the novel feature of promoting the interaction between the two RT subunits. However, the importance of this effect on the inhibition of HIV-1 replication has not been defined. In this study, the authors show that potent NNRTIs block an additional step in the virus life cycle. NNRTIs increase the intracellular processing of viral polyproteins called Gag and Gag-Pol that express the HIV-1 structural proteins and viral enzymes. Enhanced polyprotein processing is associated with a decrease in viral particles released from NNRTI-treated cells. NNRTI enhanced polyprotein processing is likely due to the drug binding to RT, expressed as part of the Gag-Pol polyprotein and promoting the interaction between separate Gag-Pol polyproteins. This leads to premature activation of the Gag-Pol embedded HIV-1 protease, resulting in a decrease in full-length viral polyproteins available for assembly and budding from the host cell membrane. This study provides proof-of-concept that small molecules can modulate the interactions between Gag-Pol polyproteins and suggests a new target for the development of HIV-1 antiviral drugs.
Collapse
Affiliation(s)
- Anna Figueiredo
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Katie L Moore
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Johnson Mak
- HIV Assembly Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
- Department of Medicine, Monash University, Prahran, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Tsantrizos YS, Ferland JM, McClory A, Poirier M, Farina V, Yee NK, Wang XJ, Haddad N, Wei X, Xu J, Zhang L. Olefin ring-closing metathesis as a powerful tool in drug discovery and development – potent macrocyclic inhibitors of the hepatitis C virus NS3 protease. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2006.09.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Camarasa MJ, Velázquez S, San-Félix A, Pérez-Pérez MJ, Gago F. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: A single mode of inhibition for the three HIV enzymes? Antiviral Res 2006; 71:260-7. [PMID: 16872687 DOI: 10.1016/j.antiviral.2006.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/25/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
The genome of human immunodeficiency virus type 1 (HIV-1) encodes 15 distinct proteins, three of which provide essential enzymatic functions: a reverse transcriptase (RT), an integrase (IN), and a protease (PR). Since these enzymes are all homodimers, pseudohomodimers or multimers, disruption of protein-protein interactions in these retroviral enzymes may constitute an alternative way to achieve HIV-1 inhibition. A growing number of dimerization inhibitors for these enzymes is being reported. This mini review summarizes some approaches that have been followed for the development of compounds that inhibit those three enzymes by interfering with the dimerization interfaces between the enzyme subunits.
Collapse
Affiliation(s)
- María-José Camarasa
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
43
|
Loregian A, Case A, Cancellotti E, Valente C, Marsden HS, Palù G. Cloning, expression, and functional characterization of the equine herpesvirus 1 DNA polymerase and its accessory subunit. J Virol 2006; 80:6247-58. [PMID: 16775312 PMCID: PMC1488933 DOI: 10.1128/jvi.02551-05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the expression and characterization of the putative catalytic subunit (pORF30) and accessory protein (pORF18) of equine herpesvirus 1 DNA polymerase, which are encoded by open reading frames 30 and 18 and are homologous to herpes simplex virus type 1 UL30 and UL42, respectively. In vitro transcription-translation of open reading frames 30 and 18 generated proteins of 136 and 45 kDa, respectively. In vitro-expressed pORF30 possessed basal DNA polymerase activity that was stimulated by pORF18, as measured by DNA polymerase assays in vitro. Purified baculovirus-expressed pORF30 exhibited DNA polymerase activity similar to that of the in vitro-expressed protein, and baculovirus-expressed pORF18 could stimulate both nucleotide incorporation and long-chain DNA synthesis by pORF30 in a dose- and time-dependent manner. The salt optima for activity of both pORF30 and the holoenzyme were substantially different from those for other herpesvirus DNA polymerases. As demonstrated by yeast two-hybrid assays, pORF30 and pORF18 could physically interact, most likely with a 1:1 stoichiometry. Finally, by mutational analysis of the 1,220-residue pORF30, we demonstrated that the extreme C terminus of pORF30 is important for physical and functional interaction with the accessory protein, as reported for UL30 and other herpesvirus DNA polymerases. In addition, a C-proximal region of pORF30, corresponding to residues 1114 to 1172, is involved in binding to, and stimulation by, pORF18. Taken together, the results indicate that pORF30 and pORF18 are the equine herpesvirus 1 counterparts of herpes simplex virus type 1 UL30 and UL42 and share many, but not all, of their characteristics.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Badtke MP, Cao F, Tavis JE. Combining genetic and biochemical approaches to identify functional molecular contact points. Biol Proced Online 2006; 8:77-86. [PMID: 17033698 PMCID: PMC1592461 DOI: 10.1251/bpo121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 12/03/2022] Open
Abstract
Protein-protein interactions are required for many viral and cellular functions and are potential targets for novel therapies. Here we detail a series of genetic and biochemical techniques used in combination to find an essential molecular contact point on the duck hepatitis B virus polymerase. These techniques include differential immunoprecipitation, mutagenesis and peptide competition. The strength of these techniques is their ability to identify contact points on intact proteins or protein complexes employing functional assays. This approach can be used to aid identification of putative binding sites on proteins and protein complexes which are resistant to characterization by other methods.
Collapse
Affiliation(s)
- Matthew P. Badtke
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| | - Feng Cao
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| |
Collapse
|
45
|
Loregian A, Coen DM. Selective anti-cytomegalovirus compounds discovered by screening for inhibitors of subunit interactions of the viral polymerase. ACTA ACUST UNITED AC 2006; 13:191-200. [PMID: 16492567 DOI: 10.1016/j.chembiol.2005.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/28/2022]
Abstract
Better drugs are needed against human cytomegalovirus (HCMV), a pathogen responsible for severe diseases in immunocompromised hosts and newborn children. We investigated whether selective inhibitors of HCMV replication could be discovered by screening for compounds that disrupt the interaction between the accessory subunit of the viral DNA polymerase, UL44, and the C-terminal 22 residues of the catalytic subunit. From approximately 50,000 small molecules, we identified 5 structurally diverse compounds that not only specifically interfere with this interaction, but also with the physical and functional interaction of UL44 with full-length catalytic subunit. These five compounds also inhibited HCMV replication with sub- to low micromolar potency, and at concentrations up to 500-fold lower than those at which they exhibited cytotoxicity. These compounds represent a promising starting point for the development of anti-HCMV drugs.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Wnuk SF, Robins MJ. Ribonucleotide reductase inhibitors as anti-herpes agents. Antiviral Res 2006; 71:122-6. [PMID: 16621038 DOI: 10.1016/j.antiviral.2006.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/09/2006] [Accepted: 03/09/2006] [Indexed: 11/20/2022]
Abstract
Ribonucleotide reductases (RNRs) supply the 2'-deoxyribonucleotide building blocks for DNA synthesis in mammalian cells and for herpes viruses. The viral-encoded RNRs have unique protein sequences that differ from mammalian enzyme primary structures. Selective inhibition of a viral RNR might provide an approach to new anti-herpes agents with minimal effects on the mammalian host RNRs. This review summarizes efforts to develop anti-herpes agents that selectively target viral-encoded RNRs.
Collapse
Affiliation(s)
- Stanislaw F Wnuk
- Department of Chemistry, Florida International University, University Park, Miami, FL 33199, United States
| | | |
Collapse
|
47
|
Loregian A, Palù G. Disruption of the interactions between the subunits of herpesvirus DNA polymerases as a novel antiviral strategy. Clin Microbiol Infect 2005; 11:437-46. [PMID: 15882193 DOI: 10.1111/j.1469-0691.2005.01149.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most biological processes depend on the co-ordinated formation of protein-protein interactions. Besides their importance for virus replication, several interactions between virus proteins have been proposed as attractive targets for antiviral drug discovery, as the exquisite specificity of such cognate interactions affords the possibility of interfering with them in a highly specific and effective manner. There is a considerable need for new drugs active against herpesviruses, since available agents, most of which target the polymerisation activity of the virus DNA polymerase, are limited by pharmacokinetic issues, toxicity and antiviral resistance. A potential novel target for anti-herpesvirus drugs is the interaction between the two subunits of the virus DNA polymerase. This review focuses on recent developments using peptides and small molecules to inhibit protein-protein interactions between herpesvirus DNA polymerase subunits.
Collapse
Affiliation(s)
- A Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy.
| | | |
Collapse
|
48
|
Loregian A, Palù G. Disruption of protein-protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005; 204:750-62. [PMID: 15880642 DOI: 10.1002/jcp.20356] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions play a key role in various mechanisms of cellular growth and differentiation, and in the replication of pathogen organisms in host cells. Thus, inhibition of these interactions is a promising novel approach for rational drug design against a wide number of cellular and microbial targets. In the past few years, attempts to inhibit protein-protein interactions using antibodies, peptides, and synthetic or natural small molecules have met with varying degrees of success, and these will be the focus of this review.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Italy.
| | | |
Collapse
|
49
|
Sun J, Xu J, Li Y, Shi T. Analysis and application of large-scale protein-protein interaction data sets. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/bf03183732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Riley R, Lee C, Sabatti C, Eisenberg D. Inferring protein domain interactions from databases of interacting proteins. Genome Biol 2005; 6:R89. [PMID: 16207360 PMCID: PMC1257472 DOI: 10.1186/gb-2005-6-10-r89] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/18/2005] [Accepted: 08/17/2005] [Indexed: 01/02/2023] Open
Abstract
We describe domain pair exclusion analysis (DPEA), a method for inferring domain interactions from databases of interacting proteins. DPEA features a log odds score, Eij, reflecting confidence that domains i and j interact. We analyzed 177,233 potential domain interactions underlying 26,032 protein interactions. In total, 3,005 high-confidence domain interactions were inferred, and were evaluated using known domain interactions in the Protein Data Bank. DPEA may prove useful in guiding experiment-based discovery of previously unrecognized domain interactions.
Collapse
Affiliation(s)
- Robert Riley
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Lee
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chiara Sabatti
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David Eisenberg
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095-1570, USA
| |
Collapse
|