1
|
武 志, 胡 明, 赵 巧, 吕 凤, 张 晶, 张 伟, 王 永, 孙 晓, 王 慧. [Immunomodulatory mechanism of umbilical cord mesenchymal stem cells modified by miR-125b-5p in systemic lupus erythematosus]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:860-867. [PMID: 39397466 PMCID: PMC11480562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To investigate the mechanism of immunomodulatory effects of umbilical cord mesenchymal stem cells (UC-MSCs) modified by miR-125b-5p on systemic lupus erythematosus (SLE). METHODS The expression level of miR-125b-5p was detected by real-time fluorescence quantitative PCR in UC-MSCs and peripheral blood mononuclear cells (PBMCs) from SLE patients and health checkers. Annexin V-FITC/PI apoptosis detection kit was used to detect the effect of miR-125b-5p on apoptosis of UC-MSCs. MRL/lpr mice in each group were injected with UC-MSCs via tail vein, and T-lymphocyte subsets in the spleen of the MRL/lpr mice were detected by flow cytometry after 5 weeks. The expression levels of interleukin (IL)-4 and IL-17A in serum of MRL/lpr mice were detected by ELISA. Hematoxylin-eosin staining was used to observe the pathological manifestations of the lungs and kidneys of the MRL/lpr mice. RESULTS miR-125b-5p was significantly down-regulated in PBMCs of SLE patients compared with healthy controls (P < 0.01). Compared with the UC-MSCs group, the expression of miR- 125b-5p in UC-MSCs modified by miR-125b-5p group was increased (P < 0.01). The survival rate of UC-MSCs was significantly increased by miR-125b-5p (P < 0.01). Compared with the untreated group of MRL/lpr mice, the expression level of IL-4 in serum was increased (P < 0.05); the expression level of IL-17A was decreased (P < 0.05); the proportion of Th17 cells in the spleen of MRL/lpr mice was decreased (P < 0.05); the inflammatory cells infiltration and micro-thrombosis of lungs and kidneys of MRL/lpr mice were significantly reduced in the UC-MSCs modified by miR-125b-5p treatment group. CONCLUSION UC-MSCs modified by miR-125b-5p have immunomodulatory effects on systemic lupus erythematosus.
Collapse
Affiliation(s)
- 志慧 武
- 包头医学院第一附属医院中心实验室(内蒙古自治区自体免疫学重点实验室),内蒙古自治区包头 014010Central Laboratory, First Affiliated Hospital of Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunology), Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 明智 胡
- 包头医学院第一附属医院中心实验室(内蒙古自治区自体免疫学重点实验室),内蒙古自治区包头 014010Central Laboratory, First Affiliated Hospital of Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunology), Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 巧英 赵
- 包头医学院第一附属医院中心实验室(内蒙古自治区自体免疫学重点实验室),内蒙古自治区包头 014010Central Laboratory, First Affiliated Hospital of Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunology), Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 凤凤 吕
- 包头医学院第一附属医院中心实验室(内蒙古自治区自体免疫学重点实验室),内蒙古自治区包头 014010Central Laboratory, First Affiliated Hospital of Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunology), Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 晶莹 张
- 包头医学院第一附属医院风湿免疫科,内蒙古自治区包头 014010Department of Rheumatism and Immunology, First Affiliated Hospital of Baotou Medical College, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 伟 张
- 包头医学院第一附属医院中心实验室(内蒙古自治区自体免疫学重点实验室),内蒙古自治区包头 014010Central Laboratory, First Affiliated Hospital of Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunology), Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 永福 王
- 包头医学院第一附属医院风湿免疫科,内蒙古自治区包头 014010Department of Rheumatism and Immunology, First Affiliated Hospital of Baotou Medical College, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 晓林 孙
- 包头医学院第一附属医院中心实验室(内蒙古自治区自体免疫学重点实验室),内蒙古自治区包头 014010Central Laboratory, First Affiliated Hospital of Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunology), Baotou 014010, Inner Mongolia Autonomous Region, China
| | - 慧 王
- 包头医学院第一附属医院风湿免疫科,内蒙古自治区包头 014010Department of Rheumatism and Immunology, First Affiliated Hospital of Baotou Medical College, Baotou 014010, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Takahara E, Kamizato K, Kakinohana M, Sunami H, Kise Y, Furukawa K, Ntege EH, Shimizu Y. Subpial transplantation of adipose-derived stem cells alleviates paraplegia in a rat model of aortic occlusion/reperfusion-induced spinal cord infarction. Regen Ther 2024; 26:611-619. [PMID: 39263357 PMCID: PMC11387535 DOI: 10.1016/j.reth.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background Thoracoabdominal periprocedural occlusion/reperfusion injury of the spinal cord (SCII/R) can lead to devastating paraplegia, underscoring the critical need for effective interventions. However, our knowledge of optimal medical strategies and their efficacy remains limited. Preclinical investigations have shown promise in harnessing adult stem cells, including pluripotent and multipotent stem cells such as mesenchymal stem cells (MSCs), to address SCII/R by enhancing neuro-inflammation, axonal growth, and myelination. Particularly, growth factors derived from adipose tissue-derived MSCs (ADSCs) have been proposed to facilitate recovery. Despite advancements, achieving complete recovery remains a formidable challenge. Therefore, gaining a more profound insight into the role of ADSCs in alleviating SCII/R-induced paraplegia, including optimizing the delivery systems for therapies, is imperative. Materials and methods In this study, we assessed the impact of subpial allogeneic rat adipose tissue-derived MSCs (rADSCs) transplantation on paraplegia using a rat SCII/R model induced by ephemeral aortic occlusion, known as the Taira-Marsala model. rADSCs were isolated from adipose tissue of male Sprague-Dawley rats, cultured, characterized, and cryopreserved. One week following the induction of paraplegia, rADSCs (n = 6) or physiological saline (n = 6) were transplanted. Hind limb motor function was evaluated before treatment and at 3-, 7-, and 14-days post-treatment using the Basso-Beattie-Bresnahan scoring system. Results The rADSC-treated group demonstrated a significant improvement in hind limb motor function compared to the saline-treated group (p < 0.05), with 5 out of 6 rats exhibiting enhanced motor function following treatment. Conclusions Our findings suggest that subpial rADSC engraftment may enhance SCII/R-induced paraplegia recovery. These initial results drive further research to validate this potential, understand the molecular mechanisms, and optimize therapies.
Collapse
Affiliation(s)
- Eisaku Takahara
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kota Kamizato
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Manabu Kakinohana
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Yuya Kise
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kojiro Furukawa
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
3
|
Wu X, Ma Z, Yang Y, Mu Y, Wu D. Umbilical cord mesenchymal stromal cells in serum-free defined medium display an improved safety profile. Stem Cell Res Ther 2023; 14:360. [PMID: 38087382 PMCID: PMC10717764 DOI: 10.1186/s13287-023-03604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Safety evaluations in preclinical studies are needed to confirm before translating a cell-based product into clinical application. We previously developed a serum-free, xeno-free, and chemically defined media (S&XFM-CD) for the derivation of clinical-grade umbilical cord-derived MSCs (UCMSCs), and demonstrated that intraperitoneal administration of UCMSCs in S&XFM-CD (UCMSCS&XFM-CD) exhibited better therapeutic effects than UCMSCs in serum-containing media (SCM, UCMSCSCM). However, a comprehensive investigation of the safety of intraperitoneal UCMSCS&XFM-CD treatment should be performed before clinical applications. METHODS In this study, the toxicity, immunogenicity and biodistribution of intraperitoneally transplanted UCMSCS&XFM-CD were compared with UCMSCSCM in rats via general vital signs, blood routine, blood biochemistry, subsets of T cells, serum cytokines, pathology of vital organs, antibody production and the expression of human-specific gene. The tumorigenicity and tumor-promoting effect of UCMSCS&XFM-CD were compared with UCMSCSCM in nude mice. RESULTS We confirmed that intraperitoneally transplanted UCMSCS&XFM-CD or UCMSCSCM did not cause significant changes in body weight, temperature, systolic blood pressure, diastolic blood pressure, heart rate, blood routine, T lymphocyte subsets, and serum cytokines, and had no obvious histopathology change on experimental rats. UCMSCS&XFM-CD did not produce antibodies, while UCMSCSCM had very high chance of antibody production to bovine serum albumin (80%) and apolipoprotein B-100 (60%). Furthermore, intraperitoneally injected UCMSCS&XFM-CD were less likely to be blocked by the lungs and migrated more easily to the kidneys and colon tissue than UCMSCSCM. In addition, UCMSCS&XFM-CD or UCMSCSCM showed no obvious tumorigenic activity. Finally, UCMSCS&XFM-CD extended the time of tumor formation of KM12SM cells, and decreased tumor incidence than that of UCMSCSCM. CONCLUSIONS Taken together, our data indicate that UCMSCS&XFM-CD display an improved safety performance and are encouraged to use in future clinical trials.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
- Department of Technology, Beijing Stem Cell (ProterCell) Biotechnology Co., Ltd., Beijing, People's Republic of China
- Department of Technology, Inner Mongolia Stem Cell (ProterCell) Biotechnology Co., Ltd., Hohhot, People's Republic of China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuxiao Yang
- Department of Technology, Beijing Stem Cell (ProterCell) Biotechnology Co., Ltd., Beijing, People's Republic of China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
| | - Yongxu Mu
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
4
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
5
|
Ossendorff R, Thimm D, Wirtz DC, Schildberg FA. Methods of Conservative Intra-Articular Treatment for Osteoarthritis of the Hip and Knee. DEUTSCHES ARZTEBLATT INTERNATIONAL 2023; 120:575-581. [PMID: 37427991 PMCID: PMC10552632 DOI: 10.3238/arztebl.m2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Osteoarthritis is a degenerative joint disease that is becoming increasingly common as the population ages. Conservative treatment for hip or knee osteoarthritis has been limited to pain control. Intra-articular injections for targeted local treatment have been widely used in clinical practice for many years. METHODS This review is based on publications retrieved by a selective literature search, including recent meta-analyses, systematic reviews, randomized controlled trials (RCTs), and current guidelines. RESULTS In Germany, the 12-month prevalence of osteoarthritis in adults is 17.9%. Conservative treatments are intended to alleviate symptoms and do not affect the progression of the disease. Glucocorticoids can be used to relieve otherwise intractable pain in the short term, but their prolonged use increases the risk of cartilage loss and progression of osteoarthritis. According to multiple guidelines, there is only weak evidence for the use of hyaluronic acid. Evidence does exist that high-molecular-weight hyaluronic acid may lead to better outcomes than the low-molecular-weight form. RCTs have revealed no more than short-term clinical efficacy for a variety of specific therapeutic approaches, including the use of cytokine inhibitors. Other treatments, e.g., with platelet-enriched plasma, aspirates from bone marrow or adipose tissue, or expanded mesenchymal stromal cells (MSC), have not been found to have clinically relevant long-term effects. CONCLUSION In view of the scant available evidence, further standardized RCTs will be needed to give a more comprehensive picture of the efficacy of intra-articular treatments for hip and knee osteoarthritis.
Collapse
Affiliation(s)
- Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn
| | - Dominik Thimm
- Pharmaceutical Institute, Pharmaceutical & Medical Chemistry, Rhenish Friedrich Wilhelm University of Bonn
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn
| | | |
Collapse
|
6
|
Dhumale P, Nielsen JV, Hansen ACS, Burton M, Beck HC, Jørgensen MG, Toyserkani NM, Haahr MK, Hansen ST, Lund L, Thomassen M, Sørensen JA, Andersen DC, Jensen CH, Sheikh SP. CD31 defines a subpopulation of human adipose-derived regenerative cells with potent angiogenic effects. Sci Rep 2023; 13:14401. [PMID: 37658225 PMCID: PMC10474028 DOI: 10.1038/s41598-023-41535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
Cellular heterogeneity represents a major challenge for regenerative treatment using freshly isolated Adipose Derived Regenerative Cells (ADRCs). Emerging data suggest superior efficacy of ADRCs as compared to the ex vivo expanded and more homogeneous ADRCs (= ASCs) for indications involving (micro)vascular deficiency, however, it remains unknown which ADRC cell subtypes account for the improvement. Surprisingly, we found regarding erectile dysfunction (ED) that the number of injected CD31+ ADRCs correlated positively with erectile function 12 months after one bolus of autologous ADRCs. Comprehensive in vitro and ex vivo analyses confirmed superior pro-angiogenic and paracrine effects of human CD31+ enriched ADRCs compared to the corresponding CD31- and parent ADRCs. When CD31+, CD31- and ADRCs were co-cultured in aortic ring- and corpus cavernous tube formation assays, the CD31+ ADRCs induced significantly higher tube development. This effect was corroborated using conditioned medium (CM), while quantitative mass spectrometric analysis suggested that this is likely explained by secretory pro-angiogenic proteins including DKK3, ANGPT2, ANAX2 and VIM, all enriched in CD31+ ADRC CM. Single-cell RNA sequencing showed that transcripts of the upregulated and secreted proteins were present in 9 endothelial ADRC subsets including endothelial progenitor cells in the heterogenous non-cultured ADRCs. Our data suggest that the vascular benefit of using ADRCs in regenerative medicine is dictated by CD31+ ADRCs.
Collapse
Affiliation(s)
- Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Jakob Vennike Nielsen
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | | | - Mark Burton
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Navid Mohamadpour Toyserkani
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | | | - Sabrina Toft Hansen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Lars Lund
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Søren Paludan Sheikh
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark.
| |
Collapse
|
7
|
Yaylacı S, Kaçaroğlu D, Hürkal Ö, Ulaşlı AM. An enzyme-free technique enables the isolation of a large number of adipose-derived stem cells at the bedside. Sci Rep 2023; 13:8005. [PMID: 37198228 DOI: 10.1038/s41598-023-34915-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Adipose tissue derived stromal cells (ADSCs) play a crucial role in research and applications of regenerative medicine because they can be rapidly isolated in high quantities. Nonetheless, their purity, pluripotency, differentiation capacity, and stem cell marker expression might vary greatly depending on technique and tools used for extraction and harvesting. There are two methods described in the literature for isolating regenerative cells from adipose tissue. The first technique is enzymatic digestion, which utilizes many enzymes to remove stem cells from the tissue they reside in. The second method involves separating the concentrated adipose tissue using non-enzymatic, mechanical separation methods. ADSCs are isolated from the stromal-vascular fraction (SVF) of processed lipoaspirate, which is the lipoaspirate's aqueous portion. The purpose of this work was to evaluate a unique device 'microlyzer' for generating SVF from adipose tissue using a mechanical technique that required minimal intervention. The Microlyzer was examined using tissue samples from ten different patients. The cells that were retrieved were characterized in terms of their cell survival, phenotype, proliferation capacity, and differentiation potential. The number of progenitor cells extracted only from the microlyzed tissue was in comparable amount to the number of progenitor cells acquired by the gold standard enzymatic approach. The cells that were collected from each group exhibit similar levels of viability as well as proliferation rates. In addition, the differentiation potentials of the cells derived from the microlyzed tissue were investigated, and it was discovered that cells isolated through microlyzer entered the differentiation pathways more quickly and displayed a greater level of marker gene expression than cells isolated by enzymatic methods. These findings suggest that microlyzer, particularly in regeneration investigations, will allow quick and high rate cell separation at the bedside.
Collapse
Affiliation(s)
- Seher Yaylacı
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, 06800, Turkey.
| | - Demet Kaçaroğlu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, 06800, Turkey
| | - Özgür Hürkal
- Plastic Reconstructive and Aesthetic Surgery, Lokman Hekim Hospital, Ankara, 06800, Turkey
| | - Alper Murat Ulaşlı
- Physical Therapy and Rehabilitation, Faculty of Health Sciences, Lokman Hekim University, Ankara, 06800, Turkey
- Romatem Ankara Physical Therapy and Rehabilitation Center, Ankara, 06700, Turkey
| |
Collapse
|
8
|
Ciccocioppo R, Guadalajara H, Astori G, Carlino G, García-Olmo D. Misconceptions, hurdles and recommendations regarding the use of mesenchymal stem/stromal cells in perianal Crohn disease. Cytotherapy 2023; 25:230-234. [PMID: 36543715 DOI: 10.1016/j.jcyt.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/14/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico G.B. Rossi and University of Verona, Verona, Italy.
| | - Hector Guadalajara
- Division of Surgery and Cell Therapy Unit, Institute for Health Research, Jiménez Díaz Foundation University Hospital, Madrid, Spain
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies, Hematology Unit, Vicenza Hospital, Vicenza, Italy
| | - Giorgio Carlino
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico G.B. Rossi and University of Verona, Verona, Italy
| | - Damián García-Olmo
- Division of Surgery and Cell Therapy Unit, Institute for Health Research, Jiménez Díaz Foundation University Hospital, Madrid, Spain
| |
Collapse
|
9
|
Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. Int J Mol Sci 2023; 24:ijms24043888. [PMID: 36835295 PMCID: PMC9962639 DOI: 10.3390/ijms24043888] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) have been extensively studied in recent years. Their attractiveness is due to the ease of obtaining clinical material (fat tissue, lipoaspirate) and the relatively large number of AD-MSCs present in adipose tissue. In addition, AD-MSCs possess a high regenerative potential and immunomodulatory activities. Therefore, AD-MSCs have great potential in stem cell-based therapies in wound healing as well as in orthopedic, cardiovascular, or autoimmune diseases. There are many ongoing clinical trials on AD-MSC and in many cases their effectiveness has been proven. In this article, we present current knowledge about AD-MSCs based on our experience and other authors. We also demonstrate the application of AD-MSCs in selected pre-clinical models and clinical studies. Adipose-derived stromal cells can also be the pillar of the next generation of stem cells that will be chemically or genetically modified. Despite much research on these cells, there are still important and interesting areas to explore.
Collapse
|
10
|
Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. BIOLOGY 2023; 12:biology12020305. [PMID: 36829582 PMCID: PMC9953449 DOI: 10.3390/biology12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Radiotherapy is a standard treatment for head and neck cancer patients worldwide. However, millions of patients who received radiotherapy consequently suffer from xerostomia because of irreversible damage to salivary glands (SGs) caused by irradiation (IR). Current treatments for IR-induced SG hypofunction only provide temporary symptom alleviation but do not repair the damaged SG, thus resulting in limited treatment efficacy. Therefore, there has recently been a growing interest in regenerative treatments, such as cell-free therapies. This review aims to summarize cell-free therapies for IR-induced SG, with a particular emphasis on utilizing diverse cell extract (CE) administrations. Cell extract is a group of heterogeneous mixtures containing multifunctional inter-cellular molecules. This review discusses the current knowledge of CE's components and efficacy. We propose optimal approaches to improve cell extract treatment from multiple perspectives (e.g., delivery routes, preparation methods, and other details regarding CE administration). In addition, the advantages and limitations of CE treatment are systematically discussed by comparing it to other cell-free (such as conditioned media and exosomes) and cell-based therapies. Although a comprehensive identification of the bioactive factors within CEs and their mechanisms of action have yet to be fully understood, we propose cell extract therapy as an effective, practical, user-friendly, and safe option to conventional therapies in IR-induced SG.
Collapse
|
11
|
Issa MR, Naja AS, Bouji NZ, Sagherian BH. The role of adipose-derived mesenchymal stem cells in knee osteoarthritis: a meta-analysis of randomized controlled trials. Ther Adv Musculoskelet Dis 2022; 14:1759720X221146005. [PMID: 36601089 PMCID: PMC9806366 DOI: 10.1177/1759720x221146005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADMSCs) have recently been studied for the treatment of knee osteoarthritis. The goal is pain reduction and improvement of joint function leading to superior health-related quality of life. Objectives The aim of this study was to provide a comprehensive meta-analysis assessing the evidence on the use of ADMSCs in knee osteoarthritis. Design This is a Meta-analysis of randomised controlled trials. Data Sources and Methods PubMed/MEDLINE, Embase, and Cochrane Databases were searched for randomized controlled trials using ADMSCs to treat patients with knee osteoarthritis. Only trials comparing ADMSCs to placebo or conservative treatment were included. The outcomes studied were improvement in functional, pain, and quality of life scores along with radiographic findings. Results A total of four trials were included, representing 138 patients with knee osteoarthritis. WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) scores favored ADMSCs with a statistically and clinically significant difference over controls at 6- and 12-month follow-ups (p value < 0.0001). Pain, functional, and quality of life scores also favored ADMSCs at 12-month follow-up (p value < 0.0001). Conclusion ADMSCs are effective in treating knee osteoarthritis symptoms as observed by functional and pain improvements. Furthermore, ADMSCs injection showed improvement of cartilage integrity, which indicates the potential for regenerating the knee cartilage. Future trials with larger number of patients and longer follow-up periods would help to elaborate further the therapeutic potential of ADMSCs. Plain Language Summary Adipose-derived mesenchymal stem cells use in knee osteoarthritis Knee osteoarthritis is an extremely common disease that causes damage of the lining of the knee joint.This will lead to pain and limited range of motion of the knee hence limited functionality.Multiple treatments are used currently for knee osteoarthritis which all aim at slowing down the progression and limiting the need for knee replacement surgery.Adipose-derived mesenchymal stem cells (ADMSCs) are stem cells harvested from the fat around the belly. These stem cells have the potential to be converted into cells of a certain origin (cartilage, muscle, fat).Many studies are being performed to see whether these cells can transform to cartilage and repair the damaged knee joint.In this study, we tried to find how the results of different studies comparing the usual treatments for knee osteoarthritis with that of ADMSCs compared.We were mostly interested in the pain, functional, stiffness, and quality of life scores.We also reviewed the MRI findings to find out whether the lining of the knee joint improved.Four studies were included with 138 patients having knee osteoarthritis.WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) score which is a self-administered questionnaire evaluating hip and knee osteoarthritis, showed better results in patients receiving ADMSC injections compared with other usual treatments at 12-month follow-up.Pain, functional, stiffness, and quality of life scores also showed better results in ADMSCs at 12-month follow-up.MRI images also showed better cartilage lining in the patients treated with ADMSCs.We concluded that ADMSCs are both effective and safe to be used in treating knee osteoarthritis symptoms. However, studies with longer follow-up periods are needed to better assess the regenerative potential of ADMSCs.
Collapse
Affiliation(s)
- Mohamad R. Issa
- Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmad S. Naja
- Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nour Z. Bouji
- Clinical and Translational Science, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Bernard H. Sagherian
- Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, American University of Beirut Medical Center, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| |
Collapse
|
12
|
Chijimatsu R, Takeda T, Tsuji S, Sasaki K, Kato K, Kojima R, Michihata N, Tsubaki T, Matui A, Watanabe M, Tanaka S, Saito T. Development of hydroxyapatite-coated nonwovens for efficient isolation of somatic stem cells from adipose tissues. Regen Ther 2022; 21:52-61. [PMID: 35765544 PMCID: PMC9192701 DOI: 10.1016/j.reth.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are an attractive cell source for cell therapy. Despite the increasing number of clinical applications, the methodology for ASC isolation is not optimized for every individual. In this study, we developed an effective material to stabilize explant cultures from small-fragment adipose tissues. Methods Polypropylene/polyethylene nonwoven sheets were coated with hydroxyapatite (HA) particles. Adipose fragments were then placed on these sheets, and their ability to trap tissue was monitored during explant culture. The yield and properties of the cells were compared to those of cells isolated by conventional collagenase digestion. Results Hydroxyapatite-coated nonwovens immediately trapped adipose fragments when placed on the sheets. The adhesion was stable even in culture media, leading to cell migration and proliferation from the tissue along with the nonwoven fibers. A higher fiber density further enhanced cell growth. Although cells on nonwoven explants could not be fully collected with cell dissociation enzymes, the cell yield was significantly higher than that of conventional monolayer culture without impacting stem cell properties. Conclusions Hydroxyapatite-coated nonwovens are useful for the effective primary explant culture of connective tissues without enzymatic cell dissociation. Hydroxyapatite-coated nonwovens enable explant culture of adipose tissue. ASCs migrated and proliferated from the tissue explants along the fibers in nonwovens. Nonwoven explants had significantly higher cell yield than conventional culture. Nonwoven culture did not impact stem cell properties of ASCs.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- The University of Tokyo, Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,The University of Tokyo, Sensory and Motor System Medicine, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Okayama University Hospital, Center for Comprehensive Genomic Medicine, 2-5-1, Shikada-chou, Kita-ku, Okayama, 700-8558, Japan
| | - Taiga Takeda
- The University of Tokyo, Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,CPC Corporation, 3-18-16 Minami-Aoyama, Minato-ku, Tokyo, 107-0062, Japan
| | - Shinsaku Tsuji
- CPC Corporation, 3-18-16 Minami-Aoyama, Minato-ku, Tokyo, 107-0062, Japan.,Avenue Cell Clinic, 3-18-16 Minami-Aoyama, Minato-ku, Tokyo, 107-0062, Japan
| | - Kohei Sasaki
- Japan Vilene Company, Ltd., Central Research Laboratory, 7 Kita-tone, Koga-shi, Ibaraki, 306-0213, Japan
| | - Koichi Kato
- Japan Vilene Company, Ltd., Central Research Laboratory, 7 Kita-tone, Koga-shi, Ibaraki, 306-0213, Japan
| | - Rie Kojima
- Japan Vilene Company, Ltd., Central Research Laboratory, 7 Kita-tone, Koga-shi, Ibaraki, 306-0213, Japan
| | - Noriko Michihata
- Japan Vilene Company, Ltd., Central Research Laboratory, 7 Kita-tone, Koga-shi, Ibaraki, 306-0213, Japan
| | - Toshiya Tsubaki
- The University of Tokyo, Sensory and Motor System Medicine, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Aya Matui
- CPC Corporation, 3-18-16 Minami-Aoyama, Minato-ku, Tokyo, 107-0062, Japan
| | - Miharu Watanabe
- CPC Corporation, 3-18-16 Minami-Aoyama, Minato-ku, Tokyo, 107-0062, Japan
| | - Sakae Tanaka
- The University of Tokyo, Sensory and Motor System Medicine, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- The University of Tokyo, Sensory and Motor System Medicine, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
13
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Li Y, Chen QQ, Zhu WY, Deng F, Li DW, Li J, Wan J, Ling Hu EQ. Mesenchymal stem cell transplantation worsens intestinal inflammation and microenvironment in PI3Kγ-knockout mice. Cell Immunol 2022; 380:104573. [DOI: 10.1016/j.cellimm.2022.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
|
15
|
Chen BZ, Zhao ZQ, Shahbazi MA, Guo XD. Microneedle-based technology for cell therapy: current status and future directions. NANOSCALE HORIZONS 2022; 7:715-728. [PMID: 35674378 DOI: 10.1039/d2nh00188h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the growing technological innovations in medical treatments, cell-based therapies hold great potential as efficient tools against various previously incurable diseases by restoring or altering the function of certain sets of cells. Along this line, an essential factor to determine the success of cell therapy is the choice of cell delivery strategy. In recent years, a novel trend is blooming in the application of microneedle systems, which are based on the miniaturization of multiple needles within a patch to the micrometer dimensions, aimed at the delivery of therapeutic cells to the target site with high efficiency and in a minimally invasive manner. This review aims to demonstrate the advantages of exploiting microneedle-based technology as a new tool for cell therapy. The advancements of microneedle-based strategies for cell delivery are summarized in terms of two categories: cell-free and cell-loaded microneedle systems. The majority of research on microneedle-based cell therapy has shown promising results for tissue regeneration, cancer immunotherapy, skin immune monitoring and targeted cell delivery. Finally, current challenges and future perspectives toward the development and application of microneedles for cell therapy are also discussed.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Dominguez LJ, Barbagallo M. Antiageing strategies. PATHY'S PRINCIPLES AND PRACTICE OF GERIATRIC MEDICINE 2022:1442-1458. [DOI: 10.1002/9781119484288.ch115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
18
|
Matsuda S, Kotani T, Saito T, Suzuka T, Mori T, Takeuchi T. Low-Molecular-Weight Heparin Enhanced Therapeutic Effects of Human Adipose-Derived Stem Cell Administration in a Mouse Model of Lupus Nephritis. Front Immunol 2022; 12:792739. [PMID: 35095868 PMCID: PMC8792143 DOI: 10.3389/fimmu.2021.792739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Background Lupus nephritis is a life-threatening complication in systemic lupus erythematosus (SLE), but the efficiency of current therapies involving corticosteroids, immunosuppressants, and biological agents is limited. Adipose-derived mesenchymal stem cells (ASCs) are gaining attention as a novel treatment for inflammation in SLE. Low-molecular-weight heparin (LMWH) exhibits multiple functions including anti-inflammatory, anti-fibrotic, and cell function-promoting effects. LMWH stimulation is expected to increase the therapeutic effect of ASCs by promoting cellular functions. In this study, we investigated the effects of LMWH on ASC functions and the therapeutic effect of LMWH-activated human-ASCs (hep-hASCs) in an SLE mouse model. Methods The cellular functions of human-derived ASCs stimulated with different LMWH concentrations were observed, and the optimum LMWH dose was selected. The mice were assigned to control, human-ASC, and hep-hASC groups; treatments were performed on week 20. Twenty-six week-old mice were sacrificed, and urine protein score, serum blood urea nitrogen, creatinine (Cr), anti-ds DNA IgG antibody, and serum IL-6 levels were analyzed in each group. Mice kidneys were evaluated via histological examination, immunohistochemical staining, and gene expression levels. Results LMWH significantly promoted ASC migration and proliferation and hepatocyte growth factor production and upregulated immunomodulatory factors in vitro. Hep-hASC administration resulted in significant disease activity improvement including proteinuria, serum Cr and IL-6 levels, anti-ds DNA IgG antibody, glomerulonephritis, and immune complex in mice. Inflammation and fibrosis in kidneys was significantly suppressed in the hep-hASC group; the gene expression levels of TNF-alpha, TIMP-2, and MMP-2 was significantly downregulated in the hep-hASC group compared with the control group. Conclusions Hep-hASC exhibited higher anti-inflammatory and anti-fibrotic effects than hASCs and may be a candidate tool for SLE treatment in future.
Collapse
Affiliation(s)
- Shogo Matsuda
- Department of Internal Medicine (IV), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takuya Kotani
- Department of Internal Medicine (IV), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takashi Saito
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takayasu Suzuka
- Department of Internal Medicine (IV), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tatsuhiko Mori
- Medical Education Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tohru Takeuchi
- Department of Internal Medicine (IV), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
19
|
Chang CY, Park JH, Ouh IO, Gu NY, Jeong SY, Lee SA, Lee YH, Hyun BH, Kim KS, Lee J. Novel method to repair articular cartilage by direct reprograming of prechondrogenic mesenchymal stem cells. Eur J Pharmacol 2021; 911:174416. [PMID: 34606836 DOI: 10.1016/j.ejphar.2021.174416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.
Collapse
Affiliation(s)
- Chi Young Chang
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - Ju Hyun Park
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - In-Ohk Ouh
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - So Yeon Jeong
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Se-A Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Yoon-Hee Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Ki Suk Kim
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea
| | - Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea; Division of Regenerative Medicine Safety Control, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
20
|
Tanios E, Ahmed TM, Shafik EA, Sherif MF, Sayed D, Gaber N, Hassan Y. Efficacy of adipose-derived stromal vascular fraction cells in the management of chronic ulcers: a randomized clinical trial. Regen Med 2021; 16:975-988. [PMID: 34596433 DOI: 10.2217/rme-2020-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cell therapy is a promising method for improving healing in chronic ulcers through delivery of isolated adipose-derived stromal vascular fraction. Objectives: This study investigates the autologous stem cell yield of adipose tissue and its efficacy in chronic ulcers compared with conventional methods. Methods: This study was a randomized controlled trial. After the study design and protocol were established and ethical committee approval was obtained, we enrolled 100 patients divided into study and control groups. In the study group, we performed debridement and autologous stem cell injection every 3 weeks. The control group was treated with debridement and conventional dressing. Assessments included clinical and histological parameters. Results: The study group showed improved healing. Conclusion: Using autologous adipose-derived stromal vascular fraction cells is an effective treatment method for chronic ulcers. This study was registered on the Pan-African Clinical Trial Registry and the number of the registry was PACTR201709002519185.
Collapse
Affiliation(s)
- Emil Tanios
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| | - Tohamy M Ahmed
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| | - Engy A Shafik
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | | | - Douaa Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | - Noha Gaber
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | - Youssef Hassan
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| |
Collapse
|
21
|
Use of adipose-derived stem cells in lymphatic tissue engineering and regeneration. Arch Plast Surg 2021; 48:559-567. [PMID: 34583446 PMCID: PMC8490113 DOI: 10.5999/aps.2021.00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The potential to differentiate into different cell lines, added to the easy and cost-effective method of extraction, makes adipose-derived stem cells (ADSCs) an object of interest in lymphedema treatment. Our study’s goal was to conduct a comprehensive systematic review of the use of ADSCs in lymphatic tissue engineering and regeneration. On July 23, 2019, using PubMed/MEDLINE, Cochrane Clinical Answers, Cochrane Central Register of Controlled Trials, and Embase databases, we conducted a systematic review of published literature on the use of ADSCs in lymphatic tissue engineering and regeneration. There were no language or time frame limitations, and the following search strategy was applied: ((Adipose stem cell) OR Adipose-derived stem cell)) AND ((Lymphedema) OR Breast Cancer Lymphedema). Only original research manuscripts were included. Fourteen studies fulfilled the inclusion criteria. Eleven studies were experimental (in vitro or in vivo in animals), and only three were clinical. Publications on the topic demonstrated that ADSCs promote lymphangiogenesis, and its effect could be enhanced by modulation of vascular endothelial growth factor-C, interleukin-7, prospero homeobox protein 1, and transforming growth factor-β1. Pilot clinical studies included 11 patients with breast cancer-related lymphedema, and no significant side effects were present at 12-month follow-up. Literature on the use of ADSCs in lymphatic tissue engineering and regeneration demonstrated promising data. Clinical evidence is still in its infancy, but the scientific community agrees that ADSCs can be useful in regenerative lymphangiogenesis. Data collected in this review indicate that unprecedented advances in lymphedema treatment can be anticipated in the upcoming years.
Collapse
|
22
|
Buscail E, Le Cosquer G, Gross F, Lebrin M, Bugarel L, Deraison C, Vergnolle N, Bournet B, Gilletta C, Buscail L. Adipose-Derived Stem Cells in the Treatment of Perianal Fistulas in Crohn's Disease: Rationale, Clinical Results and Perspectives. Int J Mol Sci 2021; 22:ijms22189967. [PMID: 34576129 PMCID: PMC8470328 DOI: 10.3390/ijms22189967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Between 20 to 25% of Crohn’s disease (CD) patients suffer from perianal fistulas, a marker of disease severity. Seton drainage combined with anti-TNFα can result in closure of the fistula in 70 to 75% of patients. For the remaining 25% of patients there is room for in situ injection of autologous or allogenic mesenchymal stem cells such as adipose-derived stem/stromal cells (ADSCs). ADSCs exert their effects on tissues and effector cells through paracrine phenomena, including the secretome and extracellular vesicles. They display anti-inflammatory, anti-apoptotic, pro-angiogenic, proliferative, and immunomodulatory properties, and a homing within the damaged tissue. They also have immuno-evasive properties allowing a clinical allogeneic approach. Numerous clinical trials have been conducted that demonstrate a complete cure rate of anoperineal fistulas in CD ranging from 46 to 90% of cases after in situ injection of autologous or allogenic ADSCs. A pivotal phase III-controlled trial using allogenic ADSCs (Alofisel®) demonstrated that prolonged clinical and radiological remission can be obtained in nearly 60% of cases with a good safety profile. Future studies should be conducted for a better knowledge of the local effect of ADSCs as well as for a standardization in terms of the number of injections and associated procedures.
Collapse
Affiliation(s)
- Etienne Buscail
- Department of Surgery, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France;
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Guillaume Le Cosquer
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Fabian Gross
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Marine Lebrin
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Laetitia Bugarel
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Barbara Bournet
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Cyrielle Gilletta
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
- Correspondence: ; Tel.: +33-561323055
| |
Collapse
|
23
|
Crowley JS, Liu A, Dobke M. Regenerative and stem cell-based techniques for facial rejuvenation. Exp Biol Med (Maywood) 2021; 246:1829-1837. [PMID: 34102897 PMCID: PMC8381699 DOI: 10.1177/15353702211020701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review discusses the most novel ideas and modalities being incorporated into facial rejuvenation. Recent innovative techniques include the use of regenerative stem cell techniques and regeneration supportive modalities such as nano-technology or gene therapies. This review aims to investigate approaches that are less well known and lacking established evidence in order to proactively study these techniques prior to them becoming popularized. These applications and relevant research were reviewed in the context of both surgical and non-surgical modalities in clinical practice. Future directions include the concept of "precision cosmetic medicine" utilizing gene editing and cellular therapies to tailor rejuvenation techniques based on each individual's genetic make-up and therefore needs.
Collapse
Affiliation(s)
- J Sarah Crowley
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| | - Amy Liu
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| | - Marek Dobke
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| |
Collapse
|
24
|
Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021; 10:cells10081925. [PMID: 34440694 PMCID: PMC8392210 DOI: 10.3390/cells10081925] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell-based therapies are promising tools for bone tissue regeneration. However, tracking cells and maintaining them in the site of injury is difficult. A potential solution is to seed the cells onto a biocompatible scaffold. Construct development in bone tissue engineering is a complex step-by-step process with many variables to be optimized, such as stem cell source, osteogenic molecular factors, scaffold design, and an appropriate in vivo animal model. In this review, an MSC-based tissue engineering approach for bone repair is reported. Firstly, MSC role in bone formation and regeneration is detailed. Secondly, MSC-based bone tissue biomaterial design is analyzed from a research perspective. Finally, examples of animal preclinical and human clinical trials involving MSCs and scaffolds in bone repair are presented.
Collapse
|
25
|
Yoon EJ, Seong HR, Kyung J, Kim D, Park S, Choi EK, Kim YB, Park D. Stamina-Enhancing Effects of Human Adipose-Derived Stem Cells. Cell Transplant 2021; 30:9636897211035409. [PMID: 34318707 PMCID: PMC8323423 DOI: 10.1177/09636897211035409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were
investigated in young Sprague-Dawley rats. Ten-day-old male rats were
transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs
(1 × 106 cells/rat), and physical activity was measured by locomotor
activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as
well as a forced swimming test at PND 41. hADSCs injection increased the moving
time in locomotor activity, the latency in rota-rod performance, and the maximum
swimming time. For the improvement of physical activity, ICV transplantation was
superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs
markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine
transaminase, and muscular lipid peroxidation, the markers for muscular and
hepatic injuries, despite the reduction in muscular glycogen and serum
triglycerides as energy sources. Notably, hADSCs secreted brain-derived
neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the
level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs
enhance physical activity including stamina not only by attenuating tissue
injury, but also by strengthening the muscles via production of BDNF.
Collapse
Affiliation(s)
- Eun-Jung Yoon
- Department of Biology Education, Korea National University of Education, Cheongju, Korea
| | - Hye Rim Seong
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sangryong Park
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju, Korea
| |
Collapse
|
26
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
27
|
Jørgensen MG, Toyserkani NM, Jensen CH, Andersen DC, Sheikh SP, Sørensen JA. Adipose-derived regenerative cells and lipotransfer in alleviating breast cancer-related lymphedema: An open-label phase I trial with 4 years of follow-up. Stem Cells Transl Med 2021; 10:844-854. [PMID: 33594819 PMCID: PMC8133335 DOI: 10.1002/sctm.20-0394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with breast cancer‐related lymphedema (BCRL) have reduced quality of life and arm function. Current treatments are palliative, and treatments improving lymphedema are lacking. Preclinical studies have suggested that adipose‐derived regenerative cells (ADRCs) can alleviate lymphedema. We, therefore, aimed to assess whether ADRCs can alleviate lymphedema in clinical reality with long‐term follow‐up. We treated 10 patients with BCRL using ADRCs and a scar‐releasing lipotransfer to the axillary region, and all patients were followed 1, 3, 6, 12, and 48 months after treatment. The primary endpoint was change in arm volume. Secondary endpoints were safety, change in lymphedema symptoms, quality of life, lymphedema‐associated cellulitis, and conservative treatment use. There was no significant decrease in BCRL volume after treatment. However, self‐reported upper extremity disability and arm heaviness and tension improved. Six patients reduced their use of conservative BCRL treatment. Five patients felt that their BCRL had improved substantially, and four of these would redo the treatment. We did not observe any cases of locoregional breast cancer recurrence. In this phase I study with 4 years of follow‐up, axillary delivered ADRCs and lipotransfer were safe and feasible and improved BCRL symptoms and upper extremity function. Randomized controlled trials are needed to confirm the results of this study.
Collapse
Affiliation(s)
- Mads Gustaf Jørgensen
- Department of Plastic Surgery, Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Navid Mohamadpour Toyserkani
- Department of Plastic Surgery, Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark.,Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Søren Paludan Sheikh
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Plastic Surgery, Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Liu J, Zhou P, Smith J, Xu S, Huang C. A Plastic β-Tricalcium Phosphate/Gelatine Scaffold Seeded with Allogeneic Adipose-Derived Stem Cells for Mending Rabbit Bone Defects. Cell Reprogram 2021; 23:35-46. [PMID: 33400599 DOI: 10.1089/cell.2020.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the feasibility of β-tricalcium phosphate (TCP)/gelatine scaffold combined with allogeneic adipose-derived stem cells (ASCs) to repair hole shape defect, third-passage ASCs were seeded onto composite scaffolds to prepare an ASC-β-TCP/gelatine tissue-engineered bone to pack into the rabbit cavernous bone defects of experimental groups. In animal models, the bone defect area was completely filled and difficult to recognize in the experimental group at 12 weeks post-surgery by gross observation and radiographic examination. The average bone mineral density value of them was higher than that of the control group. Because of the biocompatibility with allogenic ASCs and the osteoconductivity of β-TCP/gelatine scaffolds, β-TCP/gelatine is suitable as a plastic scaffold for the ASC-seeded tissue-engineered bone to repair cavernous defects.
Collapse
Affiliation(s)
- Jia Liu
- Application Characteristic Discipline of Hunan Province, Changsha Medical University, Changsha, China
| | - Peng Zhou
- Application Characteristic Discipline of Hunan Province, Changsha Medical University, Changsha, China
| | - Jane Smith
- School of Biological Science and Technology, Central South University, Changsha, China
| | - Saiqun Xu
- School of Biological Science and Technology, Central South University, Changsha, China
| | - Chunxia Huang
- Application Characteristic Discipline of Hunan Province, Changsha Medical University, Changsha, China
| |
Collapse
|
29
|
Trivisonno A, Nachira D, Boškoski I, Porziella V, Di Rocco G, Baldari S, Toietta G. Regenerative medicine approaches for the management of respiratory tract fistulas. Stem Cell Res Ther 2020; 11:451. [PMID: 33097096 PMCID: PMC7583298 DOI: 10.1186/s13287-020-01968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Respiratory tract fistulas (or fistulae) are abnormal communications between the respiratory system and the digestive tract or the adjacent organs. The origin can be congenital or, more frequently, iatrogenic and the clinical presentation is heterogeneous. Respiratory tract fistulas can lead to severely reduced health-related quality of life and short survival. Therapy mainly relies on endoscopic surgical interventions but patients often require prolonged hospitalization and may develop complications. Therefore, more conservative regenerative medicine approaches, mainly based on lipotransfer, have also been investigated. Adipose tissue can be delivered either as unprocessed tissue, or after enzymatic treatment to derive the cellular stromal vascular fraction. In the current narrative review, we provide an overview of the main tissue/cell-based clinical studies for the management of various types of respiratory tract fistulas or injuries. Clinical experience is limited, as most of the studies were performed on a small number of patients. Albeit a conclusive proof of efficacy cannot be drawn, the reviewed studies suggest that grafting of adipose tissue-derived material may represent a minimally invasive and conservative treatment option, alternative to more aggressive surgical procedures. Knowledge on safety and tolerability acquired in prior studies can lead to the design of future, larger trials that may exploit innovative procedures for tissue processing to further improve the clinical outcome.
Collapse
Affiliation(s)
- Angelo Trivisonno
- Department of Surgical Science, University of Rome "La Sapienza", Viale Regina Elena 324, 00161, Rome, Italy
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Ivo Boškoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Venanzio Porziella
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144, Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
30
|
Gentile P, Sterodimas A, Pizzicannella J, Calabrese C, Garcovich S. Research progress on Mesenchymal Stem Cells (MSCs), Adipose-Derived Mesenchymal Stem Cells (AD-MSCs), Drugs, and Vaccines in Inhibiting COVID-19 Disease. Aging Dis 2020; 11:1191-1201. [PMID: 33014532 PMCID: PMC7505274 DOI: 10.14336/ad.2020.0711] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs), and Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) have been used for many years in regenerative medicine for clinical and surgical applications. Additionally, recent studies reported improved respiratory activity after intravenous administration of MSCs into patients affected by coronavirus disease 2019 (COVID-19) caused by the Coronavirus 2 (SARS-CoV-2) suggesting their role as anti-viral therapy. Severe COVID-19 patients usually progress to acute respiratory distress syndrome, sepsis, metabolic acidosis that is difficult to correct, coagulation dysfunction, multiple organ failure, and even death in a short period after onset. Currently, there is still a lack of clinically effective drugs for such patients. The high secretory activity, the immune-modulatory effect, and the homing ability make MSCs and in particular AD-MSCs both a potential tool for the anti-viral drug-delivery in the virus microenvironment and potential cellular therapy. AD-MSCs as the most important exponent of MSCs are expected to reduce the risk of complications and death of patients due to their strong anti-inflammatory and immune-modulatory capabilities, which can improve microenvironment, promote neovascularization and enhance tissue repair capabilities. In this literature review, the role of regenerative strategies through MSCs, AD-MSCs, and adipocyte-secreted exosomal microRNAs (A-SE-miRs) as a potential antiviral therapy was reported, comparing the results found with current research progress on drugs and vaccines in COVID-19 disease.
Collapse
Affiliation(s)
- Pietro Gentile
- 1Department of Surgical Science, University of Rome "Tor Vergata", Rome, 00133, Italy.,2Academy of International Regenerative Medicine & Surgery Societies, Geneva, Switzerland
| | - Aris Sterodimas
- 3Department of Plastic and Reconstructive Surgery, Metropolitan General Hospital, Athens, Greece
| | | | | | - Simone Garcovich
- 6Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
31
|
Kerstan A, Niebergall-Roth E, Esterlechner J, Schröder HM, Gasser M, Waaga-Gasser AM, Goebeler M, Rak K, Schrüfer P, Endres S, Hagenbusch P, Kraft K, Dieter K, Ballikaya S, Stemler N, Sadeghi S, Tappenbeck N, Murphy GF, Orgill DP, Frank NY, Ganss C, Scharffetter-Kochanek K, Frank MH, Kluth MA. Ex vivo-expanded highly pure ABCB5 + mesenchymal stromal cells as Good Manufacturing Practice-compliant autologous advanced therapy medicinal product for clinical use: process validation and first in-human data. Cytotherapy 2020; 23:165-175. [PMID: 33011075 PMCID: PMC8310651 DOI: 10.1016/j.jcyt.2020.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
Background aim: Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation. Methods: The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers. Results: As of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32–100%) at 12 weeks and early relief of pain. Conclusions: The authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds.
Collapse
Affiliation(s)
- Andreas Kerstan
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Martin Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Ana M Waaga-Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Goebeler
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Katrin Rak
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Schrüfer
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Endres
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Petra Hagenbusch
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | - George F Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Christoph Ganss
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Mark A Kluth
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
32
|
Lu H, Merfeld-Clauss S, Jawed Y, March KL, Coleman ME, Bogatcheva NV. Distinct Factors Secreted by Adipose Stromal Cells Protect the Endothelium From Barrier Dysfunction and Apoptosis. Front Cell Dev Biol 2020; 8:584653. [PMID: 33102487 PMCID: PMC7554254 DOI: 10.3389/fcell.2020.584653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
We have shown previously that adipose stromal cell (ASC)-derived conditioned media (CM) limited lung injury, endothelial barrier dysfunction, and apoptosis. Here, we used endothelial hyperpermeability and apoptosis assays to investigate how concentration processes affect endothelium-directed bioactivity of ASC-CM and to gain information on the nature of bioactive factors. Comparison of ASC-CM concentrated with differential molecular weight (MW) cutoff filters showed that endothelial barrier protection depended on the species-specific factors in ASC-CM fractionated with MW > 50 kDa. Known barrier regulators-keratin growth factor (KGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF)-were detected in ASC-CM fraction of > 100 kDa. Pretreatment of endothelial monolayers with concentrations of KGF, VEGF, and HGF detected in ASC-CM showed that only KGF and HGF protect the endothelium from barrier dysfunction. Depletion of KGF and HGF from ASC-CM attenuated ASC-CM's ability to protect the endothelial barrier. In contrast to barrier-protective factors, apoptosis-protective factors fractionated with MW < 3 kDa and were not species-specific. Application of donors of apoptosis-mitigating gases showed that the CO donor carbon monoxide-releasing molecule 2 (CORM2) protected the endothelium from apoptosis, while the H2S donor NaSH did not. Knockdown of CO-generating heme oxygenase 1 in ASC attenuated ASC-CM's ability to protect the endothelium from apoptosis. We have shown that tumor necrosis factor alpha (TNFα)-induced apoptosis in endothelium is c-Jun N-terminal kinase (JNK)-dependent, and JNK activation is inhibited by ASC-CM pretreatment of endothelial cells. ASC-CM from heme oxygenase 1-depleted ASC displayed attenuated ability to suppress endothelial JNK activation, suggesting that CO-mediated protection of the endothelium from apoptosis is achieved by the downregulation of the JNK pathway. Altogether, our results demonstrate that the concentration of ASC-CM with low MW cutoff filters significantly reduces its anti-apoptotic activity while preserving its barrier-protective activity.
Collapse
Affiliation(s)
- Hongyan Lu
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | - Stephanie Merfeld-Clauss
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | - Yameena Jawed
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | - Keith L March
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States
| | | | - Natalia V Bogatcheva
- Division of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, United States.,Indiana Center for Vascular Biology and Medicine and Vascular and Cardiac Adult Stem Cell Therapy Center, Indianapolis, IN, United States.,Roudebush Veteran Affairs Medical Center, Indianapolis, IN, United States.,Division of Pulmonary, Sleep and Critical Care, Department of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
33
|
Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med 2020; 18:336. [PMID: 32873307 PMCID: PMC7466793 DOI: 10.1186/s12967-020-02504-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
In the past decade, despite key advances in therapeutic strategies following myocardial infarction, none can directly address the loss of cardiomyocytes following ischemic injury. Cardiac cell-based therapy is at the cornerstone of regenerative medicine that has shown potential for tissue repair. Mesenchymal stem cells (MSC) represent a strong candidate to heal the infarcted myocardium. While differentiation potential has been described as a possible avenue for MSC-based repair, their secreted mediators are responsible for the majority of the ascribed prohealing effects. MSC can either promote their own survival and proliferation through autocrine effect or secrete trophic factors that will act on adjacent cells through a paracrine effect. Prior studies have also documented beneficial effects even when MSCs were remotely delivered, much akin to an endocrine mechanism. This review aims to distinguish the paracrine activity of MSCs from an endocrine-like effect, where remotely transplanted cells can promote healing of the injured myocardium.
Collapse
Affiliation(s)
- Celia Sid-Otmane
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada
| | - Louis P Perrault
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.,Department of Cardiovascular Surgery, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada
| | - Hung Q Ly
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|
34
|
Capin L, Abbassi N, Lachat M, Calteau M, Barratier C, Mojallal A, Bourgeois S, Auxenfans C. Encapsulation of Adipose-Derived Mesenchymal Stem Cells in Calcium Alginate Maintains Clonogenicity and Enhances their Secretory Profile. Int J Mol Sci 2020; 21:E6316. [PMID: 32878250 PMCID: PMC7504546 DOI: 10.3390/ijms21176316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are well known for their secretory potential, which confers them useful properties in cell therapy. Nevertheless, this therapeutic potential is reduced after transplantation due to their short survival in the human body and their migration property. This study proposes a method to protect cells during and after injection by encapsulation in microparticles of calcium alginate. Besides, the consequences of encapsulation on ASC proliferation, pluripotential, and secretome were studied. Spherical particles with a mean diameter of 500 µm could be obtained in a reproducible manner with a viability of 70% after 16 days in vitro. Moreover, encapsulation did not alter the proliferative properties of ASCs upon return to culture nor their differentiation potential in adipocytes, chondrocytes, and osteocytes. Concerning their secretome, encapsulated ASCs consistently produced greater amounts of interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared to monolayer cultures. Encapsulation therefore appears to enrich the secretome with transforming growth factor β1 (TGF-β1) and macrophage inflammatory protein-1β (MIP-1β) not detectable in monolayer cultures. Alginate microparticles seem sufficiently porous to allow diffusion of the cytokines of interest. With all these cytokines playing an important role in wound healing, it appears relevant to investigate the impact of using encapsulated ASCs on the wound healing process.
Collapse
Affiliation(s)
- Lucille Capin
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Nacira Abbassi
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Maëlle Lachat
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Marie Calteau
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Cynthia Barratier
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Ali Mojallal
- Service de chirurgie plastique, reconstructrice et esthétique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France;
- Univ Lyon, Université Claude Bernard-Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Céline Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| |
Collapse
|
35
|
Zhang Y, Chen X, Tong Y, Luo J, Bi Q. Development and Prospect of Intra-Articular Injection in the Treatment of Osteoarthritis: A Review. J Pain Res 2020; 13:1941-1955. [PMID: 32801850 PMCID: PMC7414982 DOI: 10.2147/jpr.s260878] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that affects the vast majority of the elderly and may eventually embark on the road of the total knee arthroplasty (TKA), although controversy still exists in the medical community about the best therapies for osteoarthritis. Compared with physical therapy, oral analgesics and other non-operative treatments, intra-articular injection is more safe and effective. Moreover, intra-articular injection is much less invasive and has fewer adverse reactions than surgical treatment. This article reviews mechanism, benefits and adverse reactions of corticosteroids (CS), hyaluronic acid (HA), platelet-rich plasma (PRP), mesenchymal stem cell (MSCs), stromal vascular fraction (SVF) and other new therapies (for example: gene therapy). The application prospect of intra-articular injection was analyzed according to the recent progress in drug research.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China.,The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, People's Republic of China
| | - Xinji Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Yu Tong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Junchao Luo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Qing Bi
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China.,The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, People's Republic of China
| |
Collapse
|
36
|
Li ZJ, Yang E, Li YZ, Liang ZY, Huang JZ, Yu NZ, Long X. Application and prospect of adipose stem cell transplantation in treating lymphedema. World J Stem Cells 2020; 12:676-687. [PMID: 32843921 PMCID: PMC7415250 DOI: 10.4252/wjsc.v12.i7.676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lymphedema is a chronic, debilitating and incurable disease that affects 0.13%-2% of the global population. Emerging evidence indicates that adipose-derived stem cells (ADSCs) might serve as suitable seed cells for lymphatic tissue engineering and lymphedema therapy.
AIM To summarize applications of ADSCs for treating lymphedema in both animal studies and clinical trials.
METHODS A systematic search was performed on four databases – PubMed, Clinicaltrials.gov, the evidence-based Cochrane Library, and OVID – using the following search string: (“lymphedema” or “lymphoedema” or “lymphangiogenesis”) and (“adipose-derived stem cells” or “adipose-derived stromal cells” or “adipose-derived regenerative cells”). A manual search was performed by skimming the references of relevant studies. Animal studies and clinical trials using adipose-derived cells for the treatment of any kind of lymphedema were included.
RESULTS A total of eight research articles published before November 2019 were included for this analysis. Five articles focused on animal studies and another three focused on clinical trials. ADSC transplantation therapy was demonstrated to be effective against lymphedema in all studies. The animal studies found that coadministration of ADSCs and controlled-release vascular endothelial growth factor-C or platelet-rich plasma could improve the effectiveness of ADSC therapy. Three sequential clinical trials were conducted on breast cancer-related lymphedema patients, and all showed favorable results.
CONCLUSION ADSC-based therapy is a promising option for treating lymphedema. Large-scale, multicenter randomized controlled trials are needed to develop more effective and durable therapeutic strategies.
Collapse
Affiliation(s)
- Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Elan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun-Zhu Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zheng-Yun Liang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
37
|
Lu GM, Rong YX, Liang ZJ, Hunag DL, Wu FX, Ma YF, Luo ZZ, Liu XH, Mo S, Li HM. FGF2-induced PI3K/Akt signaling evokes greater proliferation and adipogenic differentiation of human adipose stem cells from breast than from abdomen or thigh. Aging (Albany NY) 2020; 12:14830-14848. [PMID: 32706337 PMCID: PMC7425436 DOI: 10.18632/aging.103547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, human adipose stem cells were isolated from subcutaneous fat in the thigh (htASCs), abdomen (haASCs) and breast (hbASCs). Flow cytometry was used to detect cell surface markers, and an enzyme-linked immunosorbent assay was used to detect paracrine activity. Paracrine gene expression in the three cell types was examined using real-time qPCR, and adipogenic ability was assessed using Oil Red O staining. RNA from third-passage haASCs and hbASCs was sequenced. The results showed that the differentiation potential marker markers CD49d and CD54 were similar across hbASCs from 10 subjects. The hbASCs showed higher colony forming ability and expression of fibroblast growth factor-2, tissue inhibitor of metalloproteinase-1 and stromal cell derived factor-1 than htASCs and haASCs. Stimulating hbASCs with FGF2 promoted adipogenic differentiation, while treating the cells with the PI3K inhibitor LY294002 inhibited differentiation. These results suggest that the PI3K/Akt signaling pathway can promote proliferation and adipogenic differentiation of adipose stem cells, and that activation of this pathway by FGF2 may explain why hbASCs show greater proliferation and adipogenic differentiation than haASCs and htASCs.
Collapse
Affiliation(s)
- Guan-Ming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Yong-Xian Rong
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Zhi-Jie Liang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Dong-Lin Hunag
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Fang-Xiao Wu
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Yan-Fei Ma
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Zhi-Zhai Luo
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Xin-Heng Liu
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Steven Mo
- Nanning Life-Ontology Biotechnology Co., Ltd., Nanning 530229, Guangxi, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| |
Collapse
|
38
|
Maleitzke T, Elazaly H, Festbaum C, Eder C, Karczewski D, Perka C, Duda GN, Winkler T. Mesenchymal Stromal Cell-Based Therapy-An Alternative to Arthroplasty for the Treatment of Osteoarthritis? A State of the Art Review of Clinical Trials. J Clin Med 2020; 9:jcm9072062. [PMID: 32630066 PMCID: PMC7409016 DOI: 10.3390/jcm9072062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder worldwide and to date no regenerative treatment has been established in clinical practice. This review evaluates the current literature on the clinical translation of mesenchymal stromal cell (MSC)-based therapy in OA management with a focus on safety, outcomes and procedural specifics. PubMed, Cochrane Library and clinicaltrials.gov were searched for clinical studies using MSCs for OA treatment. 290 articles were initially identified and 42 articles of interest, including a total of 1325 patients, remained for further examination. Most of the included studies used adipose tissue-derived MSCs or bone-marrow-derived MSCs to treat patients suffering from knee OA. MSC-based therapy for knee OA appears to be safe and presumably effective in selected parameters. Yet, a direct comparison between studies was difficult due to a pronounced variance regarding methodology, assessed outcomes and evidence levels. Intensive scientific engagement is needed to identify the most effective source and dosage of MSCs for OA treatment in the future. Consent on outcome measures has to be reached and eventually patient sub-populations need to be identified that will profit most from MSC-based treatment for OA.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Hisham Elazaly
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Christian Festbaum
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Christian Eder
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Daniel Karczewski
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-559084
| |
Collapse
|
39
|
Luck J, Weil BD, Lowdell M, Mosahebi A. Adipose-Derived Stem Cells for Regenerative Wound Healing Applications: Understanding the Clinical and Regulatory Environment. Aesthet Surg J 2020; 40:784-799. [PMID: 31406975 DOI: 10.1093/asj/sjz214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is growing interest in the regenerative potential of adipose-derived stem cells (ADSCs) for wound healing applications. ADSCs have been shown to promote revascularization, activate local stem cell niches, reduce oxidative stress, and modulate immune responses. Combined with the fact that they can be harvested in large numbers with minimal donor site morbidity, ADSC products represent promising regenerative cell therapies. This article provides a detailed description of the defining characteristics and therapeutic potential of ADSCs, with a focus on understanding how ADSCs promote tissue regeneration and repair. It summarizes the current regulatory environment governing the use of ADSC products across Europe and the United States and examines how various adipose-derived products conform to the current UK legislative framework. Advice is given to clinicians and researchers on how novel ADSC therapeutics may be developed in accordance with regulatory guidelines.
Collapse
Affiliation(s)
| | - Benjamin D Weil
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, UK
| | | | | |
Collapse
|
40
|
Phase I/II Trial of Liver-derived Mesenchymal Stem Cells in Pediatric Liver-based Metabolic Disorders: A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in Urea Cycle Disorders and Crigler-Najjar Syndrome Patients. Transplantation 2020; 103:1903-1915. [PMID: 30801523 DOI: 10.1097/tp.0000000000002605] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regenerative medicine using stem cell technology is an emerging field that is currently tested for inborn and acquired liver diseases. OBJECTIVE This phase I/II prospective, open label, multicenter, randomized trial aimed primarily at evaluating the safety of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in pediatric patients with urea cycle disorders (UCDs) or Crigler-Najjar (CN) syndrome 6 months posttransplantation. The secondary objective included the assessment of safety up to 12 months postinfusion and of preliminary efficacy. METHODS Fourteen patients with UCDs and 6 with CN syndrome were divided into 3 cohorts by body weight and intraportally infused with 3 doses of HepaStem. Clinical status, portal vein hemodynamics, morphology of the liver, de novo detection of circulating anti-human leukocyte antigen antibodies, and clinically significant adverse events (AEs) and serious adverse events to infusion were evaluated by using an intent-to-treat analysis. RESULTS The overall safety of HepaStem was confirmed. For the entire study period, patient-month incidence rate was 1.76 for the AEs and 0.21 for the serious adverse events, of which 38% occurred within 1 month postinfusion. There was a trend of higher events in UCD as compared with CN patients. Segmental left portal vein thrombosis occurred in 1 patient and intraluminal local transient thrombus in a second patient. The other AEs were in line with expectations for catheter placement, cell infusion, concomitant medications, age, and underlying diseases. CONCLUSIONS This study led to European clinical trial authorization for a phase II study in a homogeneous patient cohort, with repeated infusions and intermediate doses.
Collapse
|
41
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
42
|
Leong J, Hong YT, Wu YF, Ko E, Dvoretskiy S, Teo JY, Kim BS, Kim K, Jeon H, Boppart M, Yang YY, Kong H. Surface Tethering of Inflammation-Modulatory Nanostimulators to Stem Cells for Ischemic Muscle Repair. ACS NANO 2020; 14:5298-5313. [PMID: 32243129 PMCID: PMC8274413 DOI: 10.1021/acsnano.9b04926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stem cell transplantation has been a promising treatment for peripheral arterial diseases in the past decade. Stem cells act as living bioreactors of paracrine factors that orchestrate tissue regeneration. Prestimulated adipose-derived stem cells (ADSCs) have been proposed as potential candidates but have been met with challenges in activating their secretory activities for clinical use. Here, we propose that tethering the ADSC surface with nanoparticles releasing tumor necrosis factor α (TNFα), named nanostimulator, would stimulate cellular secretory activity in situ. We examined this hypothesis by complexing octadecylamine-grafted hyaluronic acid onto a liposomal carrier of TNFα. Hyaluronic acid increased the liposomal stability and association to CD44 on ADSC surface. ADSCs tethered with these TNFα carriers exhibited up-regulated secretion of proangiogenic vascular endothelial growth factor and immunomodulatory prosteoglandin E2 (PGE2) while decreasing secretion of antiangiogenic pigment epithelium-derived factors. Accordingly, ADSCs tethered with nanostimulators promoted vascularization in a 3D microvascular chip and enhanced recovery of perfusion, walking, and muscle mass in a murine ischemic hindlimb compared to untreated ADSCs. We propose that this surface tethering strategy for in situ stimulation of stem cells would replace the costly and cumbersome preconditioning process and expedite clinical use of stem cells for improved treatments of various injuries and diseases.
Collapse
Affiliation(s)
- Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yu-Tong Hong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-Fu Wu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jye Yng Teo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Byoung Soo Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyeongsoo Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
43
|
Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18:203. [PMID: 32423449 PMCID: PMC7232924 DOI: 10.1186/s12967-020-02380-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Martin A. Schreiber
- Department of Surgery, Oregon Health and Science University, Portland, OR USA
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center, Beijing, 100039 China
| | | | - Boris R. Minev
- Calidi Biotherapeutics, Inc., San Diego, CA USA
- Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, San Diego, CA USA
| |
Collapse
|
44
|
Alt EU, Winnier G, Haenel A, Rothoerl R, Solakoglu O, Alt C, Schmitz C. Towards a Comprehensive Understanding of UA-ADRCs (Uncultured, Autologous, Fresh, Unmodified, Adipose Derived Regenerative Cells, Isolated at Point of Care) in Regenerative Medicine. Cells 2020; 9:E1097. [PMID: 32365488 PMCID: PMC7290808 DOI: 10.3390/cells9051097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
It has become practically impossible to survey the literature on cells derived from adipose tissue for regenerative medicine. The aim of this paper is to provide a comprehensive and translational understanding of the potential of UA-ADRCs (uncultured, unmodified, fresh, autologous adipose derived regenerative cells isolated at the point of care) and its application in regenerative medicine. We provide profound basic and clinical evidence demonstrating that tissue regeneration with UA-ADRCs is safe and effective. ADRCs are neither 'fat stem cells' nor could they exclusively be isolated from adipose tissue. ADRCs contain the same adult stem cells ubiquitously present in the walls of blood vessels that are able to differentiate into cells of all three germ layers. Of note, the specific isolation procedure used has a significant impact on the number and viability of cells and hence on safety and efficacy of UA-ADRCs. Furthermore, there is no need to specifically isolate and separate stem cells from the initial mixture of progenitor and stem cells found in ADRCs. Most importantly, UA-ADRCs have the physiological capacity to adequately regenerate tissue without need for more than minimally manipulating, stimulating and/or (genetically) reprogramming the cells for a broad range of clinical applications. Tissue regeneration with UA-ADRCs fulfills the criteria of homologous use as defined by the regulatory authorities.
Collapse
Affiliation(s)
- Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Isar Klinikum Munich, 80331 Munich, Germany
- InGeneron, Inc., Houston, TX 77054, USA
| | | | - Alexander Haenel
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, 23562 Lübeck, Germany
| | | | - Oender Solakoglu
- Dental Department of the University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Periodontology and Implant Dentistry, 22453 Hamburg, Germany
| | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, 80331 Munich, Germany
| |
Collapse
|
45
|
Shafaei H, Kalarestaghi H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation. J Cell Physiol 2020; 235:8371-8386. [PMID: 32239731 DOI: 10.1002/jcp.29681] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.
Collapse
Affiliation(s)
- Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Kalarestaghi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
46
|
Rodriguez RL, Frazier T, Bunnell BA, Mouton CA, March KL, Katz AJ, Rubin JP, Llull R, Sørensen JA, Gimble JM. Arguments for a Different Regulatory Categorization and Framework for Stromal Vascular Fraction. Stem Cells Dev 2020; 29:257-262. [DOI: 10.1089/scd.2019.0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Trivia Frazier
- LaCell LLC, New Orleans, Louisiana
- Obatala Sciences, Inc., New Orleans, Louisiana
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Cecilia A. Mouton
- Formerly Director of Investigations, Louisiana State Board of Medical Examiners, New Orleans, Louisiana
| | - Keith L. March
- Center for Regenerative Medicine, University of Florida, Gainesville, Florida
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University, Winston-Salem, North Carolina
| | - J. Peter Rubin
- Department of Plastic Surgery, McGowan Institute for Regenerative Medicine, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jens A. Sørensen
- Department of Plastic and Reconstructive Surgery, University of Southern Denmark, Odense, Denmark
| | - Jeffrey M. Gimble
- LaCell LLC, New Orleans, Louisiana
- Obatala Sciences, Inc., New Orleans, Louisiana
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
47
|
Marks PW. Clear Evidence of Safety and Efficacy Is Needed for Stromal Vascular Fraction Products: Commentary on “Arguments for a Different Regulatory Categorization and Framework for Stromal Vascular Fraction”. Stem Cells Dev 2020; 29:263-265. [DOI: 10.1089/scd.2020.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter W. Marks
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
48
|
Xie Y, Fang B, Liu W, Li G, Huang RL, Zhang L, He J, Zhou S, Liu K, Li Q. Transcriptome differences in adipose stromal cells derived from pre- and postmenopausal women. Stem Cell Res Ther 2020; 11:92. [PMID: 32111240 PMCID: PMC7049195 DOI: 10.1186/s13287-020-01613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As the population ages, an increasing number of postmenopausal women are donors of adipose stromal cells (ASCs) and may benefit from autologous ASC-related treatments. However, the effect of menopausal status on ASCs has not been investigated. METHODS RNA sequencing data were downloaded, and differentially expressed genes (DEGs) were identified. Hierarchical clustering, Gene Ontology, and pathway analyses were applied to the DEGs. Two gene coexpression network analysis approaches were applied to the DEGs to provide a holistic view and preserve gene interactions. Hub genes of the gene coexpression network were identified, and their expression profiles were examined with clinical samples. ASCs from pre- and postmenopausal women were co-cultured with monocytes and T cells to determine their immunoregulatory role. RESULTS In total, 2299 DEGs were identified and presented distinct expression profiles between pre- and postmenopausal women. Gene Ontology and pathway analyses revealed some fertility-, sex hormone-, immune-, aging-, and angiogenesis-related terms and pathways. Gene coexpression networks were constructed, and the top hub genes, including TIE1, ANGPT2, RNASE1, PLVAP, CA2, and MPZL2, were consistent between the two approaches. Expression profiles of hub genes from the RNA sequencing data and clinical samples were consistent. ASCs from postmenopausal women elicit M1 polarization, while their counterparts facilitate CD3/4+ T cell proliferation. CONCLUSIONS The present study reveals the transcriptome differences in ASCs derived from pre- and postmenopausal women and provides holistic views by preserving gene interactions via gene coexpression network analysis. The top hub genes identified by this study could serve as potential targets to enhance the therapeutic potential of ASCs.
Collapse
Affiliation(s)
- Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenhui Liu
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Guangshuai Li
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuangbai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
49
|
Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A, Garcovich S. Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation. Int J Mol Sci 2019; 20:E5471. [PMID: 31684107 PMCID: PMC6862236 DOI: 10.3390/ijms20215471] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autologous therapies using adipose-derived stromal vascular fraction (AD-SVFs) and adult adipose-derived mesenchymal stem cells (AD-MSCs) warrant careful preparation of the harvested adipose tissue. Currently, no standardized technique for this preparation exists. Processing quantitative standards (PQSs) define manufacturing quantitative variables (such as time, volume, and pressure). Processing qualitative standards (PQLSs) define the quality of the materials and methods in manufacturing. The purpose of the review was to use PQSs and PQLSs to report the in vivo and in vitro results obtained by different processing kits that use different procedures (enzymatic vs. non-enzymatic) to isolate human AD-SVFs/AD-MSCs. PQSs included the volume of fat tissue harvested and reagents used, the time/gravity of centrifugation, and the time, temperature, and tilt level/speed of incubation and/or centrifugation. PQLSs included the use of a collagenase, a processing time of 30 min, kit weight, transparency of the kit components, the maintenance of a closed sterile processing environment, and the use of a small centrifuge and incubating rocker. Using a kit with the PQSs and PQLSs described in this study enables the isolation of AD-MSCs that meet the consensus quality criteria. As the discovery of new critical quality attributes (CQAs) of AD-MSCs evolve with respect to purity and potency, adjustments to these benchmark PQSs and PQLs will hopefully isolate AD-MSCs of various CQAs with greater reproducibility, quality, and safety. Confirmatory studies will no doubt need to be completed.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Barbara De Angelis
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Ashutosh Kothari
- Chief of Breast Surgery Unit, Guy's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
50
|
Andia I, Maffulli N, Burgos-Alonso N. Stromal vascular fraction technologies and clinical applications. Expert Opin Biol Ther 2019; 19:1289-1305. [PMID: 31544555 DOI: 10.1080/14712598.2019.1671970] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: The heterogeneous pool of cells found in the stromal vascular fraction of adipose tissue (SVF) and the purified mesenchymal stromal/stem cells (ASCs) isolated from this pool have increasingly been used as therapeutic tools in regenerative medicine.Areas covered: As SVF and ASCs are different, and should be used in different manners according to various clinical and biological indications, we reviewed the current literature, and focused on the clinical use of SVF to appraise the main medical fields for development. Both enzymatic digestion and mechanical disruption have been used to obtain SVF for non-homologous use. The safety and/or benefits of SVF have been examined in 71 clinical studies in various contexts, mainly musculoskeletal conditions, wound healing, urogenital, and cardiovascular and respiratory diseases. The use of SVF as a therapy remains experimental, with few clinical trials.Expert opinion: SVF provides a cellular and molecular microenvironment for regulation of ASC' activities under different clinical conditions. SVF may enhance angiogenesis and neovascularization in wound healing, urogenital and cardiovascular diseases. In joint conditions, therapeutic benefits may rely on paracrine immune-modulatory and anti-inflammatory mechanisms. Novel point of care methods are emerging to refine SVF in ways that meet the regulatory requirements for minimal manipulation.
Collapse
Affiliation(s)
- Isabel Andia
- Regenerative Medicine Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentistry, Salerno, Italy.,Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Burgos-Alonso
- Preventive Medicine and Public Health Department, University of the Basque Country, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|