1
|
Kannappan S, Jo K, Kim KK, Lee JH. Utilizing peptide-anchored DNA templates for novel programmable nanoparticle assemblies in biological macromolecules: A review. Int J Biol Macromol 2024; 256:128427. [PMID: 38016615 DOI: 10.1016/j.ijbiomac.2023.128427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Biological macromolecules such as proteins and DNA are known to self-assemble into various structural moieties with distinct functions. While nucleic acids are the structural building blocks, peptides exemplify diversity as tailorable biochemical units. Thus, combining the scaffold properties of the biomacromolecule DNA and the functionality of peptides could evolve into a powerful method to obtain tailorable nano assemblies. In this review, we discuss the assembly of non-DNA-coated colloidal NPs on DNA/peptide templates using functional anchors. We begin with strategies for directly attaching metallic NPs to DNA templates to ascertain the functional role of DNA as a scaffold. Followed by methods to assemble peptides onto DNA templates to emphasize the functional versatility of biologically abundant DNA-binding peptides. Next, we focus on studies corroborating peptide self-assembling into macromolecular templates onto which NPs can attach to emphasize the properties of NP-binding peptides. Finally, we discuss the assembly of NPs on a DNA template with a focus on the bifunctional DNA-binding peptides with NP-binding affinity (peptide anchors). This review aims to highlight the immense potential of combining the functional power of DNA scaffolds and tailorable functionalities of peptides for NP assembly and the need to utilize them effectively to obtain tailorable hierarchical NP assemblies.
Collapse
Affiliation(s)
- Shrute Kannappan
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Mapo-gu, Seoul 04107, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Moreno-Gutierrez DS, Del Toro-Ríos X, Martinez-Sulvaran NJ, Perez-Altamirano MB, Hernandez-Garcia A. Programming the Cellular Uptake of Protein-Based Viromimetic Nanoparticles for Enhanced Delivery. Biomacromolecules 2023; 24:1563-1573. [PMID: 36877960 DOI: 10.1021/acs.biomac.2c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Viral mimetics is a noteworthy strategy to design efficient delivery systems without the safety drawbacks and engineering difficulties of modifying viral vectors. The triblock polypeptide CSB was previously designed de novo to self-assemble with DNA into nanocomplexes called artificial virus-like particles (AVLPs) due to their similarities to viral particles. Here, we show how we can incorporate new blocks into the CSB polypeptide to enhance its transfection without altering its self-assembly capabilities and the stability and morphology of the AVLPs. The addition of a short peptide (aurein) and/or a large protein (transferrin) to the AVLPs improved their internalization and specific targeting to cells by up to 11 times. Overall, these results show how we can further program the cellular uptake of the AVLPs with a wide range of bioactive blocks. This can pave the way to develop programmable and efficient gene delivery systems.
Collapse
Affiliation(s)
- David S Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Ximena Del Toro-Ríos
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Natalia J Martinez-Sulvaran
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Mayra B Perez-Altamirano
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| |
Collapse
|
3
|
Liu Q, Shaukat A, Meng Z, Nummelin S, Tammelin T, Kontturi E, de Vries R, Kostiainen MA. Engineered Protein Copolymers for Heparin Neutralization and Detection. Biomacromolecules 2023; 24:1014-1021. [PMID: 36598935 PMCID: PMC9930113 DOI: 10.1021/acs.biomac.2c01464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparin is a widely applied anticoagulant agent. However, in clinical practice, it is of vital importance to reverse its anticoagulant effect to restore the blood-clotting cascade and circumvent side effects. Inspired by protein cages that can encapsulate and protect their cargo from surroundings, we utilize three designed protein copolymers to sequester heparin into inert nanoparticles. In our design, a silk-like sequence provides cooperativity between proteins, generating a multivalency effect that enhances the heparin-binding ability. Protein copolymers complex heparin into well-defined nanoparticles with diameters below 200 nm. We also develop a competitive fluorescent switch-on assay for heparin detection, with a detection limit of 0.01 IU mL-1 in plasma that is significantly below the therapeutic range (0.2-8 IU mL-1). Moreover, moderate cytocompatibility is demonstrated by in vitro cell studies. Therefore, such engineered protein copolymers present a promising alternative for neutralizing and sensing heparin, but further optimization is required for in vivo applications.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China.,Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd, VTT, P.O. Box 1000, EspooFI-02044, Finland
| | - Eero Kontturi
- Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen6708 WE, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| |
Collapse
|
4
|
Cao M, Zhang Z, Zhang X, Wang Y, Wu J, Liu Z, Sun L, Wang D, Yue T, Han Y, Wang Y, Wang Y, Wang M. Peptide Self-assembly into stable Capsid-Like nanospheres and Co-assembly with DNA to produce smart artificial viruses. J Colloid Interface Sci 2022; 615:395-407. [PMID: 35150952 DOI: 10.1016/j.jcis.2022.01.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 01/28/2023]
Abstract
Smart artificial viruses have been successfully developed by co-assembly of de novo designed peptides with DNA, which achieved stimuli-responsibility and efficient gene transfection in cancer cells. The peptides were designed to incorporate several functional segments, including a hydrophobic aromatic segment to drive self-assembly, two or more cysteines to regulate the assemblage shape and stabilize the assembled nanostructures via forming disulfide bonds, several lysines to facilitate co-assembly with DNA and binding to cell membranes, and an enzyme-cleavable segment to introduce cancer sensitivity. The rationally designed peptides self-assembled into stable nanospheres with a uniform diameter of < 10 nm, which worked as capsid-like subunits to further interact with DNA to produce hierarchical virus-mimicking structures by encapsulating DNA in the interior. Such artificial viruses can effectively protect DNA from nuclease digestion and achieve efficient genome release by enzyme-triggered structure disassembly, which ensured a high level of gene transfection in tumor cells. The system emulates very well the structural and functional properties of natural viruses from the aspects of capsid formation, genome package and gene transfection, which is highly promising for application as efficient gene vectors.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Zijin Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiaoyang Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yu Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Yuchun Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingxiong Wang
- Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Yilin Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China.
| |
Collapse
|
5
|
Moreno-Gutierrez DS, Zepeda-Cervantes J, Vaca L, Hernandez-Garcia A. An artificial virus-like triblock protein shows low in vivo humoral immune response and high stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112348. [PMID: 34579876 DOI: 10.1016/j.msec.2021.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
The use of viral vectors for in vivo gene therapy can be severely limited by their immunogenicity. Non-viral vectors may represent an alternative, however, reports analyzing their immunogenicity are still lacking. Here, we studied the humoral immune response in a murine model triggered by artificial virus-like particles (AVLPs) carrying plasmid or antisense DNA. The AVLPs were assembled using a family of modular proteins based on bioinspired collagen-like and silk-like sequences that produce virus-like particles. We compared our AVLPs against an Adeno Associated Virus 1 (AAV), a widely used viral vector for in vivo gene delivery that has been approved by the FDA and EMA for gene therapy. We found that a 1000-fold higher mass of AVLPs than AAV are necessary to obtain similar specific antibody titters. Furthermore, we studied the stability of AVLPs against relevant biological reagents such as heparin and fetal bovine serum to ensure nucleic acid protection in biological media. Our study demonstrates that the AVLPs are stable in physiological conditions and can overcome safety limitations such as immunogenicity. The scarce humoral immunogenicity and high stability found with AVLPs suggest that they have potential to be used as stealth non-viral gene delivery systems for in vivo studies or gene therapy.
Collapse
Affiliation(s)
- David Silverio Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, Mexico; Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, UNAM, Mexico
| | - Luis Vaca
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, Mexico; Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico.
| |
Collapse
|
6
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
7
|
Zhou W, Liu L, Huang J, Cai Y, Cohen Stuart MA, de Vries R, Wang J. Supramolecular virus-like particles by co-assembly of triblock polypolypeptide and PAMAM dendrimers. SOFT MATTER 2021; 17:5044-5049. [PMID: 33928336 DOI: 10.1039/d1sm00290b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Virus-like particles are of special interest as functional delivery vehicles in a variety of fields ranging from nanomedicine to materials science. Controlled formation of virus-like particles relies on manipulating the assembly of the viral coat proteins. Herein, we report a new assembly system based on a triblock polypolypeptide C4-S10-BK12 and -COONa terminated PAMAM dendrimers. The polypolypeptide has a cationic BK12 block with 12 lysines; its binding with anionic PAMAM triggers the folding of the peptide's middle silk-like block and leads to formation of virus-like nanorods, stabilized against aggregation by the long hydrophilic "C" block of the polypeptide. Varying the dendrimer/polypeptide mixing ratio hardly influences the structure and size of the nanorod. However, increasing the dendrimer generation, that is, increasing the dendrimer size results in increased particle length and height, without affecting the width of the nanorod. The branched structure and well-defined size of the dendrimers allows delicate control of the particle size; it is impossible to achieve similar control over assembly of the polypeptide with linear polyelectrolyte as template. In conclusion, we report a novel protein assembling system with properties resembling a viral coat; the findings may therefore be helpful for designing functional virus-like particles like vaccines.
Collapse
Affiliation(s)
- Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Lei Liu
- Process Department, East China Engineering Science and Technology Co., Ltd, 70 East Wangjiang Road, 230024, Hefei, People's Republic of China
| | - Jianan Huang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Strategies to Build Hybrid Protein-DNA Nanostructures. NANOMATERIALS 2021; 11:nano11051332. [PMID: 34070149 PMCID: PMC8158336 DOI: 10.3390/nano11051332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Proteins and DNA exhibit key physical chemical properties that make them advantageous for building nanostructures with outstanding features. Both DNA and protein nanotechnology have growth notably and proved to be fertile disciplines. The combination of both types of nanotechnologies is helpful to overcome the individual weaknesses and limitations of each one, paving the way for the continuing diversification of structural nanotechnologies. Recent studies have implemented a synergistic combination of both biomolecules to assemble unique and sophisticate protein-DNA nanostructures. These hybrid nanostructures are highly programmable and display remarkable features that create new opportunities to build on the nanoscale. This review focuses on the strategies deployed to create hybrid protein-DNA nanostructures. Here, we discuss strategies such as polymerization, spatial directing and organizing, coating, and rigidizing or folding DNA into particular shapes or moving parts. The enrichment of structural DNA nanotechnology by incorporating protein nanotechnology has been clearly demonstrated and still shows a large potential to create useful and advanced materials with cell-like properties or dynamic systems. It can be expected that structural protein-DNA nanotechnology will open new avenues in the fabrication of nanoassemblies with unique functional applications and enrich the toolbox of bionanotechnology.
Collapse
|
9
|
Ghosh S, Ahmad R, Banerjee K, AlAjmi MF, Rahman S. Mechanistic Aspects of Microbe-Mediated Nanoparticle Synthesis. Front Microbiol 2021; 12:638068. [PMID: 34025600 PMCID: PMC8131684 DOI: 10.3389/fmicb.2021.638068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
In recent times, nanoparticles (NPs) have found increasing interest owing to their size, large surface areas, distinctive structures, and unique properties, making them suitable for various industrial and biomedical applications. Biogenic synthesis of NPs using microbes is a recent trend and a greener approach than physical and chemical methods of synthesis, which demand higher costs, greater energy consumption, and complex reaction conditions and ensue hazardous environmental impact. Several microorganisms are known to trap metals in situ and convert them into elemental NPs forms. They are found to accumulate inside and outside of the cell as well as in the periplasmic space. Despite the toxicity of NPs, the driving factor for the production of NPs inside microorganisms remains unelucidated. Several reports suggest that nanotization is a way of stress response and biodefense mechanism for the microbe, which involves metal excretion/accumulation across membranes, enzymatic action, efflux pump systems, binding at peptides, and precipitation. Moreover, genes also play an important role for microbial nanoparticle biosynthesis. The resistance of microbial cells to metal ions during inward and outward transportation leads to precipitation. Accordingly, it becomes pertinent to understand the interaction of the metal ions with proteins, DNA, organelles, membranes, and their subsequent cellular uptake. The elucidation of the mechanism also allows us to control the shape, size, and monodispersity of the NPs to develop large-scale production according to the required application. This article reviews different means in microbial synthesis of NPs focusing on understanding the cellular, biochemical, and molecular mechanisms of nanotization of metals.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
- Research and Development Office, Ashoka University, Sonepat, India
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kamalika Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakilur Rahman
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Alvisi N, Gutiérrez-Mejía FA, Lokker M, Lin YT, de Jong AM, van Delft F, de Vries R. Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles. Biomacromolecules 2021; 22:1966-1979. [PMID: 33871996 PMCID: PMC8154268 DOI: 10.1021/acs.biomac.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over the placement and activity of biomolecules on solid surfaces is a key challenge in bionanotechnology. While covalent approaches excel in performance, physical attachment approaches excel in ease of processing, which is equally important in many applications. We show how the precision of recombinant protein engineering can be harnessed to design and produce protein-based diblock polymers with a silica-binding and highly hydrophilic elastin-like domain that self-assembles on silica surfaces and nanoparticles to form stable polypeptide brushes that can be used as a scaffold for later biofunctionalization. From atomic force microscopy-based single-molecule force spectroscopy, we find that individual silica-binding peptides have high unbinding rates. Nevertheless, from quartz crystal microbalance measurements, we find that the self-assembled polypeptide brushes cannot easily be rinsed off. From atomic force microscopy imaging and bulk dynamic light scattering, we find that the binding to silica induces fibrillar self-assembly of the peptides. Hence, we conclude that the unexpected stability of these self-assembled polypeptide brushes is at least in part due to peptide-peptide interactions of the silica-binding blocks at the silica surface.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Fabiola A Gutiérrez-Mejía
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Meike Lokker
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Yu-Ting Lin
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Arthur M de Jong
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
11
|
Calcines-Cruz C, Finkelstein IJ, Hernandez-Garcia A. CRISPR-Guided Programmable Self-Assembly of Artificial Virus-Like Nucleocapsids. NANO LETTERS 2021; 21:2752-2757. [PMID: 33729813 PMCID: PMC9724498 DOI: 10.1021/acs.nanolett.0c04640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designer virus-inspired proteins drive the manufacturing of more effective, safer gene-delivery systems and simpler models to study viral assembly. However, self-assembly of engineered viromimetic proteins on specific nucleic acid templates, a distinctive viral property, has proved difficult. Inspired by viral packaging signals, we harness the programmability of CRISPR-Cas12a to direct the nucleation and growth of a self-assembling synthetic polypeptide into virus-like particles (VLP) on specific DNA molecules. Positioning up to ten nuclease-dead Cas12a (dCas12a) proteins along a 48.5 kbp DNA template triggers particle growth and full DNA encapsidation at limiting polypeptide concentrations. Particle growth rate is further increased when dCas12a is dimerized with a polymerization silk-like domain. Such improved self-assembly efficiency allows for discrimination between cognate versus noncognate DNA templates by the synthetic polypeptide. CRISPR-guided VLPs will help to develop programmable bioinspired nanomaterials with applications in biotechnology as well as viromimetic scaffolds to improve our understanding of viral self-assembly.
Collapse
Affiliation(s)
- Carlos Calcines-Cruz
- Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | | | | |
Collapse
|
12
|
Li D, Li X, Bai J, Liu Y, de Vries R, Li Y. Rod-shaped polypeptide nanoparticles for siRNA delivery. Int J Biol Macromol 2021; 166:401-408. [PMID: 33122069 DOI: 10.1016/j.ijbiomac.2020.10.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022]
Abstract
Rod-shaped nanoparticles have been reported to exhibit improved cellular uptake, intracellular processing and transport through tissues and organs, as compared to spherical nanoparticles. We use C-S-B triblock polypeptides composed of a collagen-like block (C), a silk-like block (S) and an oligolysine domain (B) for one-dimensional co-assembly with siRNA into rod-shaped nanoparticles. Here we investigate these siRNA encapsulating rod-shaped nanoparticles as a gene delivery system. Uptake experiments for C-S-B and C-S-B/siPlk1 particles indicate that these rod-shaped nanoparticles can efficiently deliver siPlk1 into HeLa cells. Moreover, C-S-B/siPlk1 complexes display significant mPlk1 gene knockdown in a dose-dependent manner, causing apoptosis as intended. The lower effectiveness of C-S-B/siPlk1 in inducing cell death as compared to cationic lipid-based formulations is explained by the high lysosome-C-S-B/siPlk1 co-localization ratio, which will need to be addressed in a future redesign of polypeptide sequence. Overall, the non-toxic and unique rod-shaped C-S-B nanoparticles deserve further optimization as a new siRNA delivery system for cancer therapy.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, China
| | - Xin Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, China
| | - Jie Bai
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, China
| | - Ying Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, China
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, China.
| |
Collapse
|
13
|
Cárdenas-Guerra RE, Moreno-Gutierrez DS, Vargas-Dorantes ODJ, Espinoza B, Hernandez-Garcia A. Delivery of Antisense DNA into Pathogenic Parasite Trypanosoma cruzi Using Virus-Like Protein-Based Nanoparticles. Nucleic Acid Ther 2020; 30:392-401. [PMID: 32907491 DOI: 10.1089/nat.2020.0870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi, which causes Chagas disease, is one of the most lacerating parasites in terms of health and social impacts. New approaches for its study and treatment are urgently needed since in more than 50 years only two drugs have been approved. Genetic approaches based on antisense oligonucleotides (AONs) are promising; however, to harness their full potential the development of effective carriers is paramount. Here, we report the use of an engineered virus-like protein C-BK12 to transfect AONs into T. cruzi. Using gel electrophoresis, Dynamic Light Scattering, and atomic force microscopy, we found that C-BK12 binds AONs and forms 10-25 nm nanoparticles (NPs), which are very stable when incubated in biological media, only releasing up to 25% of AON. Fluorescence microscopy and qPCR revealed that the NPs successfully delivered AONs into epimastigotes and reduced the expression of a target gene down to 68%. Importantly, the protein did not show cytotoxicity. The combination of high stability and capability to transfect and knock down gene expression without causing cell damage and death makes the protein C-BK12 a promising starting point for the further development of safe and effective carriers to deliver AONs into T. cruzi for biological studies.
Collapse
Affiliation(s)
- Rosa E Cárdenas-Guerra
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David S Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Oscar de J Vargas-Dorantes
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Sunday DF, Chremos A, Martin TB, Chang AB, Burns AB, Grubbs RH. The Concentration Dependence of the Size and Symmetry of a Bottlebrush Polymer in a Good Solvent. Macromolecules 2020; 53:7132-7140. [PMID: 34121772 PMCID: PMC8194097 DOI: 10.1021/acs.macromol.0c01181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bottlebrush polymers consist of a linear backbone with densely grafted side chains which impact the rigidity of the molecule. The persistence length of the bottlebrush backbone in solution is influenced by both the intrinsic structure of the polymer and by the local environment, such as the solvent quality and concentration. Increasing the concentration reduces the overall size of the molecule due to the reduction in backbone stiffness. In this study we map out the size of a bottlebrush polymer as a function of concentration for a single backbone length. Small-angle neutron scattering (SANS) measurements are conducted on a polynorbornene-based bottlebrush with polystyrene side chains in a good solvent. The data are fit using a model which provides both the long and short axis radius of gyration (R g,2 and R g,1, respectively), providing a measure for how the conformation changes as a function of concentration. At low concentrations a highly anisotropic structure is observed (R g,2/R g,1 ≈ 4), becoming more isotropic at higher concentrations (R g,2/R g,1 ≈ 1.5). The concentration scaling for both R g,2 and the overall R g are evaluated and compared with predictions in the literature. Coarse-grained molecular dynamics simulations were also conducted to probe the impact of concentration on bottlebrush conformation showing qualitative agreement with the experimental results.
Collapse
Affiliation(s)
- Daniel F. Sunday
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Tyler B. Martin
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Alice B. Chang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Adam B. Burns
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Robert H. Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
15
|
Sanchez-Rueda EG, Rodriguez-Cristobal E, Moctezuma González CL, Hernandez-Garcia A. Protein-coated dsDNA nanostars with high structural rigidity and high enzymatic and thermal stability. NANOSCALE 2019; 11:18604-18611. [PMID: 31578534 DOI: 10.1039/c9nr05225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA nanotechnology creates precise shape-specific nanostructures through the self-assembly of short ssDNA oligonucleotides. One such shape, which has relevant biomedical applications due to its multivalency, is the star. However, building star-like nanostructures with a large size (>100 nm) using ssDNA is complex and challenging. This study presents a novel strategy to prepare stiff and large dsDNA nanostars by assembling duplex DNA fragments into star-shapes that are subsequently coated with a virus-inspired protein. The protein binds dsDNA and overcomes the high structural flexibility of naked dsDNA. The nanostar-like dsDNA templates with up to six arms were prepared by self-assembly of PCR-produced dsDNA fragments (211 to 722 bp) with a central DNA junction. Through gel electrophoresis and Atomic Force Microscopy it is demonstrated that single dsDNA nanostars are self-assembled and coated with the protein, and this has a large stiffening effect on the nanostar. Furthermore, the coating significantly enhances stability at high temperatures and protects nanostars against nuclease degradation for at least 10 hours. This study shows that DNA-binding proteins can be harnessed as structural "rigidifiers" of flexible branched dsDNA templates. This strategy opens a way to prepare structurally defined hybrid protein-dsDNA nanostructures that could be exploited as building blocks for novel DNA nanomaterials.
Collapse
Affiliation(s)
- Eddie G Sanchez-Rueda
- Laboratory of Biomolecular Engineering and Bionanotechnology, Chemistry of Biomacromolecules Department, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Coyoacan, Mexico City 04310, Mexico.
| | - Estefani Rodriguez-Cristobal
- Laboratory of Biomolecular Engineering and Bionanotechnology, Chemistry of Biomacromolecules Department, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Coyoacan, Mexico City 04310, Mexico.
| | - Claudia L Moctezuma González
- Laboratory of Biomolecular Engineering and Bionanotechnology, Chemistry of Biomacromolecules Department, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Coyoacan, Mexico City 04310, Mexico.
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Chemistry of Biomacromolecules Department, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Coyoacan, Mexico City 04310, Mexico.
| |
Collapse
|
16
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
17
|
Marchetti M, Kamsma D, Cazares Vargas E, Hernandez García A, van der Schoot P, de Vries R, Wuite GJL, Roos WH. Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. NANO LETTERS 2019; 19:5746-5753. [PMID: 31368710 PMCID: PMC6696885 DOI: 10.1021/acs.nanolett.9b02376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Indexed: 05/20/2023]
Abstract
While the structure of a multitude of viral particles has been resolved to atomistic detail, their assembly pathways remain largely elusive. Key unresolved issues are particle nucleation, particle growth, and the mode of genome compaction. These issues are difficult to address in bulk approaches and are effectively only accessible by the real-time tracking of assembly dynamics of individual particles. This we do here by studying the assembly into rod-shaped viruslike particles (VLPs) of artificial capsid polypeptides. Using fluorescence optical tweezers, we establish that small oligomers perform one-dimensional diffusion along the DNA. Larger oligomers are immobile and nucleate VLP growth. A multiplexed acoustic force spectroscopy approach reveals that DNA is compacted in regular steps, suggesting packaging via helical wrapping into a nucleocapsid. By reporting how real-time assembly tracking elucidates viral nucleation and growth principles, our work opens the door to a fundamental understanding of the complex assembly pathways of both VLPs and naturally evolved viruses.
Collapse
Affiliation(s)
- Margherita Marchetti
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| | - Douwe Kamsma
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ernesto Cazares Vargas
- Institute
of Chemistry, Department of Chemistry of Biomacromolecules, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Armando Hernandez García
- Institute
of Chemistry, Department of Chemistry of Biomacromolecules, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Paul van der Schoot
- Institute
for Theoretical Physics, Utrecht University, 3512 JE Utrecht, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Renko de Vries
- Laboratory
of Physical Chemistry and Colloid Science, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Gijs J. L. Wuite
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- E-mail:
| | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
- E-mail:
| |
Collapse
|
18
|
Vargas EC, Stuart MAC, de Vries R, Hernandez‐Garcia A. Template‐Free Self‐Assembly of Artificial De Novo Viral Coat Proteins into Nanorods: Effects of Sequence, Concentration, and Temperature. Chemistry 2019; 25:11058-11065. [DOI: 10.1002/chem.201901486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Ernesto Cazares Vargas
- Institute of ChemistryDepartment of Biomacromolecules ChemistryNational Autonomous University of Mexico Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510 Mexico City Mexico
| | - Martien A. Cohen Stuart
- Laboratory of Physical Chemistry and Soft MatterWageningen University, Helix, 124 Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft MatterWageningen University, Helix, 124 Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Armando Hernandez‐Garcia
- Institute of ChemistryDepartment of Biomacromolecules ChemistryNational Autonomous University of Mexico Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510 Mexico City Mexico
| |
Collapse
|
19
|
Basak R, Liu F, Qureshi S, Gupta N, Zhang C, de Vries R, van Kan JA, Dheen ST, van der Maarel JRC. Linearization and Labeling of Single-Stranded DNA for Optical Sequence Analysis. J Phys Chem Lett 2019; 10:316-321. [PMID: 30615463 DOI: 10.1021/acs.jpclett.8b03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genetic profiling would benefit from linearization of ssDNA through the exposure of the unpaired bases to gene-targeting probes. This is compromised by ssDNA's high flexibility and tendency to form self-annealed structures. Here, we demonstrate that self-annealing can be avoided through controlled coating with a cationic-neutral diblock polypeptide copolymer. Coating does not preclude site-specific binding of fluorescence labeled oligonucleotides. Bottlebrush-coated ssDNA can be linearized by confinement inside a nanochannel or molecular combing. A stretch of 0.32 nm per nucleotide is achieved inside a channel with a cross-section of 100 nm and a 2-fold excess of polypeptide with respect to DNA charge. With combing, the complexes are stretched to a similar extent. Atomic force microscopy of dried complexes on silica revealed that the contour and persistence lengths are close to those of dsDNA in the B-form. Labeling is based on hybridization and not limited by restriction enzymes. Enzyme-free labeling offers new opportunities for the detection of specific sequences.
Collapse
Affiliation(s)
- Rajib Basak
- Department of Physics , National University of Singapore , Singapore 117542
| | - Fan Liu
- Department of Physics , National University of Singapore , Singapore 117542
| | - Sarfraz Qureshi
- Department of Physics , National University of Singapore , Singapore 117542
| | - Neelima Gupta
- Department of Anatomy , National University of Singapore , Singapore 117594
| | - Ce Zhang
- Institute of Photonics and Photon-Technology , Northwest University , Xi'an , China 710069
| | - Renko de Vries
- Laboratory of Physical Chemistry and Colloid Science , Wageningen University , 6708 Wageningen , The Netherlands
| | - Jeroen A van Kan
- Department of Physics , National University of Singapore , Singapore 117542
| | - S Thameem Dheen
- Department of Anatomy , National University of Singapore , Singapore 117594
| | | |
Collapse
|
20
|
Storm IM, Stuart MAC, de Vries R, Leermakers FAM. Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes. Phys Rev E 2018; 97:032501. [PMID: 29776063 DOI: 10.1103/physreve.97.032501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 11/07/2022]
Abstract
A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.
Collapse
Affiliation(s)
- Ingeborg M Storm
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Frans A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
21
|
Rocha MS, Storm IM, Bazoni RF, Ramos ÉB, Hernandez-Garcia A, Cohen Stuart MA, Leermakers F, de Vries R. Force and Scale Dependence of the Elasticity of Self-Assembled DNA Bottle Brushes. Macromolecules 2018; 51:204-212. [PMID: 29339838 PMCID: PMC5763285 DOI: 10.1021/acs.macromol.7b01795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/13/2017] [Indexed: 11/30/2022]
Abstract
![]()
As a model system
to study the elasticity of bottle-brush polymers,
we here introduce self-assembled DNA bottle brushes, consisting of
a DNA main chain that can be very long and still of precisely defined
length, and precisely monodisperse polypeptide side chains that are
physically bound to the DNA main chains. Polypeptide side chains have
a diblock architecture, where one block is a small archaeal nucleoid
protein Sso7d that strongly binds to DNA. The other block is a net
neutral, hydrophilic random coil polypeptide with a length of exactly
798 amino acids. Light scattering shows that for saturated brushes
the grafting density is one side chain per 5.6 nm of DNA main chain.
According to small-angle X-ray scattering, the brush diameter is D = 17 nm. By analyzing configurations of adsorbed DNA bottle
brushes using AFM, we find that the effective persistence of the saturated
DNA bottle brushes is Peff = 95 nm, but
from force–extension curves of single DNA bottle brushes measured
using optical tweezers we find Peff =
15 nm. The latter is equal to the value expected for DNA coated by
the Sso7d binding block alone. The apparent discrepancy between the
two measurements is rationalized in terms of the scale dependence
of the bottle-brush elasticity using theory previously developed to
analyze the scale-dependent electrostatic stiffening of DNA at low
ionic strengths.
Collapse
Affiliation(s)
- Márcio Santos Rocha
- Laboratório de Física Biológica, Departamento de Física, Universidade Federal de Viçosa Viçosa, Minas Gerais, Brazil
| | - Ingeborg M Storm
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Raniella Falchetto Bazoni
- Laboratório de Física Biológica, Departamento de Física, Universidade Federal de Viçosa Viçosa, Minas Gerais, Brazil
| | - Ésio Bessa Ramos
- Laboratório de Física Biológica, Departamento de Física, Universidade Federal de Viçosa Viçosa, Minas Gerais, Brazil
| | - Armando Hernandez-Garcia
- Departamento de Química de Biomacromoleculas, Instituto de Química, Universidad Nacional Autónoma de México, México City, México
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Frans Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
22
|
Hernandez-Garcia A, Cohen Stuart MA, de Vries R. Templated co-assembly into nanorods of polyanions and artificial virus capsid proteins. SOFT MATTER 2017; 14:132-139. [PMID: 29218341 DOI: 10.1039/c7sm02012k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recombinant triblock polypeptides C-Sn-B, where C is a 400 amino acid long hydrophilic random coil block, Sn is a multimer of the silk-like octapeptide S = (GAGAGAGQ), and B = K12 is an oligolysine, have previously been shown to encapsulate double stranded DNA into rod-shaped, virus-like particles. In order to gain insight of the co-assembly process, and in order to be able to use these proteins for templating other types of nanorods, we here explore their co-assembly with a range of polyanionic templates: poly(acrylic acids) (PAA) of a wide range of lengths, poly(styrene sulphonate) (PSS) and the stiff anionic polysaccharide xanthan. The formation of the complexes was characterized using Dynamic Light Scattering (DLS), cryogenic Transmission Electronic Microscopy (Cryo-TEM) and Atomic Force Microscopy (AFM). Except at very high molar masses, we find that flexible anionic PAA and PSS lead to co-assembly of proteins with single polyanion chains into nanorods, with a packing factor as expected on the basis of charge stochiometry. Only for very long PAA templates (8 × 105 Da) we find evidence for heterogeneous complexes with thin and thick sections. For the very stiff xanthan chains, we find that its stiffness precludes co-assembly with the artificial viral capsid proteins into condensed and regular nanorods. Given the simple and robust formation of rod-like structures with a range of polyanionic templates, we anticipate that the artificial virus proteins will be useful for preparing high-aspect ratio nanoparticles and scaffolds of precise size and find applications in nanotechnology and materials science for which currently natural rod-like viruses are being explored.
Collapse
Affiliation(s)
- A Hernandez-Garcia
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | |
Collapse
|
23
|
Zheng T, Perona Martínez F, Storm IM, Rombouts W, Sprakel J, Schirhagl R, de Vries R. Recombinant Protein Polymers for Colloidal Stabilization and Improvement of Cellular Uptake of Diamond Nanosensors. Anal Chem 2017; 89:12812-12820. [PMID: 29111679 DOI: 10.1021/acs.analchem.7b03236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fluorescent nanodiamonds are gaining increasing attention as fluorescent labels in biology in view of the fact that they are essentially nontoxic, do not bleach, and can be used as nanoscale sensors for various physical and chemical properties. To fully realize the nanosensing potential of nanodiamonds in biological applications, two problems need to be addressed: their limited colloidal stability, especially in the presence of salts, and their limited ability to be taken up by cells. We show that the physical adsorption of a suitably designed recombinant polypeptide can address both the colloidal stability problem and the problem of the limited uptake of nanodiamonds by cells in a very straightforward way, while preserving both their spectroscopic properties and their excellent biocompatibility.
Collapse
Affiliation(s)
- Tingting Zheng
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center , 518036 Shenzhen, China
| | - Felipe Perona Martínez
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University , Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ingeborg Maria Storm
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Wolf Rombouts
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University , Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
24
|
Gollanapalli V, Manthri A, Sankar UK, Tripathy M. Dispersion, Phase Separation, and Self-Assembly of Polymer-Grafted Nanorod Composites. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vaishnavi Gollanapalli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 Maharashtra, India
| | - Anirudh Manthri
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 Maharashtra, India
| | - Uma K. Sankar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 Maharashtra, India
| | - Mukta Tripathy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 Maharashtra, India
| |
Collapse
|
25
|
|
26
|
Estrich NA, Hernandez-Garcia A, de Vries R, LaBean TH. Engineered Diblock Polypeptides Improve DNA and Gold Solubility during Molecular Assembly. ACS NANO 2017; 11:831-842. [PMID: 28048935 DOI: 10.1021/acsnano.6b07291] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Programmed molecular recognition is being developed for the bionanofabrication of mixed organic/inorganic supramolecular assemblies for applications in electronics, photonics, and medicine. For example, DNA-based nanotechnology seeks to exploit the easily programmed complementary base-pairing of DNA to direct assembly of complex, designed nanostructures. Optimal solution conditions for bionanofabrication, mimicking those of biological systems, may involve high concentrations of biomacromolecules (proteins, nucleic acids, etc.) and significant concentrations of various ions (Mg2+, Na+, Cl-, etc.). Given a desire to assemble diverse inorganic components (metallic nanoparticles, quantum dots, carbon nanostructures, etc.), it will be increasingly difficult to find solution conditions simultaneously compatible with all components. Frequently, the use of chemical surfactants is undesirable, leaving a need for the development of alternative strategies. Herein, we discuss the use of artificial, diblock polypeptides in the role of solution compatibilizing agents for molecular assembly. We describe the use of two distinct diblock polypeptides with affinity for DNA in the stabilization of DNA origami and DNA-functionalized gold nanoparticles (spheres and rods) in solution, protection of DNA from enzymatic degradation, as well as two 3D tetrahedral DNA origamis. We present initial data showing that the diblock polypeptides promote the formation in the solution of desired organic/inorganic assemblies.
Collapse
Affiliation(s)
- Nicole A Estrich
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| | - Armando Hernandez-Garcia
- Simpson Querrey Institute for Bionanotechnology, Northwestern University , Evanston, Illinois 60208, United States
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre , Wageningen 6708 PB, The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre , Wageningen 6708 PB, The Netherlands
| | - Thomas H LaBean
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| |
Collapse
|
27
|
Hernandez-Garcia A, Estrich NA, Werten MWT, Van Der Maarel JRC, LaBean TH, de Wolf FA, Cohen Stuart MA, de Vries R. Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS NANO 2017; 11:144-152. [PMID: 27936577 DOI: 10.1021/acsnano.6b05938] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Emerging DNA-based nanotechnologies would benefit from the ability to modulate the properties (e.g., solubility, melting temperature, chemical stability) of diverse DNA templates (single molecules or origami nanostructures) through controlled, self-assembling coatings. We here introduce a DNA coating agent, called C8-BSso7d, which binds to and coats with high specificity and affinity, individual DNA molecules as well as folded origami nanostructures. C8-BSso7d coats and protects without condensing, collapsing or destroying the spatial structure of the underlying DNA template. C8-BSso7d combines the specific nonelectrostatic DNA binding affinity of an archeal-derived DNA binding domain (Sso7d, 7 kDa) with a long hydrophilic random coil polypeptide (C8, 73 kDa), which provides colloidal stability (solubility) through formation of polymer brushes around the DNA templates. C8-BSso7d is produced recombinantly in yeast and has a precise (but engineerable) amino acid sequence of precise length. Using electrophoresis, AFM, and fluorescence microscopy we demonstrate protein coat formation with stiffening of one-dimensional templates (linear dsDNA, supercoiled dsDNA and circular ssDNA), as well as coat formation without any structural distortion or disruption of two-dimensional DNA origami template. Combining the programmability of DNA with the nonperturbing precise coating capability of the engineered protein C8-BSso7d holds promise for future applications such as the creation of DNA-protein hybrid networks, or the efficient transfection of individual DNA nanostructures into cells.
Collapse
Affiliation(s)
- Armando Hernandez-Garcia
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nicole A Estrich
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Marc W T Werten
- Wageningen UR Food and Biobased Research, Wageningen University and Research , Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | | | - Thomas H LaBean
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Frits A de Wolf
- Wageningen UR Food and Biobased Research, Wageningen University and Research , Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
28
|
Hernandez-Garcia A, Velders AH, Stuart MAC, de Vries R, van Lent JWM, Wang J. Supramolecular Virus-Like Nanorods by Coassembly of a Triblock Polypeptide and Reversible Coordination Polymers. Chemistry 2016; 23:239-243. [DOI: 10.1002/chem.201603968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Armando Hernandez-Garcia
- Laboratory of Physical Chemistry and Soft Matter; Wageningen University and Research Centre; Wageningen 6703HB The Netherlands
- Simpson Querrey Institute for BioNanotechnology; Northwestern University; Chicago Illinois 60611-2875 USA
| | - Aldrik H. Velders
- Laboratory of Bionanotechnology; Wageningen University and Research Centre; Wageningen 6703HB The Netherlands
| | - Martien A. Cohen Stuart
- Laboratory of Physical Chemistry and Soft Matter; Wageningen University and Research Centre; Wageningen 6703HB The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter; Wageningen University and Research Centre; Wageningen 6703HB The Netherlands
| | - Jan W. M. van Lent
- Wageningen Electron Microscopy Centre; Wageningen University and Research Centre; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - Junyou Wang
- Laboratory of Bionanotechnology; Wageningen University and Research Centre; Wageningen 6703HB The Netherlands
| |
Collapse
|
29
|
Storm IM, Kornreich M, Voets IK, Beck R, de Vries R, Cohen Stuart MA, Leermakers FAM. Loss of bottlebrush stiffness due to free polymers. SOFT MATTER 2016; 12:8004-8014. [PMID: 27604959 DOI: 10.1039/c6sm01227b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A recently introduced DNA-bottlebrush system, which is formed by the co-assembly of DNA with a genetically engineered cationic polymer-like protein, is subjected to osmotic stress conditions. We measured the inter-DNA distances by X-ray scattering. Our co-assembled DNA-bottlebrush system is one of the few bottlebrushes known to date that shows liquid crystalline behaviour. The alignment of the DNA bottlebrushes was expected to increase with imposed pressure, but interestingly this did not always happen. Molecularly detailed self-consistent field calculations targeted to complement the experiments, focused on the role of molecular crowding on the induced persistence length lp due to the side chains and the cross-sectional width D of the molecular bottlebrushes. Both the thickness as well as the backbone persistence length drop with increasing protein-polymer bulk concentrations and dramatic effects are found above the overlap threshold. The flexibilisation is more significant and therefore the bottlebrush aspect ratio, lp/D, decreases with protein-polymer concentration. This loss in aspect ratio is yet another argument why molecular bottlebrushes rarely order in anisotropic phases and may explain why bottlebrushes are excellent lubricants.
Collapse
Affiliation(s)
- Ingeborg M Storm
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
van Rijn P, Schirhagl R. Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications. Adv Healthc Mater 2016; 5:1386-400. [PMID: 27119823 DOI: 10.1002/adhm.201501000] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications.
Collapse
Affiliation(s)
- Patrick van Rijn
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Romana Schirhagl
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
| |
Collapse
|
31
|
Punter MTJJM, Hernandez-Garcia A, Kraft DJ, de Vries R, van der Schoot P. Self-Assembly Dynamics of Linear Virus-Like Particles: Theory and Experiment. J Phys Chem B 2016; 120:6286-97. [DOI: 10.1021/acs.jpcb.6b02680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Armando Hernandez-Garcia
- Laboratory
of Physical Chemistry and Colloid Science, Wageningen University and Research Centre, Dreijenplein 6, 6703
HB Wageningen, The Netherlands
| | - Daniela J. Kraft
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Renko de Vries
- Laboratory
of Physical Chemistry and Colloid Science, Wageningen University and Research Centre, Dreijenplein 6, 6703
HB Wageningen, The Netherlands
| | - Paul van der Schoot
- Theory
of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| |
Collapse
|
32
|
Pham TTH, Snijkers F, Storm IM, de Wolf FA, Cohen Stuart MA, van der Gucht J. Physical and mechanical properties of thermosensitive xanthan/collagen-inspired protein composite hydrogels. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1074904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Cingil HE, Storm IM, Yorulmaz Y, te Brake DW, de Vries R, Cohen Stuart MA, Sprakel J. Monitoring Protein Capsid Assembly with a Conjugated Polymer Strain Sensor. J Am Chem Soc 2015; 137:9800-3. [DOI: 10.1021/jacs.5b05914] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hande E. Cingil
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Ingeborg M. Storm
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Yelda Yorulmaz
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Diane W. te Brake
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Renko de Vries
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Martien A. Cohen Stuart
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Joris Sprakel
- Physical
Chemistry and Soft
Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
34
|
Storm IM, Kornreich M, Hernandez-Garcia A, Voets IK, Beck R, Cohen Stuart MA, Leermakers FAM, de Vries R. Liquid crystals of self-assembled DNA bottlebrushes. J Phys Chem B 2015; 119:4084-92. [PMID: 25689450 DOI: 10.1021/jp511412t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early theories for bottlebrush polymers have suggested that the so-called main-chain stiffening effect caused by the presence of a dense corona of side chains along a central main chain should lead to an increased ratio of effective persistence length (lp,eff) over the effective thickness (Deff) and, hence, ultimately to lyotropic liquid crystalline behavior. More recent theories and simulations suggest that lp,eff ∼ Deff, such that no liquid crystalline behavior is induced by bottlebrushes. In this paper we investigate experimentally how lyotropic liquid crystalline behavior of a semiflexible polymer is affected by a dense coating of side chains. We use semiflexible DNA as the main chain. A genetically engineered diblock protein polymer C4K12 is used to physically adsorb long side chains on the DNA. The C4K12 protein polymer consists of a positively charged binding block (12 lysines, K12) and a hydrophilic random coil block of 400 amino acids (C4). From light scattering we find that, at low ionic strength (10 mM Tris-HCl), the thickness of the self-assembled DNA bottlebrushes is on the order of 30 nm and the effective grafting density is 1 side chain per 2.7 nm of DNA main chain. We find these self-assembled DNA bottlebrushes form birefringent lyotropic liquid crystalline phases at DNA concentrations as low as 8 mg/mL, roughly 1 order of magnitude lower than for bare DNA. Using small-angle X-ray scattering (SAXS) we show that, at DNA concentrations of 12 mg/mL, there is a transition to a hexagonal phase. We also show that, while the effective persistence length increases due to the bottlebrush coating, the effective thickness of the bottlebrush increases even more, such that in our case the bottlebrush coating reduces the effective aspect ratio of the DNA. This is in agreement with theoretical estimates that show that, in most cases of practical interest, a bottlebrush coating will lead to a decrease of the effective aspect ratio, whereas, only for bottlebrushes with extremely long side chains at very high grafting densities, a bottlebrush coating may be expected to lead to an increase of the effective aspect ratio.
Collapse
Affiliation(s)
- Ingeborg M Storm
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University , 6703 HB Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
van der Maarel JRC, Zhang C, van Kan JA. A Nanochannel Platform for Single DNA Studies: From Crowding, Protein DNA Interaction, to Sequencing of Genomic Information. Isr J Chem 2014. [DOI: 10.1002/ijch.201400091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Hernandez-Garcia A, Kraft DJ, Janssen AFJ, Bomans PHH, Sommerdijk NAJM, Thies-Weesie DME, Favretto ME, Brock R, de Wolf FA, Werten MWT, van der Schoot P, Stuart MC, de Vries R. Design and self-assembly of simple coat proteins for artificial viruses. NATURE NANOTECHNOLOGY 2014; 9:698-702. [PMID: 25150720 DOI: 10.1038/nnano.2014.169] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
Viruses are among the simplest biological systems and are highly effective vehicles for the delivery of genetic material into susceptible host cells. Artificial viruses can be used as model systems for providing insights into natural viruses and can be considered a testing ground for developing artificial life. Moreover, they are used in biomedical and biotechnological applications, such as targeted delivery of nucleic acids for gene therapy and as scaffolds in material science. In a natural setting, survival of viruses requires that a significant fraction of the replicated genomes be completely protected by coat proteins. Complete protection of the genome is ensured by a highly cooperative supramolecular process between the coat proteins and the nucleic acids, which is based on reversible, weak and allosteric interactions only. However, incorporating this type of supramolecular cooperativity into artificial viruses remains challenging. Here, we report a rational design for a self-assembling minimal viral coat protein based on simple polypeptide domains. Our coat protein features precise control over the cooperativity of its self-assembly with single DNA molecules to finally form rod-shaped virus-like particles. We confirm the validity of our design principles by showing that the kinetics of self-assembly of our virus-like particles follows a previous model developed for tobacco mosaic virus. We show that our virus-like particles protect DNA against enzymatic degradation and transfect cells with considerable efficiency, making them promising delivery vehicles.
Collapse
Affiliation(s)
- Armando Hernandez-Garcia
- 1] Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands [2] Dutch Polymer Institute, John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands [3]
| | - Daniela J Kraft
- 1] Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands [2] Center for Soft Matter Research, Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA
| | - Anne F J Janssen
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Paul H H Bomans
- Laboratory of Materials and Interface Chemistry &Soft Matter CryoTEM Research Unit, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry &Soft Matter CryoTEM Research Unit, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dominique M E Thies-Weesie
- Utrecht University, Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, PO Box 80.051, 3508 TB Utrecht, The Netherlands
| | - Marco E Favretto
- 1] Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands [2] Dutch Polymer Institute, John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Frits A de Wolf
- Wageningen UR Food &Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Marc W T Werten
- Wageningen UR Food &Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Paul van der Schoot
- 1] Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands [2] Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Martien Cohen Stuart
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Renko de Vries
- 1] Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands [2] Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, PO Box 196, 9700 AD Groningen, The Netherlands
| |
Collapse
|
37
|
Beun LH, Storm IM, Werten MWT, de Wolf FA, Cohen Stuart MA, de Vries R. From micelles to fibers: balancing self-assembling and random coiling domains in pH-responsive silk-collagen-like protein-based polymers. Biomacromolecules 2014; 15:3349-57. [PMID: 25133990 PMCID: PMC4260859 DOI: 10.1021/bm500826y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
We
study the self-assembly of genetically engineered protein-based
triblock copolymers consisting of a central pH-responsive silk-like
middle block (SHn, where SH is a silk-like octapeptide, (GA)3GH and n is the number of repeats) flanked by hydrophilic random
coil outer blocks (C2). Our previous work has already shown
that triblocks with very long midblocks (n = 48)
self-assemble into long, stiff protein filaments at pH values where
the middle blocks are uncharged. Here we investigate the self-assembly
behavior of the triblock copolymers for a range of midblock lengths,
n = 8, 16, 24, 48. Upon charge neutralization of SHn by adjusting the pH, we find that C2SH8C2 and C2SH16C2 form spherical micelles, whereas both C2SH24C2 and C2SH48C2 form protein filaments with a characteristic
beta-roll secondary structure of the silk midblocks. Hydrogels formed
by C2SH48C2 are much stronger
and form much faster than those formed by C2SH24C2. Enzymatic digestion of much of the hydrophilic
outer blocks is used to show that with much of the hydrophilic outer
blocks removed, all silk-midblocks are capable of self-assembling
into stiff protein filaments. In that case, reduction of the steric
repulsion by the hydrophilic outer blocks also leads to extensive
fiber bundling. Our results highlight the opposing roles of the hydrophilic
outer blocks and central silk-like midblocks in driving protein filament
formation. They provide crucial information for future designs of
triblock protein-based polymers that form stiff filaments with controlled
bundling, that could mimick properties of collagen in the extracellular
matrix.
Collapse
Affiliation(s)
- Lennart H Beun
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University , Dreijenplein 6, NL-6703 HB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Zhang C, Hernandez-Garcia A, Jiang K, Gong Z, Guttula D, Ng SY, Malar PP, van Kan JA, Dai L, Doyle PS, de Vries R, van der Maarel JRC. Amplified stretch of bottlebrush-coated DNA in nanofluidic channels. Nucleic Acids Res 2013; 41:e189. [PMID: 24003032 PMCID: PMC3814371 DOI: 10.1093/nar/gkt783] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 01/22/2023] Open
Abstract
The effect of a cationic-neutral diblock polypeptide on the conformation of single DNA molecules confined in rectangular nanochannels is investigated with fluorescence microscopy. An enhanced stretch along the channel is observed with increased binding of the cationic block of the polypeptide to DNA. A maximum stretch of 85% of the contour length can be achieved inside a channel with a cross-sectional diameter of 200 nm and at a 2-fold excess of polypeptide with respect to DNA charge. With site-specific fluorescence labelling, it is demonstrated that this maximum stretch is sufficient to map large-scale genomic organization. Monte Carlo computer simulation shows that the amplification of the stretch inside the nanochannels is owing to an increase in bending rigidity and thickness of bottlebrush-coated DNA. The persistence lengths and widths deduced from the nanochannel data agree with what has been estimated from the analysis of atomic force microscopy images of dried complexes on silica.
Collapse
Affiliation(s)
- Ce Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Armando Hernandez-Garcia
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kai Jiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zongying Gong
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Durgarao Guttula
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siow Yee Ng
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Piravi P. Malar
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeroen A. van Kan
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liang Dai
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrick S. Doyle
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Renko de Vries
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johan R. C. van der Maarel
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands, Food and Biobased Research, Wageningen University, 6700 AA Wageningen, The Netherlands, BioSystems and Micromechanics (BioSym) IRG, Singapore MIT Alliance for Research and Technology (SMART), 117576 Singapore and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. NANOSCALE 2013; 5:7098-140. [PMID: 23832165 DOI: 10.1039/c3nr02176a] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review, we survey the diversity of structures and functions which are encountered in advanced self-assembled nanomaterials. We highlight their flourishing implementations in three active domains of applications: biomedical sciences, information technologies, and environmental sciences. Our main objective is to provide the reader with a concise and straightforward entry to this broad field by selecting the most recent and important research articles, supported by some more comprehensive reviews to introduce each topic. Overall, this compilation illustrates how, based on the rules of supramolecular chemistry, the bottom-up approach to design functional objects at the nanoscale is currently producing highly sophisticated materials oriented towards a growing number of applications with high societal impact.
Collapse
Affiliation(s)
- Eric Busseron
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|