1
|
Hamdy NM, Eskander G, Basalious EB. Insights on the Dynamic Innovative Tumor Targeted-Nanoparticles-Based Drug Delivery Systems Activation Techniques. Int J Nanomedicine 2022; 17:6131-6155. [PMID: 36514378 PMCID: PMC9741821 DOI: 10.2147/ijn.s386037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-cancer conventional chemotherapeutic drugs novel formula progress, nowadays, uses nano technology for targeted drug delivery, specifically tailored to overcome therapeutic agents' delivery challenges. Polymer drug delivery systems (DDS) play a crucial role in minimizing off-target side effects arising when using standard cytotoxic drugs. Using nano-formula for targeted localized action, permits using larger effective cytotoxic doses on a single special spot, that can seriously cause harm if it was administered systemically. Therefore, various nanoparticles (NPs) specifically have attached groups for targeting capabilities, not seen in bulk materials, which then need activation. In this review, we will present a simple innovative, illustrative, in a cartoon-way, enumeration of NP anti-cancer drug targeting delivery system activation-types. Area(s) covered in this review are the mechanisms of various NP activation techniques.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Georgette Eskander
- Faculty of Pharmacy, Ain Shams University, Postgraduate Student, Cairo, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Kesharwani P, Kumari K, Gururani R, Jain S, Sharma S. Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer's, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System. Curr Drug Metab 2022; 23:678-692. [PMID: 35692131 DOI: 10.2174/1389200223666220609141459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 01/05/2023]
Abstract
Liposomes nowadays have become a preferential drug delivery system since they provide facilitating properties to drugs, such as improved therapeutic index of encapsulated drug, target and controlled drug delivery, and less toxicity. However, conventional liposomes have shown some disadvantages, such as less drug loading capacity, poor retention, clearance by kidney or reticuloendothelial system, and less release of hydrophilic drugs. Thus, to overcome these disadvantages recently, scientists have explored new approaches and methods, viz., ligand conjugation, polymer coating, and liposome hybrids, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, liposome-in-nanofiber, etc. These approaches have been shown to improve the physiochemical and pharmacokinetic properties of encapsulated drugs. Lately, pharmacokinetic-pharmacodynamic (PK-PD) computational modeling has emerged as a beneficial tool for analyzing the impact of formulation and system-specific factors on the target disposition and therapeutic efficacy of liposomal drugs. There has been an increasing number of liposome-based therapeutic drugs, both FDA approved and those undergoing clinical trials, having application in cancer, Alzheimer's, diabetes, and glaucoma. To meet the continuous demand of health sectors and to produce the desired product, it is important to perform pharmacokinetic studies. This review focuses on the physical, physicochemical, and chemical factors of drugs that influence the target delivery of drugs. It also explains various physiological barriers, such as systemic clearance and extravasation. A novel approach, liposomal-hybrid complex, an innovative approach as a vesicular drug delivery system to overcome limited membrane permeability and bioavailability, has been discussed in the review. Moreover, this review highlights the pharmacokinetic considerations and challenges of poorly absorbed drugs along with the applications of a liposomal delivery system in improving PKPD in various diseases, such as cancer, Alzheimer's, diabetes, and glaucoma.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Ritika Gururani
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith University, Banasthali, P.O. Rajasthan, India
| |
Collapse
|
3
|
Al-Nemrawi N, Hameedat F, Al-Husein B, Nimrawi S. Photolytic Controlled Release Formulation of Methotrexate Loaded in Chitosan/TiO2 Nanoparticles for Breast Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020149. [PMID: 35215259 PMCID: PMC8875436 DOI: 10.3390/ph15020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
A new system composed of chitosan nanoparticles loaded with methotrexate (MTX-CS-NPs) and functionalized with photocatalytic TiO2 nanoparticles (TiO2-NPs) was prepared. This system is expected to initiate polymeric rupture of MTX-CS-NPs and subsequently release MTX, upon illumination with UV light. MTX-CS-NPs were prepared and characterized in terms of particle size, charge, polydispersity and drug release before and after coating with TiO2-NPs. The release of MTX in vitro was studied in dark, light and UV light. Finally, coated and uncoated MTX-CS-NPs were studied in vitro using MCF-7 cell line. The functionalized NPs were larger in size, more polydisperse and carried higher positive charges compared to the unfunctionalized NPs. The entrapment efficacy was high reaching 75% and was not affected by coating with MTX-CS-NPs. Further, less than 5% of methotrexate was released after 80 h from uncoated NPs and the release was not enhanced by UV illumination of the particles. In contrast, the release from functionalized NPs was enhanced, reaching 40% after 80 h, as the particles were stroked with UV light and as the amount of TiO2-NPs used in coating increased. Finally, coating the MTX-CS-NPs with TiO2-NPs significantly enhanced their cytotoxicity on MCF-7 cells. The coated MTX-CS-NPs recorded low cell viabilities compared to the other formulations. In conclusion, the drug release of MTX-CS-NPs could be triggered and controlled remotely by coating with TiO2-NPs, which maybe more effective in cancer treatment.
Collapse
Affiliation(s)
- Nusaiba Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Correspondence:
| | - Fatima Hameedat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Belal Al-Husein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | | |
Collapse
|
4
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
5
|
Alwattar JK, Mneimneh AT, Abla KK, Mehanna MM, Allam AN. Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer. Pharmaceutics 2021; 13:355. [PMID: 33800292 PMCID: PMC7999181 DOI: 10.3390/pharmaceutics13030355] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
The epoch of nanotechnology has authorized novel investigation strategies in the area of drug delivery. Liposomes are attractive biomimetic nanocarriers characterized by their biocompatibility, high loading capacity, and their ability to reduce encapsulated drug toxicity. Nevertheless, various limitations including physical instability, lack of site specificity, and low targeting abilities have impeded the use of solo liposomes. Metal nanocarriers are emerging moieties that can enhance the therapeutic activity of many drugs with improved release and targeted potential, yet numerous barriers, such as colloidal instability, cellular toxicity, and poor cellular uptake, restrain their applicability in vivo. The empire of nanohybrid systems has shelled to overcome these curbs and to combine the criteria of liposomes and metal nanocarriers for successful theranostic delivery. Metallic moieties can be embedded or functionalized on the liposomal systems. The current review sheds light on different liposomal-metal nanohybrid systems that were designed as cellular bearers for therapeutic agents, delivering them to their targeted terminus to combat one of the most widely recognized diseases, cancer.
Collapse
Affiliation(s)
- Jana K. Alwattar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
| | - Amina T. Mneimneh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
| | - Kawthar K. Abla
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
| | - Mohammed M. Mehanna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed N. Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
6
|
Li D, Zhang R, Liu G, Kang Y, Wu J. Redox-Responsive Self-Assembled Nanoparticles for Cancer Therapy. Adv Healthc Mater 2020; 9:e2000605. [PMID: 32893506 DOI: 10.1002/adhm.202000605] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/16/2020] [Indexed: 12/21/2022]
Abstract
Chemotherapy, combined with other treatments, is widely applied in the clinical treatment of cancer. However, deficiencies inherited from the traditional route of administration limit its successful application. With the development of nanotechnology, a series of smart nanodelivery systems have been developed to utilize the unique tumor environment (pH changes, different enzymes, and redox potential gradients) and exogenous stimuli (thermal changes, magnetic fields, and light) to improve the curative effect of anticancer drugs. In this review, endogenous and exogenous stimuli are briefly introduced. Among these stimuli, various redox-sensitive linkages are primarily described in detail, and their application with self-assembled nanoparticles is recounted. Finally, the application of redox-responsive self-assembled nanoparticles in cancer therapy is summarized.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
- The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yang Kang
- The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
7
|
Nishiyama H, Odashima S, Asoh S. Femtosecond laser writing of plasmonic nanoparticles inside PNIPAM microgels for light-driven 3D soft actuators. OPTICS EXPRESS 2020; 28:26470-26480. [PMID: 32906919 DOI: 10.1364/oe.399440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Herein, three-dimensional (3D) incorporation of plasmonic Ag nanoparticles was performed inside temperature-responsive poly(N-isopropylacrylamide) microgels using near-infrared femtosecond laser multi-photon reduction. The nanoparticles, formed by laser writing at lower doses, exhibited intense plasmonic absorption in the gels around 420 nm wavelength. Light-induced local shrinking of up to 86%, under assumption of isotropic shrinkage, in volume was achieved by the efficient photothermal conversion of Ag nanoparticles. Such shrinkages and deformation speeds strongly depended on the geometric design and 3D layout of the laser writing patterns of Ag nanoparticles inside the microgels. In particular, femtosecond laser incorporation enhanced the recovery speed by more than twice in comparison with the gels containing nanoparticles over the entire region. Laser direct incorporation allows for the control of the 3D position and extent and response speeds of gel deformation.
Collapse
|
8
|
Huang Y, Xue Z, Zeng S. Hollow Mesoporous Bi@PEG-FA Nanoshell as a Novel Dual-Stimuli-Responsive Nanocarrier for Synergistic Chemo-Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31172-31181. [PMID: 32532159 DOI: 10.1021/acsami.0c07372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of stimuli-responsive multifunctional nanocarriers for therapeutic drug delivery is extremely desirable for highly specific treatment of disease. Herein, thiol-polyethylene glycol-folate acid-modified hollow mesoporous bismuth nanoshells (HM-Bi@PEG-FA NSs) were developed as the new dual-stimuli-responsive single-"elemental" photothermal nanocarriers for synergistic chemo-photothermal therapy of tumor. The designed hollow-mesoporous-type nanocarriers present excellent photothermal conversion capacity (∼34.72%) and good biocompatibility. Meanwhile, acidic pH and near-infrared (NIR) laser dual-stimulated doxorubicin (DOX) release is successfully achieved. More importantly, the DOX-loaded HM-Bi@PEG-FA NSs hold an efficient in vitro/in vivo antitumor effect through the synergistic chemo-photothermal therapy. Therefore, our findings provide the possibility of designing a dual-stimuli-responsive hollow mesoporous Bi-based photothermal nanocarrier for synergistically enhanced antitumor therapy.
Collapse
Affiliation(s)
- Yao Huang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Zhenluan Xue
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
9
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Lu T, Ten Hagen TLM. A novel kinetic model to describe the ultra-fast triggered release of thermosensitive liposomal drug delivery systems. J Control Release 2020; 324:669-678. [PMID: 32512013 DOI: 10.1016/j.jconrel.2020.05.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022]
Abstract
Thermosensitive liposomes, as one of the stimuli-responsive drug delivery systems, receive growing attention, due to their ability to generate rapid and massive drug release in the heated area, and marginal release of contents in non-heated parts of the body. This typical triggered release behavior cannot be fitted adequately by most of the current mathematical kinetic models. The aim of this study was to establish the proper kinetic equation to describe the rapid release of drugs from trigger-sensitive drug delivery systems. We summarized all commonly used kinetic models mentioned in the literature and fitted the release data with these models, finding that only the Korsmeyer-Peppas and the Weibull models show acceptable fitting results. To better describe the release from thermosensitive liposomes with a size below 100 nm, we took Laplace pressure as a release-driving force and proposed a new equation that demonstrates improved fitting in liposomes ranging down to a size of 70 nm. Our new kinetic model shows desirable fitting, not only at the optimal temperature but also of releases within the whole release-temperature range, providing a useful kinetic model to describe release profiles of smaller nano-sized stimuli-responsive drug delivery systems.
Collapse
Affiliation(s)
- Tao Lu
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Chou PC, Lin FP, Hsu HL, Chang CJ, Lu CH, Chen JK. Electrorheological Sensor Encapsulating Microsphere Media for Plague Diagnosis with Rapid Visualization. ACS Sens 2020; 5:665-673. [PMID: 31869212 DOI: 10.1021/acssensors.9b01529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plague is a disease infected by an etiological agent, which is transmitted from fleas to a variety of wildlife rodents. Therefore, rapid diagnosis of plague on-site in the field is important. Polystyrene microspheres (SMs) of 2.2 μm diameter were synthesized by emulsion polymerization to adsorb magnetic nanoparticles (FNs), resulting in core-/shell-structured microspheres that generate a significant contrast in relative permittivities between SMs and FNs. Electrorheological displays (EDs) consisting of two indium tin oxide glasses with spacers were constructed to contain core-/shell-structured SM/FN (SM@FN) solutions for observing their transmittance change. The ED encapsulating dispersed SM@FN solution exhibited an opaque state because light was scattered significantly without the application of an alternating electric field (AEF). In the presence of an AEF, the particle chaining behavior results in enhancement of the transmittance of ED. At a specific frequency, the so-called characteristic frequency (Fc), the transmittance reaches a maximum. Fc could be used as an indicator to mark the shell materials. The antibody of Yersinia pestis (ab-Yp) was coated onto the SM@FN as a biosensing medium. The Fc of ab-Yp-modified microspheres shifted from 200 to 750 kHz with antigen coupling of Y. pestis antigen (ag-Yp). In the absence of fluorescence labeling, the large change in ED transmittance could be visualized during the Y. pestis detection. The limit of detection and the limit of quantification were ∼30 and ∼40 ng/μL, respectively, obtained within 30 s according to the highest transmittance of ED under the AEF at 750 kHz. Y. pestis detection was not affected by Escherichia coli and Staphylococcus aureus significantly. Compared with other common immunoassays, including the secondary immunochemical or enzyme-linked steps, this simple electrorheological sensor with high sensitivity and selectivity could be a candidate for on-site plague diagnosis.
Collapse
Affiliation(s)
- Pai-Chien Chou
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan, Republic of China
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan, Republic of China
| | - Feng-Ping Lin
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan, Republic of China
- Institute of Preventive Medicine, National Defense Medical Center, 161, Sec. 6, Minquan East Road, Neihu Dist., New Taipei City 114, Taiwan, ROC
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, 161, Sec. 6, Minquan East Road, Neihu Dist., New Taipei City 114, Taiwan, ROC
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| | - Jem-Kun Chen
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan, Republic of China
| |
Collapse
|
12
|
Yuba E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B 2020; 8:1093-1107. [PMID: 31960007 DOI: 10.1039/c9tb02470k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Liposomes are a promising nanocarrier for drug delivery because of their biocompatibility and the encapsulation capacity of drugs. Liposomes can be functionalized easily by introduction of functional materials such as stimulus-responsive materials. Temperature-responsive liposomes and pH-responsive liposomes are representative stimulus-responsive liposomes that can deliver drugs to locally heated target tissues and intracellular organelles. Here, temperature-responsive liposomes for the selective release of cargo and pH-responsive liposomes for the induction of antigen-specific immunity are overviewed. Temperature-responsive polymer-modified liposomes immediately released drugs in response to heating, which achieved selective drug release at a tumour after topical heating of tumour-bearing mice. Introduction of MR-detectable molecules enabled the tracing of liposome accumulation into target sites to optimize the heating timing. These liposomes can also be combined with magnetic nanoparticles or carbon nanomaterials to attain magnetic field-responsive, electric field-responsive and light-responsive properties to support on-demand drug release or control of biological reactions using these external stimuli. pH-Responsive liposomes were produced by modification of poly(carboxylic acid) derivatives or by pH-responsive amphiphiles. These liposomes delivered antigenic proteins into the cytosol of antigen presenting cells, which induced cross-presentation and antigen-specific cellular immunity. Adjuvant molecules or bioactive polysaccharide-based pH-responsive polymers improved their immunity-inducing effect further, leading to tumour regression in tumour-bearing mice. Precise design and control of the structures of stimulus-responsive materials and combination with functional materials are expected to create novel methodologies to control biological functions and to produce highly potent liposomal drugs that can achieve selective release of bioactive molecules.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
13
|
Xiang Z, Qi Y, Lu Y, Hu Z, Wang X, Jia W, Hu J, Ji J, Lu W. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy: magnetic-triggered synergistic hyperthermia and chemotherapy. J Mater Chem B 2020; 8:8671-8683. [DOI: 10.1039/d0tb01021a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Smart Fe3O4@C-PVP@DOX nanomedical platforms hold great potential application in the precise treatments of clinical cancer.
Collapse
Affiliation(s)
- Zhen Xiang
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Yiyao Qi
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Yusheng Lu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Zhenrong Hu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Xiao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University
- Lishui
- China
| | - Wei Lu
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| |
Collapse
|
14
|
Tong S, Zhu H, Bao G. Magnetic Iron Oxide Nanoparticles for Disease Detection and Therapy. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2019; 31:86-99. [PMID: 32831620 PMCID: PMC7441585 DOI: 10.1016/j.mattod.2019.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic iron oxide nanoparticles (MIONs) are among the first generation of nanomaterials that have advanced to clinic use. A broad range of biomedical techniques has been developed by combining the versatile nanomagnetism of MIONs with various forms of applied magnetic fields. MIONs can generate imaging contrast and provide mechanical/thermal energy in vivo in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. These properties offer unique opportunities for nanomaterials engineering in biomedical research and clinical interventions. The past few decades have witnessed the evolution of the applications of MIONs from conventional drug delivery and hyperthermia to the regulation of molecular and cellular processes in the body. Here we review the most recent development in this field, including clinical studies of MIONs and the emerging techniques that may contribute to future innovation in medicine.
Collapse
Affiliation(s)
- Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Haibao Zhu
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Wondraczek L, Pohnert G, Schacher FH, Köhler A, Gottschaldt M, Schubert US, Küsel K, Brakhage AA. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900284. [PMID: 30993782 DOI: 10.1002/adma.201900284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
From the smallest ecological niche to global scale, communities of microbial life present a major factor in system regulation and stability. As long as laboratory studies remain restricted to single or few species assemblies, however, very little is known about the interaction patterns and exogenous factors controlling the dynamics of natural microbial communities. In combination with microfluidic technologies, progress in the manufacture of functional and stimuli-responsive materials makes artificial microbial arenas accessible. As habitats for natural or multispecies synthetic consortia, they are expected to not only enable detailed investigations, but also the training and the directed evolution of microbial communities in states of balance and disturbance, or under the effects of modulated stimuli and spontaneous response triggers. Here, a perspective on how materials research will play an essential role in generating answers to the most pertinent questions of microbial engineering is presented, and the concept of adaptive microbial arenas and possibilities for their construction from particulate microniches to 3D habitats is introduced. Materials as active and tunable components at the interface of living and nonliving matter offer exciting opportunities in this field. Beyond forming the physical horizon for microbial cultivates, they will enable dedicated intervention, training, and observation of microbial consortia.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Georg Pohnert
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Felix H Schacher
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Angela Köhler
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kirsten Küsel
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Axel A Brakhage
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| |
Collapse
|
16
|
White BD, Duan C, Townley HE. Nanoparticle Activation Methods in Cancer Treatment. Biomolecules 2019; 9:E202. [PMID: 31137744 PMCID: PMC6572460 DOI: 10.3390/biom9050202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
In this review, we intend to highlight the progress which has been made in recent years around different types of smart activation nanosystems for cancer treatment. Conventional treatment methods, such as chemotherapy or radiotherapy, suffer from a lack of specific targeting and consequent off-target effects. This has led to the development of smart nanosystems which can effect specific regional and temporal activation. In this review, we will discuss the different methodologies which have been designed to permit activation at the tumour site. These can be divided into mechanisms which take advantage of the differences between healthy cells and cancer cells to trigger activation, and those which activate by a mechanism extrinsic to the cell or tumour environment.
Collapse
Affiliation(s)
- Benjamin D White
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
| | - Chengchen Duan
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | - Helen E Townley
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
17
|
Odrobińska J, Gumieniczek-Chłopek E, Szuwarzyński M, Radziszewska A, Fiejdasz S, Strączek T, Kapusta C, Zapotoczny S. Magnetically Navigated Core-Shell Polymer Capsules as Nanoreactors Loadable at the Oil/Water Interface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10905-10913. [PMID: 30810298 DOI: 10.1021/acsami.8b22690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymer core-shell nanocapsules with magnetic nanoparticles embedded in their oil cores were fabricated and applied as nano(photo)reactors. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with oleic acid were first synthesized and characterized structurally, and their magnetic properties were determined. The capsules with chitosan-based shells were then formed in a one-step process by sonication-assisted mixing of (1) an aqueous solution of the hydrophobically derived chitosan and (2) oleic acid containing the dispersed SPIONs. In this way, magnetic capsules with a diameter of approximately 500-600 nm containing encapsulated SPIONs with an average diameter of approximately 20-30 nm were formed as revealed by dynamic light scattering and scanning transmission electron microscopy measurements. The composition and magnetic properties of the formed capsules were also followed using dynamic light scattering, electron microscopies, and magnetic force microscopy. The water-dispersible capsules, thanks to their magnetic properties, were then navigated in a static magnetic field gradient and transferred between the water and oil phases, as evidenced by fluorescence microscopy. In this way, the capsules could be loaded in a controlled way with a hydrophobic reactant, perylene, which was later photooxidized upon transferring the capsules to the aqueous phase. The capsules were shown to serve as robust reloadable nanoreactors/nanocontainers that via magnetic navigation can be transferred between immiscible phases without disruption. These features make them promising reusable systems not only for loading and carrying lipophilic actives, conducting useful reactions in the confined environment of the capsules, but also for magnetically separating and guiding the encapsulated active molecules to the site of action.
Collapse
Affiliation(s)
- Joanna Odrobińska
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Krakow , Poland
| | | | | | | | | | | | | | - Szczepan Zapotoczny
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Krakow , Poland
| |
Collapse
|
18
|
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Extensive studies on nanomedicines have been conducted for drug delivery and disease diagnosis (especially for cancer therapy). However, the intracellular and in vivo biofate of nanomedicines, which is significantly associated with their clinical therapeutic effect, is poorly understood at present. This is because of the technical challenges to quantify the disassembly and behaviour of nanomedicines. As a fluorescence- and distance-based approach, the Förster Resonance Energy Transfer (FRET) technique is very successful to study the interaction of nanomedicines with biological systems. In this review, principles on how to select a FRET pair and construct FRET-based nanomedicines have been described first, followed by their application to study structural integrity, biodistribution, disassembly kinetics, and elimination of nanomedicines at intracellular and in vivo levels, especially with drug nanocarriers including polymeric micelles, polymeric nanoparticles, and lipid-based nanoparticles. FRET is a powerful tool to reveal changes and interaction of nanoparticles after delivery, which will be very useful to guide future developments of nanomedicine.
Collapse
Affiliation(s)
- Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
19
|
Zhu D, Roy S, Liu Z, Weller H, Parak WJ, Feliu N. Remotely controlled opening of delivery vehicles and release of cargo by external triggers. Adv Drug Deliv Rev 2019; 138:117-132. [PMID: 30315833 DOI: 10.1016/j.addr.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
Abstract
Tremendous efforts have been devoted to the development of future nanomedicines that can be specifically designed to incorporate responsive elements that undergo modification in structural properties upon external triggers. One potential use of such stimuli-responsive materials is to release encapsulated cargo upon excitation by an external trigger. Today, such stimuli-response materials allow for spatial and temporal tunability, which enables the controlled delivery of compounds in a specific and dose-dependent manner. This potentially is of great interest for medicine (e.g. allowing for remotely controlled drug delivery to cells, etc.). Among the different external exogenous and endogenous stimuli used to control the desired release, light and magnetic fields offer interesting possibilities, allowing defined, real time control of intracellular releases. In this review we highlight the use of stimuli-responsive controlled release systems that are able to respond to light and magnetic field triggers for controlling the release of encapsulated cargo inside cells. We discuss established approaches and technologies and describe prominent examples. Special attention is devoted towards polymer capsules and polymer vesicles as containers for encapsulated cargo molecules. The advantages and disadvantages of this methodology in both, in vitro and in vivo models are discussed. An overview of challenges associate with the successful translation of those stimuli-responsive materials towards future applications in the direction of potential clinical use is given.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Sathi Roy
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Horst Weller
- Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Experimental Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS. Theranostic Nanosystems for Targeted Cancer Therapy. NANO TODAY 2018; 23:59-72. [PMID: 31186672 PMCID: PMC6559746 DOI: 10.1016/j.nantod.2018.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomaterials have revolutionized cancer imaging, diagnosis, and treatment. Multifunctional nanoparticles in particular have been designed for targeted cancer therapy by modulating their physicochemical properties to be delivered to the target and activated by internal and/or external stimuli. This review will focus on the fundamental "chemical" design considerations of stimuli-responsive nanosystems to achieve favorable tumor targeting beyond biological barriers and, furthermore, enhance targeted cancer therapy. In addition, we will summarize innovative smart nanosystems responsive to external stimuli (e.g., light, magnetic field, ultrasound, and electric field) and internal stimuli in the tumor microenvironment (e.g., pH, enzyme, redox potential, and oxidative stress).
Collapse
Affiliation(s)
- Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shuang Hu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 601141, China
| | - Mi Hyeon Cho
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Suk Ho Hong
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Yongdoo Choi
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
21
|
Chakraborty S, Abbasi A, Bothun GD, Nagao M, Kitchens CL. Phospholipid Bilayer Softening Due to Hydrophobic Gold Nanoparticle Inclusions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13416-13425. [PMID: 30350687 DOI: 10.1021/acs.langmuir.8b02553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liposome-nanoparticle assemblies (LNAs) are vital in the context of novel targeted drug-delivery systems, in addition to investigating nanoparticle-lipid bilayer interactions. Quantifying membrane structural properties and dynamics in presence of nanoparticle inclusions provides a simple model to elucidate nanoparticle effects on membrane biophysical properties. We present experimental evidences of bilayer softening due to small hydrophobic gold nanoparticle inclusions. LNA structure has been investigated by a combination of cryo-transmission electron microscopy, dynamic light scattering, and small-angle neutron scattering. Neutron spin echo spectroscopy demonstrated a remarkable ∼15% bending modulus decrease for LNAs relative to pure liposomes. Clear dependence of bending modulus on gold nanoparticle diameter and concentration was observed from our observations. Our findings point toward local bilayer fluidization by nanoparticle inclusions leading to an overall bilayer softening. These findings add valuable information to liposomal drug-delivery vehicle design and membrane biophysics research.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- Department of Chemical and Biomolecular Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Akram Abbasi
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Michihiro Nagao
- NIST Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
- Center for Exploration of Energy and Matter, Department of Physics , Indiana University , Bloomington , Indiana 47408 , United States
| | - Christopher L Kitchens
- Department of Chemical and Biomolecular Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| |
Collapse
|
22
|
Thermo-Sensitive Vesicles in Controlled Drug Delivery for Chemotherapy. Pharmaceutics 2018; 10:pharmaceutics10030150. [PMID: 30189683 PMCID: PMC6161155 DOI: 10.3390/pharmaceutics10030150] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Thermo-sensitive vesicles are a promising tool for triggering the release of drugs to solid tumours when used in combination with mild hyperthermia. Responsivity to temperature makes them intelligent nanodevices able to provide a site-specific chemotherapy. Following a brief introduction concerning hyperthermia and its advantageous combination with vesicular systems, recent investigations on thermo-sensitive vesicles useful for controlled drug delivery in cancer treatment are reported in this review. In particular, the influence of bilayer composition on the in vitro and in vivo behaviour of thermo-sensitive formulations currently under investigation have been extensively explored.
Collapse
|
23
|
Al-Nemrawi NK, Marques J, Tavares CJ, Oweis RJ, Al-Fandi MG. Synthesis and characterization of photocatalytic polyurethane and poly(methyl methacrylate) microcapsules for the controlled release of methotrexate. Drug Dev Ind Pharm 2018; 44:2083-2088. [PMID: 30112927 DOI: 10.1080/03639045.2018.1513023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this work is to prepare ultraviolet (UV) triggered controlled release of compounds from microcapsule systems (MCs). Polyurethane (PU) and poly(methyl methacrylate) (PMMA) microcapsules were studied with/without chemical functionalization using photocatalytic TiO2 nanoparticles (NPs) on their surface. Once TiO2 nanoparticles are illuminated with UV light (λ = 370 nm), they initiate the rupture of the polymeric bonds of the microcapsule and subsequently initiate the encapsulated compound release, methotrexate (MTX) or rhodamine (Rh), in the present work. The size, polydispersity, charge, and yield of all MCs were measured, being the methotrexate drug release for all systems determined and compared with and without functionalization with TiO2 NPs, under dark, visible light and UV illumination in vitro. Finally, the Rh release was characterized using fluorescence microscopy. The TiO2 NPs size is around 10 nm, as determined by X-ray diffraction experiments. The PU MCs average size is around 60 µm, its electric charge +3.11 mV and yield around 85%. As for the PMMA MCs, the average size is around 280 µm, its electric charge -7.2 mV and yield around 25% and 30% for both MTX and Rh, respectively. In general, adding TiO2 NPs or the encapsulated products to the MCs does not affect the size but functionalization with TiO2 NPs lowers the electric charge. Microcapsules functionalized with TiO2 nanoparticles and irradiated with UV light presented the highest release of MTX and Rh. All other samples showed lower drug release levels when studied under the same conditions.
Collapse
Affiliation(s)
- Nusaiba K Al-Nemrawi
- a Department of Pharmaceutical technology, Jordan University of Science and Technology , Irbid , Jordan
| | - Juliana Marques
- b Centre of Physics, University of Minho , Guimarães , Portugal
| | | | - Rami J Oweis
- c Nanotechnology Institute, Jordan University of Science and Technology, , Irbid , Jordan
| | - Mohamed G Al-Fandi
- c Nanotechnology Institute, Jordan University of Science and Technology, , Irbid , Jordan
| |
Collapse
|
24
|
Magnetic field triggered drug release from lipid microcapsule containing lipid-coated magnetic nanoparticles. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2018; 23:992-1006. [PMID: 29653291 PMCID: PMC6195679 DOI: 10.1016/j.drudis.2018.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Nanomaterials that respond to externally applied physical stimuli such as temperature, light, ultrasound, magnetic field and electric field have shown great potential for controlled and targeted delivery of therapeutic agents. However, the body of literature on programming these stimuli-responsive nanomaterials to attain the desired level of pharmacologic responses is still fragmented and has not been systematically reviewed. The purpose of this review is to summarize and synthesize the literature on various design strategies for simple and sophisticated programmable physical-stimuli-responsive nanotherapeutics.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Muhammad Gulfam
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (NPs) are emerging as an important class of biomedical functional nanomaterials in areas such as hyperthermia, drug release, tissue engineering, theranostic, and lab-on-a-chip, due to their exclusive chemical and physical properties. Although some works can be found reviewing the main application of magnetic NPs in the area of biomedical engineering, recent and intense progress on magnetic nanoparticle research, from synthesis to surface functionalization strategies, demands for a work that includes, summarizes, and debates current directions and ongoing advancements in this research field. Thus, the present work addresses the structure, synthesis, properties, and the incorporation of magnetic NPs in nanocomposites, highlighting the most relevant effects of the synthesis on the magnetic and structural properties of the magnetic NPs and how these effects limit their utilization in the biomedical area. Furthermore, this review next focuses on the application of magnetic NPs on the biomedical field. Finally, a discussion of the main challenges and an outlook of the future developments in the use of magnetic NPs for advanced biomedical applications are critically provided.
Collapse
Affiliation(s)
- Vanessa Fernandes Cardoso
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- MEMS-Microelectromechanical Systems Research Unit; Universidade do Minho; 4800-058 Guimarães Portugal
| | | | - Clarisse Ribeiro
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- CEB-Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | | | - Pedro Martins
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials; Parque Científico y Tecnológico de Bizkaia; 48160 Derio Spain
- IKERBASQUE; Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
27
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
28
|
Mazuel F, Mathieu S, Di Corato R, Bacri JC, Meylheuc T, Pellegrino T, Reffay M, Wilhelm C. Forced- and Self-Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701274. [PMID: 28660724 DOI: 10.1002/smll.201701274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/10/2017] [Indexed: 06/07/2023]
Abstract
In order to provide insight into how anisotropic nano-objects interact with living cell membranes, and possibly self-assemble, magnetic nanorods with an average size of around 100 nm × 1 µm are designed by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. The nano-bio interface at the cell membrane under the influence of a rotating magnetic field is then explored. A complex structuration of the nanorods intertwined with the membranes is observed. Unexpectedly, after a magnetic rotating stimulation, the resulting macrorods are able to rotate freely for multiple rotations, revealing the creation of a biomagnetic torsion pendulum.
Collapse
Affiliation(s)
- François Mazuel
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris Cedex 05, 75205, France
| | - Samuel Mathieu
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris Cedex 05, 75205, France
| | - Riccardo Di Corato
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris Cedex 05, 75205, France
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Via Arnesano, Lecce, 73100, Italy
| | - Jean-Claude Bacri
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris Cedex 05, 75205, France
| | - Thierry Meylheuc
- Micalis Institute INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris Cedex 05, 75205, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris Cedex 05, 75205, France
| |
Collapse
|
29
|
Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017; 22:E975. [PMID: 28604617 PMCID: PMC6152710 DOI: 10.3390/molecules22060975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Current advances in targeted magnetic nanotheranostics are summarized in this review. Unique structural, optical, electronic and thermal properties of magnetic materials in nanometer scale are attractive in the field of biomedicine. Magnetic nanoparticles functionalized with therapeutic molecules, ligands for targeted delivery, fluorescent and other chemical agents can be used for cancer diagnostic and therapeutic purposes. High selectivity, small size, and low immunogenicity of synthetic nucleic acid aptamers make them attractive delivery agents for therapeutic purposes. Properties, production and functionalization of magnetic nanoparticles and aptamers as ligands for targeted delivery are discussed herein. In recent years, magnetic nanoparticles have been widely used in diagnostic methods, such as scintigraphy, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and Raman spectroscopy. Therapeutic purposes of magnetic nanoconstructions are also promising. They are used for effective drug delivery, magnetic mediated hypertermia, and megnetodynamic triggering of apoptosis. Thus, magnetic nanotheranostics opens a new venue for complex differential diagnostics, and therapy of metastatic cancer.
Collapse
Affiliation(s)
- Irina Belyanina
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
| | - Olga Kolovskaya
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Sergey Zamay
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Ana Gargaun
- Independent Researcher Vancouver, Vancouver, BC V6K 1C4, Canada.
| | - Tatiana Zamay
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Anna Kichkailo
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
30
|
Zhao W, Wei JS, Zhang P, Chen J, Kong JL, Sun LH, Xiong HM, Möhwald H. Self-Assembled ZnO Nanoparticle Capsules for Carrying and Delivering Isotretinoin to Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18474-18481. [PMID: 28541041 DOI: 10.1021/acsami.7b02542] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
ZnO@polymer core-shell nanoparticles are assembled into novel capsule shells with diameters of about 100 nm to load isotretinoin (ISO) with a capacity as high as 34.6 wt %. Although ISO, a widely used drug for acne treatment, by itself is not suitable for treating cancer because of its hydrophobicity, our ZnO-ISO composite showed much stronger anticancer activity. The improved cytotoxicity is ascribed to the synergistic effects of the ZnO@polymer and ISO, where the ZnO@polymer helps in the accumulation of ISO in cancer cells on the one hand, and on the other hand, ISO is released completely through ZnO decomposition under acidic conditions of cancer cells. Such a pH-triggered drug-delivery system exhibits a much improved killing of cancer cells in vitro in comparison with the benchmarks, Nintedanib and Crizotinib, two commercial drugs clinically applied against lung cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University , Shanghai 200433, P. R. China
| | - Ji-Shi Wei
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University , Shanghai 200433, P. R. China
| | - Peng Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University , Shanghai 200433, P. R. China
| | - Jie Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University , Shanghai 200433, P. R. China
| | - Ji-Lie Kong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University , Shanghai 200433, P. R. China
- Institutes of Biomedical Sciences, Fudan University , Shanghai 200032, P. R. China
| | - Lian-Hua Sun
- Ear Institute, Shanghai Jiaotong University School of Medicine , Shanghai 200240, P. R. China
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University , Shanghai 200433, P. R. China
| | - Helmuth Möhwald
- Max-Planck Institute of Colloids and Interfaces , Potsdam 14424, Germany
| |
Collapse
|
31
|
Mertz D, Sandre O, Bégin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta Gen Subj 2017; 1861:1617-1641. [PMID: 28238734 DOI: 10.1016/j.bbagen.2017.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607, Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
32
|
Wen H, Gao T, Fu Z, Liu X, xu J, He Y, Xu N, Jiao P, Fan A, Huang S, Xue W. Enhancement of membrane stability on magnetic responsive hydrogel microcapsules for potential on-demand cell separation. Carbohydr Polym 2017; 157:1451-1460. [DOI: 10.1016/j.carbpol.2016.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022]
|
33
|
Balzaretti R, Meder F, Monopoli MP, Boselli L, Armenia I, Pollegioni L, Bernardini G, Gornati R. Synthesis, characterization and programmable toxicity of iron oxide nanoparticles conjugated withd-amino acid oxidase. RSC Adv 2017. [DOI: 10.1039/c6ra25349k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RgDAAO conjugated to γ-Fe2O3NPs generates a low toxic NP-DAAO system, which kills cancer cells through ROS production.
Collapse
Affiliation(s)
- Riccardo Balzaretti
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
| | - Fabian Meder
- Centre for Bionano Interactions
- University College Dublin
- Dublin
- Ireland
| | - Marco P. Monopoli
- Centre for Bionano Interactions
- University College Dublin
- Dublin
- Ireland
- Department of Pharmacy and Medical Chemistry
| | - Luca Boselli
- Centre for Bionano Interactions
- University College Dublin
- Dublin
- Ireland
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
- The Protein Factory Research Center
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
- The Protein Factory Research Center
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
- The Protein Factory Research Center
| |
Collapse
|
34
|
Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017; 46:2091-2126. [DOI: 10.1039/c6cs00632a] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a comprehensive overview of the synthesis strategies and the progress made so far of bringing colloidal capsules closer to technical and biomedical applications.
Collapse
Affiliation(s)
- Tobias Bollhorst
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Kurosch Rezwan
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Michael Maas
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| |
Collapse
|
35
|
Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm 2016; 515:132-164. [DOI: 10.1016/j.ijpharm.2016.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
|
36
|
Li Z, Ye E, Lakshminarayanan R, Loh XJ. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4782-4806. [PMID: 27482950 DOI: 10.1002/smll.201601129] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The development of hybrid biomaterials has been attracting great attention in the design of materials for biomedicine. The nanosized level of inorganic and organic or even bioactive components can be combined into a single material by this approach, which has created entirely new advanced compositions with truly unique properties for drug delivery. The recent advances in using hybrid nanovehicles as remotely controlled therapeutic delivery carriers are summarized with respect to different nanostructures, including hybrid host-guest nanoconjugates, micelles, nanogels, core-shell nanoparticles, liposomes, mesoporous silica, and hollow nanoconstructions. In addition, the controlled release of guest molecules from these hybrid nanovehicles in response to various remote stimuli such as alternating magnetic field, near infrared, or ultrasound triggers is further summarized to introduce the different mechanisms of remotely triggered release behavior. Through proper chemical functionalization, the hybrid nanovehicle system can be further endowed with many new properties toward specific biomedical applications.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way. Innovis, #08-03, Singapore, 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
| |
Collapse
|
37
|
Al-Ahmady Z, Kostarelos K. Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chem Rev 2016; 116:3883-918. [DOI: 10.1021/acs.chemrev.5b00578] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
38
|
Lu S, Ding Y, Wu Y, Wang R, Pan R, Wan Z, Xu W, Zhang L, Yuan YF, Chen P. An amphipathic lytic peptide for enhanced and selective delivery of ellipticine. J Mater Chem B 2016; 4:4348-4355. [DOI: 10.1039/c6tb00529b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic lytic peptides (CLPs) have shown promise in treating bacterial infection and cancer via selective membrane disruption but are seldom studied for drug delivery potential.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Yong Ding
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Yan Wu
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Rong Wang
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Ran Pan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Zizhen Wan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Wen Xu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
- College of Biological and Pharmaceutical Engineering
| | - Yong-fang Yuan
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
39
|
Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release 2015; 219:76-94. [PMID: 26407670 PMCID: PMC4669063 DOI: 10.1016/j.jconrel.2015.09.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
This review highlights the state-of-the-art in the application of magnetic nanoparticles (MNPs) and their composites for remote controlled therapies. Novel macro- to nano-scale systems that utilize remote controlled drug release due to actuation of MNPs by static or alternating magnetic fields and magnetic field guidance of MNPs for drug delivery applications are summarized. Recent advances in controlled energy release for thermal therapy and nanoscale energy therapy are addressed as well. Additionally, studies that utilize MNP-based thermal therapy in combination with other treatments such as chemotherapy or radiation to enhance the efficacy of the conventional treatment are discussed.
Collapse
Affiliation(s)
- Anastasia K Hauser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Robert J Wydra
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Nathanael A Stocke
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kimberly W Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
40
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Kim HC, Kim E, Jeong SW, Ha TL, Park SI, Lee SG, Lee SJ, Lee SW. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. NANOSCALE 2015; 7:16470-16480. [PMID: 26395038 DOI: 10.1039/c5nr04130a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Division of Nano and Energy Convergence Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu Y, Liu C, Li D, Long Y, Song K, Tung CH. Magnetic Compression of Polyelectrolyte Microcapsules for Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11195-11199. [PMID: 26402037 DOI: 10.1021/acs.langmuir.5b02229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, microcapsules with a magnetic particle as the core and polyelectrolyte multilayers as the shell were fabricated. The cavity of the microcapsules was created by etching the SiO2 layer, which was first coated on the magnetic core particle, and the size of the cavity can be adjusted by the thickness of the SiO2 layer. This magnetically responsive microcapsule deforms upon application of a constant magnetic field and results in the release of the core content, and the release velocity could be controlled by the strength of the magnetic field. This release mechanism is proactive and repeatable, combined with its localized and remote controllability; it can be a powerful tool for delivering medical agents on site.
Collapse
Affiliation(s)
| | - Chuanyong Liu
- University of the Chinese Academy of Sciences , Beijing 100049, China
| | - Dongzhi Li
- University of the Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | |
Collapse
|
43
|
Multifunctional liposomes having target specificity, temperature-triggered release, and near-infrared fluorescence imaging for tumor-specific chemotherapy. J Control Release 2015; 216:69-77. [DOI: 10.1016/j.jconrel.2015.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/09/2015] [Accepted: 08/04/2015] [Indexed: 01/16/2023]
|
44
|
New synthesis and biodistribution of the D-amino acid oxidase-magnetic nanoparticle system. Future Sci OA 2015; 1:FSO67. [PMID: 28031918 PMCID: PMC5138019 DOI: 10.4155/fso.15.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/15/2015] [Indexed: 01/04/2023] Open
Abstract
Background: Application of nanoenzymes, based on D-amino acid oxidase (DAAO) conjugated to magnetic nanoparticles (NPs), as anticancer system requires improvement of the synthesis protocol and in vivo distribution evaluation. Results: A new and more efficient synthesis via EDC-NHS produced an Fe3O4NP-APTES-DAAO system with a specific activity of 7 U/mg NPs. IR spectroscopy showed that all Fe3O4 NP sites are saturated with APTES and all available NH2 sites with DAAO. The acute cytotoxicity of the new system does not differ from that of the previous one. In vivo experiments showed that the system did not cause adverse effects, cross the brain–blood barrier and accumulate in the heart. Conclusions: Our results support the possibility to use enzymes conjugated to magnetic NPs for cancer treatment. Besides, we think that enzymes and other biological molecules efficiently conjugated to magnetic NPs might constitute a category of ‘bionanoparticles’ to be exploited, not only in medical, but also in industrial biotechnology. Lay abstract: We have linked magnetic nanoparticles to D-amino acid oxidase, an enzyme capable of producing, in the presence of its substrate, reactive oxygen species. The scope is to use the magnetic properties of the enzyme-nanoparticle system to direct it to a desired area where its cytotoxicity can be controlled by the addition of exogenous substrate. Besides the possible applications in cancer therapy, we think that enzymes and other biological molecules linked to magnetic nanoparticles might also be exploited in industrial biotechnology.
Collapse
|
45
|
Ebert S, Bannwarth MB, Musyanovych A, Landfester K, Münnemann K. How morphology influences relaxivity - comparative study of superparamagnetic iron oxide-polymer hybrid nanostructures. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:456-64. [PMID: 26153149 DOI: 10.1002/cmmi.1648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Superparamagnetic iron oxides (SPIOs) are widely used in MRI as T2 contrast agents, and interest is still growing. Here, the T2 relaxivity of three different SPIO-polymer hybrid morphologies, i.e. homogeneously distributed iron oxide within a polymer matrix, Janus-like nanoparticles and polymer nanocapsules containing iron oxides, is studied. Making use of calculations based on theory for agglomerated systems, the obtained T2 values could be predicted for all different morphologies, except for nanocapsules. Nanocapsules, in contrast to full spheres, allow for water exchange between encapsulated water and bulk water, and thus have two contributions to relaxivity. One originates from the capsules acting as a weakly magnetized cluster and the other stems from the individual SPIOs inside the capsule. Therefore, the relaxivities were also computed using an empirical equation found in the literature, which considers water exchange, resulting in a better T2 forecast for the nanocapsules. The presented study is the first example of a comparison between measured and calculated relaxivities of nanocapsules.
Collapse
Affiliation(s)
- Sandro Ebert
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Markus B Bannwarth
- Max Planck Institute for Polymer Research, Mainz, Germany.,Graduate School Materials Science in Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
46
|
Ooi F, DuChene JS, Qiu J, Graham JO, Engelhard MH, Cao G, Gai Z, Wei WD. A Facile Solvothermal Synthesis of Octahedral Fe3 O4 Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2649-2653. [PMID: 25620676 DOI: 10.1002/smll.201401954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Anisotropic Fe3 O4 octahedrons are obtained via a simple solvothermal synthesis with appropriate sizes for various technological applications. A complete suite of materials characterization methods confirms the magnetite phase for these structures, which exhibit substantial saturation magnetization and intriguing morphologies for a wide range of applications.
Collapse
Affiliation(s)
- Frances Ooi
- Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph S DuChene
- Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, Gainesville, FL, 32611, USA
| | - Jingjing Qiu
- Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, Gainesville, FL, 32611, USA
| | - Jeremy O Graham
- Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, Gainesville, FL, 32611, USA
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Guixin Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zheng Gai
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wei David Wei
- Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
47
|
Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr Polym 2015; 118:209-17. [DOI: 10.1016/j.carbpol.2014.10.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/12/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022]
|
48
|
Carregal-Romero S, Guardia P, Yu X, Hartmann R, Pellegrino T, Parak WJ. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules. NANOSCALE 2015; 7:570-6. [PMID: 25415565 DOI: 10.1039/c4nr04055d] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.
Collapse
|
49
|
|
50
|
Arakaki A, Shimizu K, Oda M, Sakamoto T, Nishimura T, Kato T. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids. Org Biomol Chem 2015; 13:974-89. [DOI: 10.1039/c4ob01796j] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials. Molecularly controlled mechanisms of biomineralization and application of the processes towards future material synthesis are introduced.
Collapse
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Katsuhiko Shimizu
- Organization for Regional Industrial Academic Cooperation
- Tottori University
- Tottori 680-8550
- Japan
| | - Mayumi Oda
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Takeshi Sakamoto
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Tatsuya Nishimura
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|