1
|
Zhao R, Hadisurya M, Ndetan H, Xi NM, Adduri S, Konduru NV, Samten B, Zhang J, Tao WA, Singh KP, Ji HL. Regenerative Signatures in BAL of Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2024; 71:740-742. [PMID: 39601539 PMCID: PMC11622636 DOI: 10.1165/rcmb.2024-0193le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Affiliation(s)
- Runzhen Zhao
- Loyola University Chicago Health Sciences DivisionMaywood, Illinois
| | | | - Harrison Ndetan
- University of Texas at Tyler Health Science CenterTyler, Texas
| | | | | | | | - Buka Samten
- University of Texas at Tyler Health Science CenterTyler, Texas
| | - Jiwang Zhang
- Loyola University Medical CenterMaywood, Illinois
| | | | - Karan P. Singh
- University of Texas at Tyler Health Science CenterTyler, Texas
| | - Hong-Long Ji
- Loyola University Chicago Health Sciences DivisionMaywood, Illinois
| |
Collapse
|
2
|
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A, Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther 2024; 27:319-328. [PMID: 38650667 PMCID: PMC11035022 DOI: 10.1016/j.reth.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
3
|
Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, Yu F, Rao L, Fan Z. Extracellular Vesicle-Inspired Therapeutic Strategies for the COVID-19. Adv Healthc Mater 2024; 13:e2402103. [PMID: 38923772 DOI: 10.1002/adhm.202402103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Emerging infectious diseases like coronavirus pneumonia (COVID-19) present significant challenges to global health, extensively affecting both human society and the economy. Extracellular vesicles (EVs) have demonstrated remarkable potential as crucial biomedical tools for COVID-19 diagnosis and treatment. However, due to limitations in the performance and titer of natural vesicles, their clinical use remains limited. Nonetheless, EV-inspired strategies are gaining increasing attention. Notably, biomimetic vesicles, inspired by EVs, possess specific receptors that can act as "Trojan horses," preventing the virus from infecting host cells. Genetic engineering can enhance these vesicles by enabling them to carry more receptors, significantly increasing their specificity for absorbing the novel coronavirus. Additionally, biomimetic vesicles inherit numerous cytokine receptors from parent cells, allowing them to effectively mitigate the "cytokine storm" by adsorbing pro-inflammatory cytokines. Overall, this EV-inspired strategy offers new avenues for the treatment of emerging infectious diseases. Herein, this review systematically summarizes the current applications of EV-inspired strategies in the diagnosis and treatment of COVID-19. The current status and challenges associated with the clinical implementation of EV-inspired strategies are also discussed. The goal of this review is to provide new insights into the design of EV-inspired strategies and expand their application in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Ziwei Hu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Wei Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Lin
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Hui Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Yiwen Chen
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Junjie Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Feng Yu
- Institute of Otolaryngology Head and neck surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
4
|
Sababathy M, Ramanathan G, Ganesan S, Sababathy S, Yasmin A, Ramasamy R, Foo J, Looi Q, Nur-Fazila S. Multipotent mesenchymal stromal/stem cell-based therapies for acute respiratory distress syndrome: current progress, challenges, and future frontiers. Braz J Med Biol Res 2024; 57:e13219. [PMID: 39417447 PMCID: PMC11484355 DOI: 10.1590/1414-431x2024e13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical, life-threatening condition marked by severe inflammation and impaired lung function. Mesenchymal stromal/stem cells (MSCs) present a promising therapeutic avenue due to their immunomodulatory, anti-inflammatory, and regenerative capabilities. This review comprehensively evaluates MSC-based strategies for ARDS treatment, including direct administration, tissue engineering, extracellular vesicles (EVs), nanoparticles, natural products, artificial intelligence (AI), gene modification, and MSC preconditioning. Direct MSC administration has demonstrated therapeutic potential but necessitates optimization to overcome challenges related to effective cell delivery, homing, and integration into damaged lung tissue. Tissue engineering methods, such as 3D-printed scaffolds and MSC sheets, enhance MSC survival and functionality within lung tissue. EVs and MSC-derived nanoparticles offer scalable and safer alternatives to cell-based therapies. Likewise, natural products and bioactive compounds derived from plants can augment MSC function and resilience, offering complementary strategies to enhance therapeutic outcomes. In addition, AI technologies could aid in optimizing MSC delivery and dosing, and gene editing tools like CRISPR/Cas9 allow precise modification of MSCs to enhance their therapeutic properties and target specific ARDS mechanisms. Preconditioning MSCs with hypoxia, growth factors, or pharmacological agents further enhances their therapeutic potential. While MSC therapies hold significant promise for ARDS, extensive research and clinical trials are essential to determine optimal protocols and ensure long-term safety and effectiveness.
Collapse
Affiliation(s)
- M. Sababathy
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - G. Ramanathan
- Faculty of Computer Science and Information Technology, University Malaya, Kuala Lumpur, Malaysia
| | - S. Ganesan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - S. Sababathy
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi, Kuala Lumpur, Malaysia
| | - A.R. Yasmin
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - R. Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - J.B. Foo
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Q.H. Looi
- My Cytohealth Sdn. Bhd., Bandar Seri Petaling, Kuala Lumpur, Malaysia
| | - S.H. Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Ahmad D, Linares I, Pietropaoli A, Waugh RE, McGrath JL. Sided Stimulation of Endothelial Cells Modulates Neutrophil Trafficking in an In Vitro Sepsis Model. Adv Healthc Mater 2024; 13:e2304338. [PMID: 38547536 PMCID: PMC11338706 DOI: 10.1002/adhm.202304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Indexed: 04/09/2024]
Abstract
While the role of dysregulated polymorphonuclear leukocyte (PMN) transmigration in septic mediated tissue damage is well documented, strategies to mitigate aberrant transmigration across endothelium have yet to yield viable therapeutics. Recently, microphysiological systems (MPS) have emerged as novel in vitro mimetics that facilitate the development of human models of disease. With this advancement, aspects of endothelial physiology that are difficult to assess with other models can be directly probed. In this study, the role of endothelial cell (EC) apicobasal polarity on leukocyte trafficking response is evaluated with the µSiM-MVM (microphysiological system enabled by a silicon membrane - microvascular mimetic). Here, ECs are stimulated either apically or basally with a cytokine cocktail to model a septic-like challenge before introducing healthy donor PMNs into the device. Basally oriented stimulation generated a stronger PMN transmigratory response versus apical stimulation. Importantly, healthy PMNs are unable to migrate towards a bacterial peptide chemoattractant when ECs are apically stimulated, which mimics the attenuated PMN chemotaxis seen in sepsis. Escalating the apical inflammatory stimulus by a factor of five is necessary to elicit high PMN transmigration levels across endothelium. These results demonstrate that EC apicobasal polarity modulates PMN transmigratory behavior and provides insight into the mechanisms underlying sepsis.
Collapse
Affiliation(s)
- Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Isabelle Linares
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care at the University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
6
|
Barry M, Trivedi A, Miyazawa B, Vivona LR, Shimmin D, Pathipati P, Keane C, Cuschieri J, Pati S. Regulation of vascular endothelial integrity by mesenchymal stem cell extracellular vesicles after hemorrhagic shock and trauma. J Transl Med 2024; 22:588. [PMID: 38907252 PMCID: PMC11191310 DOI: 10.1186/s12967-024-05406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses the systemic effects of HS/T on multiorgan EOT. METHODS In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.
Collapse
Affiliation(s)
- Mark Barry
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Lindsay R Vivona
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - David Shimmin
- NanoCraft.US., 807 Aldo Ave, Suite-101, Santa Clara, CA, 95054, USA
| | - Praneeti Pathipati
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Callie Keane
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Joseph Cuschieri
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Shibani Pati
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA.
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA.
| |
Collapse
|
7
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
8
|
Gao R, Lin P, Fang Z, Yang W, Gao W, Wang F, Pan X, Yu W. Cell-derived biomimetic nanoparticles for the targeted therapy of ALI/ARDS. Drug Deliv Transl Res 2024; 14:1432-1457. [PMID: 38117405 DOI: 10.1007/s13346-023-01494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common clinical critical diseases with high morbidity and mortality. Especially since the COVID-19 outbreak, the mortality rates of critically ill patients with ARDS can be as high as 60%. Therefore, this problem has become a matter of concern to respiratory critical care. To date, the main clinical measures for ALI/ARDS are mechanical ventilation and drug therapy. Although ventilation treatment reduces mortality, it increases the risk of hyperxemia, and drug treatment lacks safe and effective delivery methods. Therefore, novel therapeutic strategies for ALI/ARDS are urgently needed. Developments in nanotechnology have allowed the construction of a safe, efficient, precise, and controllable drug delivery system. However, problems still encounter in the treatment of ALI/ARDS, such as the toxicity, poor targeting ability, and immunogenicity of nanomaterials. Cell-derived biomimetic nanodelivery drug systems have the advantages of low toxicity, long circulation, high targeting, and high bioavailability and show great therapeutic promises for ALI/ARDS owing to their acquired cellular biological features and some functions. This paper reviews ALI/ARDS treatments based on cell membrane biomimetic technology and extracellular vesicle biomimetic technology, aiming to achieve a significant breakthrough in ALI/ARDS treatments.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Fangqian Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
9
|
Li J, He S, Yang H, Zhang L, Xiao J, Liang C, Liu S. The Main Mechanisms of Mesenchymal Stem Cell-Based Treatments against COVID-19. Tissue Eng Regen Med 2024; 21:545-556. [PMID: 38573476 PMCID: PMC11087407 DOI: 10.1007/s13770-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.
Collapse
Affiliation(s)
- Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lizeai Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jie Xiao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chaoyi Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
10
|
Barry M, Trivedi A, Miyazawa B, Vivona L, Shimmin D, Pathipati P, Keane C, Cuschieri J, Pati S. Regulation of Vascular Endothelial Integrity by Mesenchymal Stem Cell Extracellular Vesicles after Hemorrhagic Shock and Trauma. RESEARCH SQUARE 2024:rs.3.rs-4284907. [PMID: 38746312 PMCID: PMC11092837 DOI: 10.21203/rs.3.rs-4284907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses systemic effects of HS/T on multiorgan EOT in HS/T model. METHODS In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.
Collapse
|
11
|
Ahmed SH, AlMoslemany MA, Witwer KW, Tehamy AG, El-Badri N. Stem Cell Extracellular Vesicles as Anti-SARS-CoV-2 Immunomodulatory Therapeutics: A Systematic Review of Clinical and Preclinical Studies. Stem Cell Rev Rep 2024; 20:900-930. [PMID: 38393666 PMCID: PMC11087360 DOI: 10.1007/s12015-023-10675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND COVID-19 rapidly escalated into a worldwide pandemic with elevated infectivity even from asymptomatic patients. Complications can lead to severe pneumonia and acute respiratory distress syndrome (ARDS), which are the main contributors to death. Because of their regenerative and immunomodulatory capacities, stem cells and their derived extracellular vesicles (EVs) are perceived as promising therapies against severe pulmonary conditions, including those associated with COVID-19. Herein, we evaluate the safety and efficacy of stem cell EVs in treating COVID-19 and complicating pneumonia, acute lung injury, and ARDS. We also cover relevant preclinical studies to recapitulate the current progress in stem cell EV-based therapy. METHODS Using PubMed, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science, we searched for all English-language published studies (2000-2023) that used stem cell EVs as a therapy for COVID-19, ARDS, or pneumonia. The risk of bias (ROB) was assessed for all studies. RESULTS Forty-eight studies met our inclusion criteria. Various-sized EVs derived from different types of stem cells were reported as a potentially safe and effective therapy to attenuate the cytokine storm induced by COVID-19. EVs alleviated inflammation and regenerated the alveolar epithelium by decreasing apoptosis, proinflammatory cytokines, neutrophil infiltration, and M2 macrophage polarization. They also prevented fibrin production and promoted the production of anti-inflammatory cytokines and endothelial cell junction proteins. CONCLUSION Similar to their parental cells, stem cell EVs mediate lung tissue regeneration by targeting multiple pathways and thus hold promise in promoting the recovery of COVID-19 patients and improving the survival rate of severely affected patients.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Atef AlMoslemany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmed Gamal Tehamy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, Giza, 6th of October City, 12582, Egypt.
| |
Collapse
|
12
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
13
|
Mou L, Wang TB, Wang X, Pu Z. Advancing diabetes treatment: the role of mesenchymal stem cells in islet transplantation. Front Immunol 2024; 15:1389134. [PMID: 38605972 PMCID: PMC11007079 DOI: 10.3389/fimmu.2024.1389134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Endocrinology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Tony Bowei Wang
- Biology Department, Skidmore College, Saratoga Springs, NY, United States
| | - Xinyu Wang
- Department of Endocrinology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Zuhui Pu
- Imaging Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Cao JK, Hong XY, Feng ZC, Li QP. Mesenchymal stem cells-based therapies for severe ARDS with ECMO: a review. Intensive Care Med Exp 2024; 12:12. [PMID: 38332384 PMCID: PMC10853094 DOI: 10.1186/s40635-024-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the primary cause of respiratory failure in critically ill patients. Despite remarkable therapeutic advances in recent years, ARDS remains a life-threatening clinical complication with high morbidity and mortality, especially during the global spread of the coronavirus disease 2019 (COVID-19) pandemic. Previous studies have demonstrated that mesenchymal stem cell (MSC)-based therapy is a potential alternative strategy for the treatment of refractory respiratory diseases including ARDS, while extracorporeal membrane oxygenation (ECMO) as the last resort treatment to sustain life can help improve the survival of ARDS patients. In recent years, several studies have explored the effects of ECMO combined with MSC-based therapies in the treatment of ARDS, and some of them have demonstrated that this combination can provide better therapeutic effects, while others have argued that some critical issues need to be solved before it can be applied to clinical practice. This review presents an overview of the current status, clinical challenges and future prospects of ECMO combined with MSCs in the treatment of ARDS.
Collapse
Affiliation(s)
- Jing-Ke Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yang Hong
- Department of Pediatric Intensive Care Unit, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO.5 Nanmencang, Dongcheng District, 100700, Beijing, China
| | - Zhi-Chun Feng
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Qiu-Ping Li
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Lettieri S, Bertuccio FR, del Frate L, Perrotta F, Corsico AG, Stella GM. The Plastic Interplay between Lung Regeneration Phenomena and Fibrotic Evolution: Current Challenges and Novel Therapeutic Perspectives. Int J Mol Sci 2023; 25:547. [PMID: 38203718 PMCID: PMC10779349 DOI: 10.3390/ijms25010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of pulmonary disorders characterized by variable degrees of inflammation, interstitial thickening, and fibrosis leading to distortion of the pulmonary architecture and gas exchange impairment. Among them, idiopathic pulmonary fibrosis (IPF) displays the worst prognosis. The only therapeutic options consist of the two antifibrotic drugs, pirfenidone and nintedanib, which limit fibrosis progression but do not reverse the lung damage. The shift of the pathogenetic paradigm from inflammatory disease to epithelium-derived disease has definitively established the primary role of type II alveolar cells, which lose their epithelial phenotype and acquire a mesenchymal phenotype with production of collagen and extracellular matrix (EMC) deposition. Some predisposing environmental and genetic factors (e.g., smoke, pollution, gastroesophageal reflux, variants of telomere and surfactant genes) leading to accelerated senescence set a pro-fibrogentic microenvironment and contribute to the loss of regenerative properties of type II epithelial cells in response to pathogenic noxae. This review provides a complete overview of the different pathogenetic mechanisms leading to the development of IPF. Then, we summarize the currently approved therapies and the main clinical trials ongoing. Finally, we explore the potentialities offered by agents not only interfering with the processes of fibrosis but also restoring the physiological properties of alveolar regeneration, with a particular focus on potentialities and concerns about cell therapies based on mesenchymal stem cells (MSCs), whose anti-inflammatory and immunomodulant properties have been exploited in other fibrotic diseases, such as graft versus host disease (GVHD) and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco R. Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 80055 Naples, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
16
|
Zhao R, Hadisurya M, Ndetan H, Xi NM, Adduri S, Konduru NV, Samten B, Tao WA, Singh KP, Ji HL. Regenerative Signatures in Bronchioalveolar Lavage of Acute Respiratory Distress Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566908. [PMID: 38014329 PMCID: PMC10680787 DOI: 10.1101/2023.11.13.566908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background In patients with severe acute respiratory distress syndrome (ARDS) associated with sepsis, lung recovery is considerably delayed, and mortality is much high. More insight into the process of lung regeneration in ARDS patients is needed. Exosomes are important cargos for intercellular communication by serving as autocrine and/or paracrine. Cutting-edge exomics (exosomal proteomics) makes it possible to study the mechanisms of re-alveolarization in ARDS lungs. Aims This study aimed to identify potential regenerative niches by characterizing differentially expressed proteins in the exosomes of bronchioalveolar lavage (BAL) in ARDS patients. Methods We purified exosomes from BAL samples collected from ARDS patients by NIH-supported ALTA and SPIROMICS trials. The abundance of exosomal proteins/peptides was quantified using liquid chromatography-mass spectrometry (LC-MS). Differentially expressed exosomal proteins between healthy controls and ARDS patients were profiled for functional annotations, cell origins, signaling pathways, networks, and clinical correlations. Results Our results show that more exosomal proteins were identified in the lungs of late-stage ARDS patients. Immune cells and lung epithelial stem cells were major contributors to BAL exosomes in addition to those from other organs. We enriched a wide range of functions, stem cell signals, growth factors, and immune niches in both mild and severe patients. The differentially expressed proteins that we identified were associated with key clinical variables. The severity-associated differences in protein-protein interaction, RNA crosstalk, and epigenetic network were observed between mild and severe groups. Moreover, alveolar type 2 epithelial cells could serve as both exosome donors and recipients via autocrine and paracrine mechanisms. Conclusions This study identifies novel exosomal proteins associated with diverse functions, signaling pathways, and cell origins in ARDS lavage samples. These differentiated proteins may serve as regenerative niches for re-alveolarization in injured lungs.
Collapse
Affiliation(s)
- Runzhen Zhao
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nagarjun Venkata Konduru
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Buka Samten
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
17
|
Zheng R, Zhang L, Parvin R, Su L, Chi J, Shi K, Ye F, Huang X. Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300195. [PMID: 37356052 PMCID: PMC10477906 DOI: 10.1002/advs.202300195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Indexed: 06/27/2023]
Abstract
Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites. Fortunately, the development in the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system has renewed hope for gene therapy field. The CRISPR-Cas9 system can fulfill various simple or complex purposes, including gene knockout, knock-in, activation, interference, base editing, and sequence detection. Accordingly, the CRISPR-Cas9 system is adaptable to translational medicine, which calls for the alteration of genomic sequences. This review aims to present the latest CRISPR-Cas9 technology achievements and prospect to translational medicine advances. The principle and characterization of the CRISPR-Cas9 system are firstly introduced. The authors then focus on recent pre-clinical and clinical research directions, including the construction of disease models, disease-related gene screening and regulation, and disease treatment and diagnosis for multiple refractory diseases. Finally, some clinical challenges including off-target effects, in vivo vectors, and ethical problems, and future perspective are also discussed.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Lihuang Su
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Junjie Chi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Keqing Shi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Fangfu Ye
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| |
Collapse
|
18
|
Cui E, Lv L, Chen W, Chen N, Pan R. Mesenchymal stem/stromal cell-based cell-free therapy for the treatment of acute lung injury. J Cell Biochem 2023; 124:1241-1248. [PMID: 37668145 DOI: 10.1002/jcb.30469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Acute lung injury (ALI) is a severe medical condition that causes inflammation and fluid buildup in the lung, resulting in respiratory distress. Moreover, ALI often occurs as a complication of other medical conditions or injuries, including the coronavirus disease of 2019. Mesenchymal stem/stromal cells (MSCs) are being studied extensively for their therapeutic potential in various diseases, including ALI. The results of recent studies suggest that the beneficial effects of MSCs may not be primarily due to the replacement of damaged cells but rather the release of extracellular vesicles (EVs) and other soluble factors through a paracrine mechanism. Furthermore, EVs derived from MSCs preserve the therapeutic action of the parent MSCs and this approach avoids the safety issues associated with live cell therapy. Thus, MSC-based cell-free therapy may be the focus of future clinical treatments.
Collapse
Affiliation(s)
- Enhai Cui
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Lu Lv
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Wenyan Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Na Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
| |
Collapse
|
19
|
Zhao X, Wu J, Yuan R, Li Y, Yang Q, Wu B, Zhai X, Wang J, Magalon J, Sabatier F, Daumas A, Zhu WM, Zhu N. Adipose-derived mesenchymal stem cell therapy for reverse bleomycin-induced experimental pulmonary fibrosis. Sci Rep 2023; 13:13183. [PMID: 37580529 PMCID: PMC10425426 DOI: 10.1038/s41598-023-40531-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive respiratory disease. Arguably, the complex interplay between immune cell subsets, coupled with an incomplete understanding of disease pathophysiology, has hindered the development of successful therapies. Despite efforts to understand its pathophysiology and develop effective treatments, IPF remains a fatal disease, necessitating the exploration of new treatment options. Mesenchymal stromal/stem cell (MSC) therapy has shown promise in experimental models of IPF, but further investigation is needed to understand its therapeutic effect. This study aimed to assess the therapeutic effect of adipose-derived mesenchymal stem cells in a bleomycin-induced pulmonary fibrosis model. First, MSC cells were obtained from mice and characterized using flow cytometry and cell differentiation culture methods. Then adult C57BL/6 mice were exposed to endotracheal instillation of bleomycin and concurrently treated with MSCs for reversal models on day 14. Experimental groups were evaluated on days 14, 21, or 28. Additionally, lung fibroblasts challenged with TGF-β1 were treated with MSCs supernatant or MSCs to explore the mechanisms underlying of pulmonary fibrosis reversal. Mesenchymal stem cells were successfully isolated from mouse adipose tissue and characterized based on their differentiation ability and cell phenotype. The presence of MSCs or their supernatant stimulated the proliferation and migration of lung fibrotic cells. MSCs supernatant reduced lung collagen deposition, improved the Ashcroft score and reduced the gene and protein expression of lung fibrosis-related substances. Bleomycin-challenged mice exhibited severe septal thickening and prominent fibrosis, which was effectively reversed by MSCs treatment. MSC supernatant could suppress the TGF-β1/Smad signaling pathway and supernatant promotes fibroblast autophagy. In summary, this study demonstrates that MSCs supernatant treatment is as effective as MSCs in revert the core features of bleomycin-induced pulmonary fibrosis. The current study has demonstrated that MSCs supernatant alleviates the BLM-induced pulmonary fibrosis in vivo. In vitro experiments further reveal that MSC supernatant could suppress the TGF-β1/Smad signaling pathway to inhibit the TGF-β1-induced fibroblast activation, and promotes fibroblast autophagy by Regulating p62 expression. These findings contribute to the growing body of evidence supporting the therapeutic application of MSCs in cell therapy medicine for IPF.
Collapse
Affiliation(s)
- Xiansheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinyan Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ruoyue Yuan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yue Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Quyang Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Baojin Wu
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaowen Zhai
- Children's Hospital of Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jérémy Magalon
- Culture and Cell Therapy Laboratory, INSERM CIC BT 1409, Assistance Publique Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Florence Sabatier
- Culture and Cell Therapy Laboratory, INSERM CIC BT 1409, Assistance Publique Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Aurélie Daumas
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
- Internal Medicine Department, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Winston M Zhu
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Department of Plastic, Reconstructive and Burns Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
20
|
Pan LF, Niu ZQ, Ren S, Pei HH, Gao YX, Feng H, Sun JL, Zhang ZL. Could extracellular vesicles derived from mesenchymal stem cells be a potential therapy for acute pancreatitis-induced cardiac injury? World J Stem Cells 2023; 15:654-664. [PMID: 37545754 PMCID: PMC10401421 DOI: 10.4252/wjsc.v15.i7.654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Acute pancreatitis (AP) often leads to a high incidence of cardiac injury, posing significant challenges in the treatment of severe AP and contributing to increased mortality rates. Mesenchymal stem cells (MSCs) release bioactive molecules that participate in various inflammatory diseases. Similarly, extracellular vesicles (EVs) secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation. Recently, the therapeutic potential of MSCs-EVs in various inflammatory diseases, including sepsis and AP, has gained increasing recognition. Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited, several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases. Furthermore, clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases, wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs. Consequently, we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury. This paper aims to discuss this topic. However, additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury, as well as to ascertain their safety and efficacy.
Collapse
Affiliation(s)
- Long-Fei Pan
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Ze-Qun Niu
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Song Ren
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Hong-Hong Pei
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Yan-Xia Gao
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Hui Feng
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Jiang-Li Sun
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Zheng-Liang Zhang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| |
Collapse
|
21
|
Li C, Wang C, Xie HY, Huang L. Cell-Based Biomaterials for Coronavirus Disease 2019 Prevention and Therapy. Adv Healthc Mater 2023; 12:e2300404. [PMID: 36977465 DOI: 10.1002/adhm.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to threaten human health, economic development, and national security. Although many vaccines and drugs have been explored to fight against the major pandemic, their efficacy and safety still need to be improved. Cell-based biomaterials, especially living cells, extracellular vesicles, and cell membranes, offer great potential in preventing and treating COVID-19 owing to their versatility and unique biological functions. In this review, the characteristics and functions of cell-based biomaterials and their biological applications in COVID-19 prevention and therapy are described. First the pathological features of COVID-19 are summarized, providing enlightenment on how to fight against COVID-19. Next, the classification, organization structure, characteristics, and functions of cell-based biomaterials are focused on. Finally, the progress of cell-based biomaterials in overcoming COVID-19 in different aspects, including the prevention of viral infection, inhibition of viral proliferation, anti-inflammation, tissue repair, and alleviation of lymphopenia are comprehensively described. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
22
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
23
|
Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Gurunathan S. Biogenesis, Composition and Potential Therapeutic Applications of Mesenchymal Stem Cells Derived Exosomes in Various Diseases. Int J Nanomedicine 2023; 18:3177-3210. [PMID: 37337578 PMCID: PMC10276992 DOI: 10.2147/ijn.s407029] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Exosomes are nanovesicles with a wide range of chemical compositions used in many different applications. Mesenchymal stem cell-derived exosomes (MSCs-EXOs) are spherical vesicles that have been shown to mediate tissue regeneration in a variety of diseases, including neurological, autoimmune and inflammatory, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells due to the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. MSCs-EXOs exhibit cytokine storm-mitigating properties in response to COVID-19. This review discussed the potential function of MSCs-EXOs in a variety of diseases including neurological, notably epileptic encephalopathy and Parkinson's disease, cancer, angiogenesis, autoimmune and inflammatory diseases. We provided an overview of exosome biogenesis and factors that regulate exosome biogenesis. Additionally, we highlight the functions and potential use of MSCs-EXOs in the treatment of the inflammatory disease COVID-19. Finally, we covered a strategies and challenges of MSCs-EXOs. Finally, we discuss conclusion and future perspectives of MSCs-EXOs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jia-Lin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ya-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ling Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | | |
Collapse
|
24
|
Liang TY, Lu LH, Tang SY, Zheng ZH, Shi K, Liu JQ. Current status and prospects of basic research and clinical application of mesenchymal stem cells in acute respiratory distress syndrome. World J Stem Cells 2023; 15:150-164. [PMID: 37180997 PMCID: PMC10173811 DOI: 10.4252/wjsc.v15.i4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and clinically devastating disease that causes respiratory failure. Morbidity and mortality of patients in intensive care units are stubbornly high, and various complications severely affect the quality of life of survivors. The pathophysiology of ARDS includes increased alveolar-capillary membrane permeability, an influx of protein-rich pulmonary edema fluid, and surfactant dysfunction leading to severe hypoxemia. At present, the main treatment for ARDS is mechanical treatment combined with diuretics to reduce pulmonary edema, which primarily improves symptoms, but the prognosis of patients with ARDS is still very poor. Mesenchymal stem cells (MSCs) are stromal cells that possess the capacity to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone marrow, and adipose tissues. Studies have confirmed the critical healing and immunomodulatory properties of MSCs in the treatment of a variety of diseases. Recently, the potential of stem cells in treating ARDS has been explored via basic research and clinical trials. The efficacy of MSCs has been shown in a variety of in vivo models of ARDS, reducing bacterial pneumonia and ischemia-reperfusion injury while promoting the repair of ventilator-induced lung injury. This article reviews the current basic research findings and clinical applications of MSCs in the treatment of ARDS in order to emphasize the clinical prospects of MSCs.
Collapse
Affiliation(s)
- Tian-Yu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China
| | - Li-Hai Lu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Si-Yu Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zi-Hao Zheng
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jing-Quan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.
| |
Collapse
|
25
|
Homma K, Bazhanov N, Hashimoto K, Shimizu M, Heathman T, Hao Q, Nawgiri R, Muthukumarana V, Lee JW, Prough DS, Enkhbaatar P. Mesenchymal stem cell-derived exosomes for treatment of sepsis. Front Immunol 2023; 14:1136964. [PMID: 37180159 PMCID: PMC10169690 DOI: 10.3389/fimmu.2023.1136964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction The pathogenesis of sepsis is an imbalance between pro-inflammatory and anti-inflammatory responses. At the onset of sepsis, the lungs are severely affected, and the injury progresses to acute respiratory distress syndrome (ARDS), with a mortality rate of up to 40%. Currently, there is no effective treatment for sepsis. Cellular therapies using mesenchymal stem cells (MSCs) have been initiated in clinical trials for both ARDS and sepsis based on a wealth of pre-clinical data. However, there remains concern that MSCs may pose a tumor risk when administered to patients. Recent pre-clinical studies have demonstrated the beneficial effects of MSC-derived extracellular vesicles (EVs) for the treatment of acute lung injury (ALI) and sepsis. Methods After recovery of initial surgical preparation, pneumonia/sepsis was induced in 14 adult female sheep by the instillation of Pseudomonas aeruginosa (~1.0×1011 CFU) into the lungs by bronchoscope under anesthesia and analgesia. After the injury, sheep were mechanically ventilated and continuously monitored for 24 h in a conscious state in an ICU setting. After the injury, sheep were randomly allocated into two groups: Control, septic sheep treated with vehicle, n=7; and Treatment, septic sheep treated with MSC-EVs, n=7. MSC-EVs infusions (4ml) were given intravenously one hour after the injury. Results The infusion of MSCs-EVs was well tolerated without adverse events. PaO2/FiO2 ratio in the treatment group tended to be higher than the control from 6 to 21 h after the lung injury, with no significant differences between the groups. No significant differences were found between the two groups in other pulmonary functions. Although vasopressor requirement in the treatment group tended to be lower than in the control, the net fluid balance was similarly increased in both groups as the severity of sepsis progressed. The variables reflecting microvascular hyperpermeability were comparable in both groups. Conclusion We have previously demonstrated the beneficial effects of bone marrow-derived MSCs (10×106 cells/kg) in the same model of sepsis. However, despite some improvement in pulmonary gas exchange, the present study demonstrated that EVs isolated from the same amount of bone marrow-derived MSCs failed to attenuate the severity of multiorgan dysfunctions.
Collapse
Affiliation(s)
- Kento Homma
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nikolay Bazhanov
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kazuki Hashimoto
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Masaru Shimizu
- Department of Anesthesiology, University of California, San Francisco, CA, United States
| | - Thomas Heathman
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Qi Hao
- Department of Anesthesiology, University of California, San Francisco, CA, United States
| | - Ranjana Nawgiri
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vidarshi Muthukumarana
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jae Woo Lee
- Department of Anesthesiology, University of California, San Francisco, CA, United States
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
26
|
Jiang M, Jiang X, Li H, Zhang C, Zhang Z, Wu C, Zhang J, Hu J, Zhang J. The role of mesenchymal stem cell-derived EVs in diabetic wound healing. Front Immunol 2023; 14:1136098. [PMID: 36926346 PMCID: PMC10011107 DOI: 10.3389/fimmu.2023.1136098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic foot is one of the most common complications of diabetes, requiring repeated surgical interventions and leading to amputation. In the absence of effective drugs, new treatments need to be explored. Previous studies have found that stem cell transplantation can promote the healing of chronic diabetic wounds. However, safety issues have limited the clinical application of this technique. Recently, the performance of mesenchymal stem cells after transplantation has been increasingly attributed to their production of exocrine functional derivatives such as extracellular vesicles (EVs), cytokines, and cell-conditioned media. EVs contain a variety of cellular molecules, including RNA, DNA and proteins, which facilitate the exchange of information between cells. EVs have several advantages over parental stem cells, including a high safety profile, no immune response, fewer ethical concerns, and a reduced likelihood of embolism formation and carcinogenesis. In this paper, we summarize the current knowledge of mesenchymal stem cell-derived EVs in accelerating diabetic wound healing, as well as their potential clinic applications.
Collapse
Affiliation(s)
- Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Can Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Department of Geriatic Oncology, Department of Palliative Care, Department of Clinical Nutrition, Chongqing University Cancer Hospital, Chongqing, China.,Endocrinology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- Endocrinology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
27
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
28
|
Liu M, Liu X, Su Y, Li S, Chen Y, Liu A, Guo J, Xuan K, Qiu X. Emerging role of mesenchymal stem cell-derived extracellular vesicles in oral and craniomaxillofacial tissue regenerative medicine. Front Bioeng Biotechnol 2022; 10:1054370. [PMID: 36524049 PMCID: PMC9744765 DOI: 10.3389/fbioe.2022.1054370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 06/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with differentiation potential and paracrine properties, drawing significant attention in the field of regenerative medicine. Extracellular vesicles (EVs), mainly including exosomes, microvesicles and apoptotic bodies (ABs), are predominantly endosomal in origin and contain bioactive molecules, such as miRNAs, mRNAs, and proteins, which are transferred from their original cells to target cells. Recently it has emerged that MSC-derived EVs (MSC-EVs) combine the advantages of MSCs and EVs, which may be used as a promising MSC-based therapy in tissue repair and regeneration. Oral and craniomaxillofacial diseases are clinically complications containing the soft and hard tissues in craniofacial and dental arches. These diseases are often induced by various factors, such as chemical, microbiological, physical factors, and systemic disorders. For decades, tissue repair and regeneration in oral and craniomaxillofacial regions provide substantial improvements in the prevention and treatment of some severe diseases. In this review we discuss MSC-EVs and their therapeutic potential in oral and craniomaxillofacial tissue regenerative medicine.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuting Su
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
29
|
Ulldemolins A, Jurado A, Herranz-Diez C, Gavara N, Otero J, Farré R, Almendros I. Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair. Polymers (Basel) 2022; 14:polym14224907. [PMID: 36433034 PMCID: PMC9692679 DOI: 10.3390/polym14224907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.
Collapse
Affiliation(s)
- Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Alicia Jurado
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carolina Herranz-Diez
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
30
|
Extracellular Vesicles Derived from Mesenchymal Stem Cells: A Potential Biodrug for Acute Respiratory Distress Syndrome Treatment. BioDrugs 2022; 36:701-715. [PMID: 36087245 PMCID: PMC9463673 DOI: 10.1007/s40259-022-00555-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe respiratory disease associated with high morbidity and mortality in the clinic. In the face of limited treatment options for ARDS, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have recently shown promise. They regulate levels of growth factors, cytokines, and other internal therapeutic molecules. The possible therapeutic mechanisms of MSC-EVs include anti-inflammatory, cell injury repair, alveolar fluid clearance, and microbe clearance. The potent therapeutic ability and biocompatibility of MSC-EVs have enabled them as an alternative option to ameliorate ARDS. In this review, recent advances, therapeutic mechanisms, advantages and limitations, as well as improvements of using MSC-EVs to treat ARDS are summarized. This review is expected to provide a brief view of the potential applications of MSC-EVs as novel biodrugs to treat ARDS.
Collapse
|
31
|
Sugita S, Naito Y, Zhou L, He H, Hao Q, Sakamoto A, Lee JW. Hyaluronic acid restored protein permeability across injured human lung microvascular endothelial cells. FASEB Bioadv 2022; 4:619-631. [PMID: 36089980 PMCID: PMC9447422 DOI: 10.1096/fba.2022-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Lung endothelial permeability is a key pathological feature of acute respiratory distress syndrome. Hyaluronic acid (HA), a major component of the glycocalyx layer on the endothelium, is generated by HA synthase (HAS) during inflammation and injury and is critical for repair. We hypothesized that administration of exogenous high molecular weight (HMW) HA would restore protein permeability across human lung microvascular endothelial cells (HLMVEC) injured by an inflammatory insult via upregulation of HAS by binding to CD44. A transwell coculture system was used to study the effects of HA on protein permeability across HLMVEC injured by cytomix, a mixture of IL-1β, TNFα, and IFNγ, with or without HMW or low molecular weight (LMW) HA. Coincubation with HMW HA, but not LMW HA, improved protein permeability following injury at 24 h. Fluorescence microscopy demonstrated that exogenous HMW HA partially prevented the increase in "actin stress fiber" formation. HMW HA also increased the synthesis of HAS2 mRNA expression and intracellular HMW HA levels in HLMVEC following injury. Pretreatment with an anti-CD44 antibody or 4-methylumbelliferone, a HAS inhibitor, blocked the therapeutic effects. In conclusion, exogenous HMW HA restored protein permeability across HLMVEC injured by an inflammatory insult in part through upregulation of HAS2.
Collapse
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yoshifumi Naito
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Li Zhou
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hongli He
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Qi Hao
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
| | - Jae W. Lee
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
32
|
Tan MI, Alfarafisa NM, Septiani P, Barlian A, Firmansyah M, Faizal A, Melani L, Nugrahapraja H. Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells 2022; 11:2319. [PMID: 35954162 PMCID: PMC9367488 DOI: 10.3390/cells11152319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy.
Collapse
Affiliation(s)
- Marselina Irasonia Tan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Popi Septiani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Mochamad Firmansyah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Ahmad Faizal
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Lili Melani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Husna Nugrahapraja
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| |
Collapse
|
33
|
Allogenic umbilical cord blood-mesenchymal stem cells are more effective than antibiotics in alleviating subclinical mastitis in dairy cows. Theriogenology 2022; 187:141-151. [DOI: 10.1016/j.theriogenology.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
|
34
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
35
|
Ahmed MM, Meece LE, Handberg EM, Pepine CJ. Intravenous administration of umbilical cord lining stem cells in left ventricular assist device recipient: Rationale and design of the uSTOP LVAD BLEED pilot study. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 16:100142. [PMID: 38559284 PMCID: PMC10976302 DOI: 10.1016/j.ahjo.2022.100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 04/04/2024]
Abstract
Background Left ventricular assist device (LVAD) implantation provides a robust survival advantage, however despite improvements in mortality, the adverse event burden of durable mechanical circulatory support remains high. Bleeding complications are one such significant complication. The uSTOP LVAD BLEED (Utilization of umbilical cord lining Stem cells TO Prevent LVAD associated angiodysplastic BLEEDing) pilot study is designed to evaluate the safety and tolerability of escalating doses of umbilical cord lining stem cells (ULSCs) in LVAD recipients to ameliorate the dysregulation of angiogenic factors seen in this population. Design This Phase Ia single-ascending dose pilot study will evaluate the IV administration of ULSCs in stable out-patients supported with an LVAD. In a 3 + 3 design, a maximum of 18 patients will receive an IV infusion of ULSCs. Main outcome measures The primary endpoints are safety and tolerability, secondary exploratory endpoints will include biomarker evaluation of angiogenic dysregulation. Summary This represents a novel cell type and route of administration in this population, while collecting initial data regarding the magnitude and duration of effects of cell therapy, and assessing the possibility of decreasing bleeding by a strategy of vascular stabilization. Clinical trial registration ClinicalTrials.gov Identifier: NCT04811261. https://clinicaltrials.gov/ct2/show/NCT04811261.
Collapse
Affiliation(s)
- Mustafa M. Ahmed
- University of Florida, Division of Cardiovascular Medicine, Gainesville, FL, United States of America
| | - Lauren E. Meece
- University of Florida, Division of Cardiovascular Medicine, Gainesville, FL, United States of America
| | - Eileen M. Handberg
- University of Florida, Division of Cardiovascular Medicine, Gainesville, FL, United States of America
| | - Carl J. Pepine
- University of Florida, Division of Cardiovascular Medicine, Gainesville, FL, United States of America
| |
Collapse
|
36
|
Razi S, Molavi Z, Mirmotalebisohi SA, Niknam Z, Sameni M, Niazi V, Adibi A, Yazdani M, Ranjbar MM, Zali H. Mesenchymal Stem Cells in the Treatment of New Coronavirus Pandemic: A Novel Promising Therapeutic Approach. Adv Pharm Bull 2022; 12:206-216. [PMID: 35620342 PMCID: PMC9106958 DOI: 10.34172/apb.2022.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
After severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, coronavirus disease 2019 (COVID-19) is the third coronavirus epidemic that soon turned into a pandemic. This virus causes acute respiratory syndrome in infected people. The mortality rate of SARS-CoV-2 infection will probably rise unless efficient treatments or vaccines are developed. The global funding and medical communities have started performing more than five hundred clinical examinations on a broad spectrum of repurposed drugs to acquire effective treatments. Besides, other novel treatment approaches have also recently emerged, including cellular host-directed therapies. They counteract the unwanted responses of the host immune system that led to the severe pathogenesis of SARS-CoV-2. This brief review focuses on mesenchymal stem cell (MSC) principles in treating the COVID-19. The US clinical trials database and the world health organization database for clinical trials have reported 82 clinical trials (altogether) exploring the effects of MSCs in COVID-19 treatment. MSCs also had better be tried for treating other pathogens worldwide. MSC treatment may have the potential to end the high mortality rate of COVID-19. Besides, it also limits the long-term inability of survivors.
Collapse
Affiliation(s)
- Sara Razi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirjafar Adibi
- Departments of Orthopedics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann Biomed Eng 2022; 50:1734-1749. [PMID: 36261668 PMCID: PMC9581451 DOI: 10.1007/s10439-022-03094-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/01/2023]
Abstract
Since the onset of the coronavirus pandemic in December 2019, the SARS-CoV-2 virus has accounted for over 6.3 million lives resulting in the demand to develop novel therapeutic approaches to target and treat SARS-CoV-2. Improved understanding of viral entry and infection mechanisms has led to identifying different target receptors to mitigate infection in the host. Researchers have been working on identifying and targeting potential therapeutic target receptors utilizing different candidate drugs. Angiotensin-converting enzyme-2 (ACE2) has been known to perform critical functions in maintaining healthy cardiorespiratory function. However, ACE2 also functions as the binding site for the spike protein of SARS-CoV-2, allowing the virus to enter the cells and ensue infection. Therefore, drugs targeting ACE2 receptors can be considered as therapeutic candidates. Strategies targeting the level of ACE2 expression have been investigated and compared to other potential therapeutic targets, such as TMPRSS2, RdRp, and DPP4. This mini review discusses the key therapeutic approaches that target the ACE2 receptor, which is critical to the cellular entry and propagation of the novel SARS-CoV-2. In addition, we summarize the main advantages of ACE2 targeting against alternative approaches for the treatment of COVID-19.
Collapse
|
38
|
Zhang X, Ye L, Tang W, Ji Y, Zheng L, Chen Y, Ge Q, Huang C. Wnt/β-Catenin Participates in the Repair of Acute Respiratory Distress Syndrome-Associated Early Pulmonary Fibrosis via Mesenchymal Stem Cell Microvesicles. Drug Des Devel Ther 2022; 16:237-247. [PMID: 35082486 PMCID: PMC8784273 DOI: 10.2147/dddt.s344309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose The main aim of the present study was to establish whether mesenchymal stem cell microvesicles (MSC MVs) exert anti-fibrotic effects and investigate the mechanisms underlying these effects in a mouse model of acute respiratory distress syndrome (ARDS)-associated early pulmonary fibrosis. Methods An ARDS-associated pulmonary fibrosis model was established in mice by an intratracheal injection of lipopolysaccharide (LPS). At 1, 3, and 7 days after LPS-mediated injury, the lungs of mice treated with MSC MVs and untreated controls were carefully excised and fibrosis was assessed based on the extent of collagen deposition. In addition, the development of epithelial–mesenchymal transition (EMT) was evaluated based on loss of E-cadherin and zona occludens-1 (ZO-1) along with the acquisition of α-smooth muscle actin (α-SMA) and N-cadherin. Nuclear translocation and β-catenin expression analyses were also used to evaluate activation of the Wnt/β-catenin signaling pathway. Results Blue-stained collagen fibers were evident as early as 7 days after LPS injection. Treatment with MSC MVs suppressed pathological progression to a significant extent. MSC MVs markedly reversed the upregulation of N-cadherin and α-SMA and attenuated the downregulation of E-cadherin and ZO-1. The expression and nuclear translocation of β-catenin were clearly decreased on day 7 after MSC MV treatment. Conclusion Analyses indicated that MSC MVs could ameliorate ARDS-associated early pulmonary fibrosis via the suppression of EMT and might be related to Wnt/β-catenin transition signaling.
Collapse
Affiliation(s)
- Xingcai Zhang
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Lifang Ye
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wan Tang
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Yiqin Ji
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Li Zheng
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Qidong Ge
- Department of Breast Surgery, HuaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People’s Republic of China
| | - Changshun Huang
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
- Correspondence: Changshun Huang; Qidong Ge, Tel +86-574-87085521, Fax +86-574-87085588, Email ;
| |
Collapse
|
39
|
Zheng ZX. Stem cell therapy: A promising treatment for COVID-19. World J Clin Cases 2021; 9:11148-11155. [PMID: 35071545 PMCID: PMC8717529 DOI: 10.12998/wjcc.v9.i36.11148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. SARS-CoV-2 is an RNA virus and has a glycosylated spike (S) protein used for genome encoding. COVID-19 can lead to a cytokine storm and patients usually have early respiratory signs and further secondary infections, which can be fatal. COVID-19 has entered an emergency phase, but there are still no specific effective drugs for this disease. Mesenchymal stem cells (MSCs) are multipotent stromal cells, which cause antiapoptosis and can repair damaged epithelial cells. Many clinical trials have proved that MSC therapy could be a potential feasible therapy for COVID-19 patients, especially those with acute respiratory distress syndrome, without serious adverse events or toxicities. However, more studies are needed in the future, in order to confirm the effect of this therapy.
Collapse
Affiliation(s)
- Zhi-Xue Zheng
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
40
|
Ardalan M, Chodari L, Zununi Vahed S, Hosseiniyan Khatibi SM, Eftekhari A, Davaran S, Cucchiarini M, Roshangar L, Ahmadian E. Stem cell-derived biofactors fight against coronavirus infection. World J Stem Cells 2021; 13:1813-1825. [PMID: 35069984 PMCID: PMC8727231 DOI: 10.4252/wjsc.v13.i12.1813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Despite various treatment protocols and newly recognized therapeutics, there are no effective treatment approaches against coronavirus disease. New therapeutic strategies including the use of stem cells-derived secretome as a cell-free therapy have been recommended for patients with critical illness. The pro-regenerative, pro-angiogenic, anti-inflammatory, anti-apoptotic, immunomodulatory, and trophic properties of stem cells-derived secretome, extracellular vesicles (EVs), and bioactive factors have made them suitable candidates for respiratory tract regeneration in coronavirus disease 2019 (COVID-19) patients. EVs including microvesicles and exosomes can be applied for communication at the intercellular level due to their abilities in the long-distance transfer of biological messages such as mRNAs, growth factors, transcription factors, microRNAs, and cytokines, and therefore, simulate the specifications of the parent cell, influencing target cells upon internalization and/or binding. EVs exhibit both anti-inflammatory and tolerogenic immune responses by regulation of proliferation, polarization, activation, and migration of different immune cells. Due to effective immunomodulatory and high safety including a minimum risk of immunogenicity and tumorigenicity, mesenchymal stem cell (MSC)-EVs are more preferable to MSC-based therapies. Thus, as an endogenous repair and inflammation-reducing agent, MSC-EVs could be used against COVID-19 induced morbidity and mortality after further mechanistic and preclinical/clinical investigations. This review is focused on the therapeutic perspective of the secretome of stem cells in alleviating the cytokine storm and organ injury in COVID-19 patients.
Collapse
Affiliation(s)
- Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | | | - Aziz Eftekhari
- Department of Toxicology, Maragheh University of Medical Sciences, Maragheh 3453554, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg D-66421, Germany
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
41
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
42
|
Zhang X, Ye L, Liang G, Tang W, Yao L, Huang C. Different microRNAs contribute to the protective effect of mesenchymal stem cell-derived microvesicles in LPS induced acute respiratory distress syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1702-1708. [PMID: 35432797 PMCID: PMC8976904 DOI: 10.22038/ijbms.2021.56433.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The present study aimed to determine whether bone marrow mesenchymal stem cell-derived microvesicles (MSC MVs) were effective in restoring lung tissue structure, and to assess the potential role of miRNAs in the pathogenesis and progression of acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS ARDS was induced by lipopolysaccharide in male C57BL/6 mice. The degree of lung injury was assessed by histological analysis, lung's wet weight/body weight, and protein levels in the bronchoalveolar lavage fluid (BALF). Sequencing was performed on the BGISEQ-500 platform. Differentially expressed miRNAs (DEMs) were screened with the DEGseq software. The target genes of DEMs were predicted by iRNAhybrid, miRanda, and TargetScan. RESULTS Compared with LPS-injured mice, MSC MVs reduced lung water and total protein levels in the BALF, demonstrating a protective effect. 52 miRNAs were differentially expressed following treatment with MSC MVs in ARDS mice. Among them, miR-532-5p, miR-223-3p, and miR-744-5p were significantly regulated. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed the target genes were mainly located in the cell, organelle, and membrane. Furthermore, KEGG pathways such as ErbB, PI3K-Akt, Ras, MAPK, Toll, and Wnt signaling pathways were the most significant pathways enriched by the target genes. CONCLUSION MSC MVs treatment was involved in alleviating lung injury and promoting lung tissue repair by dysregulated miRNAs.
Collapse
Affiliation(s)
- Xingcai Zhang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Lifang Ye
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Guojin Liang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Wan Tang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Lifeng Yao
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Changshun Huang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China,Corresponding author: Changshun Huang. Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China. Tel/ Fax: +86-13957882779;
| |
Collapse
|
43
|
Nagoba B, Gavkare A, Rayate A, Mumbre S. Positive aspects, negative aspects and challenges associated with stem cell therapy for COVID - 19: A Mini-Review. Curr Stem Cell Res Ther 2021; 17:720-726. [PMID: 34727866 DOI: 10.2174/1574888x16666211102092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Like any other pandemic, the Covid-19 scenario has also demanded effective treatment options. The circumstances demand to utilize all the possible weapons in the armamentarium. There have been many issues regarding the short-term and long-term safety and efficacy of these options. Some options are like uncharted seas and these need a detailed and critical review with respect to safety, efficacy, feasibility and financial constraints. Mesenchymal stem cells (MSCs) therapy has been studied for many years for its potential role in diseases with complex pathogenesis. Its efficacy in controlling cytokine imbalance and immuno-modulatory properties is well proven. These effects are being extensively studied for potential extension of the benefits for an effective option for management of COVID-19 patients with severe respiratory involvement. In this mini-review, an attempt has been made to review positive aspects, negative aspects, and challenges influencing MSCs therapy in the management of COVID-19 disease. The results of various studies and literature reviews show that MSCs therapy can be considered as one of the potential options.
Collapse
Affiliation(s)
- Basavraj Nagoba
- Maharashtra Institute of Medical Sciences & Research (Medical College), Latur - 413531. India
| | - Ajay Gavkare
- Maharashtra Institute of Medical Sciences & Research (Medical College), Latur -413531. India
| | - Abhijit Rayate
- Maharashtra Institute of Medical Sciences & Research (Medical College), Latur -413531. India
| | - Sachin Mumbre
- Ashwini Rural Medical College, Solapur-413006, India & Dean, Faculty of Medicine, Maharashtra University of Health Sciences, Nashik. India
| |
Collapse
|
44
|
Guo Y, Wu D, Zhang X, Zhang K, Luo Y. Biomolecules in cell-derived extracellular vesicle chariots as warriors to repair damaged tissues. NANOSCALE 2021; 13:16017-16033. [PMID: 34570853 DOI: 10.1039/d1nr04999b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this review, we highlight the innovative applications of biomolecules from parent cell-derived extracellular vesicles (EVs) for tissue repair that have been developed in recent years. We evaluate the underlying mechanisms and therapeutic efficacy of each therapy. In previous literature reviews, it was most common to classify the use of EVs in tissue repair by disease type. This article reviews the role of three biomolecules in EVs in tissue repair. This review first summarizes the definitions and classifications of EVs. Then, the importance and significance of treating tissue damage with EVs are discussed. In particular, EV contents for tissue repair are three main types of biomolecules: proteins, RNAs and cell growth factors. The therapeutic and repair mechanisms of the biomolecules are discussed respectively. Finally, the development prospect and potential challenges of EV contents from highly differentiated cells as specific agents for tissue repair are summarized. When EVs are used to treat diseases such as tissue or organ damage, EVs play a role in delivery, and the real repair effect is effected by the various biomolecules carried by EVs. We believe that EV biomolecules have unparalleled advantages and clinical transformation potential for tissue repair and expect this review to inspire more intensive research work in this field.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Di Wu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China.
| |
Collapse
|
45
|
Extracellular vesicles in acute respiratory distress syndrome: Recent developments from bench to bedside. Int Immunopharmacol 2021; 100:108118. [PMID: 34492532 DOI: 10.1016/j.intimp.2021.108118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), characterized by a large number of inflammatory cell aggregation and alveolar cell damage in pathophysiology, have extremely high morbidity and mortality in critically ill patients. In recent years, more and more studies have found that there are abundant extracellular vesicles (EVs) in animal models and patients with ALI/ARDS, and they play a critical role in the pathogenesis of lung injury. Clarifying the mechanisms of EVs in lung injury is of great significance in the diagnosis and treatment of ALI/ARDS. In this review, we will summarize the recent findings on the roles of EVs derived from different cells in ALI/ARDS, along with the formation, function, and related effects of EVs, and explore their potential clinical application for the diagnosis and treatment of ALI/ARDS.
Collapse
|
46
|
Kiaie N, Ghanavati SPM, Miremadi SS, Hadipour A, Aghdam RM. Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Therapy, Preclinical and Clinical Evidence. Int J Stem Cells 2021; 14:252-261. [PMID: 34158414 PMCID: PMC8429942 DOI: 10.15283/ijsc20182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since the emergence of the novel coronavirus, named COVID-19, researchers are looking for a treatment to stop the devastating pandemic. During these efforts, mesenchymal stem cells (MSCs), the potential next generation of therapeutic methods with wide application for diseases, have successfully controlled cytokine storm following the virus infection. However, the use of MSCs has been limited due to the ethical issues, immunogenicity, and genetic modifications. Therefore, exosomes were introduced as a suitable substitute for the MSCs. In the case of COVID-19 treatment, both MSCs and exosomes exert their beneficial effect mainly through the management of the cytokine storm. This study provided the underlying mechanisms for the effect of exosomes on COVID-19 treatment and presented several preclinical and clinical studies of exosomes for COVID-19 treatment.
Collapse
Affiliation(s)
- Nasim Kiaie
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sara Sadat Miremadi
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
47
|
Increased In Vitro Intercellular Barrier Function of Lung Epithelial Cells Using Adipose-Derived Mesenchymal Stem/Stromal Cells. Pharmaceutics 2021; 13:pharmaceutics13081264. [PMID: 34452225 PMCID: PMC8401152 DOI: 10.3390/pharmaceutics13081264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
With the emergence of coronavirus disease-2019, researchers have gained interest in the therapeutic efficacy of mesenchymal stem/stromal cells (MSCs) in acute respiratory distress syndrome; however, the mechanisms of the therapeutic effects of MSCs are unclear. We have previously reported that adipose-derived MSCs (AD-MSCs) strengthen the barrier function of the pulmonary vessels in scaffold-based bioengineered rat lungs. In this study, we evaluated whether AD-MSCs could enhance the intercellular barrier function of lung epithelial cells in vitro using a transwell coculture system. Transepithelial electrical resistance (TEER) measurements revealed that the peak TEER value was significantly higher in the AD-MSC coculture group than in the AD-MSC non-coculture group. Similarly, the permeability coefficient was significantly decreased in the AD-MSC coculture group compared to that in the AD-MSC non-coculture group. Immunostaining of insert membranes showed that zonula occuldens-1 expression was significantly high at cell junctions in the AD-MSC coculture group. Moreover, cell junction-related gene profiling showed that the expression of some claudin genes, including claudin-4, was upregulated in the AD-MSC coculture group. Taken together, these results showed that AD-MSCs enhanced the barrier function between lung epithelial cells, suggesting that both direct adhesion and indirect paracrine effects strengthened the barrier function of lung alveolar epithelium in vitro.
Collapse
|
48
|
Yousefi Dehbidi M, Goodarzi N, Azhdari MH, Doroudian M. Mesenchymal stem cells and their derived exosomes to combat Covid-19. Rev Med Virol 2021; 32:e2281. [PMID: 34363275 PMCID: PMC8420536 DOI: 10.1002/rmv.2281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is causing an ongoing pandemic of coronavirus disease 2019 (Covid‐19). Effective therapies are required for the treatment of patients with severe stages of the disease. Mesenchymal stem cells (MSCs) have been evaluated in numerous clinical trials, but present challenges, such as carcinogenic risk and special storage conditions, coupled with insufficient data about their mechanism of action. The majority of unique properties of MSCs are related to their paracrine activity and especially to their exosomes. The impact of MSCs‐derived exosomes (MSC‐Es) on complications of Covid‐19 has been investigated in several studies. MSC‐Es may improve some complications of Covid‐19 such as cytokine storm, acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Additionally, these exosomes can be evaluated as an applicable nano‐size carrier for antiviral therapeutic agents. Herein, we consider several potential applications of MSCs and their derived exosomes in the treatment of Covid‐19.
Collapse
Affiliation(s)
- Maryam Yousefi Dehbidi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad H Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
49
|
Moradinasab S, Pourbagheri-Sigaroodi A, Zafari P, Ghaffari SH, Bashash D. Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: Mechanisms of action, research progress, challenges, and opportunities. Int Immunopharmacol 2021; 97:107694. [PMID: 33932694 PMCID: PMC8079337 DOI: 10.1016/j.intimp.2021.107694] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023]
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan city, Hubei province, China. Rapidly escalated into a worldwide pandemic, it has caused an unprecedented and devastating situation on the global public health and society economy. The severity of recent coronavirus disease, abbreviated to COVID-19, seems to be mostly associated with the patients' immune response. In this vein, mesenchymal stromal/stem cells (MSCs) have been suggested as a worth-considering option against COVID-19 as their therapeutic properties are mainly displayed in immunomodulation and anti-inflammatory effects. Indeed, administration of MSCs can attenuate cytokine storm and enhance alveolar fluid clearance, endothelial recovery, and anti-fibrotic regeneration. Despite advantages attributed to MSCs application in lung injuries, there are still several issues __foremost probability of malignant transformation and incidence of MSCs-related coagulopathy__ which should be resolved for the successful application of MSC therapy in COVID-19. In the present study, we review the historical evidence of successful use of MSCs and MSC-derived extracellular vesicles (EVs) in the treatment of acute respiratory distress syndrome (ARDS). We also take a look at MSCs mechanisms of action in the treatment of viral infections, and then through studying both the dark and bright sides of this approach, we provide a thorough discussion if MSC therapy might be a promising therapeutic approach in COVID-19 patients.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, Dekker N, Stevens MM. Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv Drug Deliv Rev 2021; 175:113775. [PMID: 33872693 DOI: 10.1016/j.addr.2021.04.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles naturally secreted by cells, acting as delivery vehicles for molecular messages. During the last decade, EVs have been assigned multiple functions that have established their potential as therapeutic mediators for a variety of diseases and conditions. In this review paper, we report on the potential of EVs in tissue repair and regeneration. The regenerative properties that have been associated with EVs are explored, detailing the molecular cargo they carry that is capable of mediating such effects, the signaling cascades triggered in target cells and the functional outcome achieved. EV interactions and biodistribution in vivo that influence their regenerative effects are also described, particularly upon administration in combination with biomaterials. Finally, we review the progress that has been made for the successful implementation of EV regenerative therapies in a clinical setting.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, 9700 AD Groningen, the Netherlands.
| | - Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Luke van der Koog
- Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB10, 9700 AD Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Eoghan M Cunnane
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Niek Dekker
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|