1
|
Sneha N, Shakthivel KR, Kiruthika S. Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39869529 DOI: 10.1021/acsami.4c15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles. In contrast to several existing techniques, the current study realizes highly conducting Au fabric (7-15 Ω/□) in a layer-by-layer coating. The obtained Au fabrics demonstrate excellent stability against various deformations and abrasions, and its sheet resistance remained unaltered even after multiple cycles of bending, twisting, scotch tape adhesions, and sandpaper abrasions. In addition, the prepared Au fabrics exhibit high robustness toward various chemical media, highlighting their anticorrosive properties. Although Au fabrics showed a slight increase in sheet resistance postwashing and ultrasonication tests, it was got ridden by coating a thin layer of a biocompatible polydimethylsiloxane (PDMS) polymer. Besides enhancing the adhesion of Au NPs, PDMS coating offered a hydrophobic surface to fabrics rendering their use toward self-cleaning applications. High-performing energy storage devices integrated with wearable technologies are in great demand. In this context, here, electropolymerized polyaniline (PANI)-coated Au fabrics were employed to develop supercapacitors with remarkable energy-storing capability. In a symmetric two-electrode configuration, the device offered a maximum areal capacitance of 660 mF/cm2 with high areal energy and power densities of 58.64 μWh/cm2 and 22.86 mW/cm2, respectively. The solid-state supercapacitor device (SSD) fabricated using Au/PANI-30 electrodes exhibited an areal capacitance of 495 mF/cm2 with energy and power densities of 33 μWh/cm2 and 10,660 μW/cm2, respectively. This LBL method offers a significant advantage over existing techniques by offering simple room-temperature fabrication with excellent conductivity and adaptability to various substrates and with ease of scalability.
Collapse
Affiliation(s)
- Namuni Sneha
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| | - Kamaraj R Shakthivel
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| | - S Kiruthika
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
2
|
Liu SZ, Guo WT, Chen H, Yin ZX, Tang XG, Sun QJ. Recent Progress on Flexible Self-Powered Tactile Sensing Platforms for Health Monitoring and Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405520. [PMID: 39128137 DOI: 10.1002/smll.202405520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Over the past decades, tactile sensing technology has made significant advances in the fields of health monitoring and robotics. Compared to conventional sensors, self-powered tactile sensors do not require an external power source to drive, which makes the entire system more flexible and lightweight. Therefore, they are excellent candidates for mimicking the tactile perception functions for wearable health monitoring and ideal electronic skin (e-skin) for intelligent robots. Herein, the working principles, materials, and device fabrication strategies of various self-powered tactile sensing platforms are introduced first. Then their applications in health monitoring and robotics are presented. Finally, the future prospects of self-powered tactile sensing systems are discussed.
Collapse
Affiliation(s)
- Shu-Zheng Liu
- School of Physics and Optoelectronic Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wen-Tao Guo
- School of Physics and Optoelectronic Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hao Chen
- School of Physics and Optoelectronic Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhi-Xiang Yin
- School of Physics and Optoelectronic Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin-Gui Tang
- School of Physics and Optoelectronic Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Du J, Hou X, Zhu W, Zhou H, She X, Yang Q, Tsou C. Mechanically Robust and Electrically Conductive Hybrid Hydrogel Electrolyte Enabled by Simultaneous Dual In Situ Sol-Gel Technique and Free Radical Copolymerization. Macromol Rapid Commun 2024; 45:e2400404. [PMID: 39083305 DOI: 10.1002/marc.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Indexed: 11/09/2024]
Abstract
Mechanically robust and ionically conductive hydrogels poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonate-lithium)/TiO2/SiO2 (P(AM-co-AMPSLi)/TiO2/SiO2) with inorganic hybrid crosslinking are fabricated through dual in situ sol-gel reaction of vinyltriethoxysilane (VTES) and tetrabutyl titanate (TBOT), and in situ radical copolymerization of acrylamide (AM), 2-acrylamide-2-methylpropanesulfonate-lithium (AMPSLi), and vinyl-SiO2. Due to the introduction of the sulfonic acid groups and Li+ by the reaction of AMPS with Li2CO3, the conductivity of the ionic hydrogel can reach 0.19 S m-1. Vinyl-SiO2 and nano-TiO2 are used in this hybrid hydrogel as both multifunctional hybrid crosslinkers and fillers. The hybrid hydrogels demonstrate high tensile strength (0.11-0.33 MPa) and elongation at break (98-1867%), ultrahigh compression strength (0.28-1.36 MPa), certain fatigue resistance, self-healing, and self-adhesive properties, which are due to covalent bonds between TiO2 and SiO2, as well as P(AM-co-AMPSLi) chains and SiO2, and noncovalent bonds between TiO2 and P(AM-co-AMPSLi) chains, as well as the organic frameworks. Furthermore, the specific capacitance, energy density, and power density of the supercapacitors based on ionic hybrid hydrogel electrolytes are 2.88 F g-1, 0.09 Wh kg-1, and 3.07 kW kg-1 at a current density of 0.05 A g-1, respectively. Consequently, the ionic hybrid hydrogels show great promise as flexible energy storage devices.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Xinmeng Hou
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Wenli Zhu
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Hao Zhou
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Xiaohong She
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Qiaoling Yang
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| | - Chihui Tsou
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P. R. China
| |
Collapse
|
4
|
Ren D, Zhang S, Dai J, Lan J, Qiu D, Zhang K, Bi H, Huang F. Sulfur-Functionalized Carbon Nanotubes with Inlaid Nanographene for 3D-Printing Micro-Supercapacitors and a Flexible Self-Powered Sensing System. ACS NANO 2024. [PMID: 39051159 DOI: 10.1021/acsnano.4c06879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Digital fabrication of miniaturized micro-supercapacitors (MSCs) holds immense promise for advancing customized, integrated microelectronic systems. As potential electrode materials, carbonaceous nanomaterials, such as carbon nanotubes (CNTs), stand out due to their excellent conductivity and mechanical robustness yet suffer from low ionic storage sites, which restrict further applications. Herein, we introduce a sulfur-assisted in situ activating strategy for obtaining sulfur-functionalized carbon nanotube frameworks integrated with inlaid graphene nanosheets (S-CNT/GNS). Specifically, sulfur functionality enriches the surface charge density with improved interfacial hydrophilicity, while the inlaid nanographene sheets provide abundant ionic adsorption sites. By direct 3D printing of the S-CNT/GNS ink, planar MSCs were fabricated with desirable functionality and outstanding electrochemical performance. Notably, the developed MSCs exhibit a high areal capacitance of 0.47 F cm-2, an exceptional energy density of 64.6 μWh cm-2, and a high-power density of 34.2 mW cm-2. Furthermore, an all-flexible self-powered sensing system with photovoltaic cells and a stretchable sensor was built upon the customized S-CNT/GNS MSCs, demonstrating a highly effective capability for real-time monitoring of human physiological signals and body movements. This work not only presents a promising approach for the development of high-performance MSCs but also lays the groundwork for the creation of advanced wearable/flexible microelectronics systems.
Collapse
Affiliation(s)
- Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Zhongke Institute of Strategic Emerging Materials, Yixing 214216, China
| | - Shaoning Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Jiaxin Dai
- Zhongke Institute of Strategic Emerging Materials, Yixing 214216, China
| | - Jiancheng Lan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Zhongke Institute of Strategic Emerging Materials, Yixing 214216, China
| | - Donghai Qiu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, China
| | - Kan Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Sinha P, Sharma A. The prospect of supercapacitors in integrated energy harvesting and storage systems. NANOTECHNOLOGY 2024; 35:382001. [PMID: 38904267 DOI: 10.1088/1361-6528/ad5a7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Renewable energy sources, such as wind, tide, solar cells, etc, are the primary research areas that deliver enormous amounts of energy for our daily usage and minimize the dependency upon fossil fuel. Paralley, harnessing ambient energy from our surroundings must be prioritized for small powered systems. Nanogenerators, which use waste energy to generate electricity, are based on such concepts. We refer to these nanogenerators as energy harvesters. The purpose of energy harvesters is not to outcompete traditional renewable energy sources. It aims to reduce reliance on primary energy sources and enhance decentralized energy production. Energy storage is another area that needs to be explored for quickly storing the generated energy. Supercapacitor is a familiar device with a unique quick charging and discharging feature. Encouraging advancements in energy storage and harvesting technologies directly supports the efficient and comprehensive use of sustainable energy. Yet, self-optimization from independent energy harvesting and storage devices is challenging to overcome. It includes instability, insufficient energy output, and reliance on an external power source, preventing their direct application and future development. Coincidentally, integrating energy harvesters and storage devices can address these challenges, which demand their inherent action. This review intends to offer a complete overview of supercapacitor-based integrated energy harvester and storage systems and identify opportunities and directions for future research in this subject.
Collapse
Affiliation(s)
- Prerna Sinha
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Ashutosh Sharma
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
- Materials Science Programme, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
6
|
Hao D, Gong Y, Wu J, Shen Q, Zhang Z, Zhi J, Zou R, Kong W, Kong L. A Self-Sensing and Self-Powered Wearable System Based on Multi-Source Human Motion Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311036. [PMID: 38342584 DOI: 10.1002/smll.202311036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Indexed: 02/13/2024]
Abstract
Wearable devices play an indispensable role in modern life, and the human body contains multiple wasted energies available for wearable devices. This study proposes a self-sensing and self-powered wearable system (SS-WS) based on scavenging waist motion energy and knee negative energy. The proposed SS-WS consists of a three-degree-of-freedom triboelectric nanogenerator (TDF-TENG) and a negative energy harvester (NEH). The TDF-TENG is driven by waist motion energy and the generated triboelectric signals are processed by deep learning for recognizing the human motion. The triboelectric signals generated by TDF-TENG can accurately recognize the motion state after processing based on Gate Recurrent Unit deep learning model. With double frequency up-conversion, the NEH recovers knee negative energy generation for powering wearable devices. A model wearing the single energy harvester can generate the power of 27.01 mW when the movement speed is 8 km h-1, and the power density of NEH reaches 0.3 W kg-1 at an external excitation condition of 3 Hz. Experiments and analysis prove that the proposed SS-WS can realize self-sensing and effectively power wearable devices.
Collapse
Affiliation(s)
- Daning Hao
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 644000, China
| | - Yuchen Gong
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 644000, China
- Tangshan Institute of Southwest Jiaotong University, Tangshan, 063008, China
| | - Jiaoyi Wu
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 644000, China
- School of Information Science and Technical, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qianhui Shen
- School of Design, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zutao Zhang
- Chengdu Technological University, Chengdu, 611730, China
| | - Jinyi Zhi
- School of Design, Southwest Jiaotong University, Chengdu, 610031, China
| | - Rui Zou
- School of Design, Southwest Jiaotong University, Chengdu, 610031, China
| | - Weihua Kong
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 644000, China
| | - Lingji Kong
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 644000, China
| |
Collapse
|
7
|
Wang Y, Wei Z, Ji T, Bai R, Zhu H. Highly Ionic Conductive, Stretchable, and Tough Ionogel for Flexible Solid-State Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307019. [PMID: 38111366 DOI: 10.1002/smll.202307019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/17/2023] [Indexed: 12/20/2023]
Abstract
The increasing demand for wearable electronics calls for advanced energy storage solutions that integrate high electrochemical performances and mechanical robustness. Ionogel is a promising candidate due to its stretchability combined with high ionic conductivity. However, simultaneously optimizing both the electrochemical and mechanical performance of ionogels remains a challenge. This paper reports a tough and highly ion-conductive ionogel through ion impregnation and solvent exchange. The fabricated ionogel consists of double interpenetrating networks of long polymer chains that provide high stretchability. The polymer chains are crosslinked by hydrogen bonds that induce large energy dissipation for enhanced toughness. The resultant ionogel possesses mechanical stretchability of 26, tensile strength of 1.34 MPa, and fracture toughness of 4175 J m-2. Meanwhile, due to the high ion concentrations and ion mobility in the gel, a high ionic conductivity of 3.18 S m-1 at room temperature is achieved. A supercapacitor of this ionogel sandwiched with porous fiber electrodes provides remarkable areal capacitance (615 mF cm-2 at 1 mA cm-2), energy density (341.7 µWh cm-2 at 1 mA cm-2), and power density (20 mW cm-2 at 10 mA cm-2), offering significant advantages in applications where high efficiency, compact size, and rapid energy delivery are crucial, such as flexible and wearable electronics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Zhengxuan Wei
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Tongtai Ji
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ruobing Bai
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Hongli Zhu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Wang X, He T, Cheng J, Wu Y, Wang B. Strategies Toward Stretchable Aqueous Zn-based Batteries for Wearable Electronics from Components to Devices. SMALL METHODS 2023; 7:e2300591. [PMID: 37421225 DOI: 10.1002/smtd.202300591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Recently, aqueous Zn-based batteries (AZBs) are receiving increased attention in wearable and implantable electronics due to the low cost, high safety, high eco-efficiency, and relatively high energy density. However, it is still a big challenge to develop stretchable AZBs (SAZBs) which can be conformally folded, crumpled, and stretched with human body motions. Although a lot of efforts have been dedicated to constructions of SAZBs, a comprehensive review which focuses on summarizing stretchable materials, device configurations and challenges of SAZBs is needed. Herein, this review attempts to critically review the latest developments and progress in stretchable electrodes, electrolytes, packaging materials and device configurations in detail. Furthermore, these challenges and potential future research directions in the field of SAZBs are also discussed.
Collapse
Affiliation(s)
- Xilin Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Tao He
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Yuping Wu
- School of Energy and Environment, South East University, Nanjing, Jiangsu, 211189, P. R. China
| | - Bin Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Sciences and Technology of China, Chengdu, 611731, China
| |
Collapse
|
9
|
Simonenko TL, Simonenko NP, Gorobtsov PY, Simonenko EP, Kuznetsov NT. Microplotter Printing of a Miniature Flexible Supercapacitor Electrode Based on Hierarchically Organized NiCo 2O 4 Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4202. [PMID: 37374386 DOI: 10.3390/ma16124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
The hydrothermal synthesis of a nanosized NiCo2O4 oxide with several levels of hierarchical self-organization was studied. Using X-ray diffraction analysis (XRD) and Fourier-transform infrared (FTIR) spectroscopy, it was determined that under the selected synthesis conditions, a nickel-cobalt carbonate hydroxide hydrate of the composition M(CO3)0.5(OH)·0.11H2O (where M-Ni2+ and Co2+) is formed as a semi-product. The conditions of semi-product transformation into the target oxide were determined by simultaneous thermal analysis. It was found by means of scanning electron microscopy (SEM) that the main powder fraction consists of hierarchically organized microspheres of 3-10 μm in diameter, and individual nanorods are observed as the second fraction of the powder. Nanorod microstructure was further studied by transmission electron microscopy (TEM). A hierarchically organized NiCo2O4 film was printed on the surface of a flexible carbon paper (CP) using an optimized microplotter printing technique and functional inks based on the obtained oxide powder. It was shown by XRD, TEM, and atomic force microscopy (AFM) that the crystalline structure and microstructural features of the oxide particles are preserved when deposited on the surface of the flexible substrate. It was found that the obtained electrode sample is characterized by a specific capacitance value of 420 F/g at a current density of 1 A/g, and the capacitance loss during 2000 charge-discharge cycles at 10 A/g is 10%, which indicates a high material stability. It was established that the proposed synthesis and printing technology enables the efficient automated formation of corresponding miniature electrode nanostructures as promising components for flexible planar supercapacitors.
Collapse
Affiliation(s)
- Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Philipp Yu Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| |
Collapse
|
10
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
11
|
He L, Wang J, Weng S, Jiang X. A high-strength, environmentally stable, and recyclable starch/PVA organohydrogel electrolyte for flexible all-solid-state supercapacitor. Carbohydr Polym 2023; 306:120587. [PMID: 36746579 DOI: 10.1016/j.carbpol.2023.120587] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Hydrogel electrolytes have shown great promise in the field of flexible energy storage. However, the conventional hydrogel electrolytes have poor mechanical properties and are not recyclable. In addition, conventional hydrogel electrolytes cannot adapt to low and high temperature operating environments. In this study, starch/PVA/dimethyl sulfoxide/CaCl2 (SPDC) organohydrogel was prepared by the freezing-thawing method. Dimethyl sulfoxide (DMSO) and CaCl2 was introduced to enhance the mechanical properties and widen the working temperature range of the starch/PVA hydrogel. The SPDC organohydrogel had high strength, toughness and good recyclability. The SPDC organohydrogel and the recycled SPDC organohydrogel was used as the electrolyte to assemble the flexible supercapacitor with activated carbon as the electrode. The supercapacitor prepared by SPDC organohydrogel electrolyte exhibited high areal capacitance of 156.50 mF/cm2 at a current density of 1 mA/cm2 and high capacitance retention rate of 82.23 % after 8000 cycles of charging and discharging. The supercapacitor prepared by the recycled organohydrogel electrolyte exhibited a high capacitance retention rate of 97.58 %. In addition, the supercapacitor could withstand different angular bending shapes and had wide temperature adaptability from -20 °C to 80 °C. The work provided a new version for the development of "green" hydrogel electrolyte for all-solid-state supercapacitor.
Collapse
Affiliation(s)
- Li He
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinquan Wang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Sen Weng
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362114, China.
| |
Collapse
|
12
|
Shang Y, Wei J, He X, Zhao J, Shen H, Wu D, Wu T, Wang Q. In Situ Fabrication of Benzoquinone Crystal Layer on the Surface of Nest-Structural Ionohydrogel for Flexible "All-in-One" Supercapattery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208443. [PMID: 36546579 DOI: 10.1002/adma.202208443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Flexible energy-storage devices lay the foundation for a convenient, advanced, fossil fuel-free society. However, the fabrication of flexible energy-storage devices remains a tremendous challenge due to the intrinsic dissimilarities between electrode and electrolyte. In this study, a strategy is proposed for fabricating a flexible electrode and electrolyte entirely inside a matrix. First, a nest-structural and redox-active ionohydrogel with excellent stretchability (up to 3000%) and conductivity (167.9 mS cm-1 ) is designed using a hydrated ionic liquid (HIL) solvent and chemical foaming strategy. The nest-structure ionohydrogel provides sufficient "highways" and "service area", and the cation in HIL facilitates the reaction, transportation, and deposition of benzoquinone. Subsequently, in situ, a novel benzoquinone crystal-gel interface (CGI) is in situ fabricated on the surface of the ionohydrogel through electrochemical deposition of benzoquinone. Thus, an integrated CGI-gel platform is successfully achieved with a middle body as an electrolyte and the surficial redox-active CGI membrane for electrochemical energy conversion and storage. Based on the CGI-gel platform, an extreme simple and effective "stick-to-use" strategy is proposed for constructing flexible energy-storage devices and then a series of flexible supercapatteries are fabricated with high stretchability and capacitance (5222.1 mF cm-2 at 600% strain), low self-discharge and interfacial resistance and a wearable, self-power and intelligent display.
Collapse
Affiliation(s)
- Yinghui Shang
- Frontiers Science Center for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| | - Junjie Wei
- Frontiers Science Center for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Xian He
- Frontiers Science Center for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jie Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Hongdou Shen
- Frontiers Science Center for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Dongbei Wu
- Frontiers Science Center for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Tong Wu
- Frontiers Science Center for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qigang Wang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| |
Collapse
|
13
|
Tang P, Tan W, Li F, Xue S, Ma Y, Jing P, Liu Y, Zhu J, Yan X. A Pseudocapacitor Diode Based on Ion-Selective Surface Redox Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209186. [PMID: 36564639 DOI: 10.1002/adma.202209186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Supercapacitor diode (CAPode) is a novel device that integrates ion diode functionality into a conventional electrical double-layer capacitor and is expected to have great applications in emerging fields such as signal propagation, microcircuit rectification, logic operations, and neuromorphology. Here, a brand new pseudocapacitor diode is reported that has both high charge storage (50.2 C g-1 at 20 mV s-1 ) and high rectification (the rectification ratio of 0.79 at 200 mV s-1 ) properties, which is realized by the ion-selective surface redox reaction of spinel ZnCo2 O4 in aqueous alkaline electrolyte. Furthermore, an application of the integrated device is demonstrated in the logic gate of circuit system to realize the logic operations of "AND" and "OR". This work not only expands the types of CAPodes, but also provides a train of thought for constructing high-performance capacitive ionic diodes.
Collapse
Affiliation(s)
- Pei Tang
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wuyang Tan
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fangzhou Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, Guangdong, 510275, China
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Shan Xue
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, China
| | - Yihui Ma
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Pengwei Jing
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanghui Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, Guangdong, 510275, China
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jian Zhu
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xingbin Yan
- Department of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, Guangdong, 510275, China
| |
Collapse
|
14
|
Kwon H, Ryu I, Choe G, Yim S. Enhanced Stretchability and Resilience of PVA–Sucrose Composite Hydrogel and Its Application to All-In-One Supercapacitors. ACS APPLIED ENERGY MATERIALS 2023; 6:537-545. [DOI: 10.1021/acsaem.2c03565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hyemin Kwon
- Department of Chemistry, Kookmin University, Seoul02707, South Korea
| | - Ilhwan Ryu
- Department of Chemistry, Kookmin University, Seoul02707, South Korea
| | - Geunpyo Choe
- Department of Chemistry, Kookmin University, Seoul02707, South Korea
| | - Sanggyu Yim
- Department of Chemistry, Kookmin University, Seoul02707, South Korea
| |
Collapse
|
15
|
Kasoju N, Remya NS, Sasi R, Sujesh S, Soman B, Kesavadas C, Muraleedharan CV, Varma PRH, Behari S. Digital health: trends, opportunities and challenges in medical devices, pharma and bio-technology. CSI TRANSACTIONS ON ICT 2023; 11:11-30. [PMCID: PMC10089382 DOI: 10.1007/s40012-023-00380-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2024]
Abstract
Digital health interventions refer to the use of digital technology and connected devices to improve health outcomes and healthcare delivery. This includes telemedicine, electronic health records, wearable devices, mobile health applications, and other forms of digital health technology. To this end, several research and developmental activities in various fields are gaining momentum. For instance, in the medical devices sector, several smart biomedical materials and medical devices that are digitally enabled are rapidly being developed and introduced into clinical settings. In the pharma and allied sectors, digital health-focused technologies are widely being used through various stages of drug development, viz. computer-aided drug design, computational modeling for predictive toxicology, and big data analytics for clinical trial management. In the biotechnology and bioengineering fields, investigations are rapidly growing focus on digital health, such as omics biology, synthetic biology, systems biology, big data and personalized medicine. Though digital health-focused innovations are expanding the horizons of health in diverse ways, here the development in the fields of medical devices, pharmaceutical technologies and biotech sectors, with emphasis on trends, opportunities and challenges are reviewed. A perspective on the use of digital health in the Indian context is also included.
Collapse
Affiliation(s)
- Naresh Kasoju
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - N. S. Remya
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - Renjith Sasi
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - S. Sujesh
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - Biju Soman
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - C. Kesavadas
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - C. V. Muraleedharan
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - P. R. Harikrishna Varma
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| | - Sanjay Behari
- Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695011 Kerala India
| |
Collapse
|
16
|
Mustafa B, Lu W, Wang Z, Lian F, Shen A, Yang B, Yuan J, Wu C, Liu Y, Hu W, Wang L, Yu G. Ultrahigh Energy and Power Densities of d-MXene-Based Symmetric Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3294. [PMID: 36234423 PMCID: PMC9565486 DOI: 10.3390/nano12193294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Here, rational design electrodes are fabricated by mixing MXene with an aqueous solution of chloroauric acid (HAuCl4). In order to prevent MXene from self-restacking, the groups of -OH on the surface of Ti3C2Tx nanosheets underwent a one-step simultaneous self-reduction from AuCl4-, generating spaces for rapid ion transit. Additionally, by using this procedure, MXene's surface oxidation can be decreased while preserving its physio-chemical properties. The interlayered MX/Au NPs that have been obtained are combined into a conducting network structure that offers more active electrochemical sites and improved mass transfer at the electrode-electrolyte interface, both of which promote quick electron transfer during electrochemical reactions and excellent structural durability. The Ti3C2Tx-AuNPs film thus demonstrated a rate performance that was preferable to that of pure Ti3C2Tx film. According to the results of the characterization, the AuNPs effectively adorn the MXene nanosheets. Due to the renowned pseudocapacitance charge storage mechanism, MXene-based electrode materials also work well as supercapacitors in sulfuric acid, which is why MXene AuNPs electrodes have been tested in 3 M and 1 M H2SO4. The symmetric supercapacitors made of MXene and AuNPs have shown exceptional specific capacitance of 696.67 Fg-1 at 5 mVs-1 in 3 M H2SO4 electrolyte, and they can sustain 90% of their original capacitance for 5000 cycles. The highest energy and power density of this device, which operates within a 1.2 V potential window, are 138.4 Wh kg-1 and 2076 W kg-1, respectively. These findings offer a productive method for creating high-performance metal oxide-based symmetric capacitors and a straightforward, workable approach for improving MXene-based electrode designs, which can be applied to other electro-chemical systems that are ion transport-restricted, such as metal ion batteries and catalysis.
Collapse
Affiliation(s)
- Beenish Mustafa
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, Nanjing 210093, China
| | - Wengang Lu
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, Nanjing 210093, China
| | - Zhiyuan Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, Nanjing 210093, China
| | - Fuzhuo Lian
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, Nanjing 210093, China
| | - Andy Shen
- Hubei Jiufengshan Laboratory, Wuhan 430206, China
| | - Bing Yang
- Hubei Jiufengshan Laboratory, Wuhan 430206, China
| | - Jun Yuan
- Hubei Jiufengshan Laboratory, Wuhan 430206, China
| | - Chang Wu
- Hubei Jiufengshan Laboratory, Wuhan 430206, China
| | | | - Weiwei Hu
- Jiangsu Industrial Technology Research Institute, Nanjing 210093, China
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, Nanjing 210093, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Geliang Yu
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, Nanjing 210093, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Qiu Y, Jia X, Zhang M, Li H. A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3297. [PMID: 36234424 PMCID: PMC9565858 DOI: 10.3390/nano12193297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fiber-shaped supercapacitors are promising and attractive candidates as energy storage devices for flexible and wearable electric products. However, their low energy density (because their microstructure lacks homogeneity and they have few electroactive sites) restricts their development and application. In this study, well-distributed polyaniline/graphene composite fibers were successfully fabricated through a new strategy of self-assembly in solution combined with microfluidic techniques. The uniform assembly of polyaniline on graphene oxide sheets at the microscale in a water/N-methyl-2-pyrrolidone blended solvent was accompanied by the in situ reduction of graphene oxides to graphene nanosheets. The assembled fiber-shaped supercapacitors with gel-electrolyte exhibit excellent electrochemical performance, including a large specific areal capacitance of 541.2 mF cm-2, along with a high energy density of 61.9 µW h cm-2 at a power density of 294.1 µW cm-2. Additionally, they can power an electronic device and blue LED lights for several minutes. The enhanced electrochemical performance obtained is mainly attributed to the homogeneous architecture designed, with an increased number of electroactive sites and a synergistic effect between polyaniline and graphene sheets. This research provides an avenue for the synthesis of fiber-shaped electrochemically active electrodes and may promote the development of future wearable electronics.
Collapse
|
18
|
Peng K, Zhang J, Yang J, Lin L, Gan Q, Yang Z, Chen Y, Feng C. Green Conductive Hydrogel Electrolyte with Self-Healing Ability and Temperature Adaptability for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39404-39419. [PMID: 35981091 DOI: 10.1021/acsami.2c11973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive hydrogels (CHs) are ideal electrolyte materials for the preparation of flexible supercapacitors (FSCs) due to their excellent electrochemical properties, mechanical properties, and deformation restorability. However, most of the reported CHs are prepared by the chemical crosslinking of synthetic polymers and thus usually display the disadvantages of poor self-healing abilities and nonadaptability at environmental temperatures, which greatly limits their application. To overcome these problems, in the present work, we constructed a sodium alginate-borax/gelatin double-network conductive hydrogel (CH) by a dynamic crosslinking between sodium alginate (SA) and borax via borate bonds and hydrogen bonding between amino acids in gelatin and SA chains. The CH displays an excellent elongation of 305.7% and fast self-healing behavior in 60 s. Furthermore, a phase-change material (PCM), Na2SO4·10H2O, was introduced into the CH, which, combined with the nucleation effect of borax, improved the ionic conductivity and temperature adaptability of the CH. The flexible supercapacitor (FSC) assembled with the obtained CH as the electrolyte exhibits a high specific capacitance of 185.3 F·g-1 at a current density of 0.25 A·g-1 and good stability with 84% capacitance retention after 10 000 cycles and excellent temperature tolerance with a resistance variation of 2.11 Ω in the temperature range of -20-60 °C. This green CH shows great application potential as an electrolyte for FSCs, and the preparation method can be potentially expanded to the fabrication of self-repairing FSCs with good temperature adaptabilities.
Collapse
Affiliation(s)
- Kelin Peng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Jinghua Zhang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jueying Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lizhi Lin
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qiang Gan
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ziming Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, P. R. China
| | - Yu Chen
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Changgen Feng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| |
Collapse
|
19
|
Lian H, Xue M, Ma K, Mo D, Wang L, Cui Z, Chen X. Three-Dimensional Printed Carbon Black/PDMS Composite Flexible Strain Sensor for Human Motion Monitoring. MICROMACHINES 2022; 13:mi13081247. [PMID: 36014169 PMCID: PMC9416005 DOI: 10.3390/mi13081247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022]
Abstract
High-performance flexible strain sensors with a low cost, simple structure, and large-scale fabrication methods have a high demand in soft robotics, wearable devices, and health monitoring. Here, a direct-ink-writing-based 3D printing method, which fabricates structural layers in an efficient, layered manner, was developed to fabricate a stretchable and flexible strain sensor composed of carbon black/silicone elastomer (CB/PDMS) composites as the strain-sensing elements and electrodes. As the sensing element, the CB/PDMS composite had a sensitivity of 5.696 in the linear strain detection range of 0 to 60%, with good stability and low hysteresis. The flexible strain sensor demonstrates potential in monitoring various human motions, including large deformation motions of the human body, and muscle motions with facial micro-expressions.
Collapse
Affiliation(s)
- Haishan Lian
- School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China; (H.L.); (K.M.); (D.M.); (Z.C.)
| | - Ming Xue
- School of Intelligent Manufacturing, Dongguan Technician College, Dongguan 523112, China;
| | - Kanglin Ma
- School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China; (H.L.); (K.M.); (D.M.); (Z.C.)
| | - Deyun Mo
- School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China; (H.L.); (K.M.); (D.M.); (Z.C.)
| | - Lei Wang
- School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China; (H.L.); (K.M.); (D.M.); (Z.C.)
- Correspondence: (L.W.); (X.C.)
| | - Zaifu Cui
- School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China; (H.L.); (K.M.); (D.M.); (Z.C.)
| | - Xiaojun Chen
- School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China; (H.L.); (K.M.); (D.M.); (Z.C.)
- Correspondence: (L.W.); (X.C.)
| |
Collapse
|
20
|
Song H, Wang Y, Fei Q, Nguyen DH, Zhang C, Liu T. Cryopolymerization-enabled self-wrinkled polyaniline-based hydrogels for highly stretchable all-in-one supercapacitors. EXPLORATION (BEIJING, CHINA) 2022; 2:20220006. [PMID: 37325611 PMCID: PMC10191047 DOI: 10.1002/exp.20220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 06/17/2023]
Abstract
Conductive polymer hydrogels are attractive due to their combination of high theoretical capacitance, intrinsic electrical conductivity, fast ion transport, and high flexibility for supercapacitor electrodes. However, it is challenging to integrate conductive polymer hydrogels into an all-in-one supercapacitor (A-SC) simultaneously with large stretchability and superior energy density. Here, a self-wrinkled polyaniline (PANI)-based composite hydrogel (SPCH) with an electrolytic hydrogel and a PANI composite hydrogel as the core and sheath, respectively, was prepared through a stretching/cryopolymerization/releasing strategy. The self-wrinkled PANI-based hydrogel exhibited large stretchability (∼970%) and high fatigue resistance (∼100% retention of tensile strength after 1200 cycles at a 200% strain) ascribing to the formation of the self-wrinkled surfaces and the intrinsic stretchability of hydrogels. Upon cutting off the edge connections, the SPCH could directly work as an intrinsically stretchable A-SC maintaining high energy density (70 µW h cm-2) and stable electrochemical outputs under a stretchability of 500% strain and a full-scale bending of 180°. After 1000 cycles of 100% strain stretching and releasing processes, the A-SC device could deliver highly stable outputs with high capacitance retention of 92%. This study might provide a straightforward method for fabricating self-wrinkled conductive polymer-based hydrogels for A-SCs with highly deformation-tolerant energy storage.
Collapse
Affiliation(s)
- Hui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Qingyang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Dai Hai Nguyen
- Institute of Applied Materials ScienceVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringInternational Joint Research Laboratory for Nano Energy CompositesJiangnan UniversityWuxiChina
| |
Collapse
|
21
|
Chen J, Mu H, Ding J, Zhang Y, Wang W, Wang G. Stretchable sodium-ion capacitors based on coaxial CNT supported Na 2Ti 3O 7 with high capacitance contribution. NANOSCALE 2022; 14:8374-8384. [PMID: 35635103 DOI: 10.1039/d2nr01720b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable sodium-ion capacitors (SSICs) are promising energy storage devices for wearable electronic devices, and the development bottleneck is the realization of stretchable battery-type electrodes with desirable electrochemical properties during dynamic deformation. Herein, we find that electrostatic modification of acidified carbon nanotubes with polyamines can introduce active sites and modulate the surface pH microenvironment, thereby developing a route to realize the in situ coaxial nanometerization of sodium titanate (nCNT@NTO). The nCNT@NTO anode material has a fast Na+ transport and the high capacitive contribution, which can deliver a high specific capacity (206.5 mA h g-1 at 0.1 A g-1) and high rate performance (maintain 51% capacity at 10 A g-1), and the ideal cycle stability (∼93% capacity retention after 1000 cycles at 5 A g-1). In addition, acrylate-rubber with high stickiness and stretchability are served as the elastic matrix both of the stretchable electrodes and quasi-solid-state electrolytes, which endows strong adhesion between electrodes and electrolytes. Thus, the accordingly assembled SSIC delivers high energy density of 8.8 mW h cm-3 (at a power density of 0.024 W cm-3), and excellent deformation stability (89% capacitance retention after 500 stretching cycles under 100% strain).
Collapse
Affiliation(s)
- Jin Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hongchun Mu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Jianlong Ding
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yifan Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Wenqiang Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Gengchao Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
22
|
Zhang J, Guo H, Yang F, Wang M, Zhang T, Zhang H, Yang W. Ni(OH)
2
/NiSe Nanoparticles Supported on Carbon Microspheres for Long‐Life and High‐Performance Asymmetric Supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junye Zhang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Fan Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Mingyue Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Tingting Zhang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Hao Zhang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| |
Collapse
|
23
|
Simonenko TL, Bocharova VA, Simonenko NP, Simonenko EP, Sevastyanov VG, Kuznetsov NT. Formation of NiMoO4 Anisotropic Nanostructures under Hydrothermal Conditions. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621120160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract—The synthesis of NiMoO4 hierarchical nanostructures using the hydrothermal method has been studied. The decomposition of NiMoO4·xH2O crystalline hydrate formed during the synthesis has been studied using synchronous thermal analysis upon heating in a stream of air and argon. According to X-ray diffraction as well as scanning and transmission electron microscopies, the proposed conditions allow one to synthesize single-phase nanosized (average CSR size of about 25 ± 2 nm) nickel(II) molybdate, which has a spinel-type monoclinic structure (space group C2/m) without impurity inclusions.
Collapse
|
24
|
Li H, Cao L, Zhang H, Tian Z, Zhang Q, Yang F, Yang H, He S, Jiang S. Intertwined carbon networks derived from Polyimide/Cellulose composite as porous electrode for symmetrical supercapacitor. J Colloid Interface Sci 2021; 609:179-187. [PMID: 34894552 DOI: 10.1016/j.jcis.2021.11.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Designing intertwined porous structure is highly desirable to improve the electrochemical performance of carbon materials for supercapacitor. In this contribution, three-dimensional (3D) carbonized polyimide/cellulose (CPC) composite is fabricated via a facile "one-step" carbonization, in which cellulose as cross-linked agent is capable of modulating the molecular structure of polyamic acid, thus ensuring the formation of intertwined porous networks in the obtained carbon skeleton. Benefitting from the high specific surface area (951 m2 g-1) and uniformly distributed pores, the optimized CPC-5 electrode exhibits an outstanding specific capacitance of 300F g-1 in 6.0 M KOH electrolyte. More impressively, the CPC-5 based symmetrical supercapacitor affords a high energy density of 22.6 Wh kg-1 at power density of 800 W kg-1, as well as an exceptional capacitance retention of 91.4% after 10,000 cycles. This work affords an effective strategy to yield a promising polyimide derived carbon material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Huiling Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lihua Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huijun Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Feng Yang
- School of Modern Equipment Manufacturing, Changzhou Institute of Industry Technology, Changzhou, 213164, China
| | - Haoqi Yang
- State Key Laboratory of New Building Materials, Beixin Academy of Sciences, Beijing New Building Materials (BNBM) Public Limited Company, Beijing, 102209, China.
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
25
|
Li L, Wang L, Ye T, Peng H, Zhang Y. Stretchable Energy Storage Devices Based on Carbon Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005015. [PMID: 33624928 DOI: 10.1002/smll.202005015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Stretchable energy storage devices are essential for developing stretchable electronics and have thus attracted extensive attention in a variety of fields including wearable devices and bioelectronics. Carbon materials, e.g., carbon nanotube and graphene, are widely investigated as electrode materials for energy storage devices due to their large specific surface areas and combined remarkable electrical and electrochemical properties. They can also be effectively composited with many other functional materials or designed into different microstructures for fabricating stretchable energy storage devices. This review summarizes recent advances toward the development of carbon-material-based stretchable energy storage devices. An overview of common carbon materials' fundamental properties and general strategies to enable the stretchability of carbon-material-based electrodes are presented. The performances of the as-fabricated stretchable energy storage devices including supercapacitors, lithium-ion batteries, metal-air batteries, and other batteries are then carefully discussed. Challenges and perspectives in this emerging field are finally highlighted for future studies.
Collapse
Affiliation(s)
- Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
Chai S, Zan G, Dong K, Wu T, Wu Q. Approaching Superfoldable Thickness-Limit Carbon Nanofiber Membranes Transformed from Water-Soluble PVA. NANO LETTERS 2021; 21:8831-8838. [PMID: 34662134 DOI: 10.1021/acs.nanolett.1c03241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent progress in flexible electronics has attracted tremendous attention. However, it is still difficult to prepare superfoldable conductive materials with good biocompatibility, high sensing sensitivities, and large specific surface areas. It is expected that biomimetic methods and water-soluble precursors like poly(vinyl alcohol) (PVA) for electrospinning will be utilized to solve the above problems. Inspired by the multistage water management process of a spider spinning dragline silk, we have established a combined biomimetic technique, hydrocolloid electrospinning coupled with temperature gradient dehydration, with a carbonization technique. PVA-driven superfoldable carbon nanofiber membranes (PVA-SFCNFMs) have been prepared that not only possess a >60% micropore ratio and a 1368.8 m2/g specific surface area but also can withstand 180° real folding for 100 000 cycles, approaching the thickness limit without structure fracture. Furthermore, these membranes provide highly sensitive sensing and superior biocompatible interfaces. The molecular mechanism to improve carbon conversion and the folding mechanism to obtain "three-level dispersing stress" for the PVA-SFCNFMs have been proposed.
Collapse
Affiliation(s)
- Shanshan Chai
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Guangtao Zan
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Kangze Dong
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Tong Wu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
27
|
Progress and Perspectives in Designing Flexible Microsupercapacitors. MICROMACHINES 2021; 12:mi12111305. [PMID: 34832717 PMCID: PMC8621582 DOI: 10.3390/mi12111305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Miniaturized flexible microsupercapacitors (MSCs) that can be integrated into self-powered sensing systems, detecting networks, and implantable devices have shown great potential to perfect the stand-alone functional units owing to the robust security, continuously improved energy density, inherence high power density, and long service life. This review summarizes the recent progress made in the development of flexible MSCs and their application in integrated wearable electronics. To meet requirements for the scalable fabrication, minimization design, and easy integration of the flexible MSC, the typical assembled technologies consist of ink printing, photolithography, screen printing, laser etching, etc., are provided. Then the guidelines regarding the electrochemical performance improvement of the flexible MSC by materials design, devices construction, and electrolyte optimization are considered. The integrated prototypes of flexible MSC-powered systems, such as self-driven photodetection systems, wearable sweat monitoring units are also discussed. Finally, the future challenges and perspectives of flexible MSC are envisioned.
Collapse
|
28
|
Gai Y, Li H, Li Z. Self-Healing Functional Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101383. [PMID: 34288411 DOI: 10.1002/smll.202101383] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 05/20/2023]
Abstract
Electronic devices with various functions bring great convenience and revolutionize the way we live. They are inevitable to degrade over time because of physical or chemical fatigue and damage during practical operation. To make these devices have the ability to autonomously heal from cracks and restore their mechanical and electrical properties, self-healing materials emerged as the time requires for constructing robust and self-healing electronic devices. Here the development of self-healing electronic devices with different functions, for example, energy harvesting, energy storage, sensing, and transmission, is reviewed. The new application scenarios and existing challenges are explored, and possible strategies and perspectives for future practical applications are discussed.
Collapse
Affiliation(s)
- Yansong Gai
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Hu Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhou Li
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Arena A, Branca C, Ciofi C, D’Angelo G, Romano V, Scandurra G. Polypyrrole and Graphene Nanoplatelets Inks as Electrodes for Flexible Solid-State Supercapacitor. NANOMATERIALS 2021; 11:nano11102589. [PMID: 34685029 PMCID: PMC8540967 DOI: 10.3390/nano11102589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Flexible energy storage devices and supercapacitors in particular have become very attractive due to the growing demand for wearable consumer devices. To obtain supercapacitors with improved performance, it is useful to resort to hybrid electrodes, usually nanocomposites, that combine the excellent charge transport properties and high surface area of nanostructured carbon with the electrochemical activity of suitable metal oxides or conjugated polymers. In this work, electrochemically active conducting inks are developed starting from commercially available polypyrrole and graphene nanoplatelets blended with dodecylbenzenesulfonic acid. Films prepared by applying the developed inks are characterized by means of Raman measurements, Fourier Transform Infrared (FTIR) analysis, and Atomic Force Microscopy (AFM) investigations. Planar supercapacitor prototypes with an active area below ten mm2 are then prepared by applying the inks onto transparency sheets, separated by an ion-permeable nafion layer impregnated with lithium hexafluorophospate, and characterized by means of electrical measurements. According to the experimental results, the devices show both pseudocapacitive and electric double layer behavior, resulting in areal capacitance that, when obtained from about 100 mF⋅cm-2 in the sample with polypyrrole-based electrodes, increases by a factor of about 3 when using electrodes deposited from inks containing polypyrrole and graphene nanoplateles.
Collapse
Affiliation(s)
- Antonella Arena
- Department of Engineering, University of Messina, 98166 Messina, Italy; (C.C.); (G.S.)
- Correspondence:
| | - Caterina Branca
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, 98166 Messina, Italy; (C.B.); (G.D.); (V.R.)
| | - Carmine Ciofi
- Department of Engineering, University of Messina, 98166 Messina, Italy; (C.C.); (G.S.)
| | - Giovanna D’Angelo
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, 98166 Messina, Italy; (C.B.); (G.D.); (V.R.)
| | - Valentino Romano
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, 98166 Messina, Italy; (C.B.); (G.D.); (V.R.)
| | - Graziella Scandurra
- Department of Engineering, University of Messina, 98166 Messina, Italy; (C.C.); (G.S.)
| |
Collapse
|
30
|
Feng J, Wang Y, Xu Y, Ma H, Wang G, Ma P, Tang Y, Yan X. Construction of Supercapacitor-Based Ionic Diodes with Adjustable Bias Directions by Using Poly(ionic liquid) Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100887. [PMID: 34165843 DOI: 10.1002/adma.202100887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Indexed: 06/13/2023]
Abstract
The newly emerging supercapacitor-diode (CAPode), integrating the characteristics of a diode into an electrical-double-layer capacitor, can be employed to extend conventional supercapacitors to new technological applications and may play a crucial role in grid stabilization, signal propagation, and logic operations. However, the reported CAPodes have only been able to realize charge storage in the positive-bias direction. Here, bias-direction-adjustable CAPodes realized by using a polycation-based ionic liquid (IL) or a polyanion-based IL as electrolyte in an asymmetric carbon-based supercapacitor architecture are proposed. The resulting CAPodes exhibit charge-storage function at only the positive- or negative-bias direction with a high rectification ratio (≈80% for rectification ratio II, RRII ) and an outstanding cycling life (4500 cycles), representing a crucial breakthrough for designing high-performance capacitive ionic diodes.
Collapse
Affiliation(s)
- Jianze Feng
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Wang
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yongtai Xu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyun Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Gaowei Wang
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Pengjun Ma
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xingbin Yan
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Silver nanoparticles prepared by solid-state redox route from HEC for conductive, long-term durable and recycling artificial soft electronics. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Fu X, Li L, Chen S, Xu H, Li J, Shulga V, Han W. Knitted Ti 3C 2T x MXene based fiber strain sensor for human-computer interaction. J Colloid Interface Sci 2021; 604:643-649. [PMID: 34280762 DOI: 10.1016/j.jcis.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Fiber-based stretchable electronics with feasibility of weaving into textiles and advantages of light-weight, long-term stability, conformability and easy integration are highly desirable for wearable electronics to realize personalized medicine, artificial intelligence and human health monitoring. Herein, a fiber strain sensor is developed based on the Ti3C2Tx MXene wrapped by poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) polymer nanofibers prepared via electrostatic spinning. Owing to the good conductivity of Ti3C2Tx and unique 3D reticular structure with wave shape, the resistance of Ti3C2Tx@P(VDF-TrFE) polymer nanofibers changes under external force, thus providing remarkable strain inducted sensing performance. As-fabricated sensor exhibits high gauge factor (GF) of 108.8 in range of 45-66% strain, rapid response of 19 ms, and outstanding durability over 1600 stretching/releasing cycles. The strain sensor is able to monitor vigorous human motions (finger or wrist bending) and subtle physiological signals (blinking, pulse or voice recognition) in real-time. Moreover, a data glove is designed to connect different gestures and expressions to form an intelligent gesture-expression control system, further confirming the practicability of our Ti3C2Tx@P(VDF-TrFE) strain sensors in multifunctional wearable electronic devices.
Collapse
Affiliation(s)
- Xiyao Fu
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, PR China
| | - La Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| | - Shuai Chen
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Hao Xu
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, PR China
| | - Junzhi Li
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, PR China
| | - Valerii Shulga
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, PR China
| | - Wei Han
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
33
|
Hua M, Wu S, Jin Y, Zhao Y, Yao B, He X. Tough-Hydrogel Reinforced Low-Tortuosity Conductive Networks for Stretchable and High-Performance Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100983. [PMID: 34060153 DOI: 10.1002/adma.202100983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/31/2021] [Indexed: 05/26/2023]
Abstract
All-solid-state supercapacitors are seeing emerging applications in flexible and stretchable electronics. Supercapacitors with high capacitance, high power density, simple form factor, and good mechanical robustness are highly desired, which demands electrode materials with high surface area, high mass loading, good conductivity, larger thickness, low tortuosity, and high toughness. However, it has been challenging to simultaneously realize them in a single material. By compositing a superficial layer of tough hydrogel on conductive and low tortuous foams, a thick capacitor electrode with large capacitance (5.25 F cm-2 ), high power density (41.28 mW cm-2 ), and good mechanical robustness (ε = 140%, Γ = 1000 J m-2 ) is achieved. The tough hydrogel serves as both a load-bearing layer to maintain structural integrity during deformation and a permeable binder to allow interaction between the conductive electrode and electrolyte. It is shown that the tough hydrogel reinforcement is beneficial for both electrical and mechanical stability. With a simple design and facile fabrication, this strategy is generalizable for various conductive materials.
Collapse
Affiliation(s)
- Mutian Hua
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yin Jin
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yusen Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bowen Yao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
34
|
Guo H, Zeng M, Li X, He H, Wu L, Li H. Multifunctional Enhancement of Proton-Conductive, Stretchable, and Adhesive Performance in Hybrid Polymer Electrolytes by Polyoxometalate Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30039-30050. [PMID: 34139842 DOI: 10.1021/acsami.1c06848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High ionic conductivity, good mechanical strength, strong electrode adhesion, and low volatilization are highly desired properties for flexible solid electrolytes. However, it is difficult to realize all these properties simultaneously, which needs a rational synergy of different electrolyte constituents. Here, we present the use of polyoxometalates as versatile enhancers to fabricate nonvolatile flexible hybrid polymer electrolytes with improved conductive, stretchable, and adhesive properties. These electrolytes are based on the molecular hybridization of a polyacrylate elastomer, phosphoric acid, and a commercial polyoxometalate H3PW12O40 (PW). PW can serve as a nanosized plasticizer to favor the chain relaxation of polyacrylate and improve stretchability. Meanwhile, PW as a solid acid can increase the proton concentration and form a hybrid hydrogen-bonding network to facilitate proton conduction. Besides, the strong adsorption ability of PW on solid surfaces enables the electrolytes with enhanced adhesion. The hybrid electrolyte with 30 wt % PW shows a break stress of 0.28 MPa, a break elongation of 990%, and a conductivity of 0.01 S cm-1 at 298 K, which are 1.8, 1.8, and 2.5 times higher compared to the case without PW, respectively. Moreover, PW enhances the adhesive strength of hybrid electrolytes on polypropylene, steel, and glass substrates. The flexible supercapacitors based on the hybrid electrolytes and polyaniline electrodes hold a stable electrode-electrolyte interface and exhibit a high specific capacitance of 592 mF cm-2 and an excellent capacitance retention of 84% after 6000 charge-discharge cycles. These results demonstrate great potential of polyoxometalates as multifunctional enhancers to design hybrid electrolyte materials for energy and electronic applications.
Collapse
Affiliation(s)
- Haikun Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
35
|
Jang Y, Park T, Kim E, Park JW, Lee DY, Kim SJ. Implantable Biosupercapacitor Inspired by the Cellular Redox System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongwoo Jang
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Taegyu Park
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Eunyoung Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Jong Woo Park
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Dong Yeop Lee
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Seon Jeong Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| |
Collapse
|
36
|
Vallem V, Sargolzaeiaval Y, Ozturk M, Lai YC, Dickey MD. Energy Harvesting and Storage with Soft and Stretchable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004832. [PMID: 33502808 DOI: 10.1002/adma.202004832] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 06/12/2023]
Abstract
This review highlights various modes of converting ambient sources of energy into electricity using soft and stretchable materials. These mechanical properties are useful for emerging classes of stretchable electronics, e-skins, bio-integrated wearables, and soft robotics. The ability to harness energy from the environment allows these types of devices to be tetherless, thereby leading to a greater range of motion (in the case of robotics), better compliance (in the case of wearables and e-skins), and increased application space (in the case of electronics). A variety of energy sources are available including mechanical (vibrations, human motion, wind/fluid motion), electromagnetic (radio frequency (RF), solar), and thermodynamic (chemical or thermal energy). This review briefly summarizes harvesting mechanisms and focuses on the materials' strategies to render such devices into soft or stretchable embodiments.
Collapse
Affiliation(s)
- Veenasri Vallem
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yasaman Sargolzaeiaval
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mehmet Ozturk
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ying-Chih Lai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
37
|
Electrical and Capacitive Response of Hydrogel Solid-Like Electrolytes for Supercapacitors. Polymers (Basel) 2021; 13:polym13081337. [PMID: 33921896 PMCID: PMC8073748 DOI: 10.3390/polym13081337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Flexible hydrogels are attracting significant interest as solid-like electrolytes for energy storage devices, especially for supercapacitors, because of their lightweight and anti-deformation features. Here, we present a comparative study of four ionic conductive hydrogels derived from biopolymers and doped with 0.1 M NaCl. More specifically, such hydrogels are constituted by κ-carrageenan (κC), carboxymethyl cellulose (CMC), poly-γ-glutamic acid (PGGA) or a phenylalanine-containing polyesteramide (PEA). After examining the morphology and the swelling ratio of the four hydrogels, which varies between 483% and 2356%, their electrical and capacitive behaviors were examined using electrochemical impedance spectroscopy. Measurements were conducted on devices where a hydrogel film was sandwiched between two identical poly(3,4-ethylenedioxythiophene) electrodes. The bulk conductivity of the prepared doped hydrogels is 76, 48, 36 and 34 mS/cm for PEA, PGGA, κC and CMC, respectively. Overall, the polyesteramide hydrogel exhibits the most adequate properties (i.e., low electrical resistance and high capacitance) to be used as semi-solid electrolyte for supercapacitors, which has been attributed to its distinctive structure based on the homogeneous and abundant distribution of both micro- and nanopores. Indeed, the morphology of the polyestermide hydrogel reduces the hydrogel resistance, enhances the transport of ions, and results in a better interfacial contact between the electrodes and solid electrolyte. The correlation between the supercapacitor performance and the hydrogel porous morphology is presented as an important design feature for the next generation of light and flexible energy storage devices for wearable electronics.
Collapse
|
38
|
Wang Y, Jiang L, Ren L, Pingao H, Yu M, Tian L, Li X, Xie J, Fang P, Li G. Towards Improving the Quality of Electrophysiological Signal Recordings by Using Microneedle Electrode Arrays. IEEE Trans Biomed Eng 2021; 68:3327-3335. [PMID: 33798063 DOI: 10.1109/tbme.2021.3070541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Electrophysiological signals are recorded generally by metal electrodes placed on body surface. For long term use, the signal quality may decay with the change of interface impedance between electrodes and skin due to the conductive hydrogel dehydration. Besides, electrodes may shift during body movements, which causes unstable signal recordings. METHODS To improve the quality of electrophysiological signal recordings on human body surface, a type of microneedle electrode array (MEA) with microneedles around 550 μm in length was fabricated with a magnetization-induce self-assembly method. RESULTS Compared with the commonly used dry electrode array, the MEA has lower and more stable interface impedance, especially when the electrode-skin interface is under unstable pressures. For electrophysiological signal recording, the MEA can acquire electromyography (EMG) with significantly lower noise energy, higher signal-to-noise ratio, and higher motion-classification accuracy based on the EMG pattern-recognition method. Additionally, high quality electrocardiography (ECG) can be recorded by using the MEA, where more accurate R-peaks are extracted in different scenarios. Besides, there was no report about any discomfort like bleeding or inflammation by all the subjects. CONCLUSION This research proved that the microneedles on the MEA can penetrate through the corneum and reach the epidermis of the subjects, which could avoid the influence of corneum and fix the electrode on the body surface for high-quality signal recording especially during body movements. Furthermore, the microneedles would not touch the dermis, enabling a painless signal acquisition. SIGNIFICANCE This work is beneficial to the applications of wearable human-machine interface technology.
Collapse
|
39
|
Li L, Liu W, Jiang K, Chen D, Qu F, Shen G. In-Situ Annealed Ti 3C 2T x MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability. NANO-MICRO LETTERS 2021; 13:100. [PMID: 34138360 PMCID: PMC8017055 DOI: 10.1007/s40820-021-00634-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/26/2021] [Indexed: 05/13/2023]
Abstract
Zn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm-2 at scan rate of 10 mV s-1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm-2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of "TiC" logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.
Collapse
Affiliation(s)
- La Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Weijia Liu
- School of Mathematics and Physics, University of Science and Technology, Beijing, Beijing, 100083, People's Republic of China
| | - Kai Jiang
- Falculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA and Key Laboratory of Digital Hepetobiliary Surgery, Chinese PLA, Beijing, 100853, People's Republic of China
| | - Di Chen
- School of Mathematics and Physics, University of Science and Technology, Beijing, Beijing, 100083, People's Republic of China.
| | - Fengyu Qu
- College of Chemical and Chemistry, Harbin Normal University, Harbin, People's Republic of China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
| |
Collapse
|
40
|
Liu J, Long J, Shen Z, Jin X, Han T, Si T, Zhang H. A Self-Healing Flexible Quasi-Solid Zinc-Ion Battery Using All-In-One Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004689. [PMID: 33898202 PMCID: PMC8061350 DOI: 10.1002/advs.202004689] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Indexed: 05/21/2023]
Abstract
Self-healing and flexibility are significant for many emerging applications of secondary batteries, which have attracted broad attention. Herein, a self-healing flexible quasi-solid Zn-ion battery composing of flexible all-in-one cathode (VS2 nanosheets growing on carbon cloth) and anode (electrochemically deposited Zn nanowires), and a self-healing hydrogel electrolyte, is presented. The free-standing all-in-one electrodes enable a high capacity and robust structure during flexible transformation of the battery, and the hydrogel electrolyte possesses a good self-healing performance. The presented battery remains as a high retention potential even after healing from being cut into six pieces. When bending at 60°, 90°, and 180°, the battery capacities remain 124, 125, and 114 mAh g-1, respectively, cycling at a current density of 50 mA g-1. Moreover, after cutting and healing twice, the battery still delivers a stable capacity, indicating a potential use of self-healing and wearable electronics.
Collapse
Affiliation(s)
- Jinyun Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhuAnhui241002P. R. China
| | - Jiawei Long
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhuAnhui241002P. R. China
| | - Zihan Shen
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityNanjingJiangsu210093P. R. China
| | - Xing Jin
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityNanjingJiangsu210093P. R. China
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhuAnhui241002P. R. China
| | - Ting Si
- Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Huigang Zhang
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityNanjingJiangsu210093P. R. China
| |
Collapse
|
41
|
Jang Y, Park T, Kim E, Park JW, Lee DY, Kim SJ. Implantable Biosupercapacitor Inspired by the Cellular Redox System. Angew Chem Int Ed Engl 2021; 60:10563-10567. [PMID: 33565220 DOI: 10.1002/anie.202101388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/10/2022]
Abstract
The carbon nanotube (CNT) yarn supercapacitor has high potential for in vivo energy storage because it can be used in aqueous environments and stitched to inner parts of the body, such as blood vessels. The biocompatibility issue for frequently used pseudocapacitive materials, such as metal oxides, is controversial in the human body. Here, we report an implantable CNT yarn supercapacitor inspired by the cellular redox system. In all living cells, nicotinamide adenine dinucleotide (NAD) is a key redox biomolecule responsible for cellular energy transduction to produce adenosine triphosphate (ATP). Based on this redox system, CNT yarn electrodes were fabricated by inserting a twist in CNT sheets with electrochemically deposited NAD and benzoquinone for redox shuttling. Consequently, the NAD/BQ/CNT yarn electrodes exhibited the maximum area capacitance (55.73 mF cm-2 ) under physiological conditions, such as phosphate-buffered saline and serum. In addition, the yarn electrodes showed a negligible loss of capacitance after 10 000 repeated charge/discharge cycles and deformation tests (bending/knotting). More importantly, NAD/BQ/CNT yarn electrodes implanted into the abdominal cavity of a rat's skin exhibited the stable in vivo electrical performance of a supercapacitor. Therefore, these findings demonstrate a redox biomolecule-applied platform for implantable energy storage devices.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Taegyu Park
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Eunyoung Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Jong Woo Park
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Dong Yeop Lee
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Seon Jeong Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| |
Collapse
|
42
|
Vinoth R, Nakagawa T, Mathiyarasu J, Mohan AMV. Fully Printed Wearable Microfluidic Devices for High-Throughput Sweat Sampling and Multiplexed Electrochemical Analysis. ACS Sens 2021; 6:1174-1186. [PMID: 33517662 DOI: 10.1021/acssensors.0c02446] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the recent advancement in wearable biosensors provides continuous, noninvasive assessment of physiologically relevant chemical markers from human sweat, several bottlenecks still exist for its practical use. There were challenges in developing a multiplexed biosensing system with rapid microfluidic sampling and transport properties, as well as its integration with a portable potentiostat for improved interference-free data collection. Here, we introduce a clean-room free fabrication of wearable microfluidic sensors, using a screen-printed carbon master, for the electrochemical monitoring of sweat biomarkers during exercise activities. The sweat sampling is enhanced by introducing low-dimensional sensing compartments and lowering the hydrophilicity of channel layers via facile silane functionalization. The fluidic channel captures sweat at the inlet and directs the real-time sweat through the active sensing electrodes (within 40 s) for subsequent decoding and selective analyses. For proof of concept, simultaneous amperometric lactate and potentiometric ion sensing (Na+, K+, and pH) are carried out by a miniature circuit board capable of cross-talk-free signal collection and wireless signal transduction characteristics. All of the sensors demonstrated appreciable sensitivity, selectivity, stability, carryover efficiency, and repeatability. The floating potentiometric circuits eliminate the signal interference from the adjacent amperometric transducers. The fully integrated pumpless microfluidic device is mounted on the epidermis and employed for multiplexed real-time decoding of sweat during stationary biking. The regional variations in sweat composition are analyzed by human trials at the underarm and upperback locations. The presented method offers a large-scale fabrication of inexpensive high-throughput wearable sensors for personalized point-of-care and athletic applications.
Collapse
Affiliation(s)
- Rajendran Vinoth
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - Tatsuo Nakagawa
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo1858601, Japan
| | - Jayaraman Mathiyarasu
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - A. M. Vinu Mohan
- Electrodics and Electrocatalysis Division, CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)—CSIR, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
43
|
Huang H, Han L, Fu X, Wang Y, Yang Z, Pan L, Xu M. A Powder Self-Healable Hydrogel Electrolyte for Flexible Hybrid Supercapacitors with High Energy Density and Sustainability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006807. [PMID: 33590690 DOI: 10.1002/smll.202006807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Ionic conductive hydrogel electrolyte is considered to be an ideal electrolyte candidate for flexible supercapacitor due to its flexibility and high conductivity. However, due to the lack of effective recycling methods, a large number of ineffective flexible hydrogel supercapacitors caused by some irreversible damages and dryness of hydrogel electrolyte are abandoned, which would induce heavy economic and environmental protection problems. Herein,a smart ionic conductive hydrogel (SPMA-Zn: ZnSO4 /sodium alginate/polymethylacrylic acid) is developed for flexible hybrid supercapacitor (SPMA-ZHS). The SPMA-Zn exhibits an excellent self-healing ability and can recover its electrochemical performance after multiple mechanical damages. More importantly, it possesses an outstanding powder self-healable property, which could easily regenerate the hydrogel electrolyte after powdering, and maintain stable electrochemical performance of SPMA-ZHS. Besides, the SPMA-ZHS displays excellent electrochemical performance with a wide and stable working voltage range of 0-2.2 V, high energy density of 164.13 Wh kg-1 at the power density of 1283.44 Wh kg-1 and good stability with a capacity retention of 95.3% after 5000 charge/discharge cycles at 10 A g-1 . The strategy in this work would provide a new insight in exploring flexible hydrogel electrolyte-based supercapacitor with good sustainability and high energy density for flexible wearable electronic devices.
Collapse
Affiliation(s)
- Hailong Huang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Lu Han
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Xiaobin Fu
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yanling Wang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhongli Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Likun Pan
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
44
|
Yao M, Yuan Z, Li S, He T, Wang R, Yuan M, Niu Z. Scalable Assembly of Flexible Ultrathin All-in-One Zinc-Ion Batteries with Highly Stretchable, Editable, and Customizable Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008140. [PMID: 33533121 DOI: 10.1002/adma.202008140] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Indexed: 05/27/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) are considered to be a promising candidate for flexible energy storage devices due to their high safety and low cost. However, the scalable assembly of flexible ZIBs is still a challenge. Here, a scalable assembly strategy is developed to fabricate flexible ZIBs with an ultrathin all-in-one structure by combining blade coating with a rolling assembly process. Such a unique all-in-one integrated structure can effectively avoid the relative displacement or detachment between neighboring components to ensure continuous and effective ion- and/or loading-transfer capacity under external deformation, resulting in excellent structural and electrochemical stability. Furthermore, the ultrathin all-in-one ZIBs can be tailored and edited controllably into desired shapes and structures, further extending their editable, stretchable, and shape-customized functions. In addition, the ultrathin all-in-one ZIBs display the ability to integrate with perovskite solar cells to achieve an energy harvesting and storage integrated system. These enlighten a broad area of flexible ZIBs to be compatible with highly flexible and wearable electronics. The scaling-up assembly strategy provides a route to design other ultrathin all-in-one energy storage devices with stretchable, editable, and customizable behaviors.
Collapse
Affiliation(s)
- Minjie Yao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zishun Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Saisai Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Tingwei He
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
45
|
Han JH, Shin KH, Lee YJ. Scalable Binder-Free Freestanding Electrodes Based on a Cellulose Acetate-Assisted Carbon Nanotube Fibrous Network for Practical Flexible Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6375-6384. [PMID: 33508939 DOI: 10.1021/acsami.0c22664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a freestanding cellulose acetate-carbon nanotube (CA-CNT) film electrode is presented to achieve highly flexible, high-energy lithium-ion batteries (LIBs). CA serves as a dispersing agent of CNTs and a binder-free network former. A straightforward washing can remove CA in the electrode almost completely, while the fibrous CNT network within the electrode is sustained. Furthermore, the facile fabrication enables the large-scale production of the film electrode because the CA-CNT film is processed by a conventional casting method and not by the area-limited vacuum filtration. The superior electrochemical performance and high flexibility of the full cell assembled with CA-CNT-based electrodes are maintained even at a high active material loading, which has been proven difficult to accomplish in the conventional configuration LIBs. In addition, by simply stacking six sheets of the freestanding film electrode, a capacity as high as 5.4 mA h cm-2 is achieved. The assembled pouch battery operates stably under extreme deformation. We demonstrate that the rational design of the electrode could extend the flexibility to a higher energy than that achieved with the conventional configuration. We believe that the low production cost, high flexibility, and superior electrochemical performance of the proposed freestanding film electrode can expedite the implementation of wearable gears in daily life.
Collapse
Affiliation(s)
- Ji Hyun Han
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyu Hang Shin
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun Jung Lee
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
46
|
Zhang Q, Chen G, Li R, Lin L, He M. Mechanically tough yet self-healing transparent conductive elastomers obtained using a synergic dual cross-linking strategy. Polym Chem 2021. [DOI: 10.1039/d0py01760d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A tough yet self-healing transparent conductive elastomer was synthesized by introducing Al(iii)-carboxyl complexes into photo-polymerizable deep eutectic solvent (PDES).
Collapse
Affiliation(s)
- Qiankun Zhang
- State Key Laboratory of Pulp and Paper Engineering
- School of Light Industry and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering
- School of Light Industry and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Ren'ai Li
- State Key Laboratory of Pulp and Paper Engineering
- School of Light Industry and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Liang Lin
- State Key Laboratory of Pulp and Paper Engineering
- School of Light Industry and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering
- School of Light Industry and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
47
|
A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics. J Colloid Interface Sci 2020; 588:295-304. [PMID: 33406464 DOI: 10.1016/j.jcis.2020.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022]
Abstract
Conductive hydrogels present great potential in bioelectronics, ionotronic devices, and electronic skin. However, the creeping and plastic deformation of hydrogel often lead to poor stability and low reliability in applications. Here, we report a highly elastic conductive hydrogel based on crosslinked carbon nanotubes (CNT) and poly(vinyl alcohol) (PVA). With the formation of double crosslinking interactions, i.e., strong interaction from covalent acetal bonds and weak interaction from hydrogen bonds, CNT-PVA networks exhibit good stretchability (fracture stain up to 500%), rapid recovery, zero-residual deformation, and excellent mechanical stability. As such, the electromechanical response of this dual-crosslinked conductive hydrogel is stable and repeatable for a wide range of loading rates. Benefiting from the abundant hydroxyl groups and reversible acetal linking bridges in hydrogel networks, the prepared conductive hydrogel is not only repairable at room temperature, but also recyclable.
Collapse
|
48
|
Zhou Y, Zou Y, Peng Z, Yu C, Zhong W. Arbitrary deformable and high-strength electroactive polymer/MXene anti-exfoliative composite films assembled into high performance, flexible all-solid-state supercapacitors. NANOSCALE 2020; 12:20797-20810. [PMID: 33034310 DOI: 10.1039/d0nr04980h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Flexible all-solid-state supercapacitors (ASSSs) are excellent energy storage devices for portable/wearable electronics, although the development of an excellent comprehensive performance film electrode for the extraordinary flexible ASSSs still faces a great challenge. Here, bendable, foldable and anti-exfoliative Ti3C2Tx MXene-based films utilized as supercapacitor electrodes are reported. Polyaniline/Ti3C2Tx composites (i-PANI@Ti3C2Tx) were prepared by in situ oxidant-free polymerization of aniline on Ti3C2Tx nanosheets with p-phenylenediamine (PPD) as an initiator. Lignosulfonate (Lig) and Ti3C2Tx were constructed into a compact composite (Lig@Ti3C2Tx) film based on the hydrogen bonds formed between Lig and Ti3C2Tx. The Lig@Ti3C2Tx/i-PANI@Ti3C2Tx(5/5) hybrid film was produced by vacuum-assisted filtration of the mixed two composite dispersions. The as-prepared films can be arbitrarily deformed (such as bending and folding). They show high tensile strength and vertical-plane (the plane of film) tensile strength with 33.2 and 0.28 MPa for the i-PANI@Ti3C2Tx film, 75.4 and 0.77 MPa for the Lig@Ti3C2Tx film, and 53.7 and 0.58 MPa for the Lig@Ti3C2Tx/i-PANI@Ti3C2Tx(5/5) film (those of Ti3C2Tx film are 17.4 and 0.21 MPa), respectively. The enhanced vertical-plane tensile strength of the as-prepared composite films indicates that the large binding force generated between the Ti3C2Tx nanosheets can effectively prevent the exfoliation of films. The electrodes of the as-prepared i-PANI@Ti3C2Tx, Lig@Ti3C2Tx and Lig@Ti3C2Tx/i-PANI@Ti3C2Tx(5/5) films assembled into symmetric flexible ASSSs can deliver excellent specific capacitances of 310 F g-1 (∼1001 F cm-3), 271 F g-1 (∼881 F cm-3) and 295 F g-1 (∼959 F cm-3), respectively. In addition, the corresponding supercapacitors exhibit ultrahigh energy densities of 34.8, 30.6 and 33.3 W h L-1, respectively. It is expected that the as-prepared MXene-based films can be applied in various fields, such as electromagnetic-interference shielding and batteries. Furthermore, the as-prepared flexible ASSSs can be practically used as a wearable energy storage device.
Collapse
Affiliation(s)
- Yang Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Yubo Zou
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Zhiyuan Peng
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Chuying Yu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Wenbin Zhong
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
49
|
Pan K, Peng S, Chu Y, Liang K, Wang CH, Wu S, Xu J. Highly sensitive, stretchable and durable strain sensors based on conductive
double‐network
polymer hydrogels. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kaiqi Pan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering UNSW Sydney New South Wales Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering UNSW Sydney New South Wales Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering UNSW Sydney New South Wales Australia
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering UNSW Sydney New South Wales Australia
| | - Chun H. Wang
- School of Mechanical and Manufacturing Engineering UNSW Sydney New South Wales Australia
| | - Shuying Wu
- School of Mechanical and Manufacturing Engineering UNSW Sydney New South Wales Australia
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering UNSW Sydney New South Wales Australia
| |
Collapse
|
50
|
Yu R, Xia T, Wu B, Yuan J, Ma L, Cheng GJ, Liu F. Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35291-35299. [PMID: 32640161 DOI: 10.1021/acsami.0c09552] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The flexible piezoresistive sensor has attracted more and more attention in health monitoring as a man-machine interface due to its simple structure and convenient signal reading. Herein, a highly sensitive flexible piezoresistive sensor with a 3D conductive sensing unit is presented. The 3D conductive sensing unit consists of a 3D network thermoplastic elastomer (TPE) substrate fabricated by fused deposition molding (FDM) 3D printing and carbon nanotubes (CNTs) conductive layer embedded into the surface of the TPE substrate. The finite element analysis (FEA) shows that the 3D network structure has excellent mechanical properties, which is basically consistent with the experimental results. Experimentally, based on the novel 3D conductive network, the flexible piezoresistive sensor exhibits superior comprehensive properties in the compressed or stretched state. The sensitivity of the sensor is as high as 136.8 kPa-1 at an applied pressure <200 Pa while compressing, and its gauge factor (GF) can reach 6.85 while stretching. Meanwhile, the sensor shows excellent stability and durability performance because CNTs embedded into the surface of the TPE substrate have little effect on the flexibility of the elastomeric composite of the sensor. Finally, the piezoresistive sensor is used for detecting subtle muscular movements (facial expressing and throat swallowing) and body movement like arm bending. These results indicate that the novel 3D conductive structure provides an alternative way to improve the performance of piezoresistive sensors and extend their potential applications in health monitoring.
Collapse
Affiliation(s)
- Rui Yu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Tiancheng Xia
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Bang Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Yuan
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lijun Ma
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Gary J Cheng
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Feng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|