1
|
Yao F, Zhu P, Chen J, Li S, Sun B, Li Y, Zou M, Qi X, Liang P, Chen Q. Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochim Acta 2023; 190:256. [PMID: 37301779 DOI: 10.1007/s00604-023-05838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
In recent years, nanomaterials have attracted the research intervention of experts in the fields of catalysis, energy, biomedical testing, and biomedicine with their unrivaled optical, chemical, and biological properties. From basic metal and oxide nanoparticles to complex quantum dots and MOFs, the stable preparation of various nanomaterials has always been a struggle for researchers. Microfluidics, as a paradigm of microscale control, is a remarkable platform for online stable synthesis of nanomaterials with efficient mass and heat transfer in microreactors, flexible blending of reactants, and precise control of reaction conditions. We describe the process of microfluidic preparation of nanoparticles in the last 5 years in terms of microfluidic techniques and the methods of microfluidic manipulation of fluids. Then, the ability of microfluidics to prepare different nanomaterials, such as metals, oxides, quantum dots, and biopolymer nanoparticles, is presented. The effective synthesis of some nanomaterials with complex structures and the cases of nanomaterials prepared by microfluidics under extreme conditions (high temperature and pressure), the compatibility of microfluidics as a superior platform for the preparation of nanoparticles is demonstrated. Microfluidics has a potent integration capability to combine nanoparticle synthesis with real-time monitoring and online detection, which significantly improves the quality and production efficiency of nanoparticles, and also provides a high-quality ultra-clean platform for some bioassays.
Collapse
Affiliation(s)
- Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Pengpeng Zhu
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Junjie Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Suyang Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Biao Sun
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yunfeng Li
- College of Information Engineering, China Jiliang University, 310018, Hangzhou, 310000, People's Republic of China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Composite Norland Optical Adhesive (NOA)/silicon flow focusing devices for colloidal particle manipulation and synthesis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Abdelkarim M, Abd Ellah NH, Elsabahy M, Abdelgawad M, Abouelmagd SA. Microchannel geometry vs flow parameters for controlling nanoprecipitation of polymeric nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Yazdian Kashani S, Afzalian A, Shirinichi F, Keshavarz Moraveji M. Microfluidics for core-shell drug carrier particles - a review. RSC Adv 2020; 11:229-249. [PMID: 35423057 PMCID: PMC8691093 DOI: 10.1039/d0ra08607j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023] Open
Abstract
Core-shell drug-carrier particles are known for their unique features. Due to the combination of superior properties not exhibited by the individual components, core-shell particles have gained a lot of interest. The structures could integrate core and shell characteristics and properties. These particles were designed for controlled drug release in the desired location. Therefore, the side effects would be minimized. So, these particles' advantages have led to the introduction of new methods and ideas for their fabrication. In the past few years, the generation of drug carrier core-shell particles in microfluidic chips has attracted much attention. This method makes it possible to produce particles at nanometer and micrometer levels of the same shape and size; it usually costs less than other methods. The other advantages of using microfluidic techniques compared to conventional bulk methods are integration capability, reproducibility, and higher efficiency. These advantages have created a positive outlook on this approach. This review gives an overview of the various fluidic concepts that are used to generate microparticles or nanoparticles. Also, an overview of traditional and more recent microfluidic devices and their design and structure for the generation of core-shell particles is given. The unique benefits of the microfluidic technique for core-shell drug carrier particle generation are demonstrated.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Amir Afzalian
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Farbod Shirinichi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| |
Collapse
|
5
|
Shen C, Liu F, Wu L, Yu C, Yu W. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device. MICROMACHINES 2020; 11:mi11110962. [PMID: 33121113 PMCID: PMC7693404 DOI: 10.3390/mi11110962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Buoyancy-assisted droplet formation in a quiescent continuous phase is an effective technique to produce highly monodispersed droplets, especially millimetric droplets. A comprehensive study combining visualization experiment and numerical simulation was carried out to explore the underlying physics of single droplet generation in a buoyancy-assisted microfluidic device. Typical regimes, including dripping and jetting, were examined to gain a deep insight into the hydrodynamic difference between the regimes. Particularly, the transition from dripping regime to jetting regime was investigated to give an in-depth understanding of the transitional behaviors. The effects of interfacial tension coefficient on the droplet size and formation regimes are discussed, and a regime diagram is summarized. The results show that oscillation of the interface in dripping regimes after detachment is caused by the locally accelerated fluid during the neck pinching process. Droplet formation patterns with the characteristics of both dripping regime and jetting regime are observed and recognized as the transitional regime, and the interface oscillation lasts longer than that in dripping regime, implying intensive competition between interfacial tension and inertial force. Reducing interfacial tension coefficient results in the dripping-to-jetting transition occurring at a lower flow rate of the dispersed phase. The regime diagram indicates that only the inertial force is the indispensable condition of triggering the transition from dripping to jetting.
Collapse
Affiliation(s)
| | | | | | | | - Wei Yu
- Correspondence: (C.Y.); (W.Y.)
| |
Collapse
|
6
|
Montanero JM, Gañán-Calvo AM. Dripping, jetting and tip streaming. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:097001. [PMID: 32647097 DOI: 10.1088/1361-6633/aba482] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dripping, jetting and tip streaming have been studied up to a certain point separately by both fluid mechanics and microfluidics communities, the former focusing on fundamental aspects while the latter on applications. Here, we intend to review this field from a global perspective by considering and linking the two sides of the problem. First, we present the theoretical model used to study interfacial flows arising in droplet-based microfluidics, paying attention to three elements commonly present in applications: viscoelasticity, electric fields and surfactants. We review both classical and current results of the stability of jets affected by these elements. Mechanisms leading to the breakup of jets to produce drops are reviewed as well, including some recent advances in this field. We also consider the relatively scarce theoretical studies on the emergence and stability of tip streaming in open systems. Second, we focus on axisymmetric microfluidic configurations which can operate on the dripping and jetting modes either in a direct (standard) way or via tip streaming. We present the dimensionless parameters characterizing these configurations, the scaling laws which allow predicting the size of the resulting droplets and bubbles, as well as those delimiting the parameter windows where tip streaming can be found. Special attention is paid to electrospray and flow focusing, two of the techniques more frequently used in continuous drop production microfluidics. We aim to connect experimental observations described in this section of topics with fundamental and general aspects described in the first part of the review. This work closes with some prospects at both fundamental and practical levels.
Collapse
Affiliation(s)
- J M Montanero
- Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| | - A M Gañán-Calvo
- Depto. de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
| |
Collapse
|
7
|
Herst CV, Burkholz S, Sidney J, Sette A, Harris PE, Massey S, Brasel T, Cunha-Neto E, Rosa DS, Chao WCH, Carback R, Hodge T, Wang L, Ciotlos S, Lloyd P, Rubsamen R. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors' CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design. Vaccine 2020; 38:4464-4475. [PMID: 32418793 PMCID: PMC7186210 DOI: 10.1016/j.vaccine.2020.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/21/2022]
Abstract
The 2013-2016 West Africa EBOV epidemic was the biggest EBOV outbreak to date. An analysis of virus-specific CD8+ T-cell immunity in 30 survivors showed that 26 of those individuals had a CD8+ response to at least one EBOV protein. The dominant response (25/26 subjects) was specific to the EBOV nucleocapsid protein (NP). It has been suggested that epitopes on the EBOV NP could form an important part of an effective T-cell vaccine for Ebola Zaire. We show that a 9-amino-acid peptide NP44-52 (YQVNNLEEI) located in a conserved region of EBOV NP provides protection against morbidity and mortality after mouse adapted EBOV challenge. A single vaccination in a C57BL/6 mouse using an adjuvanted microsphere peptide vaccine formulation containing NP44-52 is enough to confer immunity in mice. Our work suggests that a peptide vaccine based on CD8+ T-cell immunity in EBOV survivors is conceptually sound and feasible. Nucleocapsid proteins within SARS-CoV-2 contain multiple Class I epitopes with predicted HLA restrictions consistent with broad population coverage. A similar approach to a CTL vaccine design may be possible for that virus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Disease Models, Animal
- Drug Design
- Ebola Vaccines/chemistry
- Ebola Vaccines/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Mice
- Mice, Inbred C57BL
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/immunology
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- C V Herst
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Burkholz
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - A Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - P E Harris
- Endocrinology Division, Department of Medicine, School of Medicine, Columbia University, New York, NY, USA
| | - S Massey
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - T Brasel
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - E Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Heart Institute (Incor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - D S Rosa
- Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - W C H Chao
- University of Macau, E12 Avenida da Universidade, Taipa, Macau, China
| | - R Carback
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - T Hodge
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - L Wang
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Ciotlos
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - P Lloyd
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - R Rubsamen
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States; Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
8
|
Kumari S, Yadav BS, Yadav RB. Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Res Int 2020; 128:108765. [DOI: 10.1016/j.foodres.2019.108765] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023]
|
9
|
Protein Microgels from Amyloid Fibril Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:223-263. [PMID: 31713201 DOI: 10.1007/978-981-13-9791-2_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nanofibrillar forms of amyloidogenic proteins were initially discovered in the context of protein misfolding and disease but have more recently been found at the origin of key biological functionality in many naturally occurring functional materials, such as adhesives and biofilm coatings. Their physiological roles in nature reflect their great strength and stability, which has led to the exploration of their use as the basis of artificial protein-based functional materials. Particularly for biomedical applications, they represent attractive building blocks for the development of, for instance, drug carrier agents due to their inherent biocompatibility and biodegradability. Furthermore, the propensity of proteins to self-assemble into amyloid fibrils can be exploited under microconfinement, afforded by droplet microfluidic techniques. This approach allows the generation of multi-scale functional microgels that can host biological additives and can be designed to incorporate additional functionality, such as to aid targeted drug delivery.
Collapse
|
10
|
Kang SM, Lee GW, Huh YS. Centrifugal Force-Driven Modular Micronozzle System: Generation of Engineered Alginate Microspheres. Sci Rep 2019; 9:12776. [PMID: 31484984 PMCID: PMC6726759 DOI: 10.1038/s41598-019-49244-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/22/2019] [Indexed: 01/19/2023] Open
Abstract
In this study, we developed a modular micronozzle system that can control the flow of fluid based on centrifugal force and synthesize functional alginate microspheres with various structures and sizes. Our method is to fabricate a programmable microreactor that can be easily manufactured without the conventional soft-lithography process using various sequences of the micronozzles with various inner diameters. To overcome the obstacles of pump-based microfluidic devices that need to be precisely controlled, we designed the programmable microreactor to be driven under centrifugal force with a combination of micronozzles, thus enabling the mass production of various functional alginate microspheres within a few minutes. The programmable microreactor designed through the arrangement of the modular micronozzles enables the formation of various types of alginate microspheres such as core-shell, Janus, and particle mixture. These materials are controlled to a size from 400 µm to 900 µm. In addition, our platform is used to generate pH-responsive smart materials, and to easily control various sizes, shapes, and compositions simultaneously. By evaluating the release process of model drugs according to the pH change, the possibility of drug delivery application is confirmed. We believe that our method can contribute to development of biomaterials engineering that has been limited by the requirement of sophisticated devices, and special skills and/or labor.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia, 30332, United States
| | - Go-Woon Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
- Platform Technology Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Daejeon, 34129, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
- WCSL of Integrated Human Airway-on-a-Chip, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
11
|
Feng S, Shirani E, Inglis DW. Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. BIOSENSORS 2019; 9:E80. [PMID: 31226857 PMCID: PMC6627903 DOI: 10.3390/bios9020080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The chemical, temporal, and spatial resolution of chemical signals that are sampled and transported with continuous flow is limited because of Taylor dispersion. Droplets have been used to solve this problem by digitizing chemical signals into discrete segments that can be transported for a long distance or a long time without loss of chemical, temporal or spatial precision. In this review, we describe Taylor dispersion, sampling theory, and Laplace pressure, and give examples of sampling probes that have used droplets to sample or/and transport fluid from a continuous medium, such as cell culture or nerve tissue, for external analysis. The examples are categorized, as follows: (1) Aqueous-phase sampling with downstream droplet formation; (2) preformed droplets for sampling; and (3) droplets formed near the analyte source. Finally, strategies for downstream sample recovery for conventional analysis are described.
Collapse
Affiliation(s)
- Shilun Feng
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| | - Elham Shirani
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
12
|
Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method. Processes (Basel) 2019. [DOI: 10.3390/pr7060331] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The improvement of the loading content of hydrophilic drugs by polymer nanoparticles (NPs) recently has received increased attention from the field of controlled release. We developed a novel, simply modified, drop-wise nanoprecipitation method which separated hydrophilic drugs and polymers into aqueous phase (continuous phase) and organic phase (dispersed phase), both individually and involving a mixing process. Using this method, we produced ciprofloxacin-loaded NPs by Poly (d,l-lactic acid)-Dextran (PLA-DEX) and Poly lactic acid-co-glycolic acid-Polyethylene glycol (PLGA-PEG) successfully, with a considerable drug-loading ability up to 27.2 wt% and an in vitro sustained release for up to six days. Drug content with NPs can be precisely tuned by changing the initial drug feed concentration of ciprofloxacin. These studies suggest that this modified nanoprecipitation method is a rapid, facile, and reproducible technique for making nano-scale drug delivery carriers with high drug-loading abilities
Collapse
|
13
|
Rahimi M, Shams Khorrami A, Rezai P. Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00446-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Dynamics of temperature-actuated droplets within microfluidics. Sci Rep 2019; 9:3832. [PMID: 30846713 PMCID: PMC6405956 DOI: 10.1038/s41598-019-40069-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 01/06/2023] Open
Abstract
Characterizing the thermal behavior of dispersed droplets within microfluidic channels is crucial for different applications in lab-on-a-chip. In this paper, the physics of droplets volume during their transport over a heater is studied experimentally and numerically. The response of droplets to external heating is examined at temperature ranges of 25–90 °C and at different flow rates of the dispersed phase respect to the continuous flow. The results present a reliable prediction of the droplet volume and stability when heating is applied to the droplets at the downstream channel in a quite far distance from the droplets’ ejection orifice. Increasing the ratio of flow rate resulted in larger droplets; for instance, the flow ratio of 0.25 produced drops with 40% larger diameter than the flow rate of 0.1. For every 10 °C increase in temperature of the droplets, the droplet diameter increased by about 5.7% and 4.2% for pure oil and oil with a surfactant, respectively. Also, the droplets showed a degree of instability during their transport over the heater at higher temperatures. Adding SPAN 20 surfactant improved the stability of the droplets at temperatures higher than 60 °C. The experimentally validated numerical model helped for systemic analysis of the influence of key temperature-dependence parameters (e.g. surface tension, density and viscosity of both phases) on controlling the volume and stability of droplets. Our findings supported to develop highly functional systems with a predetermined droplets performance under high temperatures up to 90 °C. This report provides a preliminary basis for enhancing the performance of droplet microfluidic systems for digital droplet polymerase chain reaction (ddPCR), continuous flow digital loop-mediated isothermal PCR (LAMP), and droplet-based antibiotic susceptibility testing.
Collapse
|
16
|
Rezvantalab S, Keshavarz Moraveji M. Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Adv 2019; 9:2055-2072. [PMID: 35516107 PMCID: PMC9059828 DOI: 10.1039/c8ra08972h] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/16/2018] [Indexed: 12/28/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable polymer that recently attracted attention for use as part of drug delivery systems (DDS). In this context, there is an emerging need for a rapid, reliable and reproducible method of synthesis. Here, microfluidic systems provide great opportunities for synthesizing carriers in a tightly controlled manner and with low consumption of materials, energy and time. These miniature devices have been the focus of recent research since they can address the challenges inherent to the bulk system, e.g. low drug loading efficiency and encapsulation, broad size distribution and burst initial release. In this article, we provide an overview of current microfluidic systems used in drug delivery production, with a special focus on PLGA-based DDS. In this context, we highlight the advantages associated with the use of microchip systems in the fabrication of nanoparticles (NPs) and microparticles (MPs), e.g. in achieving complex morphologies. Furthermore, we discuss the challenges for selecting proper microfluidics for targeted DDS production in a translational setting and introduce strategies that are used to overcome microfluidics shortcomings, like low throughput for production. Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable polymer that recently attracted attention for use as part of drug delivery systems (DDS).![]()
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering
- Amirkabir University of Technology (Tehran Polytechnic)
- Tehran
- Iran
| | | |
Collapse
|
17
|
Dwivedi P, Yuan S, Han S, Mangrio FA, Zhu Z, Lei F, Ming Z, Cheng L, Liu Z, Si T, Xu RX. Core–shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S481-S491. [DOI: 10.1080/21691401.2018.1499664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Pankaj Dwivedi
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Shuai Yuan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Shuya Han
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Farhana Akbar Mangrio
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Fan Lei
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhang Ming
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Lei Cheng
- First affiliated hospital of University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhongfa Liu
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ting Si
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Lallana E, Donno R, Magrì D, Barker K, Nazir Z, Treacher K, Lawrence MJ, Ashford M, Tirelli N. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation. Int J Pharm 2018; 548:530-539. [PMID: 30009983 DOI: 10.1016/j.ijpharm.2018.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023]
Abstract
In this work we evaluate the effect of polymer composition and architecture of (PEGylated) polyesters on particle size and paclitaxel (PTX) loading for particles manufactured via microfluidic-assisted, continuous-flow nanoprecipitation using two microfluidic chips with different geometries and mixing principles. We have prepared poly (d,l-lactic acid-co-caprolactone) (PLCL) from ring-opening polymerization (ROP) of LA and CL mixtures and different (macro) initiators (namely, 1-dodecanol, a MeO-PEG-OH, and a 4-armed star PEG-OH), rendering polyesters that vary in monomer composition (i.e. LA/CL ratios) and architecture (i.e. linear vs 4-armed star). Continuous-flow nanoprecipitation was assayed using two microfluidic chips: a cross-flow chip with a X-shaped mixing junction (2D laminar flow focusing) and a micromixer featuring a Y-shaped mixing junction and a split and recombine path (2D laminar flow focusing convinced with stream lamination for faster mixing). Nanoparticle formulations were produced with Z-average sizes in the range of 30-160 nm, although size selectivity could be seen for different polymer/chip combinations; for instance, smaller particles were obtained with Y-shaped micromixer (30-120 nm), specially for the PEGylated polyesters (30-50 nm), whereas the cross-flow chip systematically produced larger particles (80-160 nm). Loading of the anti-cancer drug paclitaxel (PTX) was also heavily influenced not only by the nature of the polyester, but also by the geometry of the microfluidic chip; higher drug loadings were obtained with the cross-flow reactor and the star block copolymers. Finally, decreasing the LA/CL ratio generally had a positive effect on drug loading.
Collapse
Affiliation(s)
- Enrique Lallana
- North West Centre for Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Medicine and Health, Stopford Building, Manchester M13 9PT, United Kingdom.
| | - Roberto Donno
- North West Centre for Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Medicine and Health, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Davide Magrì
- Smart Materials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Katie Barker
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield SK10 4TG, United Kingdom
| | - Zahid Nazir
- Pharmaceutical Sciences, Innovative Medicines Biotech Unit, AstraZeneca, Macclesfield SK10 4TG, United Kingdom
| | - Kevin Treacher
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield SK10 4TG, United Kingdom
| | - M Jayne Lawrence
- North West Centre for Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Medicine and Health, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Marianne Ashford
- Pharmaceutical Sciences, Innovative Medicines Biotech Unit, AstraZeneca, Macclesfield SK10 4TG, United Kingdom
| | - Nicola Tirelli
- North West Centre for Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Medicine and Health, Stopford Building, Manchester M13 9PT, United Kingdom; Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
19
|
Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA. Nanomaterial Preparation by Extrusion through Nanoporous Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703493. [PMID: 29468837 DOI: 10.1002/smll.201703493] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Indexed: 05/20/2023]
Abstract
Template synthesis represents an important class of nanofabrication methods. Herein, recent advances in nanomaterial preparation by extrusion through nanoporous membranes that preserve the template membrane without sacrificing it, which is termed as "non-sacrificing template synthesis," are reviewed. First, the types of nanoporous membranes used in nanoporous membrane extrusion applications are introduced. Next, four common nanoporous membrane extrusion strategies: vesicle extrusion, membrane emulsification, precipitation extrusion, and biological membrane extrusion, are examined. These methods have been utilized to prepare a wide range of nanomaterials, including liposomes, emulsions, nanoparticles, nanofibers, and nanotubes. The principle and historical context of each specific technology are discussed, presenting prominent examples and evaluating their positive and negative features. Finally, the current challenges and future opportunities of nanoporous membrane extrusion methods are discussed.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan road, Shanghai, 200240, China
| | - Charles R Martin
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Study of compound drop formation in axisymmetric microfluidic devices with different geometries. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Wu Q, Yang C, Liu G, Xu W, Zhu Z, Si T, Xu RX. Multiplex coaxial flow focusing for producing multicompartment Janus microcapsules with tunable material compositions and structural characteristics. LAB ON A CHIP 2017; 17:3168-3175. [PMID: 28812769 DOI: 10.1039/c7lc00769h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a simple but efficient multiplex coaxial flow focusing (MCFF) process for single-step fabrication of multicompartment Janus microcapsules (MJMs) in a wide range of operating parameters. The produced MJMs consist of a multicompartmental core-shell structure with material compositions tunable in individual shell and core compartments. Potential applications of such a MJM agent are demonstrated in both benchtop and in vitro experiments. For the benchtop experiment, magnetic nanoparticles are loaded into one of the shell compartments and photopolymerized under ultraviolet light for controlled alignment and rotation of the microcapsules in a magnetic field. For the in vitro experiment, four different types of cells are encapsulated in the desired compartments of sodium alginate MJMs and co-cultured for seven days. By increasing the number of coaxial needles, we are also able to produce MJMs with three or more compartments. Our studies have shown that the proposed MCFF process is able to produce MJMs with desired material compositions and narrow size distribution. This process is inexpensive and scalable for mass production of various MJMs in its potential applications in biomedical imaging, drug delivery, and regenerative medicine.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Cunha-Neto E, Rosa DS, Harris PE, Olson T, Morrow A, Ciotlos S, Herst CV, Rubsamen RM. An Approach for a Synthetic CTL Vaccine Design against Zika Flavivirus Using Class I and Class II Epitopes Identified by Computer Modeling. Front Immunol 2017. [PMID: 28649242 PMCID: PMC5465239 DOI: 10.3389/fimmu.2017.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The threat posed by severe congenital abnormalities related to Zika virus (ZKV) infection during pregnancy has turned development of a ZKV vaccine into an emergency. Recent work suggests that the cytotoxic T lymphocyte (CTL) response to infection is an important defense mechanism in response to ZKV. Here, we develop the rationale and strategy for a new approach to developing cytotoxic T lymphocyte (CTL) vaccines for ZKV flavivirus infection. The proposed approach is based on recent studies using a protein structure computer model for HIV epitope selection designed to select epitopes for CTL attack optimized for viruses that exhibit antigenic drift. Because naturally processed and presented human ZKV T cell epitopes have not yet been described, we identified predicted class I peptide sequences on ZKV matching previously identified DNV (Dengue) class I epitopes and by using a Major Histocompatibility Complex (MHC) binding prediction tool. A subset of those met the criteria for optimal CD8+ attack based on physical chemistry parameters determined by analysis of the ZKV protein structure encoded in open source Protein Data File (PDB) format files. We also identified candidate ZKV epitopes predicted to bind promiscuously to multiple HLA class II molecules that could provide help to the CTL responses. This work suggests that a CTL vaccine for ZKV may be possible even if ZKV exhibits significant antigenic drift. We have previously described a microsphere-based CTL vaccine platform capable of eliciting an immune response for class I epitopes in mice and are currently working toward in vivo testing of class I and class II epitope delivery directed against ZKV epitopes using the same microsphere-based vaccine.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil.,Institute for Investigation in Immunology (III) INCT, São Paulo, Brazil.,School of Medicine, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil
| | - Daniela S Rosa
- Institute for Investigation in Immunology (III) INCT, São Paulo, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Paul E Harris
- Endocrinology Division, Department of Medicine, School of Medicine, Columbia University, New York, NY, United States
| | - Tim Olson
- Flow Pharma, Inc., Redwood City, CA, United States
| | - Alex Morrow
- Flow Pharma, Inc., Redwood City, CA, United States
| | | | | | - Reid Martin Rubsamen
- Flow Pharma, Inc., Redwood City, CA, United States.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
23
|
|
24
|
Bokharaei M, Saatchi K, Häfeli UO. A single microfluidic chip with dual surface properties for protein drug delivery. Int J Pharm 2017; 521:84-91. [DOI: 10.1016/j.ijpharm.2017.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
|
25
|
From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation) from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres. Processes (Basel) 2016. [DOI: 10.3390/pr4040049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Lee BB, Bhandari BR, Howes T. Air Extrusion System for Ionotropic Alginate Microgel Particle Formation: A Review. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201600088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Seiffert S. Microfluidics and Macromolecules: Top-Down Analytics and Bottom-Up Engineering of Soft Matter at Small Scales. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sebastian Seiffert
- Johannes Gutenberg-Universität Mainz; Institute of Physical Chemistry; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
28
|
Clegg PS, Tavacoli JW, Wilde PJ. One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches. SOFT MATTER 2016; 12:998-1008. [PMID: 26576500 DOI: 10.1039/c5sm01663k] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.
Collapse
Affiliation(s)
- Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Joe W Tavacoli
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Pete J Wilde
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| |
Collapse
|
29
|
Castrejón-Pita JR, Willis SJ, Castrejón-Pita AA. Dynamic nozzles for drop generators. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:115101. [PMID: 26628166 DOI: 10.1063/1.4934811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, a novel mechanism allowing greater control over the formation of droplets is presented. This is achieved via the use of a dynamic nozzle of adjustable diameter. It is demonstrated that, by using such a nozzle, it is possible to greatly modify the formation and breakup of the ligament behind the main drop, leading to an overall reduction in the number of satellite droplets. Furthermore, by adjusting the delay between the beginning of the forming of the drop and the start of the nozzle constriction, a greater control over both the number of satellites and the size of the main drop can be achieved. It is also shown that only a minimal reduction of the nozzle's effective diameter is required in order to exploit the positive effects of the technique presented here. This opens the possibility of incorporating the technique into current droplet generator systems, e.g., via the use of piezoelectric driven nozzles or other micro-mechanical actuation technology.
Collapse
Affiliation(s)
- J R Castrejón-Pita
- School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - S J Willis
- Wolfson College, University of Cambridge, Cambridge CB3 9BB, United Kingdom
| | - A A Castrejón-Pita
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
30
|
Balcão VM, Vila MMDC. Structural and functional stabilization of protein entities: state-of-the-art. Adv Drug Deliv Rev 2015; 93:25-41. [PMID: 25312675 DOI: 10.1016/j.addr.2014.10.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 08/03/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Within the context of biomedicine and pharmaceutical sciences, the issue of (therapeutic) protein stabilization assumes particular relevance. Stabilization of protein and protein-like molecules translates into preservation of both structure and functionality during storage and/or targeting, and such stabilization is mostly attained through establishment of a thermodynamic equilibrium with the (micro)environment. The basic thermodynamic principles that govern protein structural transitions and the interactions of the protein molecule with its (micro)environment are, therefore, tackled in a systematic fashion. Highlights are given to the major classes of (bio)therapeutic molecules, viz. enzymes, recombinant proteins, (macro)peptides, (monoclonal) antibodies and bacteriophages. Modification of the microenvironment of the biomolecule via multipoint covalent attachment onto a solid surface followed by hydrophilic polymer co-immobilization, or physical containment within nanocarriers, are some of the (latest) strategies discussed aiming at full structural and functional stabilization of said biomolecules.
Collapse
Affiliation(s)
- Victor M Balcão
- LaBNUS - Biomaterials and Nanotechnology Laboratory, i(bs)(2) - intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, SP, Brazil; CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta M D C Vila
- LaBNUS - Biomaterials and Nanotechnology Laboratory, i(bs)(2) - intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, SP, Brazil
| |
Collapse
|
31
|
Microfluidic generation of uniform water droplets using gas as the continuous phase. J Colloid Interface Sci 2015; 448:275-9. [DOI: 10.1016/j.jcis.2015.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/01/2015] [Accepted: 02/08/2015] [Indexed: 10/24/2022]
|
32
|
Gañán-Calvo A, Castro-Hernández E, Flores-Mosquera M, Martín-Banderas L. Massive, Generic, and Controlled Microencapsulation by Flow Focusing: Some Physicochemical Aspects and New Applications. J Flow Chem 2015. [DOI: 10.1556/jfc-d-14-00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Kim HY, Park SS, Lim ST. Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B Biointerfaces 2015; 126:607-20. [DOI: 10.1016/j.colsurfb.2014.11.011] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022]
|
34
|
|
35
|
Ruedinger F, Lavrentieva A, Blume C, Pepelanova I, Scheper T. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol 2014; 99:623-36. [DOI: 10.1007/s00253-014-6253-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
|
36
|
Seiffert S. Effect and Evolution of Nanostructural Complexity in Sensitive Polymer Gels. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastian Seiffert
- Freie Universität Berlin; Institute of Chemistry and Biochemistry; Takustr. 3 D-14195 Berlin Germany
- Helmholtz-Zentrum Berlin; Soft Matter and Functional Materials; Hahn-Meitner-Platz 1 D-14109 Berlin Germany
| |
Collapse
|
37
|
Delgado-Ramos L, Marcos AT, Ramos-Guelfo MS, Sánchez-Barrionuevo L, Smet F, Chávez S, Cánovas D. Flow cytometry of microencapsulated colonies for genetics analysis of filamentous fungi. G3 (BETHESDA, MD.) 2014; 4:2271-8. [PMID: 25239104 PMCID: PMC4232552 DOI: 10.1534/g3.114.014357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022]
Abstract
The analysis of filamentous fungi by flow cytometry has been impossible to date due to their filamentous nature and size. In this work, we have developed a method that combines single-spore microencapsulation and large-particle flow cytometry as a powerful alternative for the genetic analysis of filamentous fungi. Individual spores were embedded in monodisperse alginate microparticles and incubated in the appropriate conditions. Growth could be monitored by light or fluorescent microscopy and Complex Object Parametric Analyzer and Sorter large-particle flow cytometry. Microencapsulated Trichoderma and Aspergillus spores could germinate and grow inside the alginate capsules. Growth tests revealed that auxotrophic mutants required the appropriate nutrients and that pyrithiamine and glufosinate halted fungal growth of sensitive but not resistant strains. We used an Aspergillus nidulans, thermosensitive mutant in the cell-cycle regulator gene nimX(CDK1) as proof-of-concept to the detection and identification of genetic phenotypes. Sorting of the microparticles containing the clonal fungal mycelia proved the power of this method to perform positive and/or negative selection during genetic screenings.
Collapse
Affiliation(s)
- Lidia Delgado-Ramos
- Departamento de Genética, Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain
| | - Ana T Marcos
- Departamento de Genética, Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain
| | - María S Ramos-Guelfo
- Departamento de Genética, Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain
| | - Leyre Sánchez-Barrionuevo
- Departamento de Genética, Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain
| | | | - Sebastián Chávez
- Departamento de Genética, Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain
| |
Collapse
|
38
|
Björnmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release 2014; 190:139-49. [DOI: 10.1016/j.jconrel.2014.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 02/03/2023]
|
39
|
Trebbin M, Krüger K, DePonte D, Roth SV, Chapman HN, Förster S. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. LAB ON A CHIP 2014; 14:1733-45. [PMID: 24671443 DOI: 10.1039/c3lc51363g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present microfluidic chip based devices that produce liquid jets with micrometer diameters while operating at very low flow rates. The chip production is based on established soft-lithographical techniques employing a three-layer design protocol. This allows the exact, controlled and reproducible design of critical parts such as nozzles and the production of nozzle arrays. The microfluidic chips reproducibly generate liquid jets exiting at perfect right angles with diameters between 20 μm and 2 μm, and under special circumstances, even down to 0.9 μm. Jet diameter, jet length, and the domain of the jetting/dripping instability can be predicted and controlled based on the theory for liquid jets in the plate-orifice configuration described by Gañán-Calvo et al. Additionally, conditions under which the device produces highly reproducible monodisperse droplets at exact and predictable rates can be achieved. The devices operate under atmospheric and under vacuum conditions making them highly relevant for a wide range of applications, for example, for free-electron lasers. Further, the straightforward integration of additional features such as a jet-in-jet is demonstrated. This device design has the potential to integrate more features based on established microfluidic components and may become a standard device for small liquid jet production.
Collapse
Affiliation(s)
- Martin Trebbin
- Physical Chemistry 1, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Choi CH, Kim J, Nam JO, Kang SM, Jeong SG, Lee CS. Microfluidic Design of Complex Emulsions. Chemphyschem 2014; 15:21-9. [DOI: 10.1002/cphc.201300821] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/15/2022]
|
41
|
|
42
|
Krishna KS, Li Y, Li S, Kumar CS. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev 2013; 65:1470-95. [PMID: 23726944 DOI: 10.1016/j.addr.2013.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications.
Collapse
|
43
|
Gañán-Calvo A, Montanero J, Martín-Banderas L, Flores-Mosquera M. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Adv Drug Deliv Rev 2013; 65:1447-69. [PMID: 23954401 DOI: 10.1016/j.addr.2013.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 12/11/2022]
Abstract
In this review, we aim at establishing a relationship between the fundamentals of the microfluidics technologies used in the Pharmacy field, and the achievements accomplished by those technologies. We describe the main methods for manufacturing micrometer drops, bubbles, and capsules, as well as the corresponding underlying physical mechanisms. In this regard, the review is intended to show non-specialist readers the dynamical processes which determine the success of microfluidics techniques. Flow focusing (FF) is a droplet-based method widely used to produce different types of fluid entities on a continuous basis by applying an extensional co-flow. We take this technique as an example to illustrate how microfluidics technologies for drug delivery are progressing from a deep understanding of the physics of fluids involved. Specifically, we describe the limitations of FF, and review novel methods which enhance its stability and robustness. In the last part of this paper, we review some of the accomplishments of microfluidics when it comes to drug manufacturing and delivery. Special attention is paid to the production of the microencapsulated form because this fluidic structure gathers the main functionalities sought for in Pharmacy. We also show how FF has been adapted to satisfy an ample variety of pharmaceutical requirements to date.
Collapse
|
44
|
|
45
|
Seiffert S. Small but Smart: Sensitive Microgel Capsules. Angew Chem Int Ed Engl 2013; 52:11462-8. [DOI: 10.1002/anie.201303055] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/10/2013] [Indexed: 11/05/2022]
|
46
|
Rossow T, Bayer S, Albrecht R, Tzschucke CC, Seiffert S. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design. Macromol Rapid Commun 2013; 34:1401-7. [PMID: 23929582 DOI: 10.1002/marc.201300353] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/04/2013] [Indexed: 01/23/2023]
Abstract
Supramolecular microgel capsules based on polyethylene glycol (PEG) are a promising class of soft particulate scaffolds with tailored properties. An approach to fabricate such particles with exquisite control by droplet-based microfluidics is presented. Linear PEG precursor polymers that carry bipyridine moieties on both chain termini are gelled by complexation to iron(II) ions. To investigate the biocompatibility of the microgels, living mammalian cells are encapsulated within them. The microgel elasticity is controlled by using PEG precursors of different molecular weights at different concentrations and the influence of these parameters on the cell viabilities, which can be optimized to exceed 90% is studied. Reversion of the supramolecular polymer cross-linking allows the microcapsules to be degraded at mild conditions with no effect on the viability of the encapsulated and released cells.
Collapse
Affiliation(s)
- Torsten Rossow
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin, D-14195, Germany
| | | | | | | | | |
Collapse
|
47
|
Stehle R, Goerigk G, Wallacher D, Ballauff M, Seiffert S. Small-angle X-ray scattering in droplet-based microfluidics. LAB ON A CHIP 2013; 13:1529-1537. [PMID: 23429654 DOI: 10.1039/c3lc41291a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Small-angle X-ray scattering (SAXS) is a powerful technique to probe nanometer-scale structures; a particularly powerful implementation of SAXS is to apply it to continuously flowing liquid samples in microfluidic devices. This approach has been employed extensively, but virtually all existing studies rely on the use of one-phase microfluidics. We overcome this limitation and present the combination of SAXS with multiphase, droplet-based microfluidics to establish a platform methodology. We focus on the use of two different classes of microfluidic devices in two different approaches. In one approach, we use silicone elastomer devices to form water-in-oil emulsion droplets that contain gold nanoparticles as a model analyte. The emulsion droplets serve as nanoliter-scale compartments that are probed by SAXS off the microfluidic chip. In another approach, we both create and probe the droplets on the same microfluidic chip. In this case, we use a glass microcapillary device that serves to form gold nanoparticles in situ by mixing two aqueous precursor fluids within the drops. Both approaches allow the gold-nanoparticle scattering to be straightforwardly isolated from the raw data; subsequent fitting yields quantitative information on the size, shape, and concentration of the nanoparticles within the compartmentalizing emulsion droplets. In addition, the microfluidic flow parameters scale with the scattering cross-sections in a quantitative fashion. These results foreshadow the utility of this technique for other, more sophisticated tasks such as single-protein analysis or automated assaying.
Collapse
Affiliation(s)
- Ralf Stehle
- Helmholtz-Zentrum Berlin, Institute Soft Matter and Functional Materials, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Nunes JK, Tsai SSH, Wan J, Stone HA. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2013; 46:114002. [PMID: 23626378 PMCID: PMC3634598 DOI: 10.1088/0022-3727/46/11/114002] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dripping and jetting regimes in microfluidic multiphase flows have been investigated extensively, and this review summarizes the main observations and physical understandings in this field to date for three common device geometries: coaxial, flow-focusing and T-junction. The format of the presentation allows for simple and direct comparison of the different conditions for drop and jet formation, as well as the relative ease and utility of forming either drops or jets among the three geometries. The emphasis is on the use of drops and jets as templates for microparticle and microfiber syntheses, and a description is given of the more common methods of solidification and strategies for achieving complex multicomponent microparticles and microfibers.
Collapse
Affiliation(s)
- J K Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
| | - S S H Tsai
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
| | - J Wan
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - H A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
| |
Collapse
|
49
|
De La Vega JC, Elischer P, Schneider T, Häfeli UO. Uniform polymer microspheres: monodispersity criteria, methods of formation and applications. Nanomedicine (Lond) 2013; 8:265-85. [DOI: 10.2217/nnm.12.210] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
For many applications, polymer microspheres (MS) should possess a monodisperse size distribution. With such uniformity they are able to deliver precise amounts of drug per MS, optimize the release kinetics of an encapsulated drug, obtain repeatable in vivo biodistributions to different organs and tissues, and obtain the maximum protection of (protein) drugs from degradation. This review classifies monodisperse polymer MS according to their methods of production and gives examples of the formation of uniform MS and their applications in the medical field. In the literature, the term ‘monodisperse’ is often used inaccurately, and this article attempts to rectify this by clearly defining monodispersity in terms of the coefficient of variation and the polydispersity index, the two statistical quantities most frequently used to describe the size distribution of MS.
Collapse
Affiliation(s)
- José Carlos De La Vega
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Philipp Elischer
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Schneider
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing for efficient antitumor activity. Int J Pharm 2013; 443:103-9. [PMID: 23299085 DOI: 10.1016/j.ijpharm.2012.12.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 12/30/2012] [Indexed: 11/22/2022]
Abstract
We investigated the incorporation of gemcitabine into a colloidal carrier based on the biodegradable and biocompatible poly(d,l-lactide-co-glycolide) (PLGA) to optimize its anticancer activity. Two synthesis techniques (double emulsion/solvent evaporation, and Flow Focusing) were compared in terms of particle geometry, electrophoretic properties (surface charge), gemcitabine vehiculization capabilities (drug loading and release), blood compatibility, and in vitro antitumor activity. To the best of our knowledge, the second formulation methodology (Flow Focusing) has never been applied to the synthesis of gemcitabine-loaded PLGA particles. With the aim of achieving the finest (nano)formulation, experimental parameters associated to these preparation procedures were analyzed. The electrokinetics of the particles suggested that the chemotherapy agent was incorporated into the polymeric matrix. Blood compatibility was demonstrated in vitro. Flow Focusing led to a more appropriate geometry, higher gemcitabine loading and a sustained release profile. In addition, the cytotoxicity of gemcitabine-loaded particles prepared by Flow Focusing was tested in MCF-7 human breast adenocarcinoma cells, showing significantly greater antitumor activity compared to the free drug and to the gemcitabine-loaded particles synthesized by double emulsion/solvent evaporation. Thus, it has been identified the more adequate formulation conditions in the engineering of gemcitabine-loaded PLGA nanoparticles for the effective treatment of tumours.
Collapse
|