1
|
Ran J, Chen P, Quan X, Si M, Gao D. Improving the Oxygen Evolution Reaction Kinetics in Zn-Air Battery by Iodide Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402052. [PMID: 38970555 DOI: 10.1002/smll.202402052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Zinc-air batteries (ZABs) have garnered considerable attention as a highly promising contender in the field of energy storage and conversion. Nevertheless, their performance is considerably impeded by the proliferation of dendrites on the Zinc anode and the slow kinetics of the redox reaction on the air cathode. Herein, taking Ag30%@LaCoO3 (Ag30%@LCO) heterojunction catalyst as the cathode, it is demonstrated that adding KI additives to the alkaline electrolyte can not only enhance the oxygen electrocatalytic reaction but also inhibit the formation of zinc anode dendrites, thereby achieving a comprehensive improvement in the performance of ZABs. Under the action of the KI additive, the optimized Ag30%@LCO catalyst shows a decreased overpotential from 460 to 220 mV at j = 10 mA cm-2, while the assembled ZAB shows reduced charging potential (1.8 V), and long cycle stability (180 h). Furthermore, the morphology characterization results indicate a reduction in dendrites on the Zn anode. Both experimental and calculated results indicate that the presence of I- as a reaction modifier alters the trajectory of the conventional oxygen evolution reaction, resulting in a more thermodynamically favorable pathway. The introduction of KI additives as electrolytes provides a straightforward approach to developing comprehensively improved ZABs.
Collapse
Affiliation(s)
- Jiaqi Ran
- Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000, China
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Peng Chen
- Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000, China
| | - Xiangning Quan
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Mingsu Si
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Daqiang Gao
- Laboratory for Magnetism and Magnetic Materials, Laboratory Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Zhao JW, Li Y, Luan D, Lou XWD. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
3
|
García-Rodríguez M, Cazorla-Amorós D, Morallón E. Eco-Friendly Mechanochemical Synthesis of Bifunctional Metal Oxide Electrocatalysts for Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202401055. [PMID: 38924618 DOI: 10.1002/cssc.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22 h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.
Collapse
Affiliation(s)
- M García-Rodríguez
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
4
|
Flores-Lasluisa JX, Carré B, Caucheteux J, Compère P, Léonard AF, Job N. Development of In Situ Methods for Preparing La-Mn-Co-Based Compounds over Carbon Xerogel for Oxygen Reduction Reaction in an Alkaline Medium. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1362. [PMID: 39195400 DOI: 10.3390/nano14161362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Metal oxides containing La, Mn, and Co cations can catalyze oxygen reduction reactions (ORRs) in electrochemical processes. However, these materials require carbon support and optimal interactions between both compounds to be active. In this work, two approaches to prepare composites of La-Mn-Co-based compounds over carbon xerogel were developed. Using sol-gel methods, either the metal-based material was deposited on the existing carbon xerogel or vice versa. The metal oxide selected was the LaMn0.7Co0.3O3 perovskite, which has good catalytic behavior and selectivity towards direct ORRs. All the as-prepared composites were tested for ORRs in alkaline liquid electrolytes and characterized by diverse physicochemical techniques such as XRD, XPS, SEM, or N2 adsorption. Although the perovskite structure either decomposed or failed to form using those in situ methods, the materials exhibited great catalytic activity, which can be ascribed to the strengthening of the interactions between oxides and the carbon support via C-O-M covalent bonds and to the formation of new active sites such as the MnO/Co heterointerfaces. Moreover, Co-Nx-C species are formed during the synthesis of the metal compounds over the carbon xerogel. These species possess a strong catalytic activity towards ORR. Therefore, the composites formed by synthesizing metal compounds over the carbon xerogel exhibit the best performance in the ORR, which can be ascribed to the presence of the MnO/Co heterointerfaces and Co-Nx-C species and the strong interactions between both compounds. Moreover, the small nanoparticle size leads to a higher number of active sites available for the reaction.
Collapse
Affiliation(s)
- Jhony Xavier Flores-Lasluisa
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Bryan Carré
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Joachim Caucheteux
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Philippe Compère
- Center for Applied Research and Education in Microscopy (CAREM), Chemistry Institute, University of Liège, B6c, Allée du Six Août 11, 4000 Liège, Belgium
- Interfaculty Research Center on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6c, Allée du Six Août 11, 4000 Liège, Belgium
| | - Alexandre F Léonard
- Department of Chemical Engineering-CARPOR, University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| | - Nathalie Job
- Department of Chemical Engineering-NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, B6a, Allée du Six Août 13, 4000 Liège, Belgium
| |
Collapse
|
5
|
Ma S, Lee H, Moon J. Chirality-Induced Spin Selectivity Enables New Breakthrough in Electrochemical and Photoelectrochemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405685. [PMID: 38963061 DOI: 10.1002/adma.202405685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Wei R, Fu G, Qi H, Liu H. Tuning the high-entropy perovskite as efficient and reliable electrocatalysts for oxygen evolution reaction. RSC Adv 2024; 14:18117-18125. [PMID: 38854838 PMCID: PMC11154883 DOI: 10.1039/d4ra02680b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Due to their unique electronic structure, atomic arrangement and synergistic effect, high-entropy materials are being actively pursued as electrocatalysts for oxygen evolution reaction (OER) in water splitting. However, a relevant strategy to improve high-entropy materials is still lacking. Herein, substitutional doping on the La-site in high-entropy perovskite La1-x Sr x (CrMnFeCoNi)0.2O3 is reported as an efficient OER catalyst. Sr doping is found to be crucial to enhancing the OER activity. The overpotential for the best catalyst La0.3Sr0.7(CrMnFeCoNi)0.2O3 is only 330 mV at 10 mA cm-2, achieving a reduction of 120 mV in overpotential compared to La(CrMnFeCoNi)0.2O3, which is attributed to the enhancement in intrinsic catalytic activity. Experimental evidences including in situ electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) indicate Sr doping induces the formation of high-valence Cr6+, Mn4+, Fe4+, Co4+ and Ni3+ species, which can accelerate the faster charge transfer at the interface, thereby increasing the intrinsic catalytic activity. The assembled two-electrode overall water splitting system operates stably at 10 mA cm-2 for 200 h without attenuation. This work offers an important method for developing a high-performance, high-entropy perovskite OER catalyst for hydrogen production by electrochemical water splitting.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University Zhengzhou 450052 Henan China
| | - Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou Henan 450006 China
| | - Huafeng Qi
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou Henan 450006 China
| | - Hewei Liu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou Henan 450006 China
| |
Collapse
|
7
|
García-Rodríguez M, Flores-Lasluisa JX, Cazorla-Amorós D, Morallón E. Enhancing Interaction between Lanthanum Manganese Cobalt Oxide and Carbon Black through Different Approaches for Primary Zn-Air Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2309. [PMID: 38793376 PMCID: PMC11123494 DOI: 10.3390/ma17102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Due to the need for decarbonization in energy generation, it is necessary to develop electrocatalysts for the oxygen reduction reaction (ORR), a key process in energy generation systems such as fuel cells and metal-air batteries. Perovskite-carbon material composites have emerged as active and stable electrocatalysts for the ORR, and the interaction between both components is a crucial aspect for electrocatalytic activity. This work explores different mixing methods for composite preparation, including mortar mixing, ball milling, and hydrothermal and thermal treatments. Hydrothermal treatment combined with ball milling resulted in the most favorable electrocatalytic performance, promoting intimate and extensive contact between the perovskite and carbon material and improving electrocatalytic activity. Employing X-ray photoelectron spectroscopy (XPS), an increase in the number of M-O-C species was observed, indicating enhanced interaction between the perovskite and the carbon material due to the adopted mixing methods. This finding was further corroborated by temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) techniques. Interestingly, the ball milling method results in similar performance to the hydrothermal method in the zinc-air battery and, thus, is preferable because of the ease and straightforward scalability of the preparation process.
Collapse
Affiliation(s)
- Mario García-Rodríguez
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Jhony X. Flores-Lasluisa
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| | - Diego Cazorla-Amorós
- Departamento Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain;
| | - Emilia Morallón
- Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.-R.)
| |
Collapse
|
8
|
Liu H, Wang Y, Tan P, Dos Santos EC, Holmes SM, Li H, Pan J, D'Agostino C. A Doping-Induced SrCo 0.4Fe 0.6O 3/CoFe 2O 4 Nanocomposite for Efficient Oxygen Evolution in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308948. [PMID: 38109148 DOI: 10.1002/smll.202308948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Perovskite and spinel oxides are promising alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Herein, a novel perovskite/spinel nanocomposite comprised of SrCo0.4Fe0.6O3 and CoFe2O4 (SCF/CF) is prepared through a simple one-step method that incorporates iron doping into a SrCoO3- δ matrix, circumventing complex fabrication processes typical of these materials. At a Fe dopant content of 60%, the CoFe2O4 spinel phase is directly precipitated from the parent SrCo0.4Fe0.6O3 perovskite phase and the number of active B-site metals (Co/Fe) in the parent SCF can be maximized. This nanocomposite exhibits a remarkable OER activity in alkaline media with a small overpotentional of 294 mV at 10 mA cm-2. According to surface states analysis, the parent SCF perovskite remains in its pristine form under alkaline OER conditions, serving as a stable substrate, while the second spinel CF is covered by 5/8 monolayer (ML) O*, exhibiting considerable affinity toward the oxygen species involved in the OER. Analysis based on advanced OER microkinetic volcano model indicates that a 5/8 ML O* covered-CF is the origin for the remarkable activity of this nanocomposite. The results reported here significantly advance knowledge in OER and can boost application, scale-up and commercialisation of electrocatalytic technologies toward clean energy devices.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yuan Wang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Egon C Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Stuart M Holmes
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum-Università di Bologna, Via Terracini, 28, Bologna, 40131, Italy
| |
Collapse
|
9
|
Ingavale S, Gopalakrishnan M, Enoch CM, Pornrungroj C, Rittiruam M, Praserthdam S, Somwangthanaroj A, Nootong K, Pornprasertsuk R, Kheawhom S. Strategic Design and Insights into Lanthanum and Strontium Perovskite Oxides for Oxygen Reduction and Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308443. [PMID: 38258405 DOI: 10.1002/smll.202308443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Perovskite oxides exhibit bifunctional activity for both oxygen reduction (ORR) and oxygen evolution reactions (OER), making them prime candidates for energy conversion in applications like fuel cells and metal-air batteries. Their intrinsic catalytic prowess, combined with low-cost, abundance, and diversity, positions them as compelling alternatives to noble metal and metal oxides catalysts. This review encapsulates the nuances of perovskite oxide structures and synthesis techniques, providing insight into pivotal active sites that underscore their bifunctional behavior. The focus centers on the breakthroughs surrounding lanthanum (La) and strontium (Sr)-based perovskite oxides, specifically their roles in zinc-air batteries (ZABs). An introduction to the mechanisms of ORR and OER is provided. Moreover, the light is shed on strategies and determinants central to optimizing the bifunctional performance of La and Sr-based perovskite oxides.
Collapse
Affiliation(s)
- Sagar Ingavale
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohan Gopalakrishnan
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Carolin Mercy Enoch
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Chennai, 603203, India
| | - Chanon Pornrungroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasadit Nootong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rojana Pornprasertsuk
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Liu LB, Yi C, Mi HC, Zhang SL, Fu XZ, Luo JL, Liu S. Perovskite Oxides Toward Oxygen Evolution Reaction: Intellectual Design Strategies, Properties and Perspectives. ELECTROCHEM ENERGY R 2024; 7:14. [PMID: 38586610 PMCID: PMC10995061 DOI: 10.1007/s41918-023-00209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 12/03/2023] [Indexed: 04/09/2024]
Abstract
Developing electrochemical energy storage and conversion devices (e.g., water splitting, regenerative fuel cells and rechargeable metal-air batteries) driven by intermittent renewable energy sources holds a great potential to facilitate global energy transition and alleviate the associated environmental issues. However, the involved kinetically sluggish oxygen evolution reaction (OER) severely limits the entire reaction efficiency, thus designing high-performance materials toward efficient OER is of prime significance to remove this obstacle. Among various materials, cost-effective perovskite oxides have drawn particular attention due to their desirable catalytic activity, excellent stability and large reserves. To date, substantial efforts have been dedicated with varying degrees of success to promoting OER on perovskite oxides, which have generated multiple reviews from various perspectives, e.g., electronic structure modulation and heteroatom doping and various applications. Nonetheless, the reviews that comprehensively and systematically focus on the latest intellectual design strategies of perovskite oxides toward efficient OER are quite limited. To bridge the gap, this review thus emphatically concentrates on this very topic with broader coverages, more comparative discussions and deeper insights into the synthetic modulation, doping, surface engineering, structure mutation and hybrids. More specifically, this review elucidates, in details, the underlying causality between the being-tuned physiochemical properties [e.g., electronic structure, metal-oxygen (M-O) bonding configuration, adsorption capacity of oxygenated species and electrical conductivity] of the intellectually designed perovskite oxides and the resulting OER performances, coupled with perspectives and potential challenges on future research. It is our sincere hope for this review to provide the scientific community with more insights for developing advanced perovskite oxides with high OER catalytic efficiency and further stimulate more exciting applications. Graphical Abstract
Collapse
Affiliation(s)
- Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Chenxing Yi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Hong-Cheng Mi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Song Lin Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000 China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000 China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9 Canada
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| |
Collapse
|
11
|
Mahmoudi E, Asghari E, Delibaş N, Niaei A. Application of response surface methodology for optimization of the test condition of oxygen evolution reaction over La 0.8Ba 0.2CoO 3 perovskite-active carbon composite. Sci Rep 2023; 13:22878. [PMID: 38129452 PMCID: PMC10739840 DOI: 10.1038/s41598-023-49836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The Experimental Design was applied to optimize the electrocatalytic activity of La0.8Ba0.2CoO3 perovskite oxide/Active Carbon composite material in the alkaline solution for the Oxygen Evolution Reaction. After the preparation of La0.8Ba0.2CoO3, and structural characterizations, the experimental design was utilized to determine the optimal amount of the composite material and testing conditions. The overpotential was defined as the response variable, and the mass ratio of perovskite/active carbon, Potassium hydroxide (KOH) concentration, and Poly(vinylidene fluoride) (PVDF) amount were considered effective parameters. The significance of model terms is demonstrated by P-values less than 0.0500. The proposed prediction model determined the optimal amounts of 0.665 mg of PVDF, a KOH concentration of 0.609 M, and A perovskite/Active Carbon mass ratio of 2.81 with 308.22 mV overpotential (2.27% greater than the actual overpotential). The stability test of the optimized electrode material over 24 h suggests that it could be a good candidate electrocatalyst for OER with reusability potential.
Collapse
Affiliation(s)
- Elham Mahmoudi
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Elnaz Asghari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nagihan Delibaş
- Department of Physics, Faculty of Art and Science, Sakarya University, Sakarya, Turkey
| | - Aligholi Niaei
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
- Department of Physics, Faculty of Art and Science, Sakarya University, Sakarya, Turkey.
| |
Collapse
|
12
|
Rohib R, Rehman SU, Lee E, Kim C, Lee H, Lee SB, Park GG. Synergistic effect of perovskites and nitrogen-doped carbon hybrid materials for improving oxygen reduction reaction. Sci Rep 2023; 13:19832. [PMID: 37963980 PMCID: PMC10645751 DOI: 10.1038/s41598-023-47304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/11/2023] [Indexed: 11/16/2023] Open
Abstract
A fundamental understanding of the electrochemical behavior of hybrid perovskite and nitrogen-doped (N-doped) carbon is essential for the development of perovskite-based electrocatalysts in various sustainable energy device applications. In particular, the selection and modification of suitable carbon support are important for enhancing the oxygen reduction reaction (ORR) of non-platinum group metal electrocatalysts in fuel cells. Herein, we address hybrid materials composed of three representative N-doped carbon supports (BP-2000, Vulcan XC-72 and P-CNF) with valid surface areas and different series of single, double and triple perovskites: Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (Pr0.5Ba0.5)CoO3-δ, and Nd1.5Ba1.5CoFeMnO9-δ (NBCFM), respectively. The combination of NBCFM and N-doped BP-2000 produces a half-wave potential of 0.74 V and a current density of 5.42 mA cm-2 at 0.5 V versus reversible hydrogen electrode, comparable to those of the commercial Pt/C electrocatalyst (0.76 V, 5.21 mA cm-2). Based on physicochemical and electrochemical analyses, we have confirmed a significant improvement in the catalytic performance of low-conductivity perovskite catalyst in the ORR when nitrogen-doped carbon with enhanced electrical conductivity is introduced. Furthermore, it has been observed that nitrogen dopants play active sites, contributing to additional performance enhancement when hybridized with perovskite.
Collapse
Affiliation(s)
- R Rohib
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseoung-gu, Daejeon, 34129, Republic of Korea
- Department of Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Saeed Ur Rehman
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseoung-gu, Daejeon, 34129, Republic of Korea
| | - Eunjik Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseoung-gu, Daejeon, 34129, Republic of Korea.
| | - Changki Kim
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseoung-gu, Daejeon, 34129, Republic of Korea
| | - Hyunjoon Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseoung-gu, Daejeon, 34129, Republic of Korea
| | - Seung-Bok Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseoung-gu, Daejeon, 34129, Republic of Korea
| | - Gu-Gon Park
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseoung-gu, Daejeon, 34129, Republic of Korea.
- Department of Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
13
|
Zhang J, Shi L, Tong R, Yang L. Highly Active Pyrochlore-Type Praseodymium Ruthenate Electrocatalyst for Efficient Acid-Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917040 DOI: 10.1021/acsami.3c08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
To produce directly combustible hydrogen from water, highly active, acid-resistant, and economical catalysts for oxygen evolution reaction (OER) are needed. An electrocatalyst based on praseodymium ruthenate (Pr2Ru2O7) is presented here that greatly outperforms RuO2 for acid-water oxidation. Specifically, at 10 mA cm-2, this electrocatalyst presents a low overpotential (η) of 213 mV and markedly superior stability. Moreover, Pr2Ru2O7 presents a significant rise in turnover frequency (TOF) and a highly intrinsic mass activity of 1618.8 A gRu-1 (η = 300 mV), exceeding the most commonly reported acid OER catalysts. Density functional theory calculations and electronic structure study demonstrate that the Ru 4d-band center related to the longer Ru-O bond with a large radius of Pr ion in this pyrochlore is lower than that in RuO2, which would optimize the binding between the adsorbed oxygen species and catalytic metal sites and enhance the catalytic intrinsic activity.
Collapse
Affiliation(s)
- Jinhui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Lei Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Ruixue Tong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Liping Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| |
Collapse
|
14
|
Yu H, Ke J, Shao Q. Two Dimensional Ir-Based Catalysts for Acidic OER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304307. [PMID: 37534380 DOI: 10.1002/smll.202304307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical water splitting in acidic media is one of the most promising hydrogen production technologies, yet its practical applications in proton exchange membrane (PEM) water electrolyzers are limited by the anodic oxygen evolution reaction (OER). Iridium (Ir)-based materials are considered as the state-of-the-art catalysts for acidic OER due to their good stability under harsh acidic conditions. However, their activities still have much room for improvement. Two-dimensional (2D) materials are full of the advantages of high-surface area, unique electrical properties, facile surface modification, and good stability, making the development of 2D Ir-based catalysts more attractive for achieving high catalytic performance. In this review, first, the unique advantages of 2D catalysts for electrocatalysis are reviewed. Thereafter, the classification, synthesis methods, and recent OER achievements of 2D Ir-based materials, including pure metals, alloys, oxides, and perovskites are introduced. Finally, the prospects and challenges of developing 2D Ir-based catalysts for future acidic OER are discussed.
Collapse
Affiliation(s)
- Hao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jia Ke
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
15
|
Fu K, Chen W, Jiang F, Chen X, Liu J. Research Progress of Perovskite-Based Bifunctional Oxygen Electrocatalyst in Alkaline Conditions. Molecules 2023; 28:7114. [PMID: 37894593 PMCID: PMC10608921 DOI: 10.3390/molecules28207114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
In light of the depletion of conventional energy sources, it is imperative to conduct research and development on sustainable alternative energy sources. Currently, electrochemical energy storage and conversion technologies such as fuel cells and metal-air batteries rely heavily on precious metal catalysts like Pt/C and IrO2, which hinders their sustainable commercial development. Therefore, researchers have devoted significant attention to non-precious metal-based catalysts that exhibit high efficiency, low cost, and environmental friendliness. Among them, perovskite oxides possess low-cost and abundant reserves, as well as flexible oxidation valence states and a multi-defect surface. Due to their advantageous structural characteristics and easily adjustable physicochemical properties, extensive research has been conducted on perovskite-based oxides. However, these materials also exhibit drawbacks such as poor intrinsic activity, limited specific surface area, and relatively low apparent catalytic activity compared to precious metal catalysts. To address these limitations, current research is focused on enhancing the physicochemical properties of perovskite-based oxides. The catalytic activity and stability of perovskite-based oxides in Oxygen Reduction Reaction/Oxygen Evolution Reaction (ORR/OER) can be enhanced using crystallographic structure tuning, cationic regulation, anionic regulation, and nano-processing. Furthermore, extensive research has been conducted on the composite processing of perovskite oxides with other materials, which has demonstrated enhanced catalytic performance. Based on these different ORR/OER modification strategies, the future challenges of perovskite-based bifunctional oxygen electrocatalysts are discussed alongside their development prospects.
Collapse
Affiliation(s)
- Kailin Fu
- Department of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China; (W.C.); (F.J.)
| | - Weijian Chen
- Department of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China; (W.C.); (F.J.)
| | - Feng Jiang
- Department of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China; (W.C.); (F.J.)
| | - Xia Chen
- Sichuan Volcational College of Cultural Industries, Chengdu 610213, China;
| | - Jianmin Liu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
| |
Collapse
|
16
|
Wang QS, Yuan YC, Li CF, Zhang ZR, Xia C, Pan WG, Guo RT. Research Progress on Photocatalytic CO 2 Reduction Based on Perovskite Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301892. [PMID: 37194985 DOI: 10.1002/smll.202301892] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Photocatalytic CO2 reduction to valuable fuels is a promising way to alleviate anthropogenic CO2 emissions and energy crises. Perovskite oxides have attracted widespread attention as photocatalysts for CO2 reduction by virtue of their high catalytic activity, compositional flexibility, bandgap adjustability, and good stability. In this review, the basic theory of photocatalysis and the mechanism of CO2 reduction over perovskite oxide are first introduced. Then, perovskite oxides' structures, properties, and preparations are presented. In detail, the research progress on perovskite oxides for photocatalytic CO2 reduction is discussed from five aspects: as a photocatalyst in its own right, metal cation doping at A and B sites of perovskite oxides, anion doping at O sites of perovskite oxides and oxygen vacancies, loading cocatalyst on perovskite oxides, and constructing heterojunction with other semiconductors. Finally, the development prospects of perovskite oxides for photocatalytic CO2 reduction are put forward. This article should serve as a useful guide for creating perovskite oxide-based photocatalysts that are more effective and reasonable.
Collapse
Affiliation(s)
- Qing-Shan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Yi-Chao Yuan
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
17
|
Shang C, Xiao X, Xu Q. Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for oxygen evolution catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Ma Y, Ma B, Wu D, Wang J, Li Y, Fan X, Xia Q, Zhang F, Peng W. Stability enhancing of perovskite LaCoO 3 by compositing with oxygen doped MoS 2 in Fenton-like reactions. CHEMOSPHERE 2023; 326:138441. [PMID: 36935060 DOI: 10.1016/j.chemosphere.2023.138441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Perovskite materials are reported to be effective in peroxymonosulfate (PMS) based Fenton-like reactions, the leaching rates of chalcogenide materials in perovskite materials are however serious, thus leading to bad performance in long-term stability. In this study, an O-doped MoS2 is synthesized to composite with LaCoO3, and the high catalytic activity of LaCoO3 is well preserved with greatly decreased Co leaching. During the BPA degradation with PMS as oxidant, ∼100% degradation can be achieved in 20 min and this degradation efficiency can be maintained for ∼45 h in a simulated fixed bed reactor, which is almost 3 times longer than the pure LaCoO3. With the compositing of O-doped MoS2, the leached Co was greatly decreased and the dominated reactive oxidation species (ROS) transformed from SO4•- into O2•- with longer lifespan, thus resulting in the better stability. This study could promote the application of perovskite materials in the real industrial wastewater treatment.
Collapse
Affiliation(s)
- Yansong Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Biao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Institute of Shaoxing, Tianjin University, Zhejiang, 312099, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Institute of Shaoxing, Tianjin University, Zhejiang, 312099, PR China
| | - Qing Xia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Institute of Shaoxing, Tianjin University, Zhejiang, 312099, PR China.
| |
Collapse
|
19
|
Cheng C, Zhang Y, Chen H, Zhang Y, Chen X, Lu M. Reduced graphene oxide-wrapped La 0·8Sr 0·2MnO 3 microspheres sensing electrode for highly sensitive nitrite detection. Talanta 2023; 260:124644. [PMID: 37182290 DOI: 10.1016/j.talanta.2023.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
An electrochemical nitrite sensor based on perovskite oxides La0·8Sr0·2MnO3 (LSM) microspheres-decorated reduced graphene oxide (rGO) composite was presented to take the merit of the excellent electrocatalytic activity of the LSM and the large surface area of rGO. The content of rGO has been finely adjusted and the electrochemical sensor employing 15 wt% rGO has shown an ultralow nitrite detection limit of 0.016 μM and a high sensitivity of 0.041 μA μM-1 cm-2 and 0.039 μA μM-1 cm-2 in the range of 2-100 and 100-5000 μM, respectively. In addition, the proposed electrode shows good selectivity, reproducibility and stability, suitable for detection of nitrite at various pH values. The sensor was used to determine the nitrite level in environmental water samples with acceptable relative error, demonstrating its feasibility for practical environmental monitoring.
Collapse
Affiliation(s)
- Chu Cheng
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Yixin Zhang
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Hongyu Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Yulong Zhang
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Xinyi Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China.
| | - Miao Lu
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
20
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
21
|
Xiao X, Zheng Z, Zhong X, Gao R, Piao Z, Jiao M, Zhou G. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS NANO 2023; 17:1764-1802. [PMID: 36716429 DOI: 10.1021/acsnano.2c09509] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of 5G and the Internet of Things has spawned a demand for wearable electronic devices. However, the lack of a suitable flexible energy storage system has become the "Achilles' Heel" of wearable electronic devices. Additional problems during the transformation of the battery structure from conventional to flexible also present a severe challenge to the battery design. Flexible Zn-based batteries, including Zn-ion batteries and Zn-air batteries, have long been considered promising candidates due to their high safety, eco-efficiency, substantial reserve, and low cost. In the past decade, researchers have come up with elaborate designs for each portion of flexible Zn-based batteries to improve the ionic conductivities, mechanical properties, environment adaptabilities, and scalable productions. It would be helpful to summarize the reported strategies and compare their pros and cons to facilitate further research toward the commercialization of flexible Zn-based batteries. In this review, the current progress in developing flexible Zn-based batteries is comprehensively reviewed, including their electrolytes, cathodes, and anodes, and discussed in terms of their synthesis, characterization, and performance validation. By clarifying the challenges in flexible Zn-based battery design, we summarize the methodology from previous investigations and propose challenges for future development. In the end, a research paradigm of Zn-based batteries is summarized to fit the burgeoning requirement of wearable electronic devices in an iterative process, which will benefit the future development of Zn-based batteries.
Collapse
Affiliation(s)
- Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhiyang Zheng
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiongwei Zhong
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Miaolun Jiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
22
|
Ejsmont A, Kadela K, Grzybek G, Darvishzad T, Słowik G, Lofek M, Goscianska J, Kotarba A, Stelmachowski P. Speciation of Oxygen Functional Groups on the Carbon Support Controls the Electrocatalytic Activity of Cobalt Oxide Nanoparticles in the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5148-5160. [PMID: 36657620 PMCID: PMC9906611 DOI: 10.1021/acsami.2c18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The effective use of the active phase is the main goal of the optimization of supported catalysts. However, carbon supports do not interact strongly with metal oxides, thus, oxidative treatment is often used to enhance the number of anchoring sites for deposited particles. In this study, we set out to investigate whether the oxidation pretreatment of mesoporous carbon allows the depositing of a higher loading and a more dispersed cobalt active phase. We used graphitic ordered mesoporous carbon obtained by a hard-template method as active phase support. To obtain different surface concentrations and speciation of oxygen functional groups, we used a low-temperature oxygen plasma. The main methods used to characterize the studied materials were X-ray photoelectron spectroscopy, transmission electron microscopy, and electrocatalytic tests in the oxygen evolution reaction. We have found that the oxidative pretreatment of mesoporous carbon influences the speciation of the deposited cobalt oxide phase. Moreover, the activity of the electrocatalysts in oxygen evolution is positively correlated with the relative content of the COO-type groups and negatively correlated with the C═O-type groups on the carbon support. Furthermore, the high relative content of COO-type groups on the carbon support is correlated with the presence of well-dispersed Co3O4 nanoparticles. The results obtained indicate that to achieve a better dispersed and thus more catalytically active material, it is more important to control the speciation of the oxygen functional groups rather than to maximize their total concentration.
Collapse
Affiliation(s)
- Aleksander Ejsmont
- Department
of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Karolina Kadela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Gabriela Grzybek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Termeh Darvishzad
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Grzegorz Słowik
- Department
of Chemical Technology, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031Lublin, Poland
| | - Magdalena Lofek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Joanna Goscianska
- Department
of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Andrzej Kotarba
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Paweł Stelmachowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| |
Collapse
|
23
|
Jeerh G, Zou P, Zhang M, Tao S. Optimization of a Perovskite Oxide-Based Cathode Catalyst Layer on Performance of Direct Ammonia Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1029-1041. [PMID: 36573586 PMCID: PMC9837787 DOI: 10.1021/acsami.2c17253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
To maximize fuel cell performance, transport pathways for electrons, ions, and reactants should be connected well. This demands a well-constructed microstructure in the catalyst layer (CL). Herein we design and optimize a cathode CL for a direct ammonia fuel cell (DAFC) using a perovskite oxide as the catalyst to reduce reliance on platinum group metals (PGMs). The effects of tailoring carbon, ionomer, and polytetrafluoroethylene (PTFE) content in cathode CLs (CCLs) were explored, and several DAFCs were tested. Using the same catalyst and operating conditions, the lowest maximum current density and peak power density obtained were 85.3 mA cm-2 and 5.92 mW cm-2, respectively, which substantially increased to 317 mA cm-2 and 30.1 mW cm-2 through proper carbon, ionomer, and PTFE optimization, illustrating the importance of an effective three-phase interface. The findings reveal that despite employment of an active catalyst for oxygen reduction at the cathode site, the true performance of the catalyst cannot be reflected unless it is supported by proper design of the CCL. The study also reveals that by optimizing the CCL, similar performances to those of Pt/C-based CCLs in literature can be obtained at a cost reduction.
Collapse
Affiliation(s)
- Georgina Jeerh
- School
of Engineering, University of Warwick, CoventryCV4 7AL, U.K.
| | - Peimiao Zou
- School
of Engineering, University of Warwick, CoventryCV4 7AL, U.K.
| | - Mengfei Zhang
- School
of Engineering, University of Warwick, CoventryCV4 7AL, U.K.
| | - Shanwen Tao
- School
of Engineering, University of Warwick, CoventryCV4 7AL, U.K.
- Department
of Chemical Engineering, Monash University, Clayton, Victoria3800, Australia
| |
Collapse
|
24
|
Shuai Y, Liu S, Wang Y, Zhou W, Qi X, Liu Y. The influence of MOF modification on oxygen evolution and reduction reaction of Fe-doped GdBaCo2O5+δ perovskite. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Metal oxide Perovskite-Carbon composites as electrocatalysts for zinc-air batteries. Optimization of ball-milling mixing parameters. J Colloid Interface Sci 2023; 630:269-280. [DOI: 10.1016/j.jcis.2022.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
26
|
High catalytic activity of La0.6Sr0.4Co0.2Fe0.8O3-δ prepared by the spray pyrolysis towards the oxygen reduction reaction. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Flores-Lasluisa JX, Huerta F, Cazorla-Amorós D, Morallón E. Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. ENVIRONMENTAL RESEARCH 2022; 214:113731. [PMID: 35753372 DOI: 10.1016/j.envres.2022.113731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Transition metal oxide-based materials are an interesting alternative to substitute noble-metal based catalyst in energy conversion devices designed for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution reactions (HER). Perovskite (ABO3) and spinel (AB2O4) oxides stand out against other structures due to the possibility of tailoring their chemical composition and, consequently, their properties. Particularly, the electrocatalytic performance of these materials depends on features such as chemical composition, crystal structure, nanostructure, cation substitution level, eg orbital filling or oxygen vacancies. However, they suffer from low electrical conductivity and surface area, which affects the catalytic response. To mitigate these drawbacks, they have been combined with carbon materials (e.g. carbon black, carbon nanotubes, activated carbon, and graphene) that positively influence the overall catalytic activity. This review provides an overview on tunable perovskites (mainly lanthanum-based) and spinels featuring 3d metal cations such as Mn, Fe, Co, Ni and Cu on octahedral sites, which are known to be active for the electrochemical energy conversion.
Collapse
Affiliation(s)
- J X Flores-Lasluisa
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - F Huerta
- Dept. Ingenieria Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801, Alcoy, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
28
|
Xie J, Gao Y, Chen G, Wang Y, Yu J, Ciucci F, Chen D, Shao Z. Simultaneously Improved Surface and Bulk Participation of Evolved Perovskite Oxide for Boosting Oxygen Evolution Reaction Activity Using a Dynamic Cation Exchange Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204109. [PMID: 36228095 DOI: 10.1002/smll.202204109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Perovskite oxides are intriguing electrocatalysts for the oxygen evolution reaction, but both surface (e.g., composition) and bulk (e.g., lattice oxygen) properties should be optimized to maximize their participation in offering favorable activity and durability. In this work, it is demonstrated that through introducing exogenous Fe3+ ( Fe exo 3 + ${\rm{Fe}}_{{\rm{exo}}}^{3 + }$ ) into the liquid electrolyte, not only is the reconstructed surface stabilized and optimized, but the lattice oxygen diffusion is also accelerated. As a result, compared to that in Fe-free 0.1 m KOH, PrBa0.5 Sr0.5 Co2 O5+δ in 0.1 m KOH + 0.1 mm Fe3+ demonstrates a tenfold increment in activity, an extremely low Tafel slope of ≈50 mV dec-1 , and outstanding stability at 10.0 mA cm-2 for 10 h. The superior activity and stability are further demonstrated in Zn-air batteries by presenting high open-circuit voltage, narrow potential gap, high power output, and long-term cycle stability (500 cycles). Based on experimental and theoretical calculations, it is discovered that the dynamical interaction between the Co hydr(oxy)oxide from surface reconstruction and intentional Fe3+ from the electrolyte plays an important role in the enhanced activity and durability, while the generation of a perovskite-hydr(oxy)oxide heterostructure improves the lattice oxygen diffusion to facilitate lattice oxygen participation and enhances the stability.
Collapse
Affiliation(s)
- Jiao Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou, 510632, China
| | - Yang Gao
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Guichan Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou, 510632, China
| | - Yi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou, 510632, China
| | - Jing Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, Hong Kong, 999077, China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, Hong Kong, 999077, China
- Department of Chemical and Biological Engineering, HKUST Energy Institute, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, Hong Kong, 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, 518057, China
| | - Dengjie Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou, 510632, China
| | - Zongping Shao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
29
|
Yu H, Qin G, Wang J, Zhao X, Li L, Yu X, Zhang X, Lu Z, Yang X. Improving Oxygen Reduction Reaction Performance via Central Ions Enhanced Crystal-Field Splitting of MnO 6 Octahedron. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haoran Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Guoqing Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Jianxiu Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xinning Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| |
Collapse
|
30
|
Kim D, Oh LS, Park JH, Kim HJ, Lee S, Lim E. Perovskite-based electrocatalysts for oxygen evolution reaction in alkaline media: A mini review. Front Chem 2022; 10:1024865. [PMID: 36277352 PMCID: PMC9585187 DOI: 10.3389/fchem.2022.1024865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Water electrolysis is one of the attractive technologies for producing clean and sustainable hydrogen fuels with high purity. Among the various kinds of water electrolysis systems, anion exchange membrane water electrolysis has received much attention by combining the advantages of alkaline water electrolysis and proton exchange membrane water electrolysis. However, the sluggish kinetics of the oxygen evolution reaction, which is based on multiple and complex reaction mechanisms, is regarded as a major obstacle for the development of high-efficiency water electrolysis. Therefore, the development of high-performance oxygen evolution reaction electrocatalysts is a prerequisite for the commercialization and wide application of water electrolysis systems. This mini review highlights the current progress of representative oxygen evolution reaction electrocatalysts that are based on a perovskite structure in alkaline media. We first summarize the research status of various kinds of perovskite-based oxygen evolution reaction electrocatalysts, reaction mechanisms and activity descriptors. Finally, the challenges facing the development of perovskite-based oxygen evolution reaction electrocatalysts and a perspective on their future are discussed.
Collapse
Affiliation(s)
- Dongkyu Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Lee Seul Oh
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Hyung Ju Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, South Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), Gumi, South Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology (KIT), Gumi, South Korea
| | - Eunho Lim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| |
Collapse
|
31
|
Cao X, Chen T, Sun S, Yu A, Sun C, Leng H, Wu C. Surface modified perovskite SrCo0.8Fe0.1Nb0.1O3-δ oxide for enhanced electrocatalytic activity of oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Jeerh G, Zou P, Zhang M, Chen S, Humphreys J, Tao S. Electrooxidation of ammonia on A-site deficient perovskite oxide La0.9Ni0.6Cu0.35Fe0.05O3-δ for wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Vazhayil A, Thomas J, Thomas N. Cobalt doping in LaMnO3 perovskite catalysts – B site optimization by solution combustion for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Li H, Han X, Zhao W, Azhar A, Jeong S, Jeong D, Na J, Wang S, Yu J, Yamauchi Y. Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction. MATERIALS HORIZONS 2022; 9:1788-1824. [PMID: 35485940 DOI: 10.1039/d2mh00075j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical water splitting is a promising technology for hydrogen production and sustainable energy conversion, but the existing electrolytic cells lack a sufficient number of robust and highly active anodic electrodes for the oxygen evolution reaction (OER). Electrochemical synthesis technology provides a feasible route for the preparation of independent OER electrodes with high utilization of active sites, fast mass transfer, and a simple preparation process. A comprehensive review of the electrochemical synthesis of nano/microstructure transition metal-based OER materials is provided. First, some fundamentals of electrochemical synthesis are introduced, including electrochemical synthesis strategies, electrochemical synthesis substrates, the electrolyte used in electrochemical synthesis, and the combination of electrochemical synthesis and other synthesis methods. Second, the morphology and properties of electrochemical synthetic materials are summarized and introduced from the viewpoint of structural design. Then, the latest progress regarding the development of transition metal-based OER electrocatalysts is reviewed, including the classification of metals/alloys, oxides, hydroxides, sulfides, phosphides, selenides, and other transition metal compounds. In addition, the oxygen evolution mechanism and rate-determining steps of transition metal-based catalysts are also discussed. Finally, the advantages, challenges, and opportunities regarding the application of electrochemical techniques in the synthesis of transition metal-based OER electrocatalysts are summarized. This review can provide inspiration for researchers and promote the development of water splitting technology.
Collapse
Affiliation(s)
- Huixi Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xue Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Wen Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Alowasheeir Azhar
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Seunghwan Jeong
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea.
| | - Deugyoung Jeong
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea.
| | - Jongbeom Na
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea.
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shengping Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
35
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
36
|
Yu J, Wang C, Yuan Q, Yu X, Wang D, Chen Y. Ag-Modified Porous Perovskite-Type LaFeO3 for Efficient Ethanol Detection. NANOMATERIALS 2022; 12:nano12101768. [PMID: 35630990 PMCID: PMC9143232 DOI: 10.3390/nano12101768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
Perovskite (ABO3) nanosheets with a high carrier mobility have been regarded as the best candidates for gas-sensitive materials arising from their exceptional crystal structure and physical–chemical properties that often exhibit good gas reactivity and stability. Herein, Ag in situ modified porous LaFeO3 nanosheets were synthesized by the simple and efficient graphene oxide (GO)-assisted co-precipitation method which was used for sensitive and selective ethanol detection. The Ag modification ratio was studied, and the best performance was obtained with 5% Ag modification. The Ag/LaFeO3 nanomaterials with high surface areas achieved a sensing response value (Rg/Ra) of 20.9 to 20 ppm ethanol at 180 °C with relatively fast response/recovery times (26/27 s). In addition, they showed significantly high selectivity for ethanol but only a slight response to other interfering gases. The enhanced gas-sensing performance was attributed to the combination of well-designed porous nanomaterials with noble metal sensitization. The new approach is provided for this strategy for the potential application of more P-type ABO3 perovskite-based gas-sensitive devices.
Collapse
Affiliation(s)
- Jiejie Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Cong Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Quan Yuan
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Xin Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
- Correspondence: (D.W.); (Y.C.)
| | - Yang Chen
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Shanghai Yaolu Instrument & Equipment Co., Ltd., Shanghai 200444, China
- Correspondence: (D.W.); (Y.C.)
| |
Collapse
|
37
|
Zheng H, Gao Y, Wang X, Shi H, Gu Y, Jiang W, Liu J, Li S, Li A, Wang S, Wang J, Zhong X. Tailoring the
d
‐Band Centers of Perovskite Oxides for Electrochemical Ozone Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202200966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haiyang Zheng
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Yijing Gao
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Xiaosa Wang
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Huaijie Shi
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Yu Gu
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Wenbin Jiang
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Jia Liu
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Suiqin Li
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Aiyuan Li
- Zhejiang Collaborative Innovation Center for High Value Utilization of byproducts from Ethylene Project Ningbo Polytechnic College Ningbo Zhejiang 315800 China
| | - Shibin Wang
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Jianguo Wang
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| | - Xing Zhong
- Institute of Industrial Catalysis College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Huzhou Zhejiang 313200 China
| |
Collapse
|
38
|
Chen Z, Yang H, Kang Z, Driess M, Menezes PW. The Pivotal Role of s-, p-, and f-Block Metals in Water Electrolysis: Status Quo and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108432. [PMID: 35104388 DOI: 10.1002/adma.202108432] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Indexed: 05/27/2023]
Abstract
Transition metals, in particular noble metals, are the most common species in metal-mediated water electrolysis because they serve as highly active catalytic sites. In many cases, the presence of nontransition metals, that is, s-, p-, and f-block metals with high natural abundance in the earth-crust in the catalytic material is indispensable to boost efficiency and durability in water electrolysis. This is why alkali metals, alkaline-earth metals, rare-earth metals, lean metals, and metalloids receive growing interest in this research area. In spite of the pivotal role of these nontransition metals in tuning efficiency of water electrolysis, there is far more room for developments toward a knowledge-based catalyst design. In this review, five classes of nontransition metals species which are successfully utilized in water electrolysis, with special emphasis on electronic structure-catalytic activity relationships and phase stability, are discussed. Moreover, specific fundamental aspects on electrocatalysts for water electrolysis as well as a perspective on this research field are also addressed in this account. It is anticipated that this review can trigger a broader interest in using s-, p-, and f-block metals species toward the discovery of advanced polymetal-containing electrocatalysts for practical water splitting.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
39
|
Zheng Q, Zhang Y, Su C, Zhao L, Guo Y. Nonnoble metal oxides for high‐performance Zn‐air batteries: Design strategies and future challenges. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qilong Zheng
- School of Materials Science and Technology Anhui University Hefei China
| | - Yidan Zhang
- School of Materials Science and Technology Anhui University Hefei China
- School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan China
| | - Chao Su
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Youmin Guo
- School of Materials Science and Technology Anhui University Hefei China
| |
Collapse
|
40
|
Zhu Y, Liu D, Jing H, Zhang F, Zhang X, Hu S, Zhang L, Wang J, Zhang L, Zhang W, Pang B, Zhang P, Fan F, Xiao J, Liu W, Zhu X, Yang W. Oxygen activation on Ba-containing perovskite materials. SCIENCE ADVANCES 2022; 8:eabn4072. [PMID: 35417241 PMCID: PMC9007513 DOI: 10.1126/sciadv.abn4072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Oxygen activation, including oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), is at the heart of many important energy conversion processes. However, the activation mechanism of Ba-containing perovskite materials is still ambiguous, because of the complex four-electron transfer process on the gas-solid interfaces. Here, we directly observe that BaO and BaO2 segregated on Ba-containing material surface participate in the oxygen activation process via the formation and decomposition of BaO2. Tens of times of increase in catalytic activities was achieved by introducing barium oxides in the traditional perovskite and inert Au electrodes, indicating that barium oxides are critical for oxygen activation. We find that BaO and BaO2 are more active than the B-site of perovskite for ORR and OER, respectively, and closely related to the high activity of Ba-containing perovskite.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dongdong Liu
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
- Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Huijuan Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Xiaoben Zhang
- University of Chinese Academy of Sciences, Beijing 100039, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Shiqing Hu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Liming Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jingyi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lixiao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenhao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bingjie Pang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Liu
- University of Chinese Academy of Sciences, Beijing 100039, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Xuefeng Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
41
|
Adegoke KA, Maxakato NW. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Dai J, Zhu Y, Chen Y, Wen X, Long M, Wu X, Hu Z, Guan D, Wang X, Zhou C, Lin Q, Sun Y, Weng SC, Wang H, Zhou W, Shao Z. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat Commun 2022; 13:1189. [PMID: 35246542 PMCID: PMC8897394 DOI: 10.1038/s41467-022-28843-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Improving the catalytic efficiency of platinum for the hydrogen evolution reaction is valuable for water splitting technologies. Hydrogen spillover has emerged as a new strategy in designing binary-component Pt/support electrocatalysts. However, such binary catalysts often suffer from a long reaction pathway, undesirable interfacial barrier, and complicated synthetic processes. Here we report a single-phase complex oxide La2Sr2PtO7+δ as a high-performance hydrogen evolution electrocatalyst in acidic media utilizing an atomic-scale hydrogen spillover effect between multifunctional catalytic sites. With insights from comprehensive experiments and theoretical calculations, the overall hydrogen evolution pathway proceeds along three steps: fast proton adsorption on O site, facile hydrogen migration from O site to Pt site via thermoneutral La-Pt bridge site serving as the mediator, and favorable H2 desorption on Pt site. Benefiting from this catalytic process, the resulting La2Sr2PtO7+δ exhibits a low overpotential of 13 mV at 10 mA cm−2, a small Tafel slope of 22 mV dec−1, an enhanced intrinsic activity, and a greater durability than commercial Pt black catalyst. While renewable H2 production offers a promising route for clean energy production, there is an urgent need to improve catalyst performances. Here, authors design a Pt-containing complex oxide that utilizes atomic-scale hydrogen spillover to promote H2 evolution electrocatalysis in acidic media.
Collapse
Affiliation(s)
- Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Yu Chen
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinhao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Daqin Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Chuan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Qian Lin
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Shih-Chang Weng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
43
|
Hu Z, Hao L, Quan F, Guo R. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The demand for the development of clean and efficient energy is becoming increasingly pressing due to depleting fossil fuels and environmental concerns.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fan Quan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
44
|
Yaguchi M, Yoshida-Hirahara M, Ogihara H, Kurokawa H. Simple solution route to synthesize NiFe oxide/nanocarbon composite catalysts for the oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simple solution route produces OER-active and cost-effective NiFeOx/C catalysts, which contribute to the production of green hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Mizuri Yaguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Miru Yoshida-Hirahara
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hitoshi Ogihara
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hideki Kurokawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
45
|
Mukherjee S, Hou S, Watzele SA, Garlyyev B, Li W, Bandarenka AS, Fischer RA. Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOF‐derived Electrocatalysts. ChemElectroChem 2021. [DOI: 10.1002/celc.202101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soumya Mukherjee
- Technical University Munich: Technische Universitat Munchen Department of Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Shujin Hou
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Sebastian A. Watzele
- Technical University Munich: Technische Universitat Munchen Physik James-Franck-Str. 1 85748 Munich GERMANY
| | - Batyr Garlyyev
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Weijin Li
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Aliaksandr S. Bandarenka
- Technical University Munich: Technische Universitat Munchen Physics Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Roland A. Fischer
- Technische Universität München Lehrst. für Anorgan. u. Metallorgan. Chemie Lichtenbergstr. 4 85748 Garching GERMANY
| |
Collapse
|
46
|
Zoller F, Häringer S, Böhm D, Luxa J, Sofer Z, Fattakhova-Rohlfing D. Carbonaceous Oxygen Evolution Reaction Catalysts: From Defect and Doping-Induced Activity over Hybrid Compounds to Ordered Framework Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007484. [PMID: 33942507 DOI: 10.1002/smll.202007484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Oxygen evolution reaction (OER) is expected to be of great importance for the future energy conversion and storage in form of hydrogen by water electrolysis. Besides the traditional noble-metal or transition metal oxide-based catalysts, carbonaceous electrocatalysts are of great interest due to their huge structural and compositional variety and unrestricted abundance. This review provides a summary of recent advances in the field of carbon-based OER catalysts ranging from "pure" or unintentionally doped carbon allotropes over heteroatom-doped carbonaceous materials and carbon/transition metal compounds to metal oxide composites where the role of carbon is mainly assigned to be a conductive support. Furthermore, the review discusses the recent developments in the field of ordered carbon framework structures (metal organic framework and covalent organic framework structures) that potentially allow a rational design of heteroatom-doped 3D porous structures with defined composition and spatial arrangement of doping atoms to deepen the understanding on the OER mechanism on carbonaceous structures in the future. Besides introducing the structural and compositional origin of electrochemical activity, the review discusses the mechanism of the catalytic activity of carbonaceous materials, their stability under OER conditions, and potential synergistic effects in combination with metal (or metal oxide) co-catalysts.
Collapse
Affiliation(s)
- Florian Zoller
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| | - Sebastian Häringer
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), Butenandtstrasse 5-13 (E), Munich, 81377, Germany
| | - Daniel Böhm
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Dina Fattakhova-Rohlfing
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| |
Collapse
|
47
|
Ma X, Li X, Su C, Zhu M, Miao J, Guan D, Zhou W, Shao Z. Interface engineered perovskite oxides for enhanced catalytic oxidation: The vital role of lattice oxygen. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Liu D, Zhou P, Bai H, Ai H, Du X, Chen M, Liu D, Ip WF, Lo KH, Kwok CT, Chen S, Wang S, Xing G, Wang X, Pan H. Development of Perovskite Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101605. [PMID: 34310054 DOI: 10.1002/smll.202101605] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Perovskite oxides are studied as electrocatalysts for oxygen evolution reactions (OER) because of their low cost, tunable structure, high stability, and good catalytic activity. However, there are two main challenges for most perovskite oxides to be efficient in OER, namely less active sites and low electrical conductivity, leading to limited catalytic performance. To overcome these intrinsic obstacles, various strategies are developed to enhance their catalytic activities in OER. In this review, the recent developments of these strategies is comprehensively summarized and systematically discussed, including composition engineering, crystal facet control, morphology modulation, defect engineering, and hybridization. Finally, perspectives on the design of perovskite oxide-based electrocatalysts for practical applications in OER are given.
Collapse
Affiliation(s)
- Dong Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoqiang Ai
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xinyu Du
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Mingpeng Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kin Ho Lo
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
49
|
Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. MATERIALS 2021; 14:ma14174984. [PMID: 34501072 PMCID: PMC8434594 DOI: 10.3390/ma14174984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
This review paper presents the most recent research progress on carbon-based composite electrocatalysts for the oxygen evolution reaction (OER), which are of interest for application in low temperature water electrolyzers for hydrogen production. The reviewed materials are primarily investigated as active and stable replacements aimed at lowering the cost of the metal electrocatalysts in liquid alkaline electrolyzers as well as potential electrocatalysts for an emerging technology like alkaline exchange membrane (AEM) electrolyzers. Low temperature electrolyzer technologies are first briefly introduced and the challenges thereof are presented. The non-carbon electrocatalysts are briefly overviewed, with an emphasis on the modes of action of different active phases. The main part of the review focuses on the role of carbon–metal compound active phase interfaces with an emphasis on the synergistic and additive effects. The procedures of carbon oxidative pretreatment and an overview of metal-free carbon catalysts for OER are presented. Then, the successful synthesis protocols of composite materials are presented with a discussion on the specific catalytic activity of carbon composites with metal hydroxides/oxyhydroxides/oxides, chalcogenides, nitrides and phosphides. Finally, a summary and outlook on carbon-based composites for low temperature water electrolysis are presented.
Collapse
|
50
|
Chandra P. Modern Trends in the Applications of Perovskites for Selective Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202101434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Prakash Chandra
- Department of Chemistry School of Technology Pandit Deendayal Petroleum University Knowledge Corridor, Raisan Village Gandinagar Gujarat 382007
| |
Collapse
|