1
|
Broadbent M, Chadwick SJ, Brust M, Volk M. Gold Nanoparticles for Photothermal and Photodynamic Therapy. ACS OMEGA 2024; 9:44846-44859. [PMID: 39524681 PMCID: PMC11541516 DOI: 10.1021/acsomega.4c08797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Cancer cells exposed to 13 nm gold nanoparticles and irradiated with cw laser light at 532 nm are shown to undergo cell death via two competing causes. When cells contain relatively high quantities of gold nanoparticles and/or receive a high dose of light, photothermal effects dominate, which are independent of the cellular location of the gold nanoparticles and affect all cells in the irradiated area due to the rapid diffusion of heat. In contrast, at lower doses of nanoparticles and light, the photogeneration of singlet oxygen triggers cell death only in cells that contain a sufficient number of nanoparticles. The parallel occurrence of both effects will need to be considered carefully when designing practical therapy applications. In particular, the photodynamic effect should allow for a cell-type-specific treatment modality that can distinguish between cancer and normal cells using suitable targeting ligands on the nanoparticle surface, providing a highly selective route for cancer therapy.
Collapse
Affiliation(s)
- Matthew Broadbent
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Samantha J. Chadwick
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Mathias Brust
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Martin Volk
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
2
|
Qasim M, Clarkson AN, Hinkley SFR. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24021023. [PMID: 36674532 PMCID: PMC9863453 DOI: 10.3390/ijms24021023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
In this review, we summarize recent work on the "green synthesis" of carbon nanoparticles (CNPs) and their application with a focus on biomedical applications. Recent developments in the green synthesis of carbon nanoparticles, from renewable precursors and their application for environmental, energy-storage and medicinal applications are discussed. CNPs, especially carbon nanotubes (CNTs), carbon quantum dots (CQDs) and graphene, have demonstrated utility as high-density energy storage media, environmental remediation materials and in biomedical applications. Conventional fabrication of CNPs can entail the use of toxic catalysts; therefore, we discuss low-toxicity manufacturing as well as sustainable and environmentally friendly methodology with a focus on utilizing readily available biomass as the precursor for generating CNPs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| | - Simon F. R. Hinkley
- Ferrier Research Institute, Victoria University of Wellington, Wellington 5012, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| |
Collapse
|
3
|
In vivo efficacy of verteporfin loaded gold nanorods for combined photothermal/photodynamic colon cancer therapy. Int J Pharm 2022; 625:122134. [PMID: 36007850 DOI: 10.1016/j.ijpharm.2022.122134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023]
Abstract
The high incidence of cancer recurrences and the frequent occurrence of multidrug resistance often stem from a poorly selective and inefficient antineoplastic therapy, responsible for the onset of undesired side effects as well. A combination of minimal-invasive approaches could thus be a useful strategy to surmount these shortcomings, achieving a safe and solid cancer therapy. Herein, a multi-therapeutic nanotool was designed by merging the photothermal properties of gold nanorods (AuNRs) with the photodynamic activity of the photosensitizer verteporfin. AuNRs were coated with the natural materials lipoic acid and gellan gum (AuNRs_LA,GG) and subsequently loaded with verteporfin (AuNRs_LA,GG/Vert) producing stable colloidal dispersions. AuNRs_LA,GG/Vert were characterized in terms of stability, size and morphology. The hyperthermia exhibited after NIR excitation (810 nm) was also evaluated to highlight the effect on increasing the drug released profile in intra-tumoral mimicking media, as well as cytotoxicity on human colon cancer cell line (HCT116). In vivo studies on HCT116 murine xenograft models were carried out to prove the ability of AuNRs_LA,GG to arrest the tumor growth via NIR laser-triggered hyperthermia. Furthermore, the complete xenograft depletion was demonstrated upon AuNRs_LA,GG/Vert administration by combined photothermal (PTT) and photodynamic (PDT) effects.
Collapse
|
4
|
Hu PS, Chou HJ, Chen CA, Wu PY, Hsiao KH, Kuo YM. Devising Hyperthermia Dose of NIR-Irradiated Cs 0.33WO 3 Nanoparticles for HepG2 Hepatic Cancer Cells. NANOSCALE RESEARCH LETTERS 2021; 16:108. [PMID: 34176025 PMCID: PMC8236016 DOI: 10.1186/s11671-021-03565-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Hyperthermia is one of the most patient-friendly methods to cure cancer diseases owing to its noninvasiveness, minimally induced side-effects and toxicity, and easy implementation, prompting the development of novel therapeutic methods like photothermally triggering dose system. This research herein interrogates the variables of photothermal effects of Cs0.33WO3 nanoparticles (NPs), the duration of irradiation, optical power density and NP concentration, upon HepG2 liver cancer cell line in vitro, leading to the formulation of a near-infrared (NIR)-irradiated thermal dose. Expressly, the NPs with particulate feature sizes of 120 nm were synthesized through a series of oxidation-reduction (REDOX) reaction, thermal annealing and wet-grinding processes, and the subsequent characterization of physical, compositional, optical, photothermal properties were examined using dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDS), scanning and tunneling electron microscopies (SEM and TEM), X-ray diffraction (XRD) and visible-near-infrared (VIS-NIR) photospectroscopy. Cytotoxicity of the NPs and its irradiation parameters were obtained for the HepG2 cells. By incubating the cells with the NPs, the state of endocytosis was verified, and the dependence of cellular survival rate on the variable parameters of photothermal dose was determined while maintaining the medium temperature of the cell-containing culture dish at human body temperature around 36.5 °C.
Collapse
Affiliation(s)
- Po-Sheng Hu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, 71150, Taiwan.
- College of Photonics, National Chiao Tung University, Tainan City, 71150, Taiwan.
| | - Hsiu-Jen Chou
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, 71150, Taiwan
- College of Photonics, National Chiao Tung University, Tainan City, 71150, Taiwan
| | - Chi-An Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, 71150, Taiwan
- College of Photonics, National Chiao Tung University, Tainan City, 71150, Taiwan
| | - Po-Yi Wu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, 71150, Taiwan
- College of Photonics, National Chiao Tung University, Tainan City, 71150, Taiwan
| | - Kai-Hsien Hsiao
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, 71150, Taiwan
- College of Photonics, National Chiao Tung University, Tainan City, 71150, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan
| |
Collapse
|
5
|
Fei W, Zhang M, Fan X, Ye Y, Zhao M, Zheng C, Li Y, Zheng X. Engineering of bioactive metal sulfide nanomaterials for cancer therapy. J Nanobiotechnology 2021; 19:93. [PMID: 33789653 PMCID: PMC8011210 DOI: 10.1186/s12951-021-00839-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Metal sulfide nanomaterials (MeSNs) are a novel class of metal-containing nanomaterials composed of metal ions and sulfur compounds. During the past decade, scientists found that the MeSNs engineered by specific approaches not only had high biocompatibility but also exhibited unique physicochemical properties for cancer therapy, such as Fenton catalysis, light conversion, radiation enhancement, and immune activation. To clarify the development and promote the clinical transformation of MeSNs, the first section of this paper describes the appropriate fabrication approaches of MeSNs for medical science and analyzes the features and limitations of each approach. Secondly, we sort out the mechanisms of functional MeSNs in cancer therapy, including drug delivery, phototherapy, radiotherapy, chemodynamic therapy, gas therapy, and immunotherapy. It is worth noting that the intact MeSNs and the degradation products of MeSNs can exert different types of anti-tumor activities. Thus, MeSNs usually exhibit synergistic antitumor properties. Finally, future expectations and challenges of MeSNs in the research of translational medicine are spotlighted.
Collapse
Affiliation(s)
- Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiaoling Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Ghorbel A, André FM, Mir LM, García-Sánchez T. Electrophoresis-assisted accumulation of conductive nanoparticles for the enhancement of cell electropermeabilization. Bioelectrochemistry 2020; 137:107642. [PMID: 32980738 DOI: 10.1016/j.bioelechem.2020.107642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
The use of conductive nanoparticles (NPs) was previously proposed as a way to locally amplify the electric field (EF) intensity at the cell membrane to enhance cell electroporation. To achieve this, a close distance between the NPs and the cell membrane is mandatory. Here, a new method to improve the contact between NPs and cell surface using the effects of electric pulses (electrophoretic forces) is explored. The effects of two types of electric pulses are analyzed alone or combined in a two-pulse-train protocol on Chinese hamster DC-3F cells. Particularly we used 100 µs duration pulses, low intensity-millisecond pulses and combinations of both. Finally, we studied the use of surface coated NPs (PEGylated) for this application. Our results demonstrate that the delivery of an electric field prior to the electroporation pulses increases the accumulation of NPs around the cell membrane suggesting that NPs are pushed towards the cell surface through electrophoretic forces. This allowed reducing the need for long incubations between cells and NPs to observe an enhancement of electroporation mediated by conductive NPs. Thus low intensity-millisecond pulses can be used to increase the accumulation of either aggregated or individual (i.e. PEGylated) NPs supporting the electrophoretic nature of the observed effects.
Collapse
Affiliation(s)
- Amina Ghorbel
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and systemic aspects of oncogenesis (METSY), 94805 Villejuif, France
| | - Franck M André
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and systemic aspects of oncogenesis (METSY), 94805 Villejuif, France
| | - Lluis M Mir
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and systemic aspects of oncogenesis (METSY), 94805 Villejuif, France.
| | - Tomás García-Sánchez
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and systemic aspects of oncogenesis (METSY), 94805 Villejuif, France; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, 138, 08018 Barcelona, Spain.
| |
Collapse
|
7
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
8
|
Gerosa C, Crisponi G, Nurchi VM, Saba L, Cappai R, Cau F, Faa G, Van Eyken P, Scartozzi M, Floris G, Fanni D. Gold Nanoparticles: A New Golden Era in Oncology? Pharmaceuticals (Basel) 2020; 13:E192. [PMID: 32806755 PMCID: PMC7464886 DOI: 10.3390/ph13080192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
In recent years, the spectrum of possible applications of gold in diagnostics and therapeutic approaches in clinical practice has changed significantly, becoming surprisingly broad. Nowadays, gold-based therapeutic agents are used in the therapy of multiple human diseases, ranging from degenerative to infectious diseases and, in particular, to cancer. At the basis of these performances of gold, there is the development of new gold-based nanoparticles, characterized by a promising risk/benefit ratio that favors their introduction in clinical trials. Gold nanoparticles appear as attractive elements in nanomedicine, a branch of modern clinical medicine, which combines high selectivity in targeting tumor cells and low toxicity. Thanks to these peculiar characteristics, gold nanoparticles appear as the starting point for the development of new gold-based therapeutic strategies in oncology. Here, the new gold-based therapeutic agents developed in recent years are described, with particular emphasis on the possible applications in clinical practice as anticancer agents, with the aim that their application will give rise to a new golden age in oncology and a breakthrough in the fight against cancer.
Collapse
Affiliation(s)
- Clara Gerosa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Valeria Marina Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Luca Saba
- UOC Radiologia, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Rosita Cappai
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Flaviana Cau
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Gavino Faa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Mario Scartozzi
- UOC Oncologia Medica, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Giuseppe Floris
- Pathologische Ontleedkunde K.U. Leuven, 3000 Leuven, Belgium;
| | - Daniela Fanni
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| |
Collapse
|
9
|
Effect of actively targeted copolymer coating on solid tumors eradication by gold nanorods-induced hyperthermia. Int J Pharm 2020; 587:119641. [PMID: 32673768 DOI: 10.1016/j.ijpharm.2020.119641] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
Efforts in the field of anticancer therapy are increasingly focusing on the development of localized and selective treatments. Photothermal therapy (PTT) can lead to a spatially confined death of cancer cells, exploiting an increasing in temperature generated after UV-NIR irradiation of peculiar materials. Herein, a new actively targeted gold-based drug delivery system, named PHEA-LA-Fol-AuNRs/Iri, was explored for hyperthermia and chemotherapy colon cancer treatment. Gold nanorods were stabilized using a folate-derivative of α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA-LA-PEG-FA) as coating agent and then loaded with the antineoplastic drug irinotecan (Iri). The efficacy of empty and irinotecan-bearing systems was investigated in vitro on human colon cancer (HCT116) cell line, as well as in vivo, employing a xenograft mouse model of colon cancer. After laser treatment, both nanostructures tested induced a considerable deceleration in tumor growth overtime, achieving the total eradication of the cancer when the nanosystems produced were intratumorally administered. Biodistribution data showed that the polymer coated nanorods were able to preferentially accumulate in the tumor site. Considering the excellent stability in aqueous media, the capacity to reach the tumor site and, finally, the in vivo efficacy, PHEA-LA-Fol-AuNRs/Iri might be recommended as an effective tool in the chemotherapy and PTT of colon cancer.
Collapse
|
10
|
Abstract
Nanomaterials are popularly used in drug delivery, disease diagnosis and therapy. Among a number of functionalized nanomaterials such as carbon nanotubes, peptide nanostructures, liposomes and polymers, gold nanoparticles (Au NPs) make excellent drug and anticancer agent carriers in biomedical and cancer therapy application. Recent advances of synthetic technique improved the surface coating of Au NPs with accurate control of particle size, shape and surface chemistry. These make the gold nanomaterials a much easier and safer cancer agent and drug to be applied to the patient’s tumor. Although many studies on Au NPs have been published, more results are in the pipeline due to the rapid development of nanotechnology. The purpose of this review is to assess how the novel nanomaterials fabricated by Au NPs can impact biomedical applications such as drug delivery and cancer therapy. Moreover, this review explores the viability, property and cytotoxicity of various Au NPs.
Collapse
|
11
|
Attia MF, Ranasinghe M, Akasov R, Anker JN, Whitehead DC, Alexis F. In situ preparation of gold–polyester nanoparticles for biomedical imaging. Biomater Sci 2020; 8:3032-3043. [DOI: 10.1039/d0bm00175a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hybrid gold-polyester nanoparticles were synthesized by UV irradiation of a gold salt and photoinitiator encapsulated in a polyester nanoparticle. The resulting materials exhibit excellent cellular imaging and surface plasmon resonance properties.
Collapse
Affiliation(s)
| | | | - Roman Akasov
- National University of Science and Technology “MISIS”
- 119991 Moscow
- Russia
- I.M. Sechenov First Moscow State Medical University
- Moscow
| | | | | | - Frank Alexis
- School of Biological Sciences and Engineering
- Yachay Tech
- San Miguel de Urcuquí
- Ecuador
| |
Collapse
|
12
|
De Angelis B, Depalo N, Petronella F, Quintarelli C, Curri ML, Pani R, Calogero A, Locatelli F, De Sio L. Stimuli-responsive nanoparticle-assisted immunotherapy: a new weapon against solid tumours. J Mater Chem B 2020; 8:1823-1840. [DOI: 10.1039/c9tb02246e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay between photo-thermal therapy and immunotherapy allows the realization of new nanotechnology-based cancer treatments for solid tumors.
Collapse
Affiliation(s)
- Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Nicoletta Depalo
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Francesca Petronella
- CNR-IC
- National Research Council of Italy
- Institute Crystallography
- 00015 Monterotondo – Rome
- Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - M. Lucia Curri
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Roberto Pani
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Antonella Calogero
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Luciano De Sio
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| |
Collapse
|
13
|
Carro P, Salvarezza RC. Gold adatoms modulate sulfur adsorption on gold. NANOSCALE 2019; 11:19341-19351. [PMID: 31435624 DOI: 10.1039/c9nr05709a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulfur adsorption on Au(111) at high coverage has been studied by density functional calculations. In this case S species organize into rectangular structures containing 8 S atoms irrespective of the S source, which have been alternatively assigned to adsorbed monomeric S, adsorbed S2, adsorbed monomeric plus S2 species, and gold sulfide. We found that monomeric S at the high coverage organizes into S2 species that are stabilized into the 8-S structures by Au adatoms, forming gold disulfide complexes (Au-(S2)4). The Au atoms could be provided by decomposition of more diluted AuS3 containing phases, as recently proposed, and direct removal from terraces and step edges, both explaining the surface coverage of vacancy islands coexisting with the 8-S structures. The gold-disulfide complexes capture the disorder shown in the experimental STM images, explain the intrigued features of XPS, and also, give a smooth pathway to gold sulfide formation at higher temperatures. More importantly, the gold-disulfide complexes allow a unified picture of the gold-sulfur surface chemistry at high coverage for thiols and adsorbed sulfur species where the surface chemistry remains under discussion.
Collapse
Affiliation(s)
- Pilar Carro
- Área de Química Física, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, Avda. Francisco Sánchez, s/n 38200-La Laguna, Tenerife, Spain
| | - Roberto C Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina.
| |
Collapse
|
14
|
Banihashem S, Nikpour Nezhati M, Panahi HA, Shakeri-Zadeh A. Synthesis of novel chitosan-g-PNVCL nanofibers coated with gold-gold sulfide nanoparticles for controlled release of cisplatin and treatment of MCF-7 breast cancer. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1683557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Solmaz Banihashem
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine Iran, University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
15
|
Robinson DA, White HS. Electrochemical Synthesis of Individual Core@Shell and Hollow Ag/Ag 2S Nanoparticles. NANO LETTERS 2019; 19:5612-5619. [PMID: 31335149 DOI: 10.1021/acs.nanolett.9b02144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This letter presents an electrochemical methodology for structure-tunable synthesis, characterization, and kinetic monitoring of metal-semiconductor phase transformations at individual Ag nanoparticles. In the presence of HS- in aqueous solution, the stochastic collision and adsorption of Ag nanoparticles at a Au microelectrode initiates the partial anodic transformation of Ag to Ag2S at each particle. A single continuous current transient is observed for each Ag nanoparticle reacted. The characteristic shapes of the transients are distinct from previously reported amperometric recordings of electrochemical reactions involving single nanoparticles and are highly uniform at a constant applied potential. The average maximum current increases while the event duration decreases as a function of increasing potential. Independent of applied potential, the electrochemical transformation event abruptly stops after converting ∼80% of the Ag in the nanoparticle to Ag2S, a self-terminating process that does not occur for bulk Ag electrodes under similar conditions. The resulting products are a mixture of core@shell Ag@Ag2S nanoparticles with and without voids in the core, as characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Both the frequency and size of voids increase at more positive potentials. The average size of the core@shell nanoparticles determined by coulometric analysis of the current transients agrees well with TEM measurements.
Collapse
Affiliation(s)
- Donald A Robinson
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Henry S White
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
16
|
Simón M, Norregaard K, Jørgensen JT, Oddershede LB, Kjaer A. Fractionated photothermal therapy in a murine tumor model: comparison with single dose. Int J Nanomedicine 2019; 14:5369-5379. [PMID: 31409993 PMCID: PMC6645692 DOI: 10.2147/ijn.s205409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/06/2019] [Indexed: 01/22/2023] Open
Abstract
Purpose: Photothermal therapy (PTT) exploits the light-absorbing properties of nanomaterials such as silica-gold nanoshells (NS) to inflict tumor death through local hyperthermia. However, in in vivo studies of PTT, the heat distribution is often found to be heterogeneous throughout the tumor volume, which leaves parts of the tumor untreated and impairs the overall treatment outcome. As this challenges PTT as a one-dose therapy, this study here investigates if giving the treatment repeatedly, ie, fractionated PTT, increases the efficacy in mice bearing subcutaneous tumors. Methods: The NS heating properties were first optimized in vitro and in vivo. Two fractionated PTT protocols, consisting of two and four laser treatments, respectively, were developed and applied in a murine subcutaneous colorectal tumor model. The efficacy of the two fractionated protocols was evaluated both by longitudinal monitoring of tumor growth and, at an early time point, by positron emission tomography (PET) imaging of 18F-labeled glucose analog 18F-FDG. Results: Overall, there were no significant differences in tumor growth and survival between groups of mice receiving single-dose PTT and fractionated PTT in our study. Nonetheless, some animals did experience inhibited tumor growth or even complete tumor disappearance due to fractionated PTT, and these animals also showed a significant decrease in tumor uptake of 18F-FDG after therapy. Conclusion: This study only found an effect of giving PTT to tumors in fractions compared to a single-dose approach in a few animals. However, many factors can affect the outcome of PTT, and reliable tools for optimization of treatment protocol are needed. Despite the modest treatment effect, our results indicate that 18F-FDG PET/CT imaging can be useful to guide the number of treatment sessions necessary.
Collapse
Affiliation(s)
- Marina Simón
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Kamilla Norregaard
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | | | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Chen H, Hu H, Tao C, Clauson RM, Moncion I, Luan X, Hwang S, Sough A, Sansanaphongpricha K, Liao J, Paholak HJ, Stevers NO, Wang G, Liu B, Sun D. Self-Assembled Au@Fe Core/Satellite Magnetic Nanoparticles for Versatile Biomolecule Functionalization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23858-23869. [PMID: 31245984 DOI: 10.1021/acsami.9b05544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the functionalization of magnetic nanoparticles (MNPs) with biomolecules has been widely explored for various biological applications, achieving efficient bioconjugations with a wide range of biomolecules through a single, universal, and versatile platform remains a challenge, which may significantly impact their applications' outcomes. Here, we report a novel MNP platform composed of Au@Fe core/satellite nanoparticles (CSNPs) for versatile and efficient bioconjugations. The engineering of the CSNPs is facilely formed through the self-assembly of ultrasmall gold nanoparticles (AuNPs, 2-3 nm in diameter) around MNPs with a polysiloxane-containing polymer coating. The formation of the hybrid magnetic nanostructure is revealed by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), element analysis using atomic absorption spectroscopy, and vibrating sample magnetometer. The versatility of biomolecule loading to the CSNP is revealed through the bioconjugation of a wide range of relevant biomolecules, including streptavidin, antibodies, peptides, and oligonucleotides. Characterizations including DLS, TEM, lateral flow strip assay, fluorescence assay, giant magnetoresistive nanosensor array, high-performance liquid chromatography, and absorption spectrum are performed to further confirm the efficiency of various bioconjugations to the CSNP. In conclusion, this study demonstrates that the CSNP is a novel MNP-based platform that offers versatile and efficient surface functionalization with various biomolecules.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Chun Tao
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ryan M Clauson
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ila Moncion
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xin Luan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sangyeul Hwang
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Ashley Sough
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Kanokwan Sansanaphongpricha
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hayley J Paholak
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Nicholas O Stevers
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Guoping Wang
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Bing Liu
- IMRA America, Inc. , 1044 Woodridge Avenue , Ann Arbor , Michigan 48105 , United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
18
|
Fan L, Sun X, Wang X, Wang H, Liu J. NIR laser-responsive liquid metal-loaded polymeric hydrogels for controlled release of doxorubicin. RSC Adv 2019; 9:13026-13032. [PMID: 35520786 PMCID: PMC9063745 DOI: 10.1039/c9ra02286d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022] Open
Abstract
Liquid metals (LMs) have recently emerged as a new class of promising multifunctional materials with attractive properties. They have excellent photothermal conversion efficiency, generating heat under near-infrared (NIR) laser irradiation. This work reports encapsulating LM droplets into poly(NIPAm-co-MBA) hydrogels (PNM) to achieve nanodispersed liquid metals in bulk polymeric hydrogels for NIR laser-responsive materials. LM droplets (∼530 nm) are produced by dispersing an alloy of gallium and indium (EGaIn) into glycerol. The LM-loaded PNM hydrogels (PNM/LM) exhibited excellent thermal-/NIR laser-responsive ability. In a water bath, the weight of the PNM/LM can decrease 92% at 50 °C. And the volume of PNM/LM can decrease 62% under NIR laser irradiation for 12 min. Because of its thermal-/NIR laser-responsive ability and porous three-dimensional (3D) networks, PNM/LM is very suitable for use as a drug carrier. We also prepared doxorubicin (DOX)-loaded PNM/LM hydrogels (PNM/LM/DOX) and demonstrated that the PNM/LM/DOX hydrogel can generate heat and raise its temperature under NIR laser irradiation. When the temperature becomes higher than the lower critical solution temperature (LCST), such a hydrogel would shrink immediately and extrude the DOX encapsulated in its networks simultaneously, then complete the controlled release of the pre-loaded drug. Further, an in vitro cytotoxicity test indicated the biocompatibility and feasibility as a chemophotothermal synergistic therapeutic of the present hydrogel. This NIR laser-responsive hydrogel fully exhibits its superiority as a drug carrier which promises great potential in future targeted controlled drug release.
Collapse
Affiliation(s)
- Linlin Fan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Xuyang Sun
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xuelin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
19
|
Nanoparticles in dermatologic surgery. J Am Acad Dermatol 2019; 83:1144-1149. [PMID: 30991121 DOI: 10.1016/j.jaad.2019.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/22/2019] [Accepted: 04/10/2019] [Indexed: 11/23/2022]
Abstract
Nanotechnology is an emerging branch of science that involves the engineering of functional systems on the nanoscale (1-100 nm). Nanotechnology has been used in biomedical and therapeutic agents with the aim of providing novel treatment solutions where small molecule size may be beneficial for modulation of biologic function. Recent investigation in nanomedicine has become increasingly important to cutaneous pathophysiology, such as functional designs directed towards skin cancers and wound healing. This review outlines the application of nanoparticles relevant to dermatologic surgery.
Collapse
|
20
|
Molecular features of interaction involving hen egg white lysozyme immobilized on graphene oxide and the effect on activity. Int J Biol Macromol 2018; 120:2390-2398. [DOI: 10.1016/j.ijbiomac.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023]
|
21
|
Electrochemical characterization of a mixed lipid monolayer supported on Au(111) electrodes with implications for doxorubicin delivery. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Brancolini G, Maschio MC, Cantarutti C, Corazza A, Fogolari F, Bellotti V, Corni S, Esposito G. Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and ΔN6 β2-microglobulin variants. NANOSCALE 2018; 10:4793-4806. [PMID: 29469914 DOI: 10.1039/c7nr06808e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation including the formation of dimers and multimers in solution, underlies an array of human diseases such as systemic amyloidosis which is a fatal disease caused by misfolding of native globular proteins damaging the structure and function of affected organs. Different kind of interactors can interfere with the formation of protein dimers and multimers in solution. A very special class of interactors are nanoparticles thanks to the extremely efficient extension of their interaction surface. In particular citrate-coated gold nanoparticles (cit-AuNPs) were recently investigated with amyloidogenic protein β2-microglobulin (β2m). Here we present the computational studies on two challenging models known for their enhanced amyloidogenic propensity, namely ΔN6 and D76N β2m naturally occurring variants, and disclose the role of cit-AuNPs on their fibrillogenesis. The proposed interaction mechanism lies in the interference of the cit-AuNPs with the protein dimers at the early stages of aggregation, that induces dimer disassembling. As a consequence, natural fibril formation can be inhibited. Relying on the comparison between atomistic simulations at multiple levels (enhanced sampling molecular dynamics and Brownian dynamics) and protein structural characterisation by NMR, we demonstrate that the cit-AuNPs interactors are able to inhibit protein dimer assembling. As a consequence, the natural fibril formation is also inhibited, as found in experiment.
Collapse
Affiliation(s)
- Giorgia Brancolini
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy.
| | | | - Cristina Cantarutti
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy
| | - Alessandra Corazza
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Federico Fogolari
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Stefano Corni
- Department of Chemical Science, University of Padova, via VIII Febbraio 2, 35122 Padova and Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Gennaro Esposito
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy. and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Leng C, Zhang X, Xu F, Yuan Y, Pei H, Sun Z, Li L, Bao Z. Engineering Gold Nanorod-Copper Sulfide Heterostructures with Enhanced Photothermal Conversion Efficiency and Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703077. [PMID: 29436109 DOI: 10.1002/smll.201703077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/07/2018] [Indexed: 05/07/2023]
Abstract
Plasmonic gold nanorods (Au NRs)-copper sulfide heterostructures have recently attracted much attention owing to the synergistically enhanced photothermal properties. However, the facile synthesis and interface tailoring of Au NRs-copper sulfide heterostructures remain a formidable challenge. In this study, the rational design and synthesis of Au NRs-Cu7 S4 heterostructures via a one-pot hydrothermal process is reported. Specifically, core-shell and dumbbell-like Au NRs-Cu7 S4 heterostructures are obtained with well-controlled interfaces by employing the Au NRs with different aspect ratios. Both core-shell and dumbbell-like Au NRs-Cu7 S4 have proven effective as photothermal therapy agents, which offer both high photothermal stability and significant photothermal conversion efficiency up to 62%. The finite-difference time domain simulation results confirm the coupling effect that leads to the enhanced local field as well as the optical absorption at the heterostructure interface. Importantly, these Au NRs-Cu7 S4 heterostructures can be compatibly used as an 808 nm laser-driven photothermal therapy agents for the efficient photothermal therapy of cancer cells in vitro. This study will provide new insight into the design of other noble metal-semiconductor heterostructures for a broad range of applications utilizing surface plasmon resonance enhancement phenomena.
Collapse
Affiliation(s)
- Chunbo Leng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xin Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Fanxing Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Hao Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhenhua Sun
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Li Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhihong Bao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
24
|
Núñez C, Estévez SV, del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem 2018; 23:331-345. [DOI: 10.1007/s00775-018-1542-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
|
25
|
Liang P, Tang Q, Cai Y, Liu G, Si W, Shao J, Huang W, Zhang Q, Dong X. Self-quenched ferrocenyl diketopyrrolopyrrole organic nanoparticles with amplifying photothermal effect for cancer therapy. Chem Sci 2017; 8:7457-7463. [PMID: 29163898 PMCID: PMC5674203 DOI: 10.1039/c7sc03351f] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022] Open
Abstract
Organic nanoparticles (NPs) with near-infrared absorbance possess high photothermal conversion (PTC) efficiency and an excellent photoacoustic signal, presenting a great prospect for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Herein, a novel diketopyrrolopyrrole derivative (DPPCN-Fc) is synthesized for use as a PTT agent with PAI performance. Due to photo-induced electron transfer (PET), the two flanked ferrocene moieties significantly quench the radiative decay and intersystem crossing process, resulting in an enhanced nonradiative transition, and an amplifying photothermal effect is observed. Exposing the DPPCN-Fc NP aqueous dispersion (100 μg mL-1) to 730 nm (1.0 W cm-2) laser radiation results in a temperature elevation of 33.4 °C within 10 min and the PTC efficiency reaches up to 59.1%, which is higher than most reported photothermal therapeutic agents. Furthermore, under irradiation from 730 nm lasers, cancer cells could be completely killed in vivo due to the amplifying photothermal effects. Therefore, the as-prepared DPPCN-Fc NPs are a promising cancer theranostic agent for photoacoustic imaging-guided cancer photothermal therapy.
Collapse
Affiliation(s)
- Pingping Liang
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| | - Qianyun Tang
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| | - Yu Cai
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| | - Gongyuan Liu
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| | - Qi Zhang
- School of Pharmaceutical Sciences , Nanjing Tech University (NanjingTech) , Nanjing , China .
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China . ;
| |
Collapse
|
26
|
|
27
|
Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. NANOSCALE 2017; 9:3698-3718. [PMID: 28272614 DOI: 10.1039/c6nr09177f] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In general, effective clinical treatment demands precision medicine, which requires specific perturbation to disease cells with no damage to normal tissue. Thus far, guaranteeing that selective therapeutic effects occur only at targeted disease areas remains a technical challenge. Among the various endeavors to achieve such an outcome, strategies based on light-controlled therapies have received special attention, mostly due to their unique advantages, including the low-invasive property and the capability to obtain spatial and temporal precision at the targeted sites via specific wavelength light irradiation. However, most conventional light-mediated therapies, especially those based on short-wavelength UV or visible light irradiation, have potential issues including limited penetration depth and harmful photo damage to healthy tissue. Therefore, the implemention of near-infrared (NIR) light illumination, which can travel into deeper tissues without causing obvious photo-induced cytotoxcity, has been suggested as a preferable option for precise phototherapeutic applications in vitro and in vivo. In this article, an overview is presented of existing therapeutic applications through NIR light-absorbed nanostructures, such as NIR light-controlled drug delivery, NIR light-mediated photothermal and photodynamic therapies. Potential challenges and relevant future prospects are also discussed.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China 215123.
| | - Junxin Aw
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore and Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 117602, Singapore
| |
Collapse
|
28
|
The synergistic effect of photodynamic therapy and photothermal therapy in the presence of gold-gold sulfide nanoshells conjugated Indocyanine green on HeLa cells. Photodiagnosis Photodyn Ther 2017; 17:48-55. [DOI: 10.1016/j.pdpdt.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022]
|
29
|
Metal nanostructures for non-enzymatic glucose sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1018-1030. [DOI: 10.1016/j.msec.2016.04.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/21/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|
30
|
Yin J, Li C, Chen D, Yang J, Liu H, Hu W, Shao Y. Structure and dysprosium dopant engineering of gadolinium oxide nanoparticles for enhanced dual-modal magnetic resonance and fluorescence imaging. Phys Chem Chem Phys 2017; 19:5366-5376. [DOI: 10.1039/c6cp06712c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel multi-functional nanoarchitecture of Gd2O3:Dy3+ shell on silica core that enables unique multi-color living cell imaging and remarkable in vivo magnetic resonance imaging.
Collapse
Affiliation(s)
- Jinchang Yin
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Chaorui Li
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Deqi Chen
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Jiajun Yang
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Huan Liu
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Wenyong Hu
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Yuanzhi Shao
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
31
|
Dou K, Zhu W, Zou Y, Gu Y, Li J, Zhang S, Liu Z, Zeng H. Metallic oxide nanocrystals with near-infrared plasmon resonance for efficient, stable and biocompatible photothermal cancer therapy. J Mater Chem B 2017; 5:7393-7402. [DOI: 10.1039/c7tb01832k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesized MoO2 nanocrystals exhibit excellent photothermal temperature elevation of about 37.5 °C under 808 nm laser irradiation, and tumor inhibition effects with an inhibition rate of up to 80.45% as a photothermal therapy agent against 4T1 cancer cells.
Collapse
Affiliation(s)
- Kang Dou
- MIIT Key Laboratory of Advanced Display Materials and Devices
- Institute of Optoelectronics & Nanomaterials
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Wenwen Zhu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Yousheng Zou
- MIIT Key Laboratory of Advanced Display Materials and Devices
- Institute of Optoelectronics & Nanomaterials
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Yu Gu
- MIIT Key Laboratory of Advanced Display Materials and Devices
- Institute of Optoelectronics & Nanomaterials
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Jubin Li
- MIIT Key Laboratory of Advanced Display Materials and Devices
- Institute of Optoelectronics & Nanomaterials
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices
- Institute of Optoelectronics & Nanomaterials
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices
- Institute of Optoelectronics & Nanomaterials
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| |
Collapse
|
32
|
Hernandez-Tamargo CE, Barzaga R, Mikosch H, Martínez JA, Herrera JA, Farías MH, Hernández MP. Density functional theory simulation of the adsorption of sulphur multilayers on Au(100). Phys Chem Chem Phys 2016; 18:29987-29998. [PMID: 27766325 DOI: 10.1039/c6cp04736j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The adsorption of sulphur multilayers on Au(100) has been studied using density functional theory (DFT) within the generalized gradient approximation (GGA). The first sulphur layer was adsorbed on the four-fold sites of the unreconstructed Au(100) surface forming a lattice. The experimental parameters of the lattice were reproduced taking into account the surface expansion of the topmost Au(100) layer. This expansion should occur when gold islands are formed after the lifting of hex-reconstruction, which allows the lateral movement of the gold atoms. The second sulphur layer, on top of the lattice, consisted of eight S atoms (octomer phase) in a quasi-rectangular arrangement. The structural optimization of the octomer phase was achieved in a specific spatial orientation with respect to the lattice. The analysis of Bader atomic charges and the projected density of states (PDOS) demonstrated that charge transfer from the Au(100) surface to the sulphur layers, sulphur chemisorption and sulphur-sulphur inter-layer mixing of electronic states control the formation of sulphur multilayers.
Collapse
Affiliation(s)
| | - Ransel Barzaga
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400, Cuba.
| | - Hans Mikosch
- Invited Professor, Facultad de Física, Universidad de La Habana, San Lázaro y L, El Vedado, Plaza de la Revolución, La Habana 10400, Cuba
| | - Javier A Martínez
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400, Cuba.
| | - José A Herrera
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400, Cuba.
| | - M H Farías
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología (CNyN), Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico
| | - Mayra P Hernández
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400, Cuba. and Invited Professor at CNyN, UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
33
|
Nabil M, Zunino P. A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160287. [PMID: 27703693 PMCID: PMC5043312 DOI: 10.1098/rsos.160287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 05/20/2023]
Abstract
The application of hyperthermia to cancer treatment is studied using a novel model arising from the fundamental principles of flow, mass and heat transport in biological tissues. The model is defined at the scale of the tumour microenvironment and an advanced computational scheme called the embedded multiscale method is adopted to solve the governing equations. More precisely, this approach involves modelling capillaries as one-dimensional channels carrying flow, and special mathematical operators are used to model their interaction with the surrounding tissue. The proposed computational scheme is used to analyse hyperthermic treatment of cancer based on systemically injected vascular magnetic nanoconstructs carrying super-paramagnetic iron oxide nanoparticles. An alternating magnetic field is used to excite the nanoconstructs and generate localized heat within the tissue. The proposed model is particularly adequate for this application, since it has a unique capability of incorporating microvasculature configurations based on physiological data combined with coupled capillary flow, interstitial filtration and heat transfer. A virtual tumour model is initialized and the spatio-temporal distribution of nanoconstructs in the vascular network is analysed. In particular, for a reference iron oxide concentration, temperature maps of several different hypothesized treatments are generated in the virtual tumour model. The observations of the current study might in future guide the design of more efficient treatments for cancer hyperthermia.
Collapse
Affiliation(s)
- Mahdi Nabil
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Paolo Zunino
- Modeling and Scientific Computing (MOX), Department of Mathematics, Politecnico di Milano, Milano, Italy
- Author for correspondence: Paolo Zunino e-mail:
| |
Collapse
|
34
|
Dominguez-Medina S, Kisley L, Tauzin LJ, Hoggard A, Shuang B, D. S. Indrasekara AS, Chen S, Wang LY, Derry PJ, Liopo A, Zubarev ER, Landes CF, Link S. Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation. ACS NANO 2016; 10:2103-12. [PMID: 26751094 PMCID: PMC4768289 DOI: 10.1021/acsnano.5b06439] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.
Collapse
Affiliation(s)
| | - Lydia Kisley
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lawrence J. Tauzin
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anneli Hoggard
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Bo Shuang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | | | - Sishan Chen
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lin-Yung Wang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Paul J. Derry
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anton Liopo
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Eugene R. Zubarev
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Materials Science and NanoEngineering, Rice University, Houston, Texas 77251, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| |
Collapse
|
35
|
Swiech OA, Opuchlik LJ, Wojciuk G, Stepkowski TM, Kruszewski M, Bilewicz R. Doxorubicin carriers based on Au nanoparticles – effect of shape and gold-drug linker on the carrier toxicity and therapeutic performance. RSC Adv 2016. [DOI: 10.1039/c6ra00177g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles (AuNPs) prepared by the Turkevich method and near-IR absorbing non-spherical anisotropic nanotriangles (AuNTs) prepared by the thiosulfate method were used for doxorubicin binding.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology
- Warsaw
- Poland
- Institute of Rural Health
- Lublin
| | | |
Collapse
|
36
|
Saverot SE, Reese LM, Cimini D, Vikesland PJ, Bickford LR. Characterization of Conventional One-Step Sodium Thiosulfate Facilitated Gold Nanoparticle Synthesis. NANOSCALE RESEARCH LETTERS 2015; 10:940. [PMID: 26055476 PMCID: PMC4456593 DOI: 10.1186/s11671-015-0940-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/15/2015] [Indexed: 05/30/2023]
Abstract
Gold-gold sulfide nanoparticles are of interest for drug delivery, biomedical imaging, and photothermal therapy applications due to a facile synthesis method resulting in small particles with high near-infrared (NIR) absorption efficiency. Previous studies suggest that the NIR sensitivity of these nanoparticles was due to hexagonally shaped metal-coated dielectric nanoparticles that consist of a gold sulfide core and gold shell. Here, we illustrate that the conventional synthesis procedure results in the formation of polydisperse samples of icosahedral gold particles, gold nanoplates, and small gold spheres. Importantly, through compositional analysis, via UV/vis absorption spectrophotometry, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS), we show that all of the nanoparticles exhibit identical face center cubic (FCC) gold crystalline structures, thus suggesting that sulfide is not present in the final fabricated nanoparticles. We show that icosahedrally shaped nanoparticles result in a blue-shifted absorbance, with a peak in the visible range. Alternatively, the nanoplate nanoparticles result in the characteristic NIR absorbance peak. Thus, we report that the NIR-contributing species in conventional gold-gold sulfide formulations are nanoplates that are comprised entirely of gold. Furthermore, polydisperse gold nanoparticle samples produced by the traditional one-step reduction of HAuCl4 by sodium thiosulfate show increased in vitro toxicity, compared to isolated and more homogeneous constituent samples. This result exemplifies the importance of developing monodisperse nanoparticle formulations that are well characterized in order to expedite the development of clinically beneficial nanomaterials.
Collapse
Affiliation(s)
- Scott-Eugene Saverot
- />Department of Biological Systems Engineering, Virginia Tech, Seitz Hall, Blacksburg, VA 24061 USA
| | - Laura M Reese
- />Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, 310 Kelly Hall (MC 0298), Blacksburg, VA 24061 USA
- />Virginia Tech Center for Sustainable Nanotechnology, Virginia Tech, Kelly Hall, Blacksburg, VA 24061 USA
| | - Daniela Cimini
- />Department of Biological Sciences and Virginia Bioinformatics Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061 USA
| | - Peter J Vikesland
- />Virginia Tech Center for Sustainable Nanotechnology, Virginia Tech, Kelly Hall, Blacksburg, VA 24061 USA
- />Department of Civil and Environmental Engineering, Virginia Tech, Durham Hall, Blacksburg, VA 24061 USA
| | - Lissett Ramirez Bickford
- />Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, 310 Kelly Hall (MC 0298), Blacksburg, VA 24061 USA
- />Virginia Tech Center for Sustainable Nanotechnology, Virginia Tech, Kelly Hall, Blacksburg, VA 24061 USA
- />Department of Mechanical Engineering, Virginia Tech, Kelly Hall, Blacksburg, VA 24061 USA
| |
Collapse
|
37
|
Nabil M, Decuzzi P, Zunino P. Modelling mass and heat transfer in nano-based cancer hyperthermia. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150447. [PMID: 26587251 PMCID: PMC4632523 DOI: 10.1098/rsos.150447] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/24/2015] [Indexed: 05/26/2023]
Abstract
We derive a sophisticated mathematical model for coupled heat and mass transport in the tumour microenvironment and we apply it to study nanoparticle delivery and hyperthermic treatment of cancer. The model has the unique ability of combining the following features: (i) realistic vasculature; (ii) coupled capillary and interstitial flow; (iii) coupled capillary and interstitial mass transfer applied to nanoparticles; and (iv) coupled capillary and interstitial heat transfer, which are the fundamental mechanisms governing nano-based hyperthermic treatment. This is an improvement with respect to previous modelling approaches, where the effect of blood perfusion on heat transfer is modelled in a spatially averaged form. We analyse the time evolution and the spatial distribution of particles and temperature in a tumour mass treated with superparamagnetic nanoparticles excited by an alternating magnetic field. By means of numerical experiments, we synthesize scaling laws that illustrate how nano-based hyperthermia depends on tumour size and vascularity. In particular, we identify two distinct mechanisms that regulate the distribution of particle and temperature, which are characterized by perfusion and diffusion, respectively.
Collapse
Affiliation(s)
- M. Nabil
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - P. Decuzzi
- Department of Translational Imaging, Houston Methodist Research Institute, Houston, TX, USA
| | - P. Zunino
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
- Modeling and Scientific Computing (MOX), Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
38
|
Kabb CP, Carmean RN, Sumerlin BS. Probing the surface-localized hyperthermia of gold nanoparticles in a microwave field using polymeric thermometers. Chem Sci 2015; 6:5662-5669. [PMID: 29861901 PMCID: PMC5949850 DOI: 10.1039/c5sc01535a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles decorated with “polymeric thermometers,” consisting of a polymeric spacer, thermally-labile azo linker, and fluorescent tag, were used to quantify the extent of localized hyperthermia under microwave irradiation.
The surface-localized hyperthermia of gold nanoparticles under microwave irradiation was examined. Gold nanoparticles with a hydrodynamic diameter of ∼6 nm stabilized by polymeric “thermometers” were used to gather information on the extent of heating as well as its spatial confinements. Reversible addition–fragmentation chain transfer polymerization was employed to synthesize well-defined, functional polymers of predetermined molecular weights, allowing for estimation of the distance between the nanoparticle surface and the polymer chain end. The polymers were conjugated with a fluorescent dye separated by a thermally-labile azo linkage, and these polymeric ligands were bound to gold nanoparticles via gold–thiolate bonds. Conventional heating experiments elucidated the relationship between temperature and the extent of dye release from the gold nanoparticle using fluorescence spectroscopy. The local temperature increase experienced under microwave irradiation was calculated using the same methodology. This approach indicated the temperature near the surface of the nanoparticle was nearly 70 °C higher than the bulk solution temperature, but decreased rapidly with distance, with no noticeable temperature increase when the azo linkage was approximately 2 nm away.
Collapse
Affiliation(s)
- Christopher P Kabb
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| | - R Nicholas Carmean
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| |
Collapse
|
39
|
Aksenova NA, Kardumyan VV, Glagolev NN, Shashkova VT, Matveeva IA, Timashev PS, Solov’eva AB. Effect of Pluronic F127 on the photosensitizing properties of dimegine in the presence of nanoparticles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415080026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Chen H, Ren X, Paholak HJ, Burnett J, Ni F, Fang X, Sun D. Facile Fabrication of Near-Infrared-Resonant and Magnetic Resonance Imaging-Capable Nanomediators for Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12814-23. [PMID: 26010660 PMCID: PMC8875655 DOI: 10.1021/acsami.5b01991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although many techniques exist for fabricating near-infrared (NIR)-resonant and magnetic resonance imaging (MRI)-capable nanomediators for photothermal cancer therapy, preparing them in an efficient and scalable process remains a significant challenge. In this report, we exploit one-step siloxane chemistry to facilely conjugate NIR-absorbing satellites onto a well-developed polysiloxane-containing polymer-coated iron oxide nanoparticle (IONP) core to generate dual functional core-satellite nanomediators for photothermal therapy. An advantage of this nanocomposite design is the variety of potential satellites that can be simply attached to impart NIR resonance, which we demonstrate using NIR-resonant gold sulfide nanoparticles (Au2SNPs) and the NIR dye IR820 as two example satellites. The core-satellite nanomediators are fully characterized by using absorption spectra, dynamic light scattering, ζ potential measurements, and transmission electron microscopy. The enhanced photothermal effect under the irradiation of NIR laser light is identified through in vitro solutions and in vivo mice studies. The MRI capabilities as contrast agents are demonstrated in mice. Our data suggest that polysiloxane-containing polymer-coated IONPs can be used as a versatile platform to build such dual functional nanomediators for translatable, MRI-guided photothermal cancer therapy.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
- Corresponding Authors:.,
| | - Xiaoqing Ren
- Key Laboratory of Smart Drug Deliver, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai 201203, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Hayley J. Paholak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Joseph Burnett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Feng Ni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
- Fujian Health College, Fuzhou, Fujian 350101, People’s Republic of China
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Deliver, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai 201203, People’s Republic of China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
- Corresponding Authors:.,
| |
Collapse
|
41
|
Likhatski M, Karacharov A, Kondrasenko A, Mikhlin Y. On a role of liquid intermediates in nucleation of gold sulfide nanoparticles in aqueous media. Faraday Discuss 2015; 179:235-45. [PMID: 25896171 DOI: 10.1039/c4fd00258j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, we found a series of fluid nanoscale intermediates preceding nucleation of gold sulfide in the reaction between aqueous HAuCl4 and sodium sulfide. Here, the effects of temperature, addition of an inert electrolyte and some other factors on characteristics of the "dense liquid" intermediates and the formation of solid nuclei were studied using UV-vis absorption spectroscopy, DLS, zeta-potential measurements, and SAXS. It was revealed, in particular, that the negatively-charged interfaces of the dense liquid species critically impede their fusion into large enough dense droplets in which nucleation can take place. The nucleation and following coagulation of poorly crystalline gold sulfide proceed not instantly but progressively as the dense liquid droplets arise, with the process being sharply accelerated by the injection of NaCl or temperature increase.
Collapse
Affiliation(s)
- Maxim Likhatski
- Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036, Russia.
| | | | | | | |
Collapse
|
42
|
Patel D, James KT, O’Toole M, Zhang G, Keynton RS, Gobin AM. A high yield, one-pot dialysis-based process for self-assembly of near infrared absorbing gold nanoparticles. J Colloid Interface Sci 2015; 441:10-6. [DOI: 10.1016/j.jcis.2014.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/01/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022]
|
43
|
James KT, O'Toole MG, Patel DN, Zhang G, Gobin AM, Keynton RS. A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Adv 2015. [DOI: 10.1039/c4ra14889d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study optimizes a new synthesis technique, DiaSynth, to produce near-infrared absorbing gold nanoplates with prescribed localized surface plasmon resonance wavelengths in high yield without the need for additional laborious purification steps.
Collapse
Affiliation(s)
- K. T. James
- Department of Bioengineering
- University of Louisville
- 419 Lutz Hall
- Louisville
- USA
| | - M. G. O'Toole
- Department of Bioengineering
- University of Louisville
- 419 Lutz Hall
- Louisville
- USA
| | - D. N. Patel
- Department of Bioengineering
- University of Louisville
- 419 Lutz Hall
- Louisville
- USA
| | - G. Zhang
- Department of Bioengineering
- University of Louisville
- 419 Lutz Hall
- Louisville
- USA
| | - A. M. Gobin
- Department of Bioengineering
- University of Louisville
- 419 Lutz Hall
- Louisville
- USA
| | - R. S. Keynton
- Department of Bioengineering
- University of Louisville
- 419 Lutz Hall
- Louisville
- USA
| |
Collapse
|
44
|
Li CH, Jamison AC, Rittikulsittichai S, Lee TC, Lee TR. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19943-19950. [PMID: 25321928 DOI: 10.1021/am505424w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.
Collapse
Affiliation(s)
- Chien-Hung Li
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | | | | | | | | |
Collapse
|
45
|
Kodiha M, Hutter E, Boridy S, Juhas M, Maysinger D, Stochaj U. Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cell Mol Life Sci 2014; 71:4259-73. [PMID: 24740795 PMCID: PMC11113384 DOI: 10.1007/s00018-014-1622-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 02/28/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles have emerged as promising tools for cancer research and therapy, where they can promote thermal killing. The molecular mechanisms underlying these events are not fully understood. The geometry and size of gold nanoparticles can determine the severity of cellular damage. Therefore, small and big gold nanospheres as well as gold nanoflowers were evaluated side-by-side. To obtain quantitative data at the subcellular and molecular level, we assessed how gold nanoparticles, either alone or in combination with mild hyperthermia, altered the physiology of cultured human breast cancer cells. Our analyses focused on the nucleus, because this organelle is essential for cell survival. We showed that all the examined gold nanoparticles associated with nuclei. However, their biological effects were quantitatively different. Thus, depending on the shape and size, gold nanoparticles changed multiple nuclear parameters. They redistributed stress-sensitive regulators of nuclear biology, altered the nuclear morphology, reorganized nuclear laminae and envelopes, and inhibited nucleolar functions. In particular, gold nanoparticles reduced the de novo biosynthesis of RNA in nucleoli, the subnuclear compartments that produce ribosomes. While small gold nanospheres and nanoflowers, but not big gold nanospheres, damaged the nucleus at normal growth temperature, several of these defects were further exacerbated by mild hyperthermia. Taken together, the toxicity of gold nanoparticles correlated with changes in nuclear organization and function. These results emphasize that the cell nucleus is a prominent target for gold nanoparticles of different morphologies. Moreover, we demonstrated that RNA synthesis in nucleoli provides quantitative information on nuclear damage and cancer cell survival.
Collapse
Affiliation(s)
- Mohamed Kodiha
- Department of Physiology, McGill University, Montreal, H3G 1Y6 Canada
| | - Eliza Hutter
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6 Canada
| | - Sebastien Boridy
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6 Canada
| | - Michal Juhas
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6 Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6 Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, H3G 1Y6 Canada
| |
Collapse
|
46
|
Bansal A, Zhang Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc Chem Res 2014; 47:3052-60. [PMID: 25137555 DOI: 10.1021/ar500217w] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
"Smart" stimuli-responsive nanomaterials are becoming popular as targeted delivery systems because they allow the use of internal or external stimuli to achieve spatial or temporal control over the delivery process. Among the stimuli that have been used, light is of special interest because it is not only noninvasive but also controllable both spatially and temporally, thus allowing unprecedented control over the delivery of bioactive molecules such as nucleic acids, proteins, drugs, etc. This is particularly advantageous for biomedical applications where specificity and selectivity are highly desired. Several strategies have evolved under the umbrella of light based delivery systems and can be classified into three main groups. The first strategy involves "caging" of the bioactive molecule using photolabile groups, loading these caged molecules onto a carrier and then "uncaging" or activating them at the targeted site upon irradiation with light of a particular wavelength. The second strategy makes use of nanocarriers that themselves are made photoresponsive either through modification with photosensitive groups or through the attachment of photolinkers on the carrier surface. These nanoparticles upon irradiation dissociate, releasing the cargo encapsulated within, or the photolinkers attaching the cargo to the surface get cleaved, resulting in release. The third approach makes use of the surface plasmon resonance of noble metal based nanoparticles. Upon irradiation with light at the plasmon resonant frequency, the resulting thermal or nonthermal field enhancement effects facilitate the release of bioactive molecules loaded onto the nanoparticles. In addition, other materials, certain metal sulfides, graphene oxide, etc., also exhibit photothermal transduction that can be exploited for targeted delivery. These approaches, though effective, are constrained by their predominant use of UV or visible light to which most photolabile groups are sensitive. Near infrared (NIR) excitation is preferred because NIR light is safer and can penetrate deeper in biological tissues. However, most photolabile groups cannot be excited by NIR light directly. So light conversion from NIR to UV/visible is required. Nanomaterials that display upconversion or two-photon-excitation properties have been developed that can serve as nanotransducers, converting NIR to UV/visible light to which the aforementioned photoresponsive moieties are sensitive. This Account will review the existing light-based nanoparticle delivery systems, their applications, the limitations they face, and the technologies that have emerged in an effort to overcome these limitations.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical
Engineering, Faculty of Engineering, National University of Singapore, 117575 Singapore
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 117456 Singapore
| | - Yong Zhang
- Department of Biomedical
Engineering, Faculty of Engineering, National University of Singapore, 117575 Singapore
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, 117456 Singapore
| |
Collapse
|
47
|
Ayala-Orozco C, Urban C, Bishnoi S, Urban A, Charron H, Mitchell T, Shea M, Nanda S, Schiff R, Halas N, Joshi A. Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J Control Release 2014; 191:90-97. [PMID: 25051221 PMCID: PMC4156921 DOI: 10.1016/j.jconrel.2014.07.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 12/18/2022]
Abstract
There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or necrotic regions. We report the performance advantages obtained by sub 100nm gold nanomatryushkas, comprising concentric gold-silica-gold layers compared to conventional ~150nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000mm(3)) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5× accumulation within large tumors results in superior therapy efficacy.
Collapse
Affiliation(s)
- Ciceron Ayala-Orozco
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Cordula Urban
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Mail: BCM 360, One Baylor Plaza, Houston, TX 77030, United States
| | - Sandra Bishnoi
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Alexander Urban
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Heather Charron
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Mail: BCM 360, One Baylor Plaza, Houston, TX 77030, United States
| | - Tamika Mitchell
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Martin Shea
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Naomi Halas
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, United States
| | - Amit Joshi
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Mail: BCM 360, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
48
|
Sadeghi HR, Bahreyni-Toosi MH, Meybodi NT, Esmaily H, Soudmand S, Eshghi H, Soudmand S, Sazgarnia A. Gold-gold sulfide nanoshell as a novel intensifier for anti-tumor effects of radiofrequency fields. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:516-21. [PMID: 25429343 PMCID: PMC4242922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/19/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Several studies have been carried out to investigate the effect of various nanoparticles exposed to radiofrequency (RF) waves on cancerous tissues. In this study, a colon carcinoma tumor model was irradiated by RF in the presence of gold-gold sulfide (GGS) nanoshells. MATERIALS AND METHODS Synthesis and characterization of GGS nanoshells were initially performed. CT26 cells were subcutaneously injected into the flank of BALB/c mice to create the colon carcinoma tumor models. Then the tumors were subjected to different treatments. Treatment factors included intratumoral injection of GGS and RF radiation. Different groups were considered as control with no treatment, receiving GGS, RF irradiated and simultaneous administration of GGS and RF. Efficacy of the treatments was evaluated by daily monitoring of tumor volume and recording the relative changes in it, the time needed for a 5-fold increase in the volume of tumor (T5) and utilizing pathologic studies to determine the lost volume of the tumors. RESULTS In comparison with control group, tumor growth was not markedly inhibited in the groups receiving only GGS or RF, while in the group receiving GGS and RF, tumor growth was effectively inhibited compared with the other groups. In addition, the lost volume of the tumor and T5 was markedly higher in groups receiving GGS and RF compared with other groups. CONCLUSION This study showed that RF radiation can markedly reduce the tumor growth in presence of GGS. Hence, it can be predicted that GGS nanoshells convert sub-lethal effects of noninvasive RF fields into lethal damages.
Collapse
Affiliation(s)
- Hamid Reza Sadeghi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Naser Tayebi Meybodi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Soudmand
- Department of Biostatistics, Faculty of Health Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Eshghi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Soudmand
- Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
,Corresponding author: Ameneh Sazgarnia. Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-511-8002323; Fax: +98-511-8002320;
| |
Collapse
|
49
|
Jo H, Youn H, Lee S, Ban C. Ultra-effective photothermal therapy for prostate cancer cells using dual aptamer-modified gold nanostars. J Mater Chem B 2014; 2:4862-4867. [PMID: 32261777 DOI: 10.1039/c4tb00643g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although various studies related to nanoparticles-based photothermal therapy have been actively performed, an epoch-making photothermolysis therapy exhibiting both high selectivity and efficiency has yet not been discovered. For the first time, we have developed novel valuable therapeutic complexes, namely, dual aptamer-modified gold nanostars, for the targeting of prostate cancers, including PSMA(+) and PSMA(-) cells. The synthesized probes were characterized through several techniques, including UV-VIS spectral analysis, DLS analysis, zeta potential measurements, and TEM imaging, and were subsequently subjected to cytotoxicity tests, cell uptake confirmation, and in vitro photothermal therapy. The homogeneously well-fabricated nanostars presented high selectivity to prostate cancer cells and extremely high efficiency for therapy using an 808 nm laser under an irradiance of 0.3 W cm-2, which is lower than the permitted value for skin exposure (0.329 W cm-2). It is anticipated that this novel photothermal agent will become the general platform for targeted therapy.
Collapse
Affiliation(s)
- Hunho Jo
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Korea.
| | | | | | | |
Collapse
|
50
|
Lin M, Guo C, Li J, Zhou D, Liu K, Zhang X, Xu T, Zhang H, Wang L, Yang B. Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5860-8. [PMID: 24660754 DOI: 10.1021/am500715f] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aqueous Au nanoparticles (NPs) are employed as the building blocks to construct chainlike self-assembly architectures, which greatly enhance the photothermal performance at 808 nm. Biocompatible polypyrrole (PPy) is further adopted as the package material to coat Au NP chains, producing stable photothermal agents. As a result of contributions from chainlike Au, the PPy shell, as well as the Au-PPy composite structures, the capability of photothermal transduction at 808 nm is greatly enhanced, represented by the high photothermal transduction efficiency up to 70%. Primary animal experiment proves that the current composite photothermal agents are efficient in inhibiting tumor growth under an 808 nm irradiation, showing the potentials for in vivo photothermal therapy.
Collapse
Affiliation(s)
- Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|