1
|
Schlichter L, Bosse F, Tyler BJ, Arlinghaus HF, Ravoo BJ. Patterning of Hydrophilic and Hydrophobic Gold and Magnetite Nanoparticles by Dip Pen Nanolithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208069. [PMID: 36828795 DOI: 10.1002/smll.202208069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Indexed: 05/04/2023]
Abstract
Nanoparticles offer unique physical and chemical properties. Dip pen nanolithography of nanoparticles enables versatile patterning and nanofabrication with potential application in electronics and sensing, but is not well studied yet. Herein, the patterned deposition of various nanoparticles onto unmodified silicon substrates is presented. It is shown that aqueous solutions of hydrophilic citrate and cyclodextrin functionalized gold nanoparticles as well as poly(acrylic) acid decorated magnetite nanoparticles are feasible for writing nanostructures. Both smaller and larger nanoparticles can be patterned. Hydrophobic oleylamine or n-dodecylamine capped gold nanoparticles and oleic acid decorated magnetite nanoparticles are deposited from toluene. Tip loading is carried out by dip-coating, and writing succeeds fast within 0.1 s. Also, coating with longer tip dwell times, at different relative humidity and varying frequency are studied for deposition of nanoparticle clusters. The resulting feature size is between 300 and 1780 nm as determined by scanning electron microscopy. Atomic force microscopy confirms that the heights of the deposited structures correspond to a single or double layer of nanoparticles. Higher writing speeds lead to smaller line thicknesses, offering possibilities to more complex structures. Dip pen nanolithography can hence be used to pattern nanoparticles on silicon substrates independent of the surface chemistry.
Collapse
Affiliation(s)
- Lisa Schlichter
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms- Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Florian Bosse
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms- Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Bonnie J Tyler
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms- Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| |
Collapse
|
2
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
3
|
Wang S, Hashemi S, Stratton S, Arinzeh TL. The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Adv Healthc Mater 2021; 10:e2001244. [PMID: 33274860 DOI: 10.1002/adhm.202001244] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Stem cells have been sought as a promising cell source in the tissue engineering field due to their proliferative capacity as well as differentiation potential. Biomaterials have been utilized to facilitate the delivery of stem cells in order to improve their engraftment and long-term viability upon implantation. Biomaterials also have been developed as scaffolds to promote stem cell induced tissue regeneration. This review focuses on the latter where the biomaterial scaffold is designed to provide physical cues to stem cells in order to promote their behavior for tissue formation. Recent work that explores the effect of scaffold physical properties, topography, mechanical properties and electrical properties, is discussed. Although still being elucidated, the biological mechanisms, including cell shape, focal adhesion distribution, and nuclear shape, are presented. This review also discusses emerging areas and challenges in clinical translation.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Sharareh Hashemi
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Scott Stratton
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | | |
Collapse
|
4
|
Shamish Z, Zohar M, Shamir D, Burg A. Controlling the Size and Pattern Pitch of Ni(OH) 2 Nanoclusters Using Dip-Pen Nanolithography to Improve Water Oxidation. Molecules 2020; 25:molecules25122937. [PMID: 32604746 PMCID: PMC7356304 DOI: 10.3390/molecules25122937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022] Open
Abstract
We use dip-pen nanolithography to accurately pattern Ni(OH)2 nanoclusters on a metachemical surface with an exceptionally large surface area. The distance between the nanoclusters can be manipulated to control the oxygen-evolution reaction current and overpotential, thereby improving the efficiency of the water-splitting process while using minute amounts of the catalyst.
Collapse
Affiliation(s)
- Zorik Shamish
- Department of Chemical Engineering, Shamoon College of Engineering, P.O. Box 950, Beer-Sheva 8410802, Israel;
- Nuclear Research Center, Negev, P.O. Box 9001, Beer-Sheva 8419001, Israel;
| | - Moshe Zohar
- Department of Electrical and Electronics Engineering, Shamoon College of Engineering, P.O. Box 950, Beer-Sheva 8410802, Israel;
| | - Dror Shamir
- Nuclear Research Center, Negev, P.O. Box 9001, Beer-Sheva 8419001, Israel;
| | - Ariela Burg
- Department of Chemical Engineering, Shamoon College of Engineering, P.O. Box 950, Beer-Sheva 8410802, Israel;
- Correspondence: ; Tel.: +972-52-643-3773; Fax: +972-8-647-5636
| |
Collapse
|
5
|
Liu G, Petrosko SH, Zheng Z, Mirkin CA. Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chem Rev 2020; 120:6009-6047. [DOI: 10.1021/acs.chemrev.9b00725] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Liu G, Hirtz M, Fuchs H, Zheng Z. Development of Dip-Pen Nanolithography (DPN) and Its Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900564. [PMID: 30977978 DOI: 10.1002/smll.201900564] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Indexed: 05/13/2023]
Abstract
Dip-pen nanolithography (DPN) is a unique nanofabrication tool that can directly write a variety of molecular patterns on a surface with high resolution and excellent registration. Over the past 20 years, DPN has experienced a tremendous evolution in terms of applicable inks, a remarkable improvement in fabrication throughput, and the development of various derivative technologies. Among these developments, polymer pen lithography (PPL) is the most prominent one that provides a large-scale, high-throughput, low-cost tool for nanofabrication, which significantly extends DPN and beyond. These developments not only expand the scope of the wide field of scanning probe lithography, but also enable DPN and PPL as general approaches for the fabrication or study of nanostructures and nanomaterials. In this review, a focused summary and historical perspective of the technological development of DPN and its derivatives, with a focus on PPL, in one timeline, are provided and future opportunities for technological exploration in this field are proposed.
Collapse
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong SAR, China
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe, Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) and Karlsruhe, Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Münster, 48149, Germany
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong SAR, China
| |
Collapse
|
7
|
Kausar A. Graphene nanoribbon: fundamental aspects in polymeric nanocomposite. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ayesha Kausar
- School of Natural Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
8
|
Turgut H, Dingenouts N, Trouillet V, Krolla-Sidenstein P, Gliemann H, Delaittre G. Reactive block copolymers for patterned surface immobilization with sub-30 nm spacing. Polym Chem 2019. [DOI: 10.1039/c8py01777h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reactive polystyrene-block-polyisoprene copolymers are synthesized by nitroxide-mediated polymerization, self-assemble within ultra-thin films, and exhibit surface reactivity for patterned immobilization.
Collapse
Affiliation(s)
- Hatice Turgut
- Institute of Toxicology and Genetics (ITG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
| | - Nico Dingenouts
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Vanessa Trouillet
- Institute for Applied Materials – Energy Storage System (IAM-ESS) and Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Peter Krolla-Sidenstein
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
| |
Collapse
|
9
|
Khare HS, Gosvami NN, Lahouij I, Milne ZB, McClimon JB, Carpick RW. Nanotribological Printing: A Nanoscale Additive Manufacturing Method. NANO LETTERS 2018; 18:6756-6763. [PMID: 30350634 DOI: 10.1021/acs.nanolett.8b02505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Additive manufacturing methods are transforming the way components and devices are fabricated, which in turn is opening up completely new vistas for conceiving and designing products and engineered systems. Small-scale (submicrometer) additive manufacturing methods are largely in their infancy. While a number of methods exist, a particular challenge lies in finding methods that can produce a range of materials while obtaining sufficiently robust mechanical properties. In this paper, we describe a novel nanoscale additive manufacturing technique deemed "Nanotribological Printing" (NTP), which creates structures through tribomechanical and tribochemical surface interactions at the contact between a substrate and an atomic force microscope probe, where material pattern formation is driven by normal and shear contact stresses. The "ink" consists of nanoparticles or molecules dispersed in a carrier fluid surrounding the atomic force microscope (AFM) probe, which are entrained into the contact during sliding. Being stress-driven, patterning only occurs locally within regions which experience contact and sufficiently high stresses. Thus, imaging and measurement to characterize the morphology and properties of the deposited structures can be conducted in situ during the manufacturing process. Moreover, using local mechanical energy as the kinetic driver activating the solidification process, the method is compact and does not require application of a bias voltage or laser exposure and can be performed at ambient temperatures. We demonstrate (1) control of pattern dimensions with sub-100 nm lateral and sub-5 nm thickness control through variations in contact size and applied stress, (2) creation of amorphous, polycrystalline, and nanocomposite structures including sequential multimaterial deposition, and (3) formation of manufactured structures which exhibit mechanical properties approaching those of bulk counterparts. The ability to create nanoscale patterns using standard AFM cantilever probes and operation modes (contact mode scanning in fluid) with commercial AFM instruments, independent of substrate, establishes NTP as a versatile and easily accessible method for nanoscale additive manufacturing.
Collapse
|
10
|
|
11
|
Kim S, Sojoudi H, Zhao H, Mariappan D, McKinley GH, Gleason KK, Hart AJ. Ultrathin high-resolution flexographic printing using nanoporous stamps. SCIENCE ADVANCES 2016; 2:e1601660. [PMID: 27957542 PMCID: PMC5142799 DOI: 10.1126/sciadv.1601660] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/04/2016] [Indexed: 05/06/2023]
Abstract
Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies.
Collapse
Affiliation(s)
- Sanha Kim
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hossein Sojoudi
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hangbo Zhao
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dhanushkodi Mariappan
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gareth H. McKinley
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen K. Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. John Hart
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
12
|
Guardingo M, Busqué F, Ruiz-Molina D. Reactions in ultra-small droplets by tip-assisted chemistry. Chem Commun (Camb) 2016; 52:11617-26. [PMID: 27468750 DOI: 10.1039/c6cc03504c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The confinement of chemical reactions within small droplets has received much attention in the last few years. This approach has been proved successful for the in-depth study of naturally occurring chemical processes as well as for the synthesis of different sets of nanomaterials with control over their size, shape and properties. Different approaches such as the use of self-contained structures or microfluidic generated droplets have been followed over the years with success. However, novel approaches have emerged during the last years based on the deposition of femtolitre-sized droplets on surfaces using tip-assisted lithographic methods. In this feature article, we review the advances made towards the use of these ultra-small droplets patterned on surfaces as confined nano-reactors.
Collapse
Affiliation(s)
- M Guardingo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra 08193, Barcelona, Spain.
| | | | | |
Collapse
|
13
|
Mesquita V, Botton J, Valyaev DA, François C, Patrone L, Balaban TS, Abel M, Parrain JL, Chuzel O, Clair S. Catalytic Scanning Probe Nanolithography (cSPL): Control of the AFM Parameters in Order to Achieve Sub-100-nm Spatially Resolved Epoxidation of Alkenes Grafted onto a Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4034-4042. [PMID: 27027411 DOI: 10.1021/acs.langmuir.6b00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Scanning probe lithography (SPL) appears to be a reliable alternative to the use of masks in traditional lithography techniques as it offers the possibility of directly producing specific chemical functionalities with nanoscale spatial control. We have recently extend the range of applications of catalytic SPL (cSPL) by introducing a homogeneous catalyst immobilized on the apex of a scanning probe. Here we investigate the importance of atomic force microscopy (AFM) physical parameters (applied force, writing speed, and interline distance) on the resultant chemical activity in this cSPL methodology through the direct topographic observation of nanostructured surfaces. Indeed, an alkene-terminated self-assembled monolayer (alkene-SAM) on a silicon wafer was locally epoxidized using a scanning probe tip with a covalently grafted manganese complex bearing the 1,4,7-triazacyclononane macrocycle as the ligand. In a post-transformation process, N-octylpiperazine was covalently grafted to the surface via a selective nucleophilic ring-opening reaction. With this procedure, we could write various patterns on the surface with high spatial control. The catalytic AFM probe thus appears to be very robust because a total area close to 500 μm(2) was patterned without any noticeable loss of catalytic activity. Finally, this methodology allowed us to reach a lower lateral line resolution down to 40 nm, thus being competitive and complementary to the other nanolithographical techniques for the nanostructuration of surfaces.
Collapse
Affiliation(s)
- Vincent Mesquita
- Aix Marseille Université , CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Julien Botton
- Aix Marseille Université , Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Dmitry A Valyaev
- Aix Marseille Université , Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Cyril François
- Aix Marseille Université , Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Lionel Patrone
- Aix Marseille Université , CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
- Institut Supérieur de l'Electronique et du Numérique , CNRS, IM2NP UMR 7334, 83000 Toulon, France
| | - Teodor Silviu Balaban
- Aix Marseille Université , Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Mathieu Abel
- Aix Marseille Université , CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Jean-Luc Parrain
- Aix Marseille Université , Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Olivier Chuzel
- Aix Marseille Université , Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Sylvain Clair
- Aix Marseille Université , CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
| |
Collapse
|
14
|
Othman A, Karimi A, Andreescu S. Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. J Mater Chem B 2016; 4:7178-7203. [DOI: 10.1039/c6tb02009g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A review describing functional nanostructures for portable and printable enzyme biosensors. Specific physicochemical and surface properties of nanoparticles used as carriers and sensing components and their assembly are discussed with an overview of current and emerging techniques enabling large scale roll-to-roll fabrication and miniaturization. Their integration in flexible, wearable and inexpensive point-of-use devices, and implementation challenges are also provided with examples of applications.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Anahita Karimi
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
15
|
Calborean A, Martin F, Marconi D, Turcu R, Kacso I, Buimaga-Iarinca L, Graur F, Turcu I. Adsorption mechanisms of l-Glutathione on Au and controlled nano-patterning through Dip Pen Nanolithography. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:171-80. [DOI: 10.1016/j.msec.2015.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 11/16/2022]
|
16
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
17
|
Fabié L, Agostini P, Stopel M, Blum C, Lassagne B, Subramaniam V, Ondarçuhu T. Direct patterning of nanoparticles and biomolecules by liquid nanodispensing. NANOSCALE 2015; 7:4497-4504. [PMID: 25684315 DOI: 10.1039/c4nr06824f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the localized deposition of nanoparticles and proteins, nano-objects commonly used in many nanodevices, by the liquid nanodispensing (NADIS) technique which consists in depositing droplets of a solution through a nanochannel drilled at the apex of an AFM tip. We demonstrate that the size of spots can be adjusted from microns down to sub-50 nm by tuning the channel diameter, independently of the chemical nature of the solute. In the case of nanoparticles, we demonstrated the ultimate limit of the method and showed that large arrays of single (or pairs of) nanoparticles can be reproducibly deposited. We further explored the possibility to deposit different visible fluorescent proteins using NADIS without loss of protein function. The intrinsic fluorescence of these proteins is characteristic of their structural integrity; the retention of fluorescence after NADIS deposition demonstrates that the proteins are intact and functional. This study demonstrates that NADIS can be a viable alternative to other scanning probe lithography techniques since it combines high resolution direct writing of nanoparticles or biomolecules with the versatility of liquid lithography techniques.
Collapse
Affiliation(s)
- Laure Fabié
- Nanosciences Group, CEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Griffin MF, Butler PE, Seifalian AM, Kalaskar DM. Control of stem cell fate by engineering their micro and nanoenvironment. World J Stem Cells 2015; 7:37-50. [PMID: 25621104 PMCID: PMC4300935 DOI: 10.4252/wjsc.v7.i1.37] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/13/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix (ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine.
Collapse
|
19
|
Zhong J, Sun G, He D. Classic, liquid, and matrix-assisted dip-pen nanolithography for materials research. NANOSCALE 2014; 6:12217-12228. [PMID: 25251309 DOI: 10.1039/c4nr04296d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a powerful atomic force microscopy-based nanotechnological tool, dip-pen nanolithography (DPN) has provided an ideal direct-write "constructive" lithographic tool that allows materials to be patterned from DPN tips onto a surface with high registration and sub-15 nm resolution. In the past few decades, DPN has been enormously developed for studying the patterning of inorganic, organic, and biological materials onto a variety of substrates. The focus of this review is on the development of three types of DPN: classic, liquid, and matrix-assisted DPN. Such development mainly includes the following aspects: the comparisons of three types of DPN, the effect factors and basic mechanisms of three types of DPN, and the application progress of three types of DPN.
Collapse
Affiliation(s)
- Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China.
| | | | | |
Collapse
|
20
|
Harirchian-Saei S, Wang MCP, Gates BD, Moffitt MG. Simultaneous patterning of two different types of nanoparticles into alternating domains of a striped array of a polymer blend in a single spin-casting step. J Colloid Interface Sci 2014; 433:123-132. [PMID: 25128863 DOI: 10.1016/j.jcis.2014.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Abstract
A fast and convenient method is developed for simultaneously patterning inorganic nanoparticles with different optical, electronic or magnetic functionality to specific surface regions, by spin-casting onto microcontact printed substrates blend solutions in which the two nanoparticle types are functionalized with surface polymer brush layers of different surface energies. The process is based on phase separation of different nanoparticles based on their immiscible brush layers during spin-casting, with the underlying surface energy heterogeneity of the patterned substrate directing the different NP types to domains of different surface energies. Here, we specifically demonstrate the simultaneous localization of cadmium sulfide quantum dots (CdS QDs), addressed with a surface layer of polystyrene (PS), and silver nanoparticles (Ag NPs), addressed with a surface layer of poly(methyl methacrylate) (PMMA), onto the non-polar and polar surface domains, respectively, of hydrophilic glass patterned with hydrophobic octadecyltrichlorosilane (OTS) stripe arrays with micron-scale periodicities. In order to prevent gelation of solvent-swollen polymer-brush coated NPs during spin casting, which effects strong kinetic constraints on phase separation and localization, PS, PMMA or PS/PMMA homopolymer blends of sufficiently high Mw were added to the NP blends to increase the free volume between approaching NPs. The process parameters were fine-tuned to obtain control over defects in the obtained patterns.
Collapse
Affiliation(s)
- Saman Harirchian-Saei
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Michael C P Wang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Byron D Gates
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada.
| |
Collapse
|
21
|
Dugay J, Tan RP, Loubat A, Lacroix LM, Carrey J, Fazzini PF, Blon T, Mayoral A, Chaudret B, Respaud M. Tuning deposition of magnetic metallic nanoparticles from periodic pattern to thin film entrainment by dip coating method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9028-9035. [PMID: 25000178 DOI: 10.1021/la404044e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, we report on the self-assembly of bimetallic CoFe carbide magnetic nanoparticles (MNPs) stabilized by a mixture of long chain surfactants. A dedicated setup, coupling dip coating and sputtering chamber, enables control of the self-assembly of MNPs from regular stripe to continuous thin films under inert atmosphere. The effects of experimental parameters, MNP concentration, withdrawal speed, amount, and nature of surfactants, as well as the surface state of the substrates are discussed. Magnetic measurements revealed that the assembled particles were not oxidized, confirming the high potentiality of our approach for the controlled deposition of highly sensitive MNPs.
Collapse
Affiliation(s)
- J Dugay
- Laboratoire de Physique et Chimie des Nano-Objets, Université de Toulouse; INSA, UPS , 135, av. de Rangueil, F-31077 Toulouse, France and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang Z, Zhang L, Zhang Y, Zhao Y, Jing L, Yan Y, Sun K. Rational design of CuO@Cu nanostructure with tuneable morphology and electrochemical properties. RSC Adv 2014. [DOI: 10.1039/c3ra47045h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
O'Connell CD, Higgins MJ, Sullivan RP, Jamali SS, Moulton SE, Wallace GG. Nanoscale platinum printing on insulating substrates. NANOTECHNOLOGY 2013; 24:505301. [PMID: 24270681 DOI: 10.1088/0957-4484/24/50/505301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).
Collapse
Affiliation(s)
- C D O'Connell
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Gilles S, Tuchscherer A, Lang H, Simon U. Dip-pen-based direct writing of conducting silver dots. J Colloid Interface Sci 2013; 406:256-62. [DOI: 10.1016/j.jcis.2013.05.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
|
25
|
Abstract
This review surveys selected methods of manufacture and applications of microdevices-miniaturized functional devices capable of handling cell and tissue cultures or producing particles-and discusses their potential relevance to nanomedicine. Many characteristics of microdevices such as miniaturization, increased throughput, and the ability to mimic organ-specific microenvironments are promising for the rapid, low-cost evaluation of the efficacy and toxicity of nanomaterials. Their potential to accurately reproduce the physiological environments that occur in vivo could reduce dependence on animal models in pharmacological testing. Technologies in microfabrications and microfluidics are widely applicable for nanomaterial synthesis and for the development of diagnostic devices. Although the use of microdevices in nanomedicine is still in its infancy, these technologies show promise for enhancing fundamental and applied research in nanomedicine.
Collapse
Affiliation(s)
- Michinao Hashimoto
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Manesh KM, Campuzano S, Gao W, Lobo-Castañón MJ, Shitanda I, Kiantaj K, Wang J. Nanomotor-based biocatalytic patterning of helical metal microstructures. NANOSCALE 2013; 5:1310-1314. [PMID: 23154309 DOI: 10.1039/c2nr33040g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new nanomotor-based surface-patterning technique based on the movement of a magnetically powered enzyme-functionalized flexible nanowire swimmer offers the ability to create complex helical metal microstructures.
Collapse
Affiliation(s)
- Kalayil Manian Manesh
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Stadermann J, Riedel M, Voit B. Nanostructured Films of Block Copolymers Functionalized With Photolabile Protected Amino Groups. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Saccà B, Siebers B, Meyer R, Bayer M, Niemeyer CM. Nanolattices of switchable DNA-based motors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3000-3008. [PMID: 22761085 DOI: 10.1002/smll.201200703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Indexed: 06/01/2023]
Abstract
Miniaturization is an important aspect of device fabrication. Despite the advancements of modern top-down approaches, scaling-down to the sub-nanometer size is still a challenge. As an alternative, bottom-up approaches, such as the use of DNA as an engineering material, are therefore emerging, allowing control of matter at the single-molecule level. A DNA-based self-assembly method for the construction of switchable DNA devices is descrbied here based on G-quadruplex moieties, which are patterned on quasi-planar DNA arrays with nanoscale precision. The reversible switching of the devices is triggered by addition of DNA sequences ('fuels') and translated into linear extension/contractile movements. The conformational change of the devices was visualized by atomic force microscopy and FRET spectroscopy. Steady state fluorescence spectroscopy indicated that scaffolding of the G4 motors to either individual tiles or extended superlattices had no significant impact on the switching and optical performance of the system. However, time-resolved spectroscopy revealed that ordering in the microstructural environment enhances the fraction of molecules subject to FRET. Altogether, our study confirms that DNA superstructures are well-suited scaffolds for accommodation of mechanically switchable units and thus opens the door to the development of more sophisticated nanomechanical devices.
Collapse
Affiliation(s)
- Barbara Saccà
- TU Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Str. 6, D-44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
29
|
Bellido E, Ojea-Jiménez I, Ghirri A, Alvino C, Candini A, Puntes V, Affronte M, Domingo N, Ruiz-Molina D. Controlled positioning of nanoparticles on graphene by noninvasive AFM lithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12400-12409. [PMID: 22830516 DOI: 10.1021/la3023419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy is shown to be an excellent lithographic technique to directly deposit nanoparticles on graphene by capillary transport without any previous functionalization of neither the nanoparticles nor the graphene surface while preserving its integrity and conductivity properties. Moreover this technique allows for (sub)micrometric control on the positioning thanks to a new three-step protocol that has been designed with this aim. With this methodology the exact target coordinates are registered by scanning the tip over the predetermined area previous to its coating with the ink and deposition. As a proof-of-concept, this strategy has successfully allowed the controlled deposition of few nanoparticles on 1 μm(2) preselected sites of a graphene surface with high accuracy.
Collapse
Affiliation(s)
- Elena Bellido
- Centro de Investigación en Nanociencia y Nanotecnología (CIN2, ICN-CSIC ) Esfera UAB, Campus UAB, Cerdanyola del Vallès, 08193 Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wallace GG, Higgins MJ, Moulton SE, Wang C. Nanobionics: the impact of nanotechnology on implantable medical bionic devices. NANOSCALE 2012; 4:4327-4347. [PMID: 22695635 DOI: 10.1039/c2nr30758h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The nexus of any bionic device can be found at the electrode-cellular interface. Overall efficiency is determined by our ability to transfer electronic information across that interface. The nanostructure imparted to electrodes plays a critical role in controlling the cascade of events that determines the composition and structure of that interface. With commonly used conductors: metals, carbon and organic conducting polymers, a number of approaches that promote control over structure in the nanodomain have emerged in recent years with subsequent studies revealing a critical dependency between nanostructure and cellular behaviour. As we continue to develop our understanding of how to create and characterise electromaterials in the nanodomain, this is expected to have a profound effect on the development of next generation bionic devices. In this review, we focus on advances in fabricating nanostructured electrodes that present new opportunities in the field of medical bionics. We also briefly evaluate the interactions of living cells with the nanostructured electromaterials, in addition to highlighting emerging tools used for nanofabrication and nanocharacterisation of the electrode-cellular interface.
Collapse
Affiliation(s)
- G G Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | | | | | | |
Collapse
|
31
|
Bellido E, Domingo N, Ojea-Jiménez I, Ruiz-Molina D. Structuration and integration of magnetic nanoparticles on surfaces and devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1465-1491. [PMID: 22467627 DOI: 10.1002/smll.201101456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Different experimental approaches used for structuration of magnetic nanoparticles on surfaces are reviewed. Nanoparticles tend to organize on surfaces through self-assembly mechanisms controlled by non-covalent interactions which are modulated by their shape, size and morphology as well as by other external parameters such as the nature of the solvent or the capping layer. Further control on the structuration can be achieved by the use of external magnetic fields or other structuring techniques, mainly lithographic or atomic force microscopy (AFM)-based techniques. Moreover, results can be improved by chemical functionalization or the use of biological templates. Chemical functionalization of the nanoparticles and/or the surface ensures a proper stability as well as control of the formation of a (sub)monolayer. On the other hand, the use of biological templates facilitates the structuration of several families of nanoparticles, which otherwise may be difficult to form, simply by establishing the experimental conditions required for the structuration of the organic capsule. All these experimental efforts are directed ultimately to the integration of magnetic nanoparticles in sensors which constitute the future generation of hybrid magnetic devices.
Collapse
Affiliation(s)
- Elena Bellido
- Centro de Investigación en Nanociencia y Nanotecnología, (Esfera UAB. Campus UAB, Cerdanyola del Vallès, Spain
| | | | | | | |
Collapse
|
32
|
Tang Z, Wei A. Fabrication of anisotropic metal nanostructures using innovations in template-assisted lithography. ACS NANO 2012; 6:998-1003. [PMID: 22324475 PMCID: PMC3302161 DOI: 10.1021/nn300375r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Advances in the burgeoning field of plasmonics are increasingly dependent on the ability to fabricate metal nanostructures with precisely defined shapes and orientations, on a scale suitable for technological developments. Recent innovations in top-down lithography have created new windows of opportunity to produce anisotropic metal nanostructures en masse, with near-term applications in photonics, biosensing, and other nanotechnology-enabled pursuits. We focus specifically on C-shaped nanostructures (nanocrescents and split-ring resonators), which can be fabricated by using novel variants of shadow-mask lithography, substrate etching, or microcontact printing.
Collapse
Affiliation(s)
| | - Alexander Wei
- Corresponding author. Tel.: (765) 494-5257; Fax: (765) 494-0239.
| |
Collapse
|
33
|
Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy. Int J Anal Chem 2012; 2012:341260. [PMID: 22505915 PMCID: PMC3296299 DOI: 10.1155/2012/341260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/03/2011] [Indexed: 11/24/2022] Open
Abstract
Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5 × 10−13 moles). The biorecognition method is reproducible and shows high specificity and good accuracy. In addition, the capture assay platform shows a promising approach to patterning dendrimers for nanotechnology applications.
Collapse
|
34
|
Schlapak R, Danzberger J, Armitage D, Morgan D, Ebner A, Hinterdorfer P, Pollheimer P, Gruber HJ, Schäffler F, Howorka S. Nanoscale DNA tetrahedra improve biomolecular recognition on patterned surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:89-97. [PMID: 22083943 DOI: 10.1002/smll.201101576] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Indexed: 05/31/2023]
Abstract
The bottom-up approach of DNA nano-biotechnology can create biomaterials with defined properties relevant for a wide range of applications. This report describes nanoscale DNA tetrahedra that are beneficial to the field of biosensing and the targeted immobilization of biochemical receptors on substrate surfaces. The DNA nanostructures act as immobilization agents that are able to present individual molecules at a defined nanoscale distance to the solvent thereby improving biomolecular recognition of analytes. The tetrahedral display devices are self-assembled from four oligonucleotides. Three of the four tetrahedron vertices are equipped with disulfide groups to enable oriented binding to gold surfaces. The fourth vertex at the top of the bound tetrahedron presents the biomolecular receptor to the solvent. In assays testing the molecular accessibility via DNA hybridization and protein capturing, tetrahedron-tethered receptors outperformed conventional immobilization approaches with regard to specificity and amount of captured polypeptide by a factor of up to seven. The bottom-up strategy of creating DNA tetrahedrons is also compatible with the top-down route of nanopatterning of inorganic substrates, as demonstrated by the specific coating of micro- to nanoscale gold squares amid surrounding blank or poly(ethylene glycol)-passivated glass surfaces. DNA tetrahedra can create biofunctionalized surfaces of rationally designed properties that are of relevance in analytical chemistry, cell biology, and single-molecule biophysics.
Collapse
Affiliation(s)
- Robert Schlapak
- Center for Advanced Bioanalysis, Upper Austrian Research, 4020 Linz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tel-Vered R, Yehezkeli O, Willner I. Biomolecule/Nanomaterial Hybrid Systems for Nanobiotechnology. NANO-BIOTECHNOLOGY FOR BIOMEDICAL AND DIAGNOSTIC RESEARCH 2012; 733:1-16. [DOI: 10.1007/978-94-007-2555-3_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Domingo N, Bellido E, Ruiz-Molina D. Advances on structuring, integration and magnetic characterization of molecular nanomagnets on surfaces and devices. Chem Soc Rev 2012; 41:258-302. [DOI: 10.1039/c1cs15096k] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Webber DH, Brutchey RL. Nanocrystal ligand exchange with 1,2,3,4-thiatriazole-5-thiolate and its facile in situ conversion to thiocyanate. Dalton Trans 2012; 41:7835-8. [DOI: 10.1039/c2dt30197k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Fabre B, Herrier C. Automated sub-100 nm local anodic oxidation (LAO)-directed nanopatterning of organic monolayer-modified silicon surfaces. RSC Adv 2012. [DOI: 10.1039/c1ra00450f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
39
|
Gómez-Herrero J, Zamora F. Coordination polymers for nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:5311-5317. [PMID: 22299146 DOI: 10.1002/adma.201101952] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
40
|
Breitenstein M, Nielsen PE, Hölzel R, Bier FF. DNA-nanostructure-assembly by sequential spotting. J Nanobiotechnology 2011; 9:54. [PMID: 22099392 PMCID: PMC3248840 DOI: 10.1186/1477-3155-9-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. RESULTS For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. CONCLUSIONS The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.
Collapse
Affiliation(s)
- Michael Breitenstein
- Fraunhofer Institute for Biomedical Engineering Department of Nanobiotechnology and Nanomedicine Am Mühlenberg 13, 14476 Potsdam, Germany
- University of Potsdam Institute for Biochemistry and Biology Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Health Science Faculty University of Copenhagen Blegdamsvej 3c, DK-2100 N, Copenhagen, Denmark
| | - Ralph Hölzel
- Fraunhofer Institute for Biomedical Engineering Department of Nanobiotechnology and Nanomedicine Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Frank F Bier
- Fraunhofer Institute for Biomedical Engineering Department of Nanobiotechnology and Nanomedicine Am Mühlenberg 13, 14476 Potsdam, Germany
- University of Potsdam Institute for Biochemistry and Biology Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
41
|
Lusker KL, Li JR, Garno JC. Nanostructures of functionalized gold nanoparticles prepared by particle lithography with organosilanes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13269-75. [PMID: 21928785 DOI: 10.1021/la202816k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Periodic arrays of organosilane nanostructures were prepared with particle lithography to define sites for selective adsorption of functionalized gold nanoparticles. Essentially, the approach for nanoparticle lithography consists of procedures with two masks. First, latex mesospheres were used as a surface mask for deposition of an organosilane vapor, to produce an array of holes within a covalently bonded, organic thin film. The latex particles were readily removed with solvent rinses to expose discrete patterns of nanosized holes of uncovered substrate. The nanostructured film of organosilanes was then used as a surface mask for a second patterning step, with immersion in a solution of functionalized nanoparticles. Patterned substrates were fully submerged in a solution of surface-active gold nanoparticles coated with 3-mercaptopropyltrimethoxysilane. Regularly shaped, nanoscopic areas of bare substrate produced by removal of the latex mask provided sites to bind silanol-terminated gold nanoparticles, and the methyl-terminated areas of the organosilane film served as an effective resist, preventing nonspecific adsorption on masked areas. Characterizations with atomic force microscopy demonstrate the steps for lithography with organosilanes and functionalized nanoparticles. Patterning was accomplished for both silicon and glass substrates, to generate nanostructures with periodicities of 200-300 nm that match the diameters of the latex mesospheres of the surface masks. Nanoparticles were shown to bind selectively to uncovered, exposed areas of the substrate and did not attach to the methyl-terminal groups of the organosilane mask. Billions of well-defined nanostructures of nanoparticles can be generated using this high-throughput approach of particle lithography, with exquisite control of surface density and periodicity at the nanoscale.
Collapse
Affiliation(s)
- Kathie L Lusker
- Chemistry Department, Lousiana State University, Baton Rouge, Louisiana, United States
| | | | | |
Collapse
|
42
|
Jain MP, Vaisheva F, Maysinger D. Metalloestrogenic effects of quantum dots. Nanomedicine (Lond) 2011; 7:23-37. [PMID: 22011313 DOI: 10.2217/nnm.11.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the metalloestrogenic effects of cadmium telluride quantum dots (QDs) in both human breast cancer cells and in vivo in mice. MATERIALS & METHODS Human breast cancer cells (MCF-7 cells) were utilized to study QDs, cadmium and 17β-estradiol induced estrogen-related genomic and nongenomic signaling. Female prepubescent and ovariectomized adult mice were treated with CdTe QDs to assess whether QD-induced estrogenicity would lead to uterine changes. RESULTS & DISCUSSION Our findings demonstrate that in vitro cadmium-containing QDs induce cellular proliferation, estrogen receptor α activation, and biphasic phosphorylation of AKT and ERK1/2, comparable with 17β-estradiol. Green QDs elicited a more robust estrogenic response than orange QDs. Addition of the selective estrogen receptor antagonist, ICI 182780, completely abolished all QD-induced estrogenic effects, suggesting that QD-induced estrogenic signaling is mediated via the estrogen receptor. In vivo, chronic treatment of mice with QDs led to a two- to three-fold increase in uterine weight, comparable or greater than 17β-estradiol. CONCLUSION These findings suggest that certain cadmium-containing nanocrystals are endocrine disruptors, whose effects can exceed those induced by ionic cadmium or 17β-estradiol.
Collapse
Affiliation(s)
- Manasi P Jain
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC, H3G 1Y6, Canada
| | | | | |
Collapse
|
43
|
Zhou X, Boey F, Huo F, Huang L, Zhang H. Chemically functionalized surface patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2273-89. [PMID: 21678549 DOI: 10.1002/smll.201002381] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Indexed: 05/24/2023]
Abstract
Patterning substrates with versatile chemical functionalities from micro- to nanometer scale is a long-standing and interesting topic. This review provides an overview of a range of techniques commonly used for surface patterning. The first section briefly introduces conventional micropatterning tools, such as photolithography and microcontact printing. The second section focuses on the currently used nanolithographic techniques, for example, scanning probe lithography (SPL), and their applications in surface patterning. Their advantages and disadvantages are also demonstrated. In the last section, dip-pen nanolithography (DPN) is emphatically illustrated, with a particular stress on the patterning and applications of biomolecules.
Collapse
Affiliation(s)
- Xiaozhu Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | |
Collapse
|
44
|
Thompson DG, McKenna EO, Pitt A, Graham D. Microscale mesoarrays created by dip-pen nanolithography for screening of protein–protein interactions. Biosens Bioelectron 2011; 26:4667-73. [DOI: 10.1016/j.bios.2011.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/11/2011] [Accepted: 04/21/2011] [Indexed: 01/27/2023]
|
45
|
Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1876-902. [PMID: 21630440 DOI: 10.1002/smll.201002009] [Citation(s) in RCA: 1148] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 05/21/2023]
Abstract
Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.
Collapse
Affiliation(s)
- Xiao Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Keller S, Marx A. The use of enzymes for construction of DNA-based objects and assemblies. Chem Soc Rev 2011; 40:5690-7. [PMID: 21637873 DOI: 10.1039/c1cs15040e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA has found wide applications in DNA-based nanotechnology due to its simplicity and predictability of its secondary structure. Selecting DNA for the nanoconstruction of objects and assemblies bears the inherent potential for manipulations and control by DNA modifying enzymes. In this tutorial review, we present an overview of the enzyme-catalysed construction of DNA-based objects and assemblies. It is illustrated how a diversity of enzyme-based biochemical reactions are transferred in nanotechnological applications.
Collapse
Affiliation(s)
- Sascha Keller
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
47
|
Shin YS, Son JY, Jo MH, Shin YH, Jang HM. High-Mobility Graphene Nanoribbons Prepared Using Polystyrene Dip-Pen Nanolithography. J Am Chem Soc 2011; 133:5623-5. [DOI: 10.1021/ja108464s] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Bellido E, Cardona-Serra S, Coronado E, Ruiz-Molina D. Assisted-assembly of coordination materials into advanced nanoarchitectures by Dip Pen nanolithography. Chem Commun (Camb) 2011; 47:5175-7. [DOI: 10.1039/c1cc10630a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Sun S, Thompson DG, Graham D, Leggett GJ. DNA nanofabrication by scanning near-field photolithography of oligo(ethylene glycol) terminated SAMs: Controlled scan-rate dependent switching between head group oxidation and tail group degradation. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11803j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Son JY, Ryu S, Park YC, Lim YT, Shin YS, Shin YH, Jang HM. A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube. ACS NANO 2010; 4:7315-7320. [PMID: 21050014 DOI: 10.1021/nn1021296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate a field-effect nonvolatile memory device made of a ferroelectric copolymer gate nanodot and a single-walled carbon nanotube (SW-CNT). A position-controlled dip-pen nanolithography was performed to deposit a poly(vinylidene fluoride-ran-trifluoroethylene) (PVDF-TrFE) nanodot onto the SW-CNT channel with both a source and drain for field-effect transistor (FET) function. PVDF-TrFE was chosen as a gate dielectric nanodot in order to efficiently exploit its bipolar chemical nature. A piezoelectric force microscopy study confirmed the canonical ferroelectric responses of the PVDF-TrFE nanodot fabricated at the center of the SW-CNT channel. The two distinct ferroelectric polarization states with the stable current retention and fatigue-resistant characteristics make the present PVDF-TrFE-based FET suitable for nonvolatile memory applications.
Collapse
Affiliation(s)
- Jong Yeog Son
- Department of Materials Science and Engineering, and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|