1
|
Roser SM, Munarin F, Polucha C, Minor AJ, Choudhary G, Coulombe KLK. Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins. ACS Biomater Sci Eng 2025; 11:1612-1628. [PMID: 39945764 DOI: 10.1021/acsbiomaterials.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Therapeutic protein delivery has ushered in a promising new generation of disease treatment, garnering more recognition for its clinical potential than ever. However, proteins' limited stability, extremely short average half-lives, and evidenced toxicity following systemic delivery continue to undercut their efficacy. Biomaterial-based protein delivery, however, demonstrates the potential to overcome these obstacles. To this end, we have developed a heparinized alginate and collagen hydrogel for the local, sustained delivery of therapeutic proteins. In an effort to match this ubiquitous application of protein delivery to various disease states and target tissues with sufficient versatility, we identified three distinct delivery modes as design targets. A shear-thinning, low-viscosity injectable for minimal tissue damage, a higher-viscosity gel plug for subcutaneous injection, and a submillimeter-thickness film for solid-form implantation were optimized and characterized in this work. In vitro assessments confirmed feasible injection control, mechanical stability for up to 6 h of unsubmerged storage, and isotropic early collagen fibril assembly. Release kinetics were assessed both in vitro and in vivo, demonstrating up to 14 days of functional vascular endothelial growth factor delivery. Rodent models of pulmonary hypertension, subcutaneous injection, and myocardial infarction, three promising applications of protein therapeutics, were used to assess the feasible delivery and biocompatibility of the injectable gel, gel plug, and film, respectively. Histological evaluation of the delivered materials and surrounding tissue showed high biocompatibility with cell and blood vessel infiltration, remodeling, and integration with the host tissue. Our successful customization of the biomaterial to heterogeneous delivery modes demonstrates its versatile capacity for the local, sustained delivery of therapeutic proteins for a diverse array of regenerative medicine applications.
Collapse
Affiliation(s)
- Stephanie M Roser
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Fabiola Munarin
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Collin Polucha
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Gaurav Choudhary
- Division of Cardiology, Providence VA Medical Center, Providence, Rhode Island 02908, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Kareen L K Coulombe
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
2
|
DeMaria AH, Lee JS, Webb K. N-Oxalylglycine-Conjugated Hyaluronic Acid as a Macromolecular Prodrug for Therapeutic Angiogenesis. Gels 2025; 11:27. [PMID: 39851998 PMCID: PMC11765021 DOI: 10.3390/gels11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) initiates the cellular response to low oxygen levels, making it an attractive target for stimulating therapeutic angiogenesis. Several small molecules have been identified that stabilize HIF-1α and activate the angiogenic signaling pathway. However, achieving therapeutic doses of bioactive small molecules in target tissues remains challenging. In this paper, we report the synthesis and characterization of a new macromolecular prodrug composed of the pro-angiogenic small molecule N-oxalylglycine conjugated to hyaluronic acid (HA-NOG). NOG was conjugated to HA by esterification, and release was significantly increased in the presence of degradative enzymes, esterase and hyaluronidase, compared to physiological buffer, confirming that the release of NOG is primarily enzymatically driven. Normal human dermal fibroblasts (NHDFs) cultured with HA-NOG exhibited HIF-1α accumulation in the cell nucleus and dose-dependent increases in mRNA expression levels of three direct HIF transcriptional targets. Conditioned medium from these cells stimulated endothelial cell tubulogenesis. As an initial evaluation of safety and possible side effects, HA-NOG was found not to significantly affect NHDF metabolic activity, proliferation, or collagen deposition. These studies demonstrate that HA-NOG releases NOG in response to cellular enzymatic activity, activating the HIF signaling pathway and culminating in the secretion of soluble factors that activate endothelial cells without adversely affecting other cellular metabolic pathways.
Collapse
Affiliation(s)
- Andrew H. DeMaria
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Ken Webb
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
3
|
Kim B, Swain JWR, Fowler MJ, Yang CY, Vohidona D, Hartgerink JD, Veiseh O. Rapid method to screen biomaterial angiogenesis in vivo using fluorescence imaging in mice. Biomater Sci 2024; 12:5824-5833. [PMID: 39412699 DOI: 10.1039/d4bm00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Effective vascularization is crucial for repairing and enhancing the longevity of engineered tissues and organs. As the field advances, there is a vital need for efficient and reliable methods for assessing vascularization in real-time. The integration and performance of constructed biomaterials in living organisms rely on angiogenesis and vascularization, making it essential to evaluate vascular development and networks within biomaterials. Current histology-based methods are limited and labor-intensive. On the other hand, fluorescence imaging offers promise for efficient, real-time evaluation of angiogenesis, reducing the time needed for screening many compounds and offering a high-throughput alternative to histology-based methods. Here, we investigated a novel, non-invasive method for quick and repeated analysis of the angiogenic and vascularization process in biomaterials via fluorescence IVIS imaging. Multi-domain peptides (MDPs), self-assembling peptide hydrogels that can possess pro-angiogenic properties depending on their primary sequence, were synthesized and utilized as angiogenic biomaterials and screened with a fluorescence IVIS probe to demonstrate real-time rapid angiogenesis in vivo. The fluorescence-based imaging showed the influence of the peptide chemistry, volume, and concentration on angiogenesis, with one particular MDP, SLanc, promoting robust angiogenesis after one week at 2 w/v%. Through this method, we were able to identify the optimal peptide for rapid and sustained angiogenesis. This approach enables real-time monitoring of angiogenic responses and vascularization processes in the same living subject. It promotes the development of new biomaterials that facilitate vascularization and validates an advanced in vivo screening technique for angiogenesis.
Collapse
Affiliation(s)
- Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Martha J Fowler
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| | - Claire Y Yang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | | | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Giacolone J, Osofsky R, Matheson B, Perales G, Shekarriz R, Kanagy N, Clark RM. H 2S-Eluting Hydrogels Promote In Vitro Angiogenesis and Augment In Vivo Ischemic Wound Revascularization. Biomolecules 2024; 14:1350. [PMID: 39595527 PMCID: PMC11591623 DOI: 10.3390/biom14111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic wounds are frequently encountered in clinical practice and may be related to ischemia secondary to diabetes, peripheral artery disease and other chronic conditions. Angiogenesis is critical to the resolution of ischemia. Hydrogen sulfide (H2S) is now recognized as an important factor in this process. H2S donors NaHS and GYY4137 were incorporated into the photosensitive polymer hydrogel gelatin methacrylate and evaluated. Human umbilical vein endothelial cell (HUVEC) culture was used to quantify toxicity and angiogenesis. Sprague Dawley rats were subjected to ischemic myocutaneous flap wound creation with and without application of H2S-eluting hydrogels. Tissue perfusion during wound healing was quantified using laser speckle contrast imaging, and gene and protein expression for VEGF were evaluated. Vascular density was assessed by CD31 immunohistochemistry. Successful incorporation of sulfide compounds was confirmed by scanning electron microscopy with energy-dispersive X-ray analysis, and under physiologic conditions, detectable H2S was present for up to 14 days by high-performance liquid chromatography. HUVECs exposed to hydrogels did not demonstrate excess cytotoxicity or apoptosis. A two-fold increase in angiogenic tube formation was observed in HUVECs exposed to H2S-eluting hydrogels. Rat ischemic flap wounds demonstrated greater perfusion at 14 days, and there was greater vascularity of healed wounds compared to untreated animals. A nearly two-fold increase in VEGF mRNA and a four-fold increase in VEGF protein expression were present in wounds from treated animals. Local-regional administration of H2S represents a novel potential therapeutic strategy to promote angiogenesis and improve wound healing after tissue injury or as a result of ischemic disease.
Collapse
Affiliation(s)
- Joseph Giacolone
- Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA; (J.G.); (R.O.)
| | - Robin Osofsky
- Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA; (J.G.); (R.O.)
| | - Benjamin Matheson
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA; (B.M.); (N.K.)
| | - Gabriela Perales
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA; (B.M.); (N.K.)
| | | | - Nancy Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA; (B.M.); (N.K.)
| | - Ross M. Clark
- Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA; (J.G.); (R.O.)
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA; (B.M.); (N.K.)
| |
Collapse
|
5
|
Schwager JM, Di Maggio N, Grosso A, Rasadurai A, Minder N, Hubbell JA, Kappos EA, Schaefer DJ, Briquez PS, Banfi A, Burger MG. Semaphorin 3A promotes the long-term persistence of human SVF-derived microvascular networks in engineered grafts. Front Bioeng Biotechnol 2024; 12:1396450. [PMID: 39234267 PMCID: PMC11371724 DOI: 10.3389/fbioe.2024.1396450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction The stromal vascular fraction (SVF) of human adipose tissue is an attractive cell source for engineering grafts with intrinsic vascularization potential, as it is rich in vasculogenic progenitors. However, in order to maintain their functional perfusion it is important to promote the in vivo stabilization of newly assembled microvascular networks. We previously found that Semaphorin 3A (Sema3A) promotes the rapid stabilization of new blood vessels induced by VEGF overexpression in skeletal muscle. Here we investigated whether Sema3A could promote the assembly, connection to circulation and persistence of human SVF-derived microvascular networks in engineered grafts. Methods Recombinant Sema3A was engineered with a transglutaminase substrate sequence (TG-Sema3A) to allow cross-linking into fibrin hydrogels. Grafts were prepared with freshly isolated human SVF cells in fibrin hydrogels decorated with 0, 0.1 or 100 μg/ml TG-Sema3A and implanted subcutaneously in immune-deficient mice. Results After 1 week in vivo, the assembly of human-derived networks was similar in all conditions. The outer part of the grafts was populated by blood vessels of both human and mouse origin, which formed abundant hybrid structures within a common basal lamina. About 90% of human-derived blood vessels were functionally connected to the host circulation in all conditions. However, in the control samples human vessels were unstable. In fact, they significantly regressed by 6 weeks and could no longer be found by 12 weeks. In contrast, a low Sema3A dose (0.1 μg/ml) promoted further human vascular expansion by about 2-fold at 6 weeks and protected them from regression until 12 weeks. From a mechanistic point of view, the stabilization of SVF-derived vessels by 0.1 μg/ml of Sema3A correlated with the recruitment of a specific population of monocytes expressing its receptor Neuropilin-1. Discussion In conclusion, Sema3A is a potent stimulator of in vivo long-term persistence of microvascular networks derived from human SVF. Therefore, decoration of matrices with Sema3a can be envisioned to promote the functional support of tissue engineered grafts.
Collapse
Affiliation(s)
- Juan M Schwager
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Basel, Switzerland
| | - Nunzia Di Maggio
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Grosso
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Abeelan Rasadurai
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nadja Minder
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Elisabeth A Kappos
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Basel, Switzerland
- Department of Clinical Research, Medical Faculty, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Basel, Switzerland
| | - Priscilla S Briquez
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Andrea Banfi
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Basel, Switzerland
| | - Maximilian G Burger
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Basel, Switzerland
| |
Collapse
|
6
|
Mainali BB, Yoo JJ, Ladd MR. Tissue engineering and regenerative medicine approaches in colorectal surgery. Ann Coloproctol 2024; 40:336-349. [PMID: 39228197 PMCID: PMC11375227 DOI: 10.3393/ac.2024.00437.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Tissue engineering and regenerative medicine (TERM) is an emerging field that has provided new therapeutic opportunities by delivering innovative solutions. The development of nontraditional therapies for previously unsolvable diseases and conditions has brought hope and excitement to countless individuals globally. Many regenerative medicine therapies have been developed and delivered to patients clinically. The technology platforms developed in regenerative medicine have been expanded to various medical areas; however, their applications in colorectal surgery remain limited. Applying TERM technologies to engineer biological tissue and organ substitutes may address the current therapeutic challenges and overcome some complications in colorectal surgery, such as inflammatory bowel diseases, short bowel syndrome, and diseases of motility and neuromuscular function. This review provides a comprehensive overview of TERM applications in colorectal surgery, highlighting the current state of the art, including preclinical and clinical studies, current challenges, and future perspectives. This article synthesizes the latest findings, providing a valuable resource for clinicians and researchers aiming to integrate TERM into colorectal surgical practice.
Collapse
Affiliation(s)
- Bigyan B Mainali
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| | - Mitchell R Ladd
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
8
|
Huang LM, Zhang MJ. Kinesin 26B modulates M2 polarization of macrophage by activating cancer-associated fibroblasts to aggravate gastric cancer occurrence and metastasis. World J Gastroenterol 2024; 30:2689-2708. [PMID: 38855156 PMCID: PMC11154681 DOI: 10.3748/wjg.v30.i20.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 04/19/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND The regulatory effects of KIF26B on gastric cancer (GC) have been confirmed, but the specific mechanism still needs further exploration. Pan-cancer analysis shows that the KIF26B expression is highly related to immune infiltration of cancer-associated fibroblasts (CAFs), and CAFs promote macrophage M2 polarization and affect cancers' progression. AIM To investigate the regulatory functions of KIF26B on immune and metastasis of GC. METHODS We analyzed genes' mRNA levels by quantitative real-time polymerase chain reaction. Expression levels of target proteins were detected by immunohistochemistry, ELISA, and Western blotting. We injected AGS cells into nude mice for the establishment of a xenograft tumor model and observed the occurrence and metastasis of GC. The degree of inflammatory infiltration in pulmonary nodes was observed through hematoxylin-eosin staining. Transwell and wound healing assays were performed for the evaluation of cell invasion and migration ability. Tube formation assay was used for detecting angiogenesis. M2-polarized macrophages were estimated by immunofluorescence and flow cytometry. RESULTS KIF26B was significantly overexpressed in cells and tissues of GC, and the higher expression of KIF26B was related to GC metastasis and prognosis. According to in vivo experiments, KIF26B promoted tumor formation and metastasis of GC. KIF26B expression was positively associated with CAFs' degree of infiltration. Moreover, CAFs could regulate M2-type polarization of macrophages, affecting GC cells' migration, angiogenesis, invasion, and epithelial-mesenchymal transition process. CONCLUSION KIF26B regulated M2 polarization of macrophage through activating CAFs, regulating the occurrence and metastasis of GC.
Collapse
Affiliation(s)
- Lian-Meng Huang
- Department of General Surgery, The 901st Hospital of PLA, Hefei 230031, Anhui Province, China
| | - Ming-Jin Zhang
- Department of General Surgery, The 901st Hospital of PLA, Hefei 230031, Anhui Province, China
| |
Collapse
|
9
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
10
|
Wang M, Zhang L, Hao H, Yan M, Zhu Z. Applications of Engineered Skin Tissue for Cosmetic Component and Toxicology Detection. Cell Transplant 2024; 33:9636897241235464. [PMID: 38491929 PMCID: PMC10944590 DOI: 10.1177/09636897241235464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024] Open
Abstract
The scale of the cosmetic market is increasing every day. There are many safety risks to cosmetics, but they benefit people at the same time. The skin can become red, swollen, itchy, chronically toxic, and senescent due to the misuse of cosmetics, triggering skin injuries, with contact dermatitis being the most common. Therefore, there is an urgent need for a system that can scientifically and rationally detect the composition and perform a toxicological assessment of cosmetic products. Traditional detection methods rely on instrumentation and method selection, which are less sensitive and more complex to perform. Engineered skin tissue has emerged with the advent of tissue engineering technology as an emerging bioengineering technology. The ideal engineered skin tissue is the basis for building good in vitro structures and physiological functions in this field. This review introduces the existing cosmetic testing and toxicological evaluation methods, the current development status, and the types and characteristics of engineered skin tissue. The application of engineered skin tissue in the field of cosmetic composition detection and toxicological evaluation, as well as the different types of tissue engineering scaffold materials and three-dimensional (3D) organoid preparation approaches, is highlighted in this review to provide methods and ideas for constructing the next engineered skin tissue for cosmetic raw material component analysis and toxicological evaluation.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Linfeng Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Muyang Yan
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ziying Zhu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
11
|
Longoni A, Major GS, Jiang S, Farrugia BL, Kieser DC, Woodfield TBF, Rnjak-Kovacina J, Lim KS. Pristine gelatin incorporation as a strategy to enhance the biofunctionality of poly(vinyl alcohol)-based hydrogels for tissue engineering applications. Biomater Sci 2023; 12:134-150. [PMID: 37933486 DOI: 10.1039/d3bm01172k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Synthetic polymers, such as poly(vinyl alcohol) (PVA), are popular biomaterials for the fabrication of hydrogels for tissue engineering and regenerative medicine (TERM) applications, as they provide excellent control over the physico-chemical properties of the hydrogel. However, their bioinert nature is known to limit cell-biomaterial interactions by hindering cell infiltration, blood vessel recruitment and potentially limiting their integration with the host tissue. Efforts in the field have therefore focused on increasing the biofunctionality of synthetic hydrogels, without limiting the advantages associated with their tailorability and controlled release capacity. The aim of this study was to investigate the suitability of pristine gelatin to enhance the biofunctionality of tyraminated PVA (PVA-Tyr) hydrogels, by promoting cell infiltration and host blood vessel recruitment for TERM applications. Pure PVA-Tyr hydrogels and PVA-Tyr hydrogels incorporated with vascular endothelial growth factor (VEGF), a well-known pro-angiogenic stimulus, were used for comparison. Incorporating increasing concentrations of VEGF (0.01-10 μg mL-1) or gelatin (0.01-5 wt%) did not influence the physical properties of PVA-Tyr hydrogels. However, their presence within the polymer network (>0.1 μg mL-1 VEGF and >0.1 wt% gelatin) promoted endothelial cell interactions with the hydrogels. The covalent binding of unmodified gelatin or VEGF to the PVA-Tyr network did not hamper their inherent bioactivity, as they both promoted angiogenesis in a chick chorioallantoic membrane (CAM) assay, performing comparably with the unbound VEGF control. When the PVA-Tyr hydrogels were implanted subcutaneously in mice, it was observed that cell infiltration into the hydrogels was possible in the absence of gelatin or VEGF at 1- or 3-weeks post-implantation, highlighting a clear difference between in vitro an in vivo cell-biomaterial interaction. Nevertheless, the presence of gelatin or VEGF was necessary to enhance blood vessel recruitment and infiltration, although no significant difference was observed between these two biological molecules. Overall, this study highlights the potential of gelatin as a standalone pro-angiogenic cue to enhance biofunctionality of synthetic hydrogels and provides promise for their use in a variety of TERM applications.
Collapse
Affiliation(s)
- Alessia Longoni
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Gretel S Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Shaoyuan Jiang
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Brooke L Farrugia
- School of Biomedical Engineering, University of Melbourne, Australia
| | - David C Kieser
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Tim B F Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | | | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
- Light-Activated Biomaterials Group, School of Medical Sciences, University of Sydney, Australia
| |
Collapse
|
12
|
Park H, Lee DH, You JH, Seok J, Lim JY, Kim GJ. Increased Hepatocyte Growth Factor Secretion by Placenta-Derived Mesenchymal Stem Cells Improves Ovarian Function in an Ovariectomized Rat Model via Vascular Remodeling by Wnt Signaling Activation. Cells 2023; 12:2708. [PMID: 38067136 PMCID: PMC10705748 DOI: 10.3390/cells12232708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The vascular network contributes to the development of follicles. However, the therapeutic mechanism between vascular remodeling and ovarian functions is still unclear. Therefore, we demonstrated whether increased HGF by placenta-derived mesenchymal stem cells (PD-MSCs) improves ovarian function in an ovariectomized rat model via vascular remodeling by Wnt signaling activation. We established a half-ovariectomized rat model in which damaged ovaries were induced by ovariectomy of half of each ovary, and PD-MSCs (5 × 105 cells) were transplanted by intravenous injection. Three weeks after transplantation, rats in all groups were sacrificed. We examined the secretion of HGF by PD-MSCs through culture medium. The vascular structure in injured ovarian tissues was restored to a greater extent in the PD-MSC transplantation (Tx) group than in the nontransplantation (NTx) group (* p < 0.05). The expression of genes related to Wnt signaling (e.g., LRP6, GSK3β, β-catenin) was significantly increased in the Tx group compared to the NTx group (* p < 0.05). However, the expression of genes related to vascular permeability (e.g., Asef, ERG3) was significantly decreased in the Tx group compared to the NTx group (* p < 0.05). Follicular development was improved in the Tx group compared to the NTx group (* p < 0.05). Furthermore, to evaluate vascular function, we cocultivated PD-MSCs after human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS), and we analyzed the vascular formation assay and dextran assay in HUVECs. Cocultivation of PD-MSCs with injured HUVECs enhanced vascular formation and decreased endothelial cell permeability (* p < 0.05). Also, cocultivation of PD-MSCs with explanted ovarian tissues improved follicular maturation compared to cocultivation of the Wnt inhibitor-treated PD-MSCs with explanted ovarian tissues. Therefore, HGF secreted by PD-MSCs improved ovarian function in rats with ovarian dysfunction by decreasing vascular permeability via Wnt signaling.
Collapse
Affiliation(s)
- Hyeri Park
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- PLABiologics Co., Ltd., Seongnam-si 13522, Gyeonggi-do, Republic of Korea
| | - Dae Hyun Lee
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- PLABiologics Co., Ltd., Seongnam-si 13522, Gyeonggi-do, Republic of Korea
| | - Jun Hyeong You
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Jin Seok
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Ja-Yun Lim
- Department of Clinical Laboratory Science, Hyejeon College, Hongsung-gun 32244, Chungnam-do, Republic of Korea
| | - Gi Jin Kim
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- PLABiologics Co., Ltd., Seongnam-si 13522, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Liu X, Zhang P, Gu Y, Guo Q, Liu Y. Type H vessels: functions in bone development and diseases. Front Cell Dev Biol 2023; 11:1236545. [PMID: 38033859 PMCID: PMC10687371 DOI: 10.3389/fcell.2023.1236545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Type H vessels are specialized blood vessels found in the bone marrow that are closely associated with osteogenic activity. They are characterized by high expression of endomucin and CD31. Type H vessels form in the cancellous bone area during long bone development to provide adequate nutritional support for cells near the growth plate. They also influence the proliferation and differentiation of osteoprogenitors and osteoclasts in a paracrine manner, thereby creating a suitable microenvironment to facilitate new bone formation. Because of the close relationship between type H vessels and osteogenic activity, it has been found that type H vessels play a role in the physiological and pathological processes of bone diseases such as fracture healing, osteoporosis, osteoarthritis, osteonecrosis, and tumor bone metastasis. Moreover, experimental treatments targeting type H vessels can improve the outcomes of these diseases. Here, we reviewed the molecular mechanisms related to type H vessels and their associated osteogenic activities, which are helpful in further understanding the role of type H vessels in bone metabolism and will provide a theoretical basis and ideas for comprehending bone diseases from the vascular perspective.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Peilin Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyue Guo
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yonggan Liu
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
14
|
Beheshtizadeh N, Gharibshahian M, Bayati M, Maleki R, Strachan H, Doughty S, Tayebi L. Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed Pharmacother 2023; 166:115301. [PMID: 37562236 DOI: 10.1016/j.biopha.2023.115301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
The utilization of growth factors in the process of tissue regeneration has garnered significant interest and has been the subject of extensive research. However, despite the fervent efforts invested in recent clinical trials, a considerable number of these studies have produced outcomes that are deemed unsatisfactory. It is noteworthy that the trials that have yielded the most satisfactory outcomes have exhibited a shared characteristic, namely, the existence of a mechanism for the regulated administration of growth factors. Despite the extensive exploration of drug delivery vehicles and their efficacy in delivering certain growth factors, the development of a reliable predictive approach for the delivery of delicate growth factors like Vascular Endothelial Growth Factor (VEGF) remains elusive. VEGF plays a crucial role in promoting angiogenesis; however, the administration of VEGF demands a meticulous approach as it necessitates precise localization and transportation to a specific target tissue. This process requires prolonged and sustained exposure to a low concentration of VEGF. Inaccurate administration of drugs, either through off-target effects or inadequate delivery, may heighten the risk of adverse reactions and potentially result in tumorigenesis. At present, there is a scarcity of technologies available for the accurate encapsulation of VEGF and its subsequent sustained and controlled release. The objective of this review is to present and assess diverse categories of VEGF administration mechanisms. This paper examines various systems, including polymeric, liposomal, hydrogel, inorganic, polyplexes, and microfluidic, and evaluates the appropriate dosage of VEGF for multiple applications.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Bayati
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.
| | - Hannah Strachan
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
15
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
17
|
Dubey N, Ribeiro JS, Zhang Z, Xu J, Ferreira JA, Qu L, Mei L, Fenno JC, Schwendeman A, Schwendeman SP, Nör JE, Bottino MC. Gelatin methacryloyl hydrogel as an injectable scaffold with multi-therapeutic effects to promote antimicrobial disinfection and angiogenesis for regenerative endodontics. J Mater Chem B 2023; 11:3823-3835. [PMID: 36946228 PMCID: PMC10160005 DOI: 10.1039/d2tb02788g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Regenerative endodontics represents a paradigm shift in dental pulp therapy for necrotic young permanent teeth. However, there are still challenges associated with attaining maximum root canal disinfection while supporting angiogenesis and preserving resident stem cells viability and differentiation capacity. Here, we developed a hydrogel system by incorporating antibiotic-eluting fiber-based microparticles in gelatin methacryloyl (GelMA) hydrogel to gather antimicrobial and angiogenic properties while prompting minimum cell toxicity. Minocycline (MINO) or clindamycin (CLIN) was introduced into a polymer solution and electrospun into fibers, which were further cryomilled to attain MINO- or CLIN-eluting fibrous microparticles. To obtain hydrogels with multi-therapeutic effects, MINO- or CLIN-eluting microparticles were suspended in GelMA at distinct concentrations. The engineered hydrogels demonstrated antibiotic-dependent swelling and degradability while inhibiting bacterial growth with minimum toxicity in dental-derived stem cells. Notably, compared to MINO, CLIN hydrogels enhanced the formation of capillary-like networks of endothelial cells in vitro and the presence of widespread vascularization with functioning blood vessels in vivo. Our data shed new light onto the clinical potential of antibiotic-eluting gelatin methacryloyl hydrogel as an injectable scaffold with multi-therapeutic effects to promote antimicrobial disinfection and angiogenesis for regenerative endodontics.
Collapse
Affiliation(s)
- Nileshkumar Dubey
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
| | - Liu Qu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ling Mei
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Grosso A, Lunger A, Burger MG, Briquez PS, Mai F, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone. NPJ Regen Med 2023; 8:15. [PMID: 36914692 PMCID: PMC10011536 DOI: 10.1038/s41536-023-00288-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF) physiologically regulates both angiogenesis and osteogenesis, but its application in bone tissue engineering led to contradictory outcomes. A poorly understood aspect is how VEGF dose impacts the coordination between these two processes. Taking advantage of a unique and highly tunable platform, here we dissected the effects of VEGF dose over a 1,000-fold range in the context of tissue-engineered osteogenic grafts. We found that osteo-angiogenic coupling is exquisitely dependent on VEGF dose and that only a tightly defined dose range could stimulate both vascular invasion and osteogenic commitment of progenitors, with significant improvement in bone formation. Further, VEGF dose regulated Notch1 activation and the induction of a specific pro-osteogenic endothelial phenotype, independently of the promotion of vascular invasion. Therefore, in a therapeutic perspective, fine-tuning of VEGF dose in the signaling microenvironment is key to ensure physiological coupling of accelerated vascular invasion and improved bone formation.
Collapse
Affiliation(s)
- Andrea Grosso
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Lunger
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Maximilian G Burger
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA.,Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Francesca Mai
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA
| | - Dirk J Schaefer
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Banfi
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland. .,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nunzia Di Maggio
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
19
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
20
|
Majidansari S, Vahedi N, Rekabgardan M, Ganjoury C, Najmoddin N, Tabatabaei M, Sigaroodi F, Naraghi‐Bagherpour P, Taheri SAA, Khani M. Enhancing endothelial differentiation of human mesenchymal stem cells by culture on a nanofibrous polycaprolactone/(poly‐glycerol sebacate)/gelatin scaffold. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shima Majidansari
- Department of Tissue Engineering Science and Research branch, Islamic Azad University Tehran Iran
| | - Negin Vahedi
- Department of Life Science Engineering Faculty of New Sciences and Technologies, University of Tehran Tehran Iran
| | - Mahmood Rekabgardan
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering Science and Research Branch, Islamic Azad University Tehran Iran
| | - Mohammad Tabatabaei
- Cell Engineering and Biomicrofluidics Systems Lab Department of Biomedical Engineering, Amirkabir University of Technology Tehran Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Paniz Naraghi‐Bagherpour
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyed Amir Ali Taheri
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad‐Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
21
|
Oliverio R, Patenaude V, Liberelle B, Virgilio N, Banquy X, De Crescenzo G. Macroporous dextran hydrogels for controlled growth factor capture and delivery using coiled-coil interactions. Acta Biomater 2022; 153:190-203. [PMID: 36113720 DOI: 10.1016/j.actbio.2022.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Macroporous hydrogels possess a vast potential for various applications in the biomedical field. However, due to their large pore size allowing for unrestricted diffusion in the macropore network, macroporous hydrogels alone are not able to efficiently capture and release biomolecules in a controlled manner. There is thus a need for biofunctionalized, affinity-based gels that can efficiently load and release biomolecules in a sustained and controlled manner. For this purpose, we report here the use of a E/K coiled-coil affinity pair for the controlled capture and delivery of growth factors from highly interconnected, macroporous dextran hydrogels. By conjugating the Kcoil peptide to the dextran backbone, we achieved controlled loading and release of Ecoil-tagged Epidermal and Vascular Endothelial Growth Factors. To finely tune the behavior of the gels, we propose four control parameters: (i) macropore size, (ii) Kcoil grafting density, (iii) Ecoil valency and (iv) E/K affinity. We demonstrate that Kcoil grafting can produce a 20-fold increase in passive growth factor capture by macroporous dextran gels. Furthermore, we demonstrate that our gels can release as little as 20% of the loaded growth factors over one week, while retaining bioactivity. Altogether, we propose a versatile, highly tunable platform for the controlled delivery of growth factors in biomedical applications. STATEMENT OF SIGNIFICANCE: This work presents a highly tunable platform for growth factor capture and sustained delivery using affinity peptides in macroporous, fully interconnected dextran hydrogels. It addresses several ongoing challenges by presenting: (i) a versatile platform for the delivery of a wide range of stable, bioactive molecules, (ii) a passive, affinity-based loading of growth factors in the platform, paving the way for in situ (re)loading of the device and (iii) four different control parameters to finely tune growth factor capture and release. Altogether, our macroporous dextran hydrogels have a vast potential for applications in controlled delivery, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada; Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Victor Patenaude
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
22
|
Di Maggio N, Banfi A. The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity. Curr Opin Biotechnol 2022; 76:102750. [PMID: 35841865 DOI: 10.1016/j.copbio.2022.102750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
In recent years it has been increasingly appreciated that blood vessels are not simply suppliers of nutrients and oxygen, but actually play an exquisite regulatory role in bone development and repair. A specialized kind of endothelium, named type H because of its high expression of CD31 and Endomucin, constitutes anatomically defined vessels in proximity of the epiphyseal growth plate. Type H endothelium regulates the proliferation and differentiation of both osteoblasts and osteoclasts through the secretion of angiocrine signals and is a hub for the bidirectional molecular crosstalk between the different cell populations of the osteogenic microenvironment. Type H vessels are a key target for current translational approaches aiming at coupling angiogenesis and osteogenesis for bone repair. Open questions remain about their presence and features in notstereotyped tissues, like engineered osteogenic grafts, and the opportunities for their clinical stimulation by pharmacological treatments.
Collapse
Affiliation(s)
- Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland; Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Switzerland.
| |
Collapse
|
23
|
Burger MG, Grosso A, Briquez PS, Born GME, Lunger A, Schrenk F, Todorov A, Sacchi V, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater 2022; 149:111-125. [PMID: 35835287 DOI: 10.1016/j.actbio.2022.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022]
Abstract
Rapid vascularization of clinical-size bone grafts is an unsolved challenge in regenerative medicine. Vascular endothelial growth factor-A (VEGF) is the master regulator of angiogenesis. Its over-expression by genetically modified human osteoprogenitors has been previously evaluated to drive vascularization in osteogenic grafts, but has been observed to cause paradoxical bone loss through excessive osteoclast recruitment. However, during bone development angiogenesis and osteogenesis are physiologically coupled by VEGF expression. Here we investigated whether the mode of VEGF delivery may be a key to recapitulate its physiological function. VEGF activity requires binding to the extracellular matrix, and heterogeneous levels of expression lead to localized microenvironments of excessive dose. Therefore we hypothesized that a homogeneous distribution of matrix-associated factor in the microenvironment may enable efficient coupling of angiogenesis and bone formation. This was achieved by decorating fibrin matrices with a cross-linkable engineered version of VEGF (TG-VEGF) that is released only by enzymatic cleavage by invading cells. In ectopic grafts, both TG-VEGF and VEGF-expressing progenitors similarly improved vascularization within the first week, but efficient bone formation was possible only in the factor-decorated matrices, whereas heterogenous, cell-based VEGF expression caused significant bone loss. In critical-size orthotopic calvaria defects, TG-VEGF effectively improved early vascular invasion, osteoprogenitor survival and differentiation, as well as bone repair compared to both controls and VEGF-expressing progenitors. In conclusion, homogenous distribution of matrix-associated VEGF protein preserves the physiological coupling of angiogenesis and osteogenesis, providing an attractive and clinically applicable strategy to engineer vascularized bone. STATEMENT OF SIGNIFICANCE: The therapeutic regeneration of vascularized bone is an unsolved challenge in regenerative medicine. Stimulation of blood vessel growth by over-expression of VEGF has been associated with paradoxical bone loss, whereas angiogenesis and osteogenesis are physiologically coupled by VEGF during development. Here we found that controlling the distribution of VEGF dose in an osteogenic graft is key to recapitulate its physiological function. In fact, homogeneous decoration of fibrin matrices with engineered VEGF could improve both vascularization and bone formation in orthotopic critical-size defects, dispensing with the need for combined osteogenic factor delivery. VEGF-decorated fibrin matrices provide a readily translatable platform for engineering a controlled microenvironment for bone regeneration.
Collapse
Affiliation(s)
- Maximilian G Burger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Gordian M E Born
- Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Lunger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Flavio Schrenk
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Atanas Todorov
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland; Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Veronica Sacchi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Dirk J Schaefer
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
24
|
Someya H, Ito M, Nishio Y, Sato T, Harimoto K, Takeuchi M. Osteopontin-induced vascular hyperpermeability through tight junction disruption in diabetic retina. Exp Eye Res 2022; 220:109094. [PMID: 35490836 DOI: 10.1016/j.exer.2022.109094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
Diabetic retinopathy is a major cause of blindness in developed countries, and is characterized by deterioration of barrier function causing vascular hyperpermeability and retinal edema. Vascular endothelial growth factor (VEGF) is a major mediator of diabetic macular edema. Although anti-VEGF drugs are the first-line treatment for diabetic macular edema, some cases are refractory to anti-VEGF therapy. Osteopontin (OPN) is a phosphoglycoprotein with diverse functions and expressed in various cells and tissues. Elevated OPN level has been implicated in diabetic retinopathy, but whether OPN is involved in hyperpermeability remains unclear. Using streptozotocin-induced diabetic mice (STZ mice) and human retinal endothelial cells (HRECs), we tested the hypothesis that up-regulated OPN causes tight junction disruption, leading to vascular hyperpermeability. The serum and retinal OPN concentrations were elevated in STZ mice compared to controls. Intravitreal injection of anti-OPN neutralizing antibody (anti-OPN Ab) suppressed vascular hyperpermeability and prevented decreases in claudin-5 and ZO-1 gene expression levels in the retina of STZ mice. Immunohistochemical staining of retinal vessels in STZ mice revealed claudin-5 immunoreactivity with punctate distribution and attenuated ZO-1 immunoreactivity, and these changes were prevented by anti-OPN Ab. Intravitreal injection of anti-OPN Ab did not change VEGF gene expression or protein concentration in retina of STZ mice. In an in vitro study, HRECs were exposed to normal glucose or high glucose with or without OPN for 48 h, and barrier function was evaluated by transendothelial electrical resistance and Evans blue permeation. Barrier function deteriorated under high glucose condition, and was further exacerbated by the addition of OPN. Immunofluorescence localization of claudin-5 and ZO-1 demonstrated punctate appearance with discontinuous junction in HRECs exposed to high glucose and OPN. There were no changes in VEGF and VEGF receptor-2 expression levels in HRECs by exposure to OPN. Our results suggest that OPN induces tight junction disruption and vascular hyperpermeability under diabetic conditions. Targeting OPN may be an effective approach to manage diabetic retinopathy.
Collapse
Affiliation(s)
- Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
25
|
Park H, Seok J, You JH, Kim JY, Lim JY, Kim GJ. Increased phosphatase regenerating liver-1 trigger vascular remodeling in injured ovary via platelet-derived growth factor signaling pathway. Stem Cell Res Ther 2022; 13:95. [PMID: 35255961 PMCID: PMC8900363 DOI: 10.1186/s13287-022-02772-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Vascular abnormalities in the ovary cause infertility accompanied by ovarian insufficiency due to a microenvironment of barren ovarian tissues. Placenta-derived mesenchymal stem cells (PD-MSCs, Naïve) treatment in ovarian dysfunction shows angiogenic effect, however, the therapeutic mechanism between ovarian function and vascular remodeling still unclear. Therefore, we examined whether by phosphatase regenerating liver-1 (PRL-1), which is correlated with angiogenesis in reproductive systems, overexpressed PD-MSCs could maximize the angiogenic effects in an ovarian tissues injured of rat model with partial ovariectomy and their therapeutic mechanism by enhanced vascular function via PDGF signaling.
Methods PD-MSCsPRL-1 (PRL-1) were generated by nonviral AMAXA gene delivery system and analyzed the vascular remodeling and follicular development in ovary. One week after Sprague–Dawley (SD) rats ovariectomy, Naïve and PRL-1 was transplanted. The animals were sacrificed at 1, 3 and 5 weeks after transplantation and vascular remodeling and follicular development were analyzed. Also, human umbilical vein endothelial cells (HUVECs) and ovarian explantation culture were performed to prove the specific effects and mechanism of PRL-1.
Results Vascular structures in ovarian tissues (e.g., number of vessels, thickness and lumen area) showed changes in the Naïve and PRL-1-overexpressed PD-MSC (PRL-1) transplantation (Tx) groups compared to the nontransplantation (NTx) group. Especially, PRL-1 induce to increase the expression of platelet-derived growth factor (PDGF), which plays a role in vascular remodeling as well as follicular development, compared to the NTx. Also, the expression of genes related to pericyte and vascular permeability in arteries was significantly enhanced in the PRL-1 compared to the NTx (p < 0.05). PRL-1 enhanced the vascular formation and permeability of human umbilical vein endothelial cells (HUVECs) via activated the PDGF signaling pathway. Conclusions Our results show that PRL-1 restored ovarian function by enhanced vascular function via PDGF signaling pathway. These findings offer new insight into the effects of functionally enhanced stem cell therapy for reproductive systems and should provide new avenues to develop more efficient therapies in degenerative medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02772-9.
Collapse
Affiliation(s)
- Hyeri Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun Hyeong You
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ja-Yun Lim
- Department of Health and Environmental Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02481, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea. .,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
26
|
Born LJ, Kai-Hua Chang, Shoureshi P, Lay F, Bengali S, Hsu ATW, Abadchi SN, Harmon JW, Jay SM. HOTAIR-Loaded Mesenchymal Stem/Stromal Cell Extracellular Vesicles Enhance Angiogenesis and Wound Healing. Adv Healthc Mater 2022; 11:e2002070. [PMID: 33870645 PMCID: PMC8522167 DOI: 10.1002/adhm.202002070] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Chronic wounds remain a substantial source of morbidity worldwide. An emergent approach that may be well-suited to induce the complex, multicellular processes such as angiogenesis that are required for wound repair is the use of extracellular vesicles (EVs). EVs contain a wide variety of proteins and nucleic acids that enable multifactorial signaling. Here, the capability of EVs is leveraged to be engineered via producer cell modification to investigate the therapeutic potential of EVs from mesenchymal stem/stromal cells (MSCs) transfected to overexpress long non-coding RNA HOX transcript antisense RNA (HOTAIR). HOTAIR is previously shown by the authors' group to be critical in mediating angiogenic effects of endothelial cell EVs, and MSCs are chosen as EV producer cells for this study due to their widely reported intrinsic angiogenic properties. The results indicate that MSCs overexpressing HOTAIR (HOTAIR-MSCs) produce EVs with increased HOTAIR content that promote angiogenesis and wound healing in diabetic (db/db) mice. Further, endothelial cells exposed to HOTAIR-MSC EVs exhibit increased HOTAIR content correlated with upregulation of the angiogenic protein vascular endothelial growth factor. Thus, this study supports EV-mediated HOTAIR delivery as a strategy for further exploration toward healing of chronic wounds.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kai-Hua Chang
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pouria Shoureshi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank Lay
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sameer Bengali
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angela Ting Wei Hsu
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Nourmohammadi Abadchi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John W. Harmon
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA,Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
27
|
Fibrin-based factor delivery for therapeutic angiogenesis: friend or foe? Cell Tissue Res 2022; 387:451-460. [PMID: 35175429 PMCID: PMC8975770 DOI: 10.1007/s00441-022-03598-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
Therapeutic angiogenesis aims at promoting the growth of blood vessels to restore perfusion in ischemic tissues or aid tissue regeneration. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis in development, repair, and disease. However, exploiting VEGF for therapeutic purposes has been challenging and needs to take into account some key aspects of VEGF biology. In particular, the spatial localization of angiogenic signals within the extracellular matrix is crucial for physiological assembly and function of new blood vessels. Fibrin is the provisional matrix that is universally deposited immediately after injury and supports the initial steps of tissue regeneration. It provides therefore several ideal features as a substrate to promote therapeutic vascularization, especially through its ability to present growth factors in their physiological matrix-bound state and to modulate their availability for signaling. Here, we provide an overview of fibrin uses as a tissue-engineering scaffold material and as a tunable platform to finely control dose and duration of delivery of recombinant factors in therapeutic angiogenesis. However, in some cases, fibrin has also been associated with undesirable outcomes, namely the promotion of fibrosis and scar formation that actually prevent physiological tissue regeneration. Understanding the mechanisms that tip the balance between the pro- and anti-regenerative functions of fibrin will be the key to fully exploit its therapeutic potential.
Collapse
|
28
|
Weinzierl A, Harder Y, Schmauss D, Menger MD, Laschke MW. Boosting Tissue Vascularization: Nanofat as a Potential Source of Functional Microvessel Segments. Front Bioeng Biotechnol 2022; 10:820835. [PMID: 35186904 PMCID: PMC8854281 DOI: 10.3389/fbioe.2022.820835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Nanofat is increasingly applied in plastic surgery for the improvement of scar quality and skin rejuvenation. However, little is known about the underlying regenerative mechanisms. Therefore, we herein investigated nanofat grafts in a murine dorsal skinfold chamber model. Nanofat generated from subcutaneous, inguinal adipose tissue of green fluorescent protein (GFP)+ C57BL/6 male and female donor mice was injected intracutaneously into dorsal skinfold chambers of gender-matched GFP− wild-type mice. The vascularization and tissue composition of the grafted nanofat were analyzed by means of intravital fluorescence microscopy, histology and immunohistochemistry over an observation period of 14 days. The freshly generated nanofat consisted of small fragments of perilipin+ adipocytes surrounded by Sirius red+ collagen fibers and still contained intact CD31+/GFP+ vessel segments. After transplantation into the dorsal skinfold chamber, these vessel segments survived and developed interconnections to the surrounding CD31+/GFP− host microvasculature. Accordingly, the grafted nanofat rapidly vascularized and formed new microvascular networks with a high functional microvessel density on day 14 without marked differences between male and female mice. Even though further research is needed to confirm these findings, the present study suggests that nanofat boosts tissue vascularization. Thus, nanofat may represent a versatile resource for many applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
- *Correspondence: Andrea Weinzierl,
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater 2021; 110:1206-1214. [PMID: 34860454 DOI: 10.1002/jbm.b.34979] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022]
Abstract
Vascularization is a key event and also still a challenge in tissue engineering. Many efforts have been devoted to the development of vascularization based on cells, growth factors, and porous scaffolds in the past decades. Among these efforts, the architecture features of pores in scaffolds played important roles for vascularization, which have attracted increasing attention. It has been known that the open macro pores in scaffolds could facilitate cell migration, nutrient, and oxygen diffusion, which then could promote new tissue formation and vascularization. The pore parameters are the important factors affecting cells response and vessel formation. Thus, this review will give an overview of the current advances in the effects of pore parameters on vascularization in tissue engineering, mainly including pore size, interconnectivity, pore size distribution, pore shape (channel structure), and the micro/nano-surface topography of pores.
Collapse
Affiliation(s)
- Ping Xia
- People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Elorza Ridaura I, Sorrentino S, Moroni L. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101837. [PMID: 34693660 PMCID: PMC8655224 DOI: 10.1002/advs.202101837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 05/10/2023]
Abstract
Neurovascular disorders, which involve the vascular and nervous systems, are common. Research on such disorders usually focuses on either vascular or nervous components, without looking at how they interact. Adopting a neurovascular perspective is essential to improve current treatments. Therefore, comparing molecular processes known to be involved in both systems separately can provide insight into promising areas of future research. Since development and regeneration share many mechanisms, comparing signaling molecules involved in both the developing vascular and nervous systems and shedding light to those that they have in common can reveal processes, which have not yet been studied from a regenerative perspective, yet hold great potential. Hence, this review discusses and compares processes involved in the development of the vascular and nervous systems, in order to provide an overview of the molecular mechanisms, which are most promising with regards to treatment for neurovascular disorders. Vascular endothelial growth factor, semaphorins, and ephrins are found to hold the most potential, while fibroblast growth factor, bone morphogenic protein, slits, and sonic hedgehog are shown to participate in both the developing vascular and nervous systems, yet have not been studied at the neurovascular level, therefore being of special interest for future research.
Collapse
Affiliation(s)
- Idoia Elorza Ridaura
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefano Sorrentino
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| |
Collapse
|
31
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
32
|
Wang Y, Kankala RK, Cai YY, Tang HX, Zhu K, Zhang JT, Yang DY, Wang SB, Zhang YS, Chen AZ. Minimally invasive co-injection of modular micro-muscular and micro-vascular tissues improves in situ skeletal muscle regeneration. Biomaterials 2021; 277:121072. [PMID: 34454373 DOI: 10.1016/j.biomaterials.2021.121072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
Various conventional treatment strategies for volumetric muscle loss (VML) are often hampered by the extreme donor site morbidity, the limited availability of quality muscle flaps, and complicated, as well as invasive surgical procedures. The conventional biomaterial-based scaffolding systems carrying myoblasts have been extensively investigated towards improving the regeneration of the injured muscle tissues, as well as their injectable forms. However, the applicability of such designed systems has been restricted due to the lack of available vascular networks. Considering these facts, here we present the development of a unique set of two minimally invasively injectable modular microtissues, consisting of mouse myoblast (C2C12)-laden poly(lactic-co-glycolic acid) porous microspheres (PLGA PMs), or the micro-muscles, and human umbilical vein endothelial cell (HUVEC)-laden poly(ethylene glycol) hollow microrods (PEG HMs), or the microvessels. Besides systematic in vitro investigations, the myogenic performance of these modular composite microtissues, when co-injected, was explored in vivo using a mouse VML model, which confirmed improved in situ muscle regeneration and remolding. Together, we believe that the construction of these injectable modular microtissues and their combination for minimally invasive therapy provides a promising method for in situ tissue healing.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China
| | - Yuan-Yuan Cai
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Han-Xiao Tang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jian-Ting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, PR China.
| |
Collapse
|
33
|
Radmanesh F, Sadeghi Abandansari H, Ghanian MH, Pahlavan S, Varzideh F, Yakhkeshi S, Alikhani M, Moradi S, Braun T, Baharvand H. Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces localized angiogenesis. Angiogenesis 2021; 24:657-676. [PMID: 33742265 DOI: 10.1007/s10456-021-09778-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Localized stimulation of angiogenesis is an attractive strategy to improve the repair of ischemic or injured tissues. Several microRNAs (miRNAs) such as miRNA-92a (miR-92a) have been reported to negatively regulate angiogenesis in ischemic disease. To exploit the clinical potential of miR-92a inhibitors, safe and efficient delivery needs to be established. Here, we used deoxycholic acid-modified polyethylenimine polymeric conjugates (PEI-DA) to deliver a locked nucleic acid (LNA)-based miR-92a inhibitor (LNA-92a) in vitro and in vivo. The positively charged PEI-DA conjugates condense the negatively charged inhibitors into nano-sized polyplexes (135 ± 7.2 nm) with a positive net charge (34.2 ± 10.6 mV). Similar to the 25 kDa-branched PEI (bPEI25) and Lipofectamine RNAiMAX, human umbilical vein endothelial cells (HUVECs) significantly internalized PEI-DA/LNA-92a polyplexes without any obvious cytotoxicity. Down-regulation of miR-92a following the polyplex-mediated delivery of LNA-92a led to a substantial increase in the integrin subunit alpha 5 (ITGA5), the sirtuin-1 (SIRT1) and Krüppel-like factors (KLF) KLF2/4 expression, formation of capillary-like structures by HUVECs, and migration rate of HUVECs in vitro. Furthermore, PEI-DA/LNA-92a resulted in significantly enhanced capillary density in a chicken chorioallantoic membrane (CAM) model. Localized angiogenesis was substantially induced in the subcutaneous tissues of mice by sustained release of PEI-DA/LNA-92a polyplexes from an in situ forming, biodegradable hydrogel based on clickable poly(ethylene glycol) (PEG) macromers. Our results indicate that PEI-DA conjugates efficiently deliver LNA-92a to improve angiogenesis. Localized delivery of RNA interference (RNAi)-based therapeutics via hydrogel-laden PEI-DA polyplex nanoparticles appears to be a safe and effective approach for different therapeutic targets.
Collapse
Affiliation(s)
- Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Sadeghi Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Varzideh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
34
|
Goswami D, Domingo‐Lopez DA, Ward NA, Millman JR, Duffy GP, Dolan EB, Roche ET. Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100820. [PMID: 34155834 PMCID: PMC8373111 DOI: 10.1002/advs.202100820] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Indexed: 05/08/2023]
Abstract
Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.
Collapse
Affiliation(s)
- Debkalpa Goswami
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Daniel A. Domingo‐Lopez
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Niamh A. Ward
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism & Lipid ResearchWashington University School of MedicineSt. LouisMO63110USA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMO63110USA
| | - Garry P. Duffy
- Department of AnatomyCollege of Medicine, Nursing, and Health SciencesNational University of Ireland GalwayGalwayH91 TK33Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 PN40Ireland
- CÚRAM, Centre for Research in Medical DevicesNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Eimear B. Dolan
- Department of Biomedical EngineeringSchool of EngineeringCollege of Science and EngineeringNational University of Ireland GalwayGalwayH91 TK33Ireland
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
35
|
Certelli A, Valente P, Uccelli A, Grosso A, Di Maggio N, D'Amico R, Briquez PS, Hubbell JA, Wolff T, Gürke L, Mujagic E, Gianni-Barrera R, Banfi A. Robust Angiogenesis and Arteriogenesis in the Skin of Diabetic Mice by Transient Delivery of Engineered VEGF and PDGF-BB Proteins in Fibrin Hydrogels. Front Bioeng Biotechnol 2021; 9:688467. [PMID: 34277588 PMCID: PMC8281302 DOI: 10.3389/fbioe.2021.688467] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Non-healing ulcers are a serious complication of diabetes mellitus and a major unmet medical need. A major cause for the lack of healing is the impairment of spontaneous vascularization in the skin, despite mostly normal blood flow in deeper large vessels. Therefore, pro-angiogenic treatments are needed to increase therapeutic perfusion by recruiting new arterial connections (therapeutic arteriogenesis). Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis in physiology and disease, but exploitation of its therapeutic potential requires careful control of its dose distribution in tissue. Co-delivery of platelet derived growth factor-BB (PDGF-BB) has been shown to expand the therapeutic window of VEGF and also improve associated arteriogenesis. We used a highly controlled protein delivery system, based on a clinically applicable fibrin-based platform, to investigate the angiogenic and arteriogenic potential of engineered versions (TG-) of VEGF and PDGF-BB proteins in the skin of diabetic and obese db/db mice. Intradermal delivery of therapeutically relevant doses of TG-VEGF and TG-PDGF-BB induced robust growth of new microvascular networks with similar efficacy as in normal littermate control mice. Further, TG-PDGF-BB prevented the formation of aberrant vascular enlargements by high TG-VEGF levels. As fibrin was degraded after the first week, the induced angiogenesis mostly regressed by 4 weeks, but it promoted effective arteriogenesis in the dermal layer. Therefore, controlled co-delivery of TG-VEGF and TG-PDGF-BB recombinant proteins is effective to induce angiogenesis and arteriogenesis in diabetic mouse skin and should be further investigated to promote diabetic wound healing.
Collapse
Affiliation(s)
- Alessandro Certelli
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Paolo Valente
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Uccelli
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Rosalinda D'Amico
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Thomas Wolff
- Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Lorenz Gürke
- Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Edin Mujagic
- Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Roberto Gianni-Barrera
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
37
|
Gatina DZ, Garanina EE, Zhuravleva MN, Synbulatova GE, Mullakhmetova AF, Solovyeva VV, Kiyasov AP, Rutland CS, Rizvanov AA, Salafutdinov II. Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors. Int J Mol Sci 2021; 22:ijms22115922. [PMID: 34072943 PMCID: PMC8198600 DOI: 10.3390/ijms22115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses' furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases.
Collapse
Affiliation(s)
- Dilara Z. Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Margarita N. Zhuravleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Gulnaz E. Synbulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Adelya F. Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Andrey P. Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| | - Ilnur I. Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| |
Collapse
|
38
|
Vajda J, Milojević M, Maver U, Vihar B. Microvascular Tissue Engineering-A Review. Biomedicines 2021; 9:589. [PMID: 34064101 PMCID: PMC8224375 DOI: 10.3390/biomedicines9060589] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue engineering and regenerative medicine have come a long way in recent decades, but the lack of functioning vasculature is still a major obstacle preventing the development of thicker, physiologically relevant tissue constructs. A large part of this obstacle lies in the development of the vessels on a microscale-the microvasculature-that are crucial for oxygen and nutrient delivery. In this review, we present the state of the art in the field of microvascular tissue engineering and demonstrate the challenges for future research in various sections of the field. Finally, we illustrate the potential strategies for addressing some of those challenges.
Collapse
Affiliation(s)
- Jernej Vajda
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
| | - Marko Milojević
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Boštjan Vihar
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- IRNAS Ltd., Limbuška cesta 78b, 2000 Maribor, Slovenia
| |
Collapse
|
39
|
Thej C, Balasubramanian S, Rengasamy M, Walvekar A, Swamynathan P, Raj SS, Shahani P, Siddikuzzaman, Kolkundkar U, Seetharam RN, Gupta PK, Majumdar AS. Human bone marrow-derived, pooled, allogeneic mesenchymal stromal cells manufactured from multiple donors at different times show comparable biological functions in vitro, and in vivo to repair limb ischemia. Stem Cell Res Ther 2021; 12:279. [PMID: 33971964 PMCID: PMC8108338 DOI: 10.1186/s13287-021-02330-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We have previously demonstrated that a pooled population of bone marrow-derived, allogeneic mesenchymal stromal cells (BMMSC), Stempeucel®-1, produced under good manufacturing practices (GMP) conditions, showed clinical efficacy and safety in patients suffering from critical limb ischemia (CLI) due to Buerger's disease. While Stempeucel®-1 is currently used for CLI and other clinical indications, we wanted to ensure that the product's continuity is addressed by developing and characterizing a second generation of pooled product (Stempeucel®-1A), manufactured identically from second BM aspirates of the same three donors after a 2-year interval. METHODS The two versions of Stempeucel® were manufactured and subjected to gene and protein expression analysis. The nature of various growth factors/cytokines secreted and immunomodulatory activity of these two cell populations were compared directly by various in vitro assays. The preclinical efficacy of these two cell types was compared in an experimental model of hind limb ischemia (HLI) in BALB/c nude mice. The reversal of ischemia, blood flow, and muscle regeneration were determined by functional scoring, laser Doppler imaging, and immunohistochemical analyses. RESULTS Qualitative and quantitative analyses of genes and proteins involved in promoting angiogenic activity and immune regulatory functions revealed high levels of correlation between Stempeucel®-1 and Stempeucel®-1A cell populations. Moreover, intramuscular (i.m) administration of these two cell products in the ischemic limbs of BALB/c nude mice showed significant repair (≥ 70%) of toe and foot necrosis, leading to improved ambulatory function and limb salvage. Furthermore, a biodistribution kinetics study showed that Stempeucel®-1 was mostly localized in the ischemic muscles of mice for a significantly longer time compared to normal muscles, thus playing an essential role in modulating and reversing HLI damage. CONCLUSIONS This study shows that with a reproducible manufacturing procedure, it is possible to generate large numbers of pooled mesenchymal stromal cells from human bone marrow samples to establish product equivalence. We conclude from these results that, for the first time, two pooled, allogeneic BMMSC products can be repeatedly manufactured at different time intervals using a two-tier cell banking process with robust and comparable angiogenic properties to treat ischemic diseases.
Collapse
Affiliation(s)
- Charan Thej
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Sudha Balasubramanian
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Mathiyazhagan Rengasamy
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Ankita Walvekar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Priyanka Swamynathan
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Swathi Sundar Raj
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Pradnya Shahani
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Siddikuzzaman
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Raviraja N Seetharam
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Pawan Kumar Gupta
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Anish S Majumdar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India.
| |
Collapse
|
40
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021. [PMID: 33689817 DOI: 10.1016/j.actbio.2021.1003.1001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
41
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021; 126:109-118. [PMID: 33689817 PMCID: PMC8096688 DOI: 10.1016/j.actbio.2021.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
42
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|
43
|
Thummarati P, Kino-Oka M. Exogenous FGF-2 prolongs endothelial connection in multilayered human skeletal muscle cell sheet. J Biosci Bioeng 2021; 131:686-695. [PMID: 33775542 DOI: 10.1016/j.jbiosc.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a pressing issue in tissue engineering associated with restoration of blood supply to ischemic tissues and promotion of rapid vascularization of tissue-engineered grafts. Fibroblast growth factor-2 (FGF-2) plays a vital role in processes such as angiogenesis and is an attractive candidate for tissue engineering. While skeletal muscle tissue engineering is established, the role of FGF-2 in endothelial function to promote angiogenesis after transplantation is unclear. Here, a culture system comprising a five-layered sheet of human skeletal muscle cells co-incubated on green fluorescent protein-expressing human umbilical vein endothelial cells (GFP-HUVECs) mimicking in vivo angiogenesis was used to investigate the role of FGF-2 in vascularization of engineered tissues. The basal level of FGF-2 in cultured media of skeletal muscle cell sheets was undetectable. Therefore, cell sheets co-incubated with GFP-HUVECs were exogenously treated with 10 ng/mL FGF-2, and endothelial network formation was evaluated. After prolonged culture, the endothelial network length and connectivity increased following treatment with FGF-2 as compared with control treatment. The numbers of medium and long endothelial networks significantly increased inside the sheet longer than 0.2 and 0.4 cm, respectively, after FGF-2 treatment. Time-lapse microscopy monitoring dynamic endothelial behavior revealed that FGF-2-mediated maintenance of endothelial connection and retardation of endothelial network disconnection after 72 h. The present study suggests the precise role of FGF-2 in maintaining endothelial connection and the extent of the endothelial network in skeletal muscle cell sheets. This understanding can be applied to design in vitro pre-vascularized tissue and graft integration prospects.
Collapse
Affiliation(s)
- Parichut Thummarati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Yang X, Li X, Luo M, Guo Y, Li C, Lv D, Cheng Z, Huang L, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I promotes angiogenesis via activation of eNOS-VEGF signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113642. [PMID: 33264658 DOI: 10.1016/j.jep.2020.113642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tubeimoside I (TBM) is a triterpenoid saponin purified from tubeimu (tuber of Bolbostemma paniculatum (Maxim.) Franquet). In traditional Chinese medicine, tubeimu had been used to treat acute mastitis, snake bites, detoxication, inflammatory diseases, and tumors for over 1000 years. AIM OF THE STUDY This study aimed to investigate whether TBM could promote angiogenesis and how to promote angiogenesis. MATERIALS AND METHODS In vivo, the pro-angiogenic effects of TBM were examined using the hindlimb ischemia model. After the ischemia operation, 1 mg/kg/day TBM was given via intraperitoneal injection for 28 days and the recovery of blood flow was monitored by Doppler scanner every 7 days. The capillary density in gastrocnemius muscle was detected by immunofluorescence. Expression of related proteins were determined by western blotting. In vitro, the pro-angiogenic effects of TBM on HUVECs were examined by Cell Counting Kit-8, scratch assay, endothelial cell tube formation assay and western blotting. RESULTS TBM improved recovery from hindlimb ischemia in C57BL/6 mice. TBM promoted endothelial cell viability, migration and tube formation in HUVECs. TBM could activate eNOS-VEGF signaling pathway by enhancing expression of eNOS. And TBM's pro-angiogenesis effects could be abolished by L-NAME (an inhibitor of eNOS). CONCLUSIONS TBM promoted angiogenesis via the activation of eNOS-VEGF signaling pathway and TBM could be a novel agent for therapeutic angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
45
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
46
|
Yang C, Yu Y, Wang X, Wang Q, Shang L. Cellular fluidic-based vascular networks for tissue engineering. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
47
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
48
|
Zembron-Lacny A, Morawin B, Wawrzyniak-Gramacka E, Gramacki J, Jarmuzek P, Kotlega D, Ziemann E. Multiple Cryotherapy Attenuates Oxi-Inflammatory Response Following Skeletal Muscle Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217855. [PMID: 33120891 PMCID: PMC7663269 DOI: 10.3390/ijerph17217855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
The oxi-inflammatory response is part of the natural process mobilizing leukocytes and satellite cells that contribute to clearance and regeneration of damaged muscle tissue. In sports medicine, a number of post-injury recovery strategies, such as whole-body cryotherapy (WBC), are used to improve skeletal muscle regeneration often without scientific evidence of their benefits. The study was designed to assess the impact of WBC on circulating mediators of skeletal muscle regeneration. Twenty elite athletes were randomized to WBC group (3-min exposure to −120 °C, twice a day for 7 days) and control group. Blood samples were collected before the first WBC session and 1 day after the last cryotherapy exposure. WBC did not affect the indirect markers of muscle damage but significantly reduced the generation of reactive oxygen and nitrogen species (H2O2 and NO) as well as the concentrations of serum interleukin 1β (IL-1β) and C-reactive protein (CRP). The changes in circulating growth factors, hepatocyte growth factor (HGF), insulin-like growth factor (IGF-1), platelet-derived growth factor (PDGFBB), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF), were also reduced by WBC exposure. The study demonstrated that WBC attenuates the cascade of injury–repair–regeneration of skeletal muscles whereby it may delay skeletal muscle regeneration.
Collapse
Affiliation(s)
- Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (B.M.); (E.W.-G.)
- Correspondence: ; Tel.: +48-50267-4130
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (B.M.); (E.W.-G.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (B.M.); (E.W.-G.)
| | - Jaroslaw Gramacki
- Centre of Information Technologies, University of Zielona Gora, 65-417 Zielona Gora, Poland;
| | - Pawel Jarmuzek
- Department of Nervous System Diseases, Collegium Medium University of Zielona Gora, Neurosurgery Center University Hospital in Zielona Gora, 65-417 Zielona Gora, Poland;
| | - Dariusz Kotlega
- Department of Neurology, Pomeranian Medical University Szczecin, 70-204 Szczecin, Poland;
- Department of Neurology, District Hospital Glogow, 67-200 Glogow, Poland
| | - Ewa Ziemann
- Department of Sport Kinesiology, Poznan University of Physical Education, 61-871 Poznan, Poland;
| |
Collapse
|
49
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
50
|
Wu Q, Wang X, Jiang F, Zhu Z, Wen J, Jiang X. Study of Sr-Ca-Si-based scaffolds for bone regeneration in osteoporotic models. Int J Oral Sci 2020; 12:25. [PMID: 32958751 PMCID: PMC7505977 DOI: 10.1038/s41368-020-00094-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/12/2022] Open
Abstract
Bone tissue engineering has emerged as a promising alternative therapy for patients who suffer bone fractures or defects caused by trauma, congenital diseases or tumours. However, the reconstruction of bone defects combined with osteoporosis remains a great challenge for clinicians and researchers. Based on our previous study, Ca–Si-based bioceramics (MSCs) showed enhanced bone formation capabilities under normal conditions, and strontium was demonstrated to be therapeutic in promoting bone quality in osteoporosis patients. Therefore, in the present study, we attempted to enlarge the application range of MSCs with Sr incorporation in an osteoporotic bone regeneration model to evaluate whether Sr could assist in regeneration outcomes. In vitro readout suggested that Sr-incorporated MSC scaffolds could enhance the expression level of osteogenic and angiogenic markers of osteoporotic bone mesenchymal stem cells (OVX BMSCs). Animal experiments showed a larger new bone area; in particular, there was a tendency for blood vessel formation to be enhanced in the Sr-MSC scaffold group, showing its positive osteogenic capacity in bone regeneration. This study systematically illustrated the effective delivery of a low-cost therapeutic Sr agent in an osteoporotic model and provided new insight into the treatment of bone defects in osteoporosis patients.
Collapse
Affiliation(s)
- Qianju Wu
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Xiao Wang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Jiang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ziyuan Zhu
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jin Wen
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|