1
|
Christfort JF, Milián‐Guimerá C, Kamguyan K, Hansen MB, Nielsen LH, Thamdrup LHE, Zór K, Boisen A. Sequential Drug Release Achieved with Dual‐compartment Microcontainers: Towards Combination Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Carmen Milián‐Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Khorshid Kamguyan
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Morten Borre Hansen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
- Present address : Agilent Technologies Denmark ApS Produktionsvej 42 Glostrup 2600 Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology Technical University of Denmark Kgs. Lyngby 2800 Denmark
| |
Collapse
|
2
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
3
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
4
|
Okeyo PO, Rajendran ST, Zór K, Boisen A. Sensing technologies and experimental platforms for the characterization of advanced oral drug delivery systems. Adv Drug Deliv Rev 2021; 176:113850. [PMID: 34182015 DOI: 10.1016/j.addr.2021.113850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Complex and miniaturized oral drug delivery systems are being developed rapidly for targeted, controlled drug release and improved bioavailability. Standard analytical techniques are widely used to characterize i) drug carrier and active pharmaceutical ingredients before loading into a delivery device (to ensure the solid form), and ii) the entire drug delivery system during the development process. However, in light of the complexity and the size of some of these systems, standard techniques as well as novel sensing technologies and experimental platforms need to be used in tandem. These technologies and platforms are discussed in this review, with a special focus on passive delivery systems in size range from a few 100 µm to a few mm. Challenges associated with characterizing these systems and evaluating their effect on oral drug delivery in the preclinical phase are also discussed.
Collapse
|
5
|
Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021; 175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Overcoming the gastrointestinal (GI) barriers is a formidable challenge in the oral delivery of active macromolecules such as peptide- and protein- based drugs. In the past four decades, a plethora of formulation strategies ranging from permeation enhancers, nanosized carriers, and chemical modifications of the drug's structure has been investigated to increase the oral absorption of these macromolecular compounds. However, only limited successes have been achieved so far, with the bioavailability of marketed oral peptide drugs remaining generally very low. Recently, a few approaches that are based on physical interactions, such as magnetic, acoustic, and mechanical forces, have been explored in order to control and improve the drug permeability across the GI mucosa. Although in the early stages, some of these methods have shown great potential both in terms of improved bioavailability and spatiotemporal delivery of drugs. Here, we offer a concise, yet critical overview of these rather unconventional technologies with a particular focus on their potential and possible challenges for further clinical translation.
Collapse
|
6
|
Kjeldsen RB, Kristensen MN, Gundlach C, Thamdrup LHE, Müllertz A, Rades T, Nielsen LH, Zór K, Boisen A. X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices. ACS Biomater Sci Eng 2021; 7:2538-2547. [PMID: 33856194 DOI: 10.1021/acsbiomaterials.1c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microscale devices are promising tools to overcome specific challenges within oral drug delivery. Despite the availability of advanced high-quality imaging techniques, visualization and tracking of microscale devices in the gastrointestinal (GI) tract is still a challenge. This work explores the possibilities of applying planar X-ray imaging and computed tomography (CT) scanning for visualization and tracking of microscale devices in the GI tract of rats. Microcontainers (MCs) are an example of microscale devices that have shown great potential as an oral drug delivery system. Barium sulfate (BaSO4) loaded into the cavity of the MCs increases their overall X-ray contrast, which allows them to be easily tracked. The BaSO4-loaded MCs are quantitatively tracked throughout the entire GI tract of rats by planar X-ray imaging and visualized in 3D by CT scanning. The majority of the BaSO4-loaded MCs are observed to retain in the stomach for 0.5-2 h, enter the cecum after 3-4 h, and leave the cecum and colon 8-10 h post-administration. The imaging approaches can be adopted and used with other types of microscale devices when investigating GI behavior in, for example, preclinical trials and potential clinical studies.
Collapse
Affiliation(s)
- Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maja Nørgaard Kristensen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anette Müllertz
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Mandsberg NK, Højgaard J, Joshi SS, Nielsen LH, Boisen A, Hwu ET. Consumer-Grade Inkjet Printer for Versatile and Precise Chemical Deposition. ACS OMEGA 2021; 6:7786-7794. [PMID: 33778290 PMCID: PMC7992151 DOI: 10.1021/acsomega.1c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Two simple, mechanical modifications are introduced to a consumer-grade inkjet printer to greatly increase its applicability. First, roller isolation bars are added to unlock multiple prints on the same substrate without smearing. This enables printing on a diverse set of substrates (rigid, elastic, liquid, granular, and sticky). Second, spring loadings are added to increase the print precision up to 50-fold, which facilitates alignment to a pre-patterned substrate or between successive prints. Utilizing the expanded substrate compatibility and the increased print precision, we explore tunable loading of drug combinations into microdevices. This loading method has promising applications within point-of-care personalized medication. Furthermore, we show how inkjet printers with array-type printheads (in our case, 6 x 90 nozzles) allow for quasi-simultaneous loading of reactants into microfluidic systems. The ability to do a quasi-simultaneous introduction of chemicals may be particularly useful for studies of rapidly reacting systems of three or more reactants, where premature introduction can shift the initial conditions from the intended. We believe that our modifications to an affordable system will inspire researchers to explore the possibilities of inkjet printing even further.
Collapse
Affiliation(s)
- Nikolaj Kofoed Mandsberg
- Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jesper Højgaard
- Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Shreya Suhas Joshi
- Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Line Hagner Nielsen
- Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anja Boisen
- Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs Lyngby, Denmark
| | - En Te Hwu
- Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
8
|
Birk SE, Mazzoni C, Mobasharah Javed M, Borre Hansen M, Krogh Johansen H, Anders Juul Haagensen J, Molin S, Hagner Nielsen L, Boisen A. Co-delivery of ciprofloxacin and colistin using microcontainers for bacterial biofilm treatment. Int J Pharm 2021; 599:120420. [PMID: 33647404 DOI: 10.1016/j.ijpharm.2021.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
In many infected patients, bacterial biofilms represent a mode of growth that significantly enhances the tolerance to antimicrobials, leaving the patients with difficult-to-cure infections. Therefore, there is a growing need for effective treatment strategies to combat biofilm infections. In this work, reservoir-based microdevices, also known as microcontainers (MCs), are co-loaded with two antibiotics: ciprofloxacin hydrochloride (CIP) and colistin sulfate (COL), targeting both metabolically active and dormant subpopulations of the biofilm. We assess the effect of the two drugs in a time-kill study of planktonic P. aeruginosa and find that co-loaded MCs are superior to monotherapy, resulting in complete killing of the entire population. Biofilm consortia of P. aeruginosa grown in flow chambers were not fully eradicated. However, antibiotics in MCs work significantly faster than simple perfusion of antibiotics (62.5 ± 8.3% versus 10.6 ± 10.1% after 5 h) in biofilm consortia, showing the potential of the MC-based treatment to minimize the use of antimicrobials in future therapies.
Collapse
Affiliation(s)
- Stine Egebro Birk
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark.
| | - Chiara Mazzoni
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Madeeha Mobasharah Javed
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Morten Borre Hansen
- Novo Nordisk Foundation Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Produktionstorvet 423, 2800 Kongens Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Section 9301 Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4A, Copenhagen Ø 2100, Denmark; Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark
| | - Janus Anders Juul Haagensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Kamguyan K, Torp AM, Christfort JF, Guerra PR, Licht TR, Hagner Nielsen L, Zor K, Boisen A. Colon-Specific Delivery of Bioactive Agents Using Genipin-Cross-Linked Chitosan Coated Microcontainers. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Khorshid Kamguyan
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders Meyer Torp
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Priscila R. Guerra
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kinga Zor
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. ACTA ACUST UNITED AC 2020; 65:243-272. [PMID: 31926064 DOI: 10.1515/bmt-2019-0019] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Pay-load deliveries across the skin barrier to the systemic circulation have been one of the most challenging delivery options. Necessitated requirements of the skin and facilitated skin layer cross-over delivery attempts have resulted in development of different non-invasive, non-oral methods, devices and systems which have been standardized, concurrently used and are in continuous upgrade and improvements. Iontophoresis, electroporation, sonophoresis, magnetophoresis, dermal patches, nanocarriers, needled and needle-less shots, and injectors are among some of the methods of transdermal delivery. The current review covers the current state of the art, merits and shortcomings of the systems, devices and transdermal delivery patches, including drugs' and other payloads' passage facilitation techniques, permeation and absorption feasibility studies, as well as physicochemical properties affecting the delivery through different transdermal modes along with examples of drugs, vaccines, genes and other payloads.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Pharmacy,Buraydah Colleges, PO Box 31717, Qassim 51418, Saudi Arabia
| | - Varsha Singh
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India
| | - Mohammad Yusuf
- College of Pharmacy, University of Taif, Taif Al-Haweiah, Taif, Saudi Arabia.https://orcid.org/0000-0003- 1417-7774
| | - Riaz A Khan
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India.,Department of Medicinal Chemistry, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
11
|
Christfort JF, Guillot AJ, Melero A, Thamdrup LHE, Garrigues TM, Boisen A, Zór K, Nielsen LH. Cubic Microcontainers Improve In Situ Colonic Mucoadhesion and Absorption of Amoxicillin in Rats. Pharmaceutics 2020; 12:E355. [PMID: 32295139 PMCID: PMC7238233 DOI: 10.3390/pharmaceutics12040355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/02/2023] Open
Abstract
An increased interest in colonic drug delivery has led to a higher focus on the design of delivery devices targeting this part of the gastrointestinal tract. Microcontainers have previously facilitated an increase in oral bioavailability of drugs. The surface texture and shape of microcontainers have proven to influence the mucoadhesion ex vivo. In the present work, these findings were further investigated using an in situ closed-loop perfusion technique in the rat colon, which allowed for simultaneous evaluation of mucoadhesion of the microcontainers as well as drug absorption. Cylindrical, triangular and cubic microcontainers, with the same exterior surface area, were evaluated based on in vitro release, in situ mucoadhesion and in situ absorption of amoxicillin. Additionally, the mucoadhesion of empty cylindrical microcontainers with and without pillars on the top surface was investigated. From the microscopy analysis of the colon sections after the in situ study, it was evident that a significantly higher percentage of cubic microcontainers than cylindrical microcontainers adhered to the intestinal mucus. Furthermore, the absorption rate constants and blood samples indicated that amoxicillin in cubic microcontainers was absorbed more readily than when cylindrical or triangular microcontainers were dosed. This could be due to a higher degree of mucoadhesion for these particular microcontainers.
Collapse
Affiliation(s)
- Juliane Fjelrad Christfort
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Antonio José Guillot
- Department de Farmàcia I Tecnología Farmacèutica, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain; (A.J.G.); (T.M.G.)
| | - Ana Melero
- Department de Farmàcia I Tecnología Farmacèutica, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain; (A.J.G.); (T.M.G.)
| | - Lasse Højlund Eklund Thamdrup
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Teresa M. Garrigues
- Department de Farmàcia I Tecnología Farmacèutica, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain; (A.J.G.); (T.M.G.)
| | - Anja Boisen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Kinga Zór
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| |
Collapse
|
12
|
Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020; 157:37-62. [PMID: 32707147 PMCID: PMC7374157 DOI: 10.1016/j.addr.2020.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies. Micro and nanoscale drug carriers fabricated using these technologies, including bioadhesives, microparticles, micropatches, and nanoparticles, are described. Other applications of micro and nanoscale technologies are discussed, including fabrication of devices and tissue engineering models to precisely control or assess oral drug delivery in vivo and in vitro, respectively. Strategies to advance translation of micro and nanotechnologies into clinical trials for oral drug delivery are mentioned. Finally, challenges and future prospects on further integration of micro and nanoscale technologies with oral drug delivery systems are highlighted.
Collapse
|
13
|
Abid Z, Dalskov Mosgaard M, Manfroni G, Singh Petersen R, Hagner Nielsen L, Müllertz A, Boisen A, Sylvest Keller S. Investigation of Mucoadhesion and Degradation of PCL and PLGA Microcontainers for Oral Drug Delivery. Polymers (Basel) 2019; 11:E1828. [PMID: 31703261 PMCID: PMC6918296 DOI: 10.3390/polym11111828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Microfabricated devices have been introduced as a promising approach to overcome some of the challenges related to oral administration of drugs and, thereby, improve their oral bioavailability. In this study, we fabricate biodegradable microcontainers with different polymers, namely poly-ɛ-caprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA) 50:50 and PLGA 75:25 by hot punching. The mucoadhesion of the microcontainers is assessed with an ex vivo retention model on porcine intestinal tissue. Finally, in vitro degradation studies of the biodegradable microcontainers are completed for six weeks in simulated intestinal medium with the addition of pancreatic enzymes. Through SEM inspection, the PLGA 50:50 microcontainers show the first signs of degradation already after two weeks and complete degradation within four weeks, while the other polymers slowly degrade in the medium over several weeks.
Collapse
Affiliation(s)
- Zarmeena Abid
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mette Dalskov Mosgaard
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Giorgio Manfroni
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ritika Singh Petersen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anette Müllertz
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (M.D.M.); (G.M.); (R.S.P.); (L.H.N.); (A.M.); (A.B.); (S.S.K.)
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Abid Z, Strindberg S, Javed MM, Mazzoni C, Vaut L, Nielsen LH, Gundlach C, Petersen RS, Müllertz A, Boisen A, Keller SS. Biodegradable microcontainers - towards real life applications of microfabricated systems for oral drug delivery. LAB ON A CHIP 2019; 19:2905-2914. [PMID: 31367713 DOI: 10.1039/c9lc00527g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microfabrication techniques have been applied to develop micron-scale devices for oral drug delivery with a high degree of control over size, shape and material composition. Recently, microcontainers have been introduced as a novel approach to obtain unidirectional release to avoid luminal drug loss, enhance drug permeation, protect drug payload from the harsh environment of the stomach, and explore the ability for targeted drug delivery. However, in order to eventually pave the way for real life applications of these microfabricated drug delivery systems, it is necessary to fabricate them in biodegradable materials approved for similar applications and with strategies that potentially allow for large scale production. In this study, we for the first time evaluate biodegradable microcontainers for oral drug delivery. Asymmetric poly-ε-caprolactone (PCL) microcontainers with a diameter of 300 μm and a volume of 2.7 nL are fabricated with a novel single-step fabrication process. The microcontainers are loaded with the model drug paracetamol and coated with an enteric pH-sensitive Eudragit® S100 coating to protect the drug until it reaches the desired location in the small intestine. In vitro dissolution studies are performed to assess the drug load and release profile of the PCL microcontainers. Finally, in vivo studies in rats showed a higher bioavailability compared to conventional dosage forms and confirm the potential of biodegradable microcontainers for oral drug delivery.
Collapse
Affiliation(s)
- Zarmeena Abid
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Sophie Strindberg
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Madeeha M Javed
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Chiara Mazzoni
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lukas Vaut
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Carsten Gundlach
- Department of Physics, DTU Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ritika Singh Petersen
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Anette Müllertz
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and Department of Physics, DTU Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and Department of Health Technology, DTU Health Tech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Stephan S Keller
- The Danish National Research Foundation and, Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Denmark and National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Dalskov Mosgaard M, Strindberg S, Abid Z, Singh Petersen R, Højlund Eklund Thamdrup L, Joukainen Andersen A, Sylvest Keller S, Müllertz A, Hagner Nielsen L, Boisen A. Ex vivo intestinal perfusion model for investigating mucoadhesion of microcontainers. Int J Pharm 2019; 570:118658. [PMID: 31491485 DOI: 10.1016/j.ijpharm.2019.118658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022]
Abstract
Micro fabricated delivery systems have shown promise in increasing oral bioavailability of drugs. Micrometer-sized polymeric devices (microcontainers) have the potential to facilitate unidirectional drug release directly into the intestinal mucosa whereby, drug absorption can be enhanced. The aim of this study was to develop an ex vivo model to investigate mucosal adhesion and orientation of microcontainers. Furthermore, to investigate how microcontainers with varying height, shape and material behave in regards to mucoadhesion and orientation. Microcontainers were placed at the top of an inclined piece of porcine small intestine. The tissue was perfused with biorelevant medium followed by microscopic examination to observe the orientation and amount of microcontainers on the tissue. The mucoadhesion of the microcontainers were evaluated based on the observed position on the tissue after being exposed to flow. When comparing the varying types of microcontainers, good adhesion was in general observed since most of the microcontainers were located in the beginning of the intestine. Microcontainers fabricated from the epoxy-based photoresist SU-8 had a slightly better adherence than those fabricated from poly-ɛ-caprolactone (PCL). The orientation of the microcontainers appeare to be dictated mainly by the height. In general, the model showed promising results in evaluating mucoadhesion and orientation.
Collapse
Affiliation(s)
- Mette Dalskov Mosgaard
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | - Sophie Strindberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Zarmeena Abid
- National Center of Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Ritika Singh Petersen
- National Center of Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | | | - Alina Joukainen Andersen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Center of Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Huang X, Lee F, Teng Y, Lingam CB, Chen Z, Sun M, Song Z, Balachander GM, Leo HL, Guo Q, Shah I, Yu H. Sequential drug delivery for liver diseases. Adv Drug Deliv Rev 2019; 149-150:72-84. [PMID: 31734169 DOI: 10.1016/j.addr.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
The liver performs critical physiological functions such as metabolism/detoxification and blood homeostasis/biliary excretion. A high degree of blood access means that a drug's resident time in any cell is relatively short. This short drug exposure to cells requires local sequential delivery of multiple drugs for optimal efficacy, potency, and safety. The high metabolism and excretion of drugs also impose both technical challenges and opportunities to sequential drug delivery. This review provides an overview of the sequential events in liver regeneration and the related liver diseases. Using selected examples of liver cancer, hepatitis B viral infection, fatty liver diseases, and drug-induced liver injury, we highlight efforts made for the sequential delivery of small and macromolecular drugs through different biomaterials, cells, and microdevice-based delivery platforms that allow fast delivery kinetics and rapid drug switching. As this is a nascent area of development, we extrapolate and compare the results with other sequential drug delivery studies to suggest possible application in liver diseases, wherever appropriate.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Corey Bryen Lingam
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Zijian Chen
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore; Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Min Sun
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Ziwei Song
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Gowri M Balachander
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Imran Shah
- National Center for Computational Toxicology, United States Environmental Protection Agency, 4930 Old Page Rd., Durham, NC 27703, USA
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Level 4 Enterprise Wing, Singapore 138602, Singapore; Gastroenterology Department, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110070. [PMID: 31546372 PMCID: PMC10366704 DOI: 10.1016/j.msec.2019.110070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Also known as electrospray, electrohydrodynamic atomization has been used extensively in the last 15 years to develop polymer-based particles for drug delivery in cell and animal models. More recently, novel core-shell, multi-axial, and other electrospray particles have been developed from an array of polymers for a variety of biomedical applications. This review focuses on electrospray as a novel method of particle fabrication for drug delivery, specifically highlighting the applications of these particle systems in cell culture and animal models while also discussing polymers used for particle fabrication. Applications of electrospray particles to treat glioma, ovarian cancer, and breast cancer are reviewed. Additionally, delivery of antibiotics, gene therapy, and bacterial cells formulated in electrospray particles is discussed. Finally, vaccines as well as drug eluting particles for differentiation of stem cells and tissue engineering are highlighted. The article concludes with a discussion of where the future of electrospray technology can go to strengthen its foothold in the biomedical field.
Collapse
|
18
|
Nielsen LH, Keller SS, Boisen A. Microfabricated devices for oral drug delivery. LAB ON A CHIP 2018; 18:2348-2358. [PMID: 29975383 DOI: 10.1039/c8lc00408k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oral administration of drugs is most convenient for patients and therefore the ultimate goal when developing new medication. The physical barriers in the body, low pH of the stomach and degradation by enzymes in the gastrointestinal tract are a few of the obstacles to succeeding with oral drug delivery. Microfabricated devices show promise to overcome some of these hindrances and thereby improve the bioavailability of drugs after oral administration. There is an increasing focus on microfabricated oral drug delivery systems, and so far there have been three main groups of designs: patch-like structures, microcontainers and microwells. Here, we review the newest development in top-down microfabricated devices for oral drug delivery with coverage of the aspects of design, choice of material and fabrication techniques. Furthermore, the drug loading techniques and methods for testing are discussed. In addition, we discuss the future perspectives for microfabricated devices.
Collapse
Affiliation(s)
- Line Hagner Nielsen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
19
|
Banerjee A, Mitragotri S. Intestinal patch systems for oral drug delivery. Curr Opin Pharmacol 2017; 36:58-65. [DOI: 10.1016/j.coph.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022]
|
20
|
Fox CB, Cao Y, Nemeth CL, Chirra HD, Chevalier RW, Xu AM, Melosh NA, Desai TA. Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery. ACS NANO 2016; 10:5873-81. [PMID: 27268699 PMCID: PMC5435488 DOI: 10.1021/acsnano.6b00809] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oral route is preferred for systemic drug administration and provides direct access to diseased tissue of the gastrointestinal (GI) tract. However, many drugs have poor absorption upon oral administration due to damaging enzymatic and pH conditions, mucus and cellular permeation barriers, and limited time for drug dissolution. To overcome these limitations and enhance oral drug absorption, micron-scale devices with planar, asymmetric geometries, termed microdevices, have been designed to adhere to the lining of the GI tract and release drug at high concentrations directly toward GI epithelium. Here we seal microdevices with nanostraw membranes-porous nanostructured biomolecule delivery substrates-to enhance the properties of these devices. We demonstrate that the nanostraws facilitate facile drug loading and tunable drug release, limit the influx of external molecules into the sealed drug reservoir, and increase the adhesion of devices to epithelial tissue. These findings highlight the potential of nanostraw microdevices to enhance the oral absorption of a wide range of therapeutics by binding to the lining of the GI tract, providing prolonged and proximal drug release, and reducing the exposure of their payload to drug-degrading biomolecules.
Collapse
Affiliation(s)
- Cade B. Fox
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Yuhong Cao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Cameron L. Nemeth
- Graduate Program in Bioengineering, University of California at Berkeley and San Francisco, UCSF Mission Bay Campus, San Francisco, California 94158, United States
| | - Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Rachel W. Chevalier
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
- Department of Pediatrics, Division of Pediatric Gastroenterology, School of Medicine, University of California, San Francisco, California 94158, United States
| | - Alexander M. Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
- Graduate Program in Bioengineering, University of California at Berkeley and San Francisco, UCSF Mission Bay Campus, San Francisco, California 94158, United States
| |
Collapse
|
21
|
Polymeric microcontainers improve oral bioavailability of furosemide. Int J Pharm 2016; 504:98-109. [DOI: 10.1016/j.ijpharm.2016.03.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 12/18/2022]
|
22
|
Jivani RR, Lakhtaria GJ, Patadiya DD, Patel LD, Jivani NP, Jhala BP. Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques. Saudi Pharm J 2016; 24:1-20. [PMID: 26903763 PMCID: PMC4719786 DOI: 10.1016/j.jsps.2013.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/14/2013] [Indexed: 01/19/2023] Open
Abstract
Advancement in microelectromechanical system has facilitated the microfabrication of polymeric substrates and the development of the novel class of controlled drug delivery devices. These vehicles have specifically tailored three dimensional physical and chemical features which together, provide the capacity to target cell, stimulate unidirectional controlled release of therapeutics and augment permeation across the barriers. Apart from drug delivery devices microfabrication technology’s offer exciting prospects to generate biomimetic gastrointestinal tract models. BioMEMS are capable of analysing biochemical liquid sample like solution of metabolites, macromolecules, proteins, nucleic acid, cells and viruses. This review summarized multidisciplinary application of biomedical microelectromechanical systems in drug delivery and its potential in analytical procedures.
Collapse
Affiliation(s)
- Rishad R Jivani
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Gaurang J Lakhtaria
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Dhaval D Patadiya
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Laxman D Patel
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Nurrudin P Jivani
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Bhagyesh P Jhala
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| |
Collapse
|
23
|
Supercritical impregnation of polymer matrices spatially confined in microcontainers for oral drug delivery: Effect of temperature, pressure and time. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Abstract
Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followed by coating of the microwell cavities with a gastro-resistant lid of Eudragit® L100. The release behavior of ASSF from the coated microwells was investigated using a μ-Diss profiler and a UV imaging system, and under conditions simulating the changing environment of the gastrointestinal tract. Biorelevant gastric medium (pH 1.6) was employed, after which a change to biorelevant intestinal release medium (pH 6.5) was carried out. Both μ-Diss profiler and UV imaging release experiments showed that sealing of microwell cavities with an Eudragit® layer prevented drug release in biorelevant gastric medium. An immediate release of the ASSF from coated microwells was observed in the intestinal medium. This pH-triggered release behavior demonstrates the future potential of PLLA microwells as a site-specific oral drug delivery system.
Collapse
|
25
|
Fox CB, Kim J, Le LV, Nemeth CL, Chirra HD, Desai TA. Micro/nanofabricated platforms for oral drug delivery. J Control Release 2015; 219:431-444. [PMID: 26244713 DOI: 10.1016/j.jconrel.2015.07.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/18/2022]
Abstract
The oral route of drug administration is most preferred due to its ease of use, low cost, and high patient compliance. However, the oral uptake of many small molecule drugs and biotherapeutics is limited by various physiological barriers, and, as a result, drugs suffer from issues with low solubility, low permeability, and degradation following oral administration. The flexibility of micro- and nanofabrication techniques has been used to create drug delivery platforms designed to address these barriers to oral drug uptake. Specifically, micro/nanofabricated devices have been designed with planar, asymmetric geometries to promote device adhesion and unidirectional drug release toward epithelial tissue, thereby prolonging drug exposure and increasing drug permeation. Furthermore, surface functionalization, nanotopography, responsive drug release, motion-based responses, and permeation enhancers have been incorporated into such platforms to further enhance drug uptake. This review will outline the application of micro/nanotechnology to specifically address the physiological barriers to oral drug delivery and highlight technologies that may be incorporated into these oral drug delivery systems to further enhance drug uptake.
Collapse
Affiliation(s)
- Cade B Fox
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Jean Kim
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Long V Le
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Cameron L Nemeth
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Hariharasudhan D Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA; UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Fox CB, Chirra HD, Desai TA. Planar bioadhesive microdevices: a new technology for oral drug delivery. Curr Pharm Biotechnol 2015; 15:673-83. [PMID: 25219863 DOI: 10.2174/1389201015666140915152706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/01/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The oral route is the most convenient and least expensive route of drug administration. Yet, it is accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug delivery systems have been developed for oral drug administration, the physiological components of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication techniques have been applied to create micron-scale devices for oral drug delivery with a high degree of control over microdevice size, shape, chemical composition, drug release profile, and targeting ability. With precise control over device properties, microdevices can be fabricated with characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug payload from the harsh environment of the intestinal tract. Here we review the recent developments in microdevice technology and discuss the potential of these devices to overcome unsolved challenges in oral drug delivery.
Collapse
Affiliation(s)
| | | | - Tejal A Desai
- 1700 4th Street, Byers Hall 204, Box 2520, San Francisco, CA 94158, USA.
| |
Collapse
|
27
|
Fox CB, Kim J, Schlesinger EB, Chirra HD, Desai TA. Fabrication of micropatterned polymeric nanowire arrays for high-resolution reagent localization and topographical cellular control. NANO LETTERS 2015; 15:1540-6. [PMID: 25639724 PMCID: PMC4664059 DOI: 10.1021/nl503872p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Herein, we present a novel approach for the fabrication of micropatterned polymeric nanowire arrays that addresses the current need for scalable and customizable polymer nanofabrication. We describe two variations of this approach for the patterning of nanowire arrays on either flat polymeric films or discrete polymeric microstructures and go on to investigate biological applications for the resulting polymeric features. We demonstrate that the micropatterned arrays of densely packed nanowires facilitate rapid, low-waste drug and reagent localization with micron-scale resolution as a result of their high wettability. We also show that micropatterned nanowire arrays provide hierarchical cellular control by simultaneously directing cell shape on the micron scale and influencing focal adhesion formation on the nanoscale. This nanofabrication approach has potential applications in scaffold-based cellular control, biological assay miniaturization, and biomedical microdevice technology.
Collapse
Affiliation(s)
- Cade B. Fox
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Jean Kim
- UC Berkeley and UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, California 94158, United States
| | - Erica B. Schlesinger
- UC Berkeley and UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, California 94158, United States
| | - Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
- UC Berkeley and UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, California 94158, United States
| |
Collapse
|
28
|
Chirra HD, Shao L, Ciaccio N, Fox CB, Wade JM, Ma A, Desai TA. Planar microdevices for enhanced in vivo retention and oral bioavailability of poorly permeable drugs. Adv Healthc Mater 2014; 3:1648-54. [PMID: 24711341 DOI: 10.1002/adhm.201300676] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Indexed: 11/09/2022]
Abstract
The development of novel oral drug delivery platforms for administering therapeutics in a safe and effective manner through the harsh gastrointestinal environment is of great importance. Here, the use of engineered thin planar poly(methyl methacrylate) (PMMA) microdevices is tested to enhance oral bioavailability of acyclovir, a poorly permeable drug. Acyclovir is loaded into the unidirectional drug releasing microdevice reservoirs using a drug entrapping photocross-linkable hydrogel matrix. An increase in acyclovir permeation across in vitro caco-2 monolayer is seen in the presence of microdevices as compared with acyclovir-entrapped hydrogels or free acyclovir solution. Cell proliferation studies show that microdevices are relatively nontoxic in nature for use in in vivo studies. Enhanced in vivo retention of microdevices is observed as their thin side walls experience minimal peristaltic shear stress as compared with spherical microparticles. Unidirectional acyclovir release and enhanced retention of microdevices achieve a 4.5-fold increase in bioavailability in vivo as compared with an oral gavage of acyclovir solution with the same drug mass. The enhanced oral bioavailability results suggest that thin, planar, bioadhesive, and unidirectional drug releasing microdevices will significantly improve the systemic and localized delivery of a broad range of oral therapeutics in the near future.
Collapse
Affiliation(s)
- Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Ling Shao
- Division of Gastroenterology, Department of Medicine; University of California; 513 Parnassus Ave San Francisco CA 94143 USA
| | - Natalie Ciaccio
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Cade B. Fox
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Jennifer M. Wade
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Averil Ma
- Division of Gastroenterology, Department of Medicine; University of California; 513 Parnassus Ave San Francisco CA 94143 USA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| |
Collapse
|
29
|
Wade JS, Desai TA. Planar microdevices enhance transport of large molecular weight molecules across retinal pigment epithelial cells. Biomed Microdevices 2014; 16:629-38. [PMID: 24789225 PMCID: PMC4082762 DOI: 10.1007/s10544-014-9865-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Large molecular weight drug delivery to the posterior eye is challenging due to cellular barriers that hinder drug transport. Understanding how to enhance transport across the retinal barrier is important for the design of new drug delivery systems. A novel mechanism to enhance drug transport is the use of geometric properties, which has not been extensively explored in the retina. Planar SU-8/Poly(ethyleneglycol)dimethacrylate microdevices were constructed using photolithography to deliver FITC dextran across an in vitro retinal model. The model consists of retinal pigment epithelial (RPE) cells grown to confluence on transwell inserts, which provides an environment to investigate the influence of geometry on paracellular and transcellular delivery of encapsulated large molecules. Planar microdevices enhanced transport of large molecular weight dextrans across different models of RPE in a size dependent fashion. Increased drug permeation across the RPE was observed with the addition of microdevices as compared to a traditional bolus of FITC dextran. This phenomena was initiated by a non-toxic interaction between the microdevices and the retinal tight junction proteins. Suggesting that increased drug transport occurs via a paracellular pathway. These experiments provide evidence to support the future use of planar unidirectional microdevices for delivery of biologics in ocular applications.
Collapse
Affiliation(s)
- Jennifer S. Wade
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA
| |
Collapse
|
30
|
Nuxoll E. BioMEMS in drug delivery. Adv Drug Deliv Rev 2013; 65:1611-25. [PMID: 23856413 DOI: 10.1016/j.addr.2013.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/31/2013] [Accepted: 07/05/2013] [Indexed: 12/25/2022]
Abstract
The drive to design micro-scale medical devices which can be reliably and uniformly mass produced has prompted many researchers to adapt processing technologies from the semiconductor industry. By operating at a much smaller length scale, the resulting biologically-oriented microelectromechanical systems (BioMEMS) provide many opportunities for improved drug delivery: Low-dose vaccinations and painless transdermal drug delivery are possible through precisely engineered microneedles which pierce the skin's barrier layer without reaching the nerves. Low-power, low-volume BioMEMS pumps and reservoirs can be implanted where conventional pumping systems cannot. Drug formulations with geometrically complex, extremely uniform micro- and nano-particles are formed through micromolding or with microfluidic devices. This review describes these BioMEMS technologies and discusses their current state of implementation. As these technologies continue to develop and capitalize on their simpler integration with other MEMS-based systems such as computer controls and telemetry, BioMEMS' impact on the field of drug delivery will continue to increase.
Collapse
Affiliation(s)
- Eric Nuxoll
- Department of Chemical and Biochemical Engineering, Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52245, USA.
| |
Collapse
|
31
|
Marizza P, Keller SS, Müllertz A, Boisen A. Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation. J Control Release 2013; 173:1-9. [PMID: 24096018 DOI: 10.1016/j.jconrel.2013.09.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/26/2023]
Abstract
In the last years a large variety of drug delivery systems have been developed to improve bioavailability of therapeutics in oral administration. An increasing interest has arisen in reservoir-based microdevices designed for active ingredients like water insoluble compounds and fragile biomolecules. Such microdevices are designed to protect the active ingredient against degradation and deactivation, and to allow cytoadhesion and unidirectional drug release. There are few works which optimize the drug loading step and often therapeutics are dosed in the microdevices through laborious and time consuming procedures. This work proposes an effective loading technique for a poorly soluble model drug in microcontainers, by combining inkjet printing and supercritical fluid impregnation. Well defined quantities of poly(vinyl pyrrolidone) (PVP) solutions are dispensed into microcontainers by inkjet printing with a quasi-no-waste performance. Then ketoprofen is impregnated in the polymer matrix by using supercritical carbon dioxide (scCO2) as loading medium. The amount of polymer is controlled by the volume and the number of droplets of dispensed polymer and drug loading is tuned by varying the impregnation parameters. Compared to solid dispersions of the same drug and polymer, scCO2-impregnated microcontainers exhibit a more reproducible drug loading and a faster dissolution rate of the active compound which allows drug release to be modulated. The combination of these loading techniques potentially allows the high throughput fabrication of microdevices for oral drug delivery with a safe and solvent-free solution.
Collapse
Affiliation(s)
- Paolo Marizza
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Stephan S Keller
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anja Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
32
|
Nielsen LH, Keller SS, Boisen A, Müllertz A, Rades T. A slow cooling rate of indomethacin melt spatially confined in microcontainers increases the physical stability of the amorphous drug without influencing its biorelevant dissolution behaviour. Drug Deliv Transl Res 2013; 4:268-74. [DOI: 10.1007/s13346-013-0166-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target 2013; 21:611-29. [PMID: 23869879 DOI: 10.3109/1061186x.2013.805335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.
Collapse
Affiliation(s)
- Hairui Li
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
34
|
Chirra HD, Desai TA. Multi-reservoir bioadhesive microdevices for independent rate-controlled delivery of multiple drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3839-3846. [PMID: 22962019 PMCID: PMC3527694 DOI: 10.1002/smll.201201367] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/07/2012] [Indexed: 05/29/2023]
Abstract
A variety of oral administrative systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, they suffer from poor intestinal localization and therapeutic efficacy due to the various physiological conditions and high shear fluid flow. Fabrication of novel microdevices combined with the introduction of controlled release, improved adhesion, selective targeting, and tissue permeation may overcome these issues and potentially diminish the toxicity and high frequency of conventional oral administration. Herein, thin, asymmetric, poly(methyl methacrylate) (PMMA) microdevices are fabricated with multiple reservoirs using photolithography and reactive ion etching. They are loaded with different individual model drug in each reservoir. Enhanced bioadhesion of the microdevices is observed in the presence of a conjugated of targeting protein (tomato lectin) to the PMMA surface. As compared to drug encompassing hydrogels, an increase in drug permeation across the caco-2 monolayer is noticed in the presence of a microdevice loaded with the same drug-hydrogel system. Also, the release of multiple drugs from their respective reservoirs is found to be independent from each other. The use of different hydrogel systems in each reservoir shows differences in the controlled release of the respective drugs over the same release period. These results suggest that, in the future, microfabricated unidirectional multi-drug releasing devices will have an impact on the oral administration of a broad range of therapeutics.
Collapse
Affiliation(s)
| | - Tejal A. Desai
- Corresponding Author. 1700 4 Street, Byers Hall 204, Box 2520, San Francisco, CA 94158, USA. Tel.: +1 415 514 4503; fax: +1 415 514 9656.
| |
Collapse
|
35
|
Stevenson CL, Santini JT, Langer R. Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 2012; 64:1590-602. [PMID: 22465783 DOI: 10.1016/j.addr.2012.02.005] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 11/30/2022]
Abstract
This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy.
Collapse
Affiliation(s)
- Cynthia L Stevenson
- On Demand Therapeutics, Inc., One Industrial Way, Unit 1A, Tyngsboro, MA 01879, USA.
| | | | | |
Collapse
|
36
|
Chirra HD, Desai TA. Emerging microtechnologies for the development of oral drug delivery devices. Adv Drug Deliv Rev 2012; 64:1569-78. [PMID: 22981755 PMCID: PMC3488155 DOI: 10.1016/j.addr.2012.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/06/2012] [Accepted: 08/12/2012] [Indexed: 10/27/2022]
Abstract
The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications.
Collapse
Affiliation(s)
- Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| |
Collapse
|
37
|
Bonani W, Motta A, Migliaresi C, Tan W. Biomolecule gradient in micropatterned nanofibrous scaffold for spatiotemporal release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13675-13687. [PMID: 22950580 PMCID: PMC3648342 DOI: 10.1021/la302386u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Controlled molecule release from scaffolds can dramatically increase the scaffold ability of directing tissue regeneration in vitro and in vivo. Crucial to the regeneration is precise regulation over release direction and kinetics of multiple molecules (small genes, peptides, or larger proteins). To this end, we developed gradient micropatterns of electrospun nanofibers along the scaffold thickness through programming the deposition of heterogeneous nanofibers of poly(ε-caprolactone) (PCL) and poly(D,L-lactide-co-glycolide) acid (PLGA). Confocal images of the scaffolds containing fluorophore-impregnated nanofibers demonstrated close matching of actual and designed gradient fiber patterns; thermal analyses further showed their matching in the composition. Using acid-terminated PLGA (PLGAac) and ester-terminated PLGA (PLGAes) to impregnate molecules in the PCL-PLGA scaffolds, we demonstrated for the first time their differences in nanofiber degeneration and molecular weight change during degradation. PLGAac nanofibers were more stable with gradual and steady increase in the fiber diameter during degradation, resulting in more spatially confined molecule delivery from PCL-PLGA scaffolds. Thus, patterns of PCL-PLGAac nanofibers were used to design versatile controlled delivery scaffolds. To test the hypothesis that molecule-impregnated PLGAac in the gradient-patterned PCL-PLGAac scaffolds can program various modalities of molecule release, model molecules, including small fluorophores and larger proteins, were respectively used for time-lapse release studies. Gradient-patterns were used as building blocks in the scaffolds to program simultaneous release of one or multiple proteins to one side or, respectively, to the opposite sides of scaffolds for up to 50 days. Results showed that the separation efficiency of molecule delivery from all the scaffolds with a thickness of 200 μm achieved >88% for proteins and >82% for small molecules. In addition to versatile spatially controlled delivery, micropatterns were designed to program sequential release of proteins. The hierarchically structured materials presented here may enable development of novel multifunctional scaffolds with defined 3D dynamic microenvironments for tissue regeneration.
Collapse
Affiliation(s)
- Walter Bonani
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department of Materials Engineering and Industrial Technologies, BioTech Research Center and INSTM Research Unit, University of Trento, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, 38100, Italy
| | - Antonella Motta
- Department of Materials Engineering and Industrial Technologies, BioTech Research Center and INSTM Research Unit, University of Trento, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, 38100, Italy
| | - Claudio Migliaresi
- Department of Materials Engineering and Industrial Technologies, BioTech Research Center and INSTM Research Unit, University of Trento, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, 38100, Italy
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Departments of Pediatrics and Bioengineering, University of Colorado at Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
38
|
Yu Y, Gan L, Zhang G, Yang B. Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Nielsen LH, Keller SS, Gordon KC, Boisen A, Rades T, Müllertz A. Spatial confinement can lead to increased stability of amorphous indomethacin. Eur J Pharm Biopharm 2012; 81:418-25. [DOI: 10.1016/j.ejpb.2012.03.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
|
40
|
Microfabrication technologies for oral drug delivery. Adv Drug Deliv Rev 2012; 64:496-507. [PMID: 22166590 DOI: 10.1016/j.addr.2011.11.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 12/21/2022]
Abstract
Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and personalized medicine. Microfabrication techniques are being explored for drug delivery applications due to their ability to combine several features such as precise shape and size into a single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated into single or multiple reservoir systems maximizing contact area with the intestinal lining. Combined with intelligent materials, such microfabricated platforms can be designed to be bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication technologies offer exciting opportunities to create biomimetic gastrointestinal tract models incorporating physiological cell types, flow patterns and brush-border like structures. Here we review the recent developments in this field with a focus on the applications of microfabrication in the development of oral drug delivery devices and biomimetic gastrointestinal tract models that can be used to evaluate the drug delivery efficacy.
Collapse
|
41
|
LI HAIRUI, KOCHHAR JASPREETSINGH, PAN JING, CHAN SUIYUNG, KANG LIFENG. NANO/MICROSCALE TECHNOLOGIES FOR DRUG DELIVERY. J MECH MED BIOL 2011. [DOI: 10.1142/s021951941100406x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nano- and microscale technologies have made a marked impact on the development of drug delivery systems. The loading efficiency and particle size of nano/micro particles can be better controlled with these new technologies than conventional methods. Moreover, drug delivery systems are moving from simple particles to smart particles and devices with programmable functions. These technologies are also contributing to in vitro and in vivo drug testing, which are important to evaluate drug delivery systems. For in vitro tests, lab-on-a-chip models are potentially useful as alternatives to animal models. For in vivo test, nano/micro-biosensors are developed for testing chemicals and biologics with high sensitivity and selectivity. Here, we review the recent development of nanoscale and microscale technologies in drug delivery including drug delivery systems, in vitro and in vivo tests.
Collapse
Affiliation(s)
- HAIRUI LI
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - JASPREET SINGH KOCHHAR
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - JING PAN
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - SUI YUNG CHAN
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - LIFENG KANG
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
42
|
Teutonico D, Ponchel G. Patches for improving gastrointestinal absorption: an overview. Drug Discov Today 2011; 16:991-7. [DOI: 10.1016/j.drudis.2011.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/07/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
|
43
|
VanDersarl JJ, Xu AM, Melosh NA. Rapid spatial and temporal controlled signal delivery over large cell culture areas. LAB ON A CHIP 2011; 11:3057-63. [PMID: 21805010 DOI: 10.1039/c1lc20311h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Controlled chemical delivery in microfluidic cell culture devices often relies on slowly evolving diffusive gradients, as the spatial and temporal control provided by fluid flow results in significant cell-perturbation. In this paper we introduce a microfluidic device architecture that allows for rapid spatial and temporal soluble signal delivery over large cell culture areas without fluid flow over the cells. In these devices the cell culture well is divided from a microfluidic channel located directly underneath the chamber by a nanoporous membrane. This configuration requires chemical signals in the microchannel to only diffuse through the thin membrane into large cell culture area, rather than diffuse in from the sides. The spatial chemical pattern within the microfluidic channel was rapidly transferred to the cell culture area with good fidelity through diffusion. The cellular temporal response to a step-function signal showed that dye reached the cell culture surface within 45 s, and achieved a static concentration in under 6 min. Chemical pulses of less than one minute were possible by temporally alternating the signal within the microfluidic channel, enabling rapid flow-free chemical microenvironment control for large cell culture areas.
Collapse
Affiliation(s)
- Jules J VanDersarl
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|