1
|
Qiu H, Wang S, Huang R, Liu X, Li L, Liu Z, Wang A, Ji S, Liang H, Jiang BP, Shen XC. Acidity-responsive polyphenol-coordinated nanovaccines for improving tumor immunotherapy via bidirectional reshaping of the immunosuppressive microenvironment and controllable release of antigens. Biomater Sci 2024; 12:3175-3192. [PMID: 38742916 DOI: 10.1039/d4bm00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The tumor immunosuppressive microenvironment (TIME) and uncontrollable release of antigens can lower the efficacy of nanovaccine-based immunotherapy (NBI). Therefore, it is necessary to develop a new strategy for TIME reshaping and controllable release of antigens to improve the NBI efficacy. Herein, an acidity-responsive Schiff base-conjugated polyphenol-coordinated nanovaccine was constructed for the first time to realize bidirectional TIME reshaping and controllable release of antigens for activating T cells. In particular, an acidity-responsive tannic acid-ovalbumin (TA-OVA) nanoconjugate was prepared via a Schiff base reaction. FeIII was coordinated with TA-OVA to produce a FeIII-TA-OVA nanosystem, and 1-methyltryptophan (1-MT) as an indoleamine 2,3-dioxygenase inhibitor was loaded to form a polyphenol-coordinated nanovaccine. The coordination between FeIII and TA could cause photothermal ablation of primary tumors, and the acidity-triggered Schiff base dissociation of TA-OVA could controllably release OVA to realize lysosome escape, initiating the body's immune response. More importantly, oxidative stress generated by a tumor-specific Fenton reaction of Fe ions could promote the polarization of tumor-associated macrophages from the M2 to M1 phenotype, resulting in the upregulation of cytotoxic T cells and helper T cells. Meanwhile, 1-MT could downregulate immunosuppressive regulatory T cells. Overall, such skillful combination of bidirectional TIME reshaping and controllable antigen release into one coordination nanosystem could effectively enhance the NBI efficacy of tumors.
Collapse
Affiliation(s)
- Huimin Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Shuman Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Rimei Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xingyu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Liqun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Zheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Aihui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
2
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
3
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
4
|
Jäger E, Ilina O, Dölen Y, Valente M, van Dinther EA, Jäger A, Figdor CG, Verdoes M. pH and ROS Responsiveness of Polymersome Nanovaccines for Antigen and Adjuvant Codelivery: An In Vitro and In Vivo Comparison. Biomacromolecules 2024; 25:1749-1758. [PMID: 38236997 PMCID: PMC10934262 DOI: 10.1021/acs.biomac.3c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Olga Ilina
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Yusuf Dölen
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Michael Valente
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Eric A.W. van Dinther
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Carl G. Figdor
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Li R, Hao Y, Pan W, Wang W, Min Y. Monophosphoryl lipid A-assembled nanovaccines enhance tumor immunotherapy. Acta Biomater 2023; 171:482-494. [PMID: 37708924 DOI: 10.1016/j.actbio.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/12/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Therapeutic cancer nanovaccines can induce strong antitumor immunity and establish long-term immune memory and have shown potential for curing tumors in some clinical trials. However, weak immunogenicity and safety concerns of nanocarriers limit the clinical translation of some therapeutic nanovaccines. Here, we developed minimal-component cancer nanovaccines, monophosphoryl lipid A (MPLA)-assembled nanovaccines (MANs), that could facilitate the clinical application of nanovaccines. The MANs were formed by protein antigens extracted from chemotherapy-induced tumor cell cultures and the amphiphilic immune adjuvant MPLA. Compared with free chemotherapy-induced antigens, MANs can activate the Toll-like receptor 4 (TLR4)-mediated signalling pathway and promote adaptive immunity against tumor antigens. Mechanistic analysis indicated that MANs induced antigen capture of DCs and promoted the activation of DCs and T cells, thereby optimizing the ratio of CD8+ T/Tregs in tumors and facilitating the transformation of the tumor immune microenvironment (TIME) from "cold" to "hot". In a CT26 colorectal cancer model, MANs+αPD-1 significantly improved the efficacy of αPD-1 treatment. Our work offers a strategy for designing minimal-component cancer nanovaccines with potential clinical benefits. STATEMENT OF SIGNIFICANCE: To address the weak immunogenicity of cancer vaccines and the safety concerns of nanocarriers, we prepared MPLA-assembled nanovaccines (MANs) using chemotherapy induced antigens and the immune adjuvant MPLA to promote cancer vaccines to clinical practice. MANs effectively internalized tumor antigens and induced DC maturation, indicating that the initial anti-tumor response had been activated. MANs+αPD-1 induced APCs, CD8+ T cells and memory T cells with positive anti-tumor effects to migrate to tumor tissue, thus leading to the transformation of the tumor immune microenvironment from "cold" to "hot". At the animal level, the combination of MANs and αPD-1 exerted synergistic effects and significantly enhanced tumor immunotherapy. Therefore, the treatment regimen of MANs+αPD-1 has potential clinical benefits.
Collapse
Affiliation(s)
- Rui Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuhao Hao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wen Pan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Mao J, Jin Z, Rui X, Li L, Hou C, Leng X, Bi X, Chen Z, Chen Y, Wang J. A Universal Cyclodextrin-Based Nanovaccine Platform Delivers Epitope Peptides for Enhanced Antitumor Immunity. Adv Healthc Mater 2023; 12:e2301099. [PMID: 37602523 DOI: 10.1002/adhm.202301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Currently, there is still an intense demand for a simple and scalable delivery platform for peptide-based cancer vaccines. Herein, a cyclodextrin-based polymer nanovaccine platform (CDNP) is designed for the codelivery of peptides with two immune adjuvants [the Toll-like receptor (TLR)7/8 agonist R848 and the TLR9 agonist CpG] that is broadly applicable to epitope peptides with diverse sequences. Specifically, the cyclodextrin-based polymers are covalently linked to epitope peptides via a bioreactive bond-containing cross-linker (PNC-DTDE-PNC) and then physically load with R848 and CpG to obtain CDNP. The CDNP efficiently accumulats in the lymph nodes (LNs), greatly facilitating antigen capture and cross-presentation by antigen-presenting cells. The immunogenicity of the epitope peptides is significantly enhanced by the codelivery and synergy of the adjuvants, and the CDNP shows the ability to inhibit tumor progression in diverse tumor-bearing mouse models. It is concluded that CDNP holds promise as an optimized peptide-based cancer vaccine platform.
Collapse
Affiliation(s)
- Jiarong Mao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Zhetong Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xue Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Lu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Chengchen Hou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xuejiao Leng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xiaolin Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Jingjing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| |
Collapse
|
7
|
Zhang Y, Jiang M, Du G, Zhong X, He C, Qin M, Hou Y, Liu R, Sun X. An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity against cancer. Acta Pharm Sin B 2023; 13:3518-3534. [PMID: 37655327 PMCID: PMC10465870 DOI: 10.1016/j.apsb.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of nanotechnology has opened new horizons for cancer immunotherapy. However, most nanovaccines fabricated with nanomaterials suffer from carrier-related concerns, including low drug loading capacity, unpredictable metabolism, and potential systemic toxicity, which bring obstacles for their clinical translation. Herein, we developed an antigen self-assembled nanovaccine, which was resulted from a simple acryloyl modification of the antigen to induce self-assembly. Furthermore, a dendritic cell targeting head mannose monomer and a mevalonate pathway inhibitor zoledronic acid (Zol) were integrated or absorbed onto the nanoparticles (denoted as MEAO-Z) to intensify the immune response. The synthesized nanovaccine with a diameter of around 70 nm showed successful lymph node transportation, high dendritic cell internalization, promoted costimulatory molecule expression, and preferable antigen cross-presentation. In virtue of the above superiorities, MEAO-Z induced remarkably higher titers of serum antibody, stronger cytotoxic T lymphocyte immune responses and IFN-γ secretion than free antigen and adjuvants. In vivo, MEAO-Z significantly suppressed EG7-OVA tumor growth and prolonged the survival time of tumor-bearing mice. These results indicated the translation promise of our self-assembled nanovaccine for immune potentiation and cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yingying Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Jia S, Ji S, Zhao J, Lv Y, Wang J, Sun D, Ding D. A Fluorinated Supramolecular Self-Assembled Peptide as Nanovaccine Adjuvant for Enhanced Cancer Vaccine Therapy. SMALL METHODS 2023; 7:e2201409. [PMID: 36802205 DOI: 10.1002/smtd.202201409] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Indexed: 05/17/2023]
Abstract
Adjuvants play an important role in enhancing vaccine-induced immune protection. Adequate cellular uptake, robust lysosomal escape, and subsequent antigen cross-presentation are critical steps for vaccine adjuvants to effectively elicit cellular immunity. Here, a fluorinated supramolecular strategy to generate a series of peptide adjuvants by using arginine (R) and fluorinated diphenylalanine peptide (DP) is adopted. It is found that the self-assembly ability and antigen-binding affinity of these adjuvants increase with the number of fluorine (F) and can be regulated by R. By comparison, 4RDP(F5) shows the strongest binding affinity with model antigen ovalbumin (OVA) and the best performance in dendritic cells maturation and antigen's lysosomal escape, which contributes to the subsequent antigen cross-presentation. As a consequence, 4RDP(F5)-OVA nanovaccine generates a strong cellular immunity in a prophylactic OVA-expressing EG7-OVA lymphoma model, leading to long-term immune memory for resisting tumor challenge. What's more, 4RDP(F5)-OVA nanovaccine in combination with anti-programmed cell death ligand-1 (anti-PD-L1) checkpoint blockade could effectively elicit anti-tumor immune responses and inhibit tumor growth in a therapeutic EG7-OVA lymphoma model. Overall, this study demonstrates the simplicity and effectiveness of fluorinated supramolecular strategies for constructing adjuvants and might provide an attractive vaccine adjuvant candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Shaorui Jia
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shenglu Ji
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jia Zhao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yonghui Lv
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiayang Wang
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
9
|
Singh AK, Malviya R, Prajapati B, Singh S, Goyal P. Utilization of Stimuli-Responsive Biomaterials in the Formulation of Cancer Vaccines. J Funct Biomater 2023; 14:jfb14050247. [PMID: 37233357 DOI: 10.3390/jfb14050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Immunology research has focused on developing cancer vaccines to increase the number of tumor-specific effector cells and their ability to fight cancer over the last few decades. There is a lack of professional success in vaccines compared to checkpoint blockade and adoptive T-cell treatment. The vaccine's inadequate delivery method and antigen selection are most likely to blame for the poor results. Antigen-specific vaccines have recently shown promising results in preclinical and early clinical investigations. To target particular cells and trigger the best immune response possible against malignancies, it is necessary to design a highly efficient and secure delivery method for cancer vaccines; however, enormous challenges must be overcome. Current research is focused on developing stimulus-responsive biomaterials, which are a subset of the range of levels of materials, to enhance therapeutic efficacy and safety and better regulate the transport and distribution of cancer immunotherapy in vivo. A concise analysis of current developments in the area of biomaterials that respond to stimuli has been provided in brief research. Current and anticipated future challenges and opportunities in the sector are also highlighted.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| |
Collapse
|
10
|
Zheng L, Wu H, Wen N, Zhang Y, Wang Z, Peng X, Tan Y, Qiu L, Qu F, Tan W. Aptamer-Functionalized Nanovaccines: Targeting In Vivo DC Subsets for Enhanced Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18590-18597. [PMID: 37017594 DOI: 10.1021/acsami.2c20846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cancer vaccines, which directly pulsed in vivo dendritic cells (DCs) with specific antigens and immunostimulatory adjuvants, showed great potential for cancer immunoprevention. However, most of them were limited by suboptimal outcomes, mainly owing to overlooking the complex biology of DC phenotypes. Herein, based on adjuvant-induced antigen assembly, we developed aptamer-functionalized nanovaccines for in vivo DC subset-targeted codelivery of tumor-related antigens and immunostimulatory adjuvants. We chose two aptamers, iDC and CD209, and tested their performance on DC targeting. Our results verified that these aptamer-functionalized nanovaccines could specifically recognize circulating classical DCs (cDCs), a subset of DCs capable of priming naïve T cells, noting that iDC outperformed CD209 in this regard. With excellent cDC-targeting capability, the iDC-functionalized nanovaccine induced potent antitumor immunity, leading to effective inhibition of tumor occurrence and metastasis, thus providing a promising platform for cancer immunoprevention.
Collapse
Affiliation(s)
- Liyan Zheng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hui Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Nachuan Wen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xueyu Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yan Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Fengli Qu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023; 158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines, which form one of the most potent vaccine platforms, offer exclusive advantages over classical vaccines that use whole organisms or proteins. However, peptides alone are still poor stability and weak immunogenicity, thus need a delivery system that can overcome these shortcomings. Currently, nanotechnology has been extensively utilized to address this issue. Nanovaccines, as new formulations of vaccines using nanoparticles (NPs) as carriers or adjuvants, are undergoing development instead of conventional vaccines. Indeed, peptide-based nanovaccine is a rapidly developing field of research that is emerging out of the confluence of antigenic peptides with the nano-delivery system. In this review, we shed light on the rational design and preparation strategies based on various nanomaterials of peptide-based nanovaccines, and we spotlight progress in the development of peptide-based nanovaccines against cancer and infectious diseases. Finally, the future prospects for development of peptide-based nanovaccines are presented.
Collapse
|
12
|
Huo J, Zhang A, Wang S, Cheng H, Fan D, Huang R, Wang Y, Wan B, Zhang G, He H. Splenic-targeting biomimetic nanovaccine for elevating protective immunity against virus infection. J Nanobiotechnology 2022; 20:514. [PMID: 36463277 PMCID: PMC9719655 DOI: 10.1186/s12951-022-01730-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The prevalence of viral infectious diseases has become a serious threat to public safety, economic and social development. Vaccines have been served as the most effective platform to prevent virus transmission via the activation of host immune responses, while the low immunogenicity or safety, the high cost of production, storage, transport limit their effective clinical application. Therefore, there is a need to develop a promising strategy to improve the immunogenicity and safety of vaccines. METHODS We developed a splenic-targeting biomimetic nanovaccine (NV) that can boost protective humoral and cellular immunity against african swine fever virus (ASFV) infection. The universal PLGA nanoparticles (CMR-PLGA/p54 NPs) coated with mannose and CpG (TLR9 agonist) co-modified red blood cell (RBC) membrane were prepared, which comprised a viral antigen (p54) and can be served as a versatile nanovaccine for elevating protective immunity. RESULTS CMR-PLGA/p54 NVs could be effectively uptaken by BMDC and promoted BMDC maturation in vitro. After subcutaneous immunization, antigen could be effectively delivered to the splenic dendritic cells (DCs) due to the splenic homing ability of RBC and DC targeting capacity of mannose, which promoted antigen presentation and DCs maturation, and further elicited higher levels of cytokines secretion and specific IgG titers, CD4+ and CD8+ T cells activation and B maturation. Moreover, NVs demonstrated notable safety during the immunization period. CONCLUSIONS This study demonstrates the high potential of CMR-PLGA NPs as vaccine delivery carriers to promote humoral and cellular immune responses, and it provides a promising strategy to develop safe and effective vaccines against viral infectious diseases.
Collapse
Affiliation(s)
- Jian Huo
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Angke Zhang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Shuqi Wang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Hanghang Cheng
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Daopeng Fan
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ran Huang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yanan Wang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Bo Wan
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Gaiping Zhang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Hua He
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
13
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Weiden J, Schluck M, Ioannidis M, van Dinther EAW, Rezaeeyazdi M, Omar F, Steuten J, Voerman D, Tel J, Diken M, Bencherif SA, Figdor CG, Verdoes M. Robust Antigen-Specific T Cell Activation within Injectable 3D Synthetic Nanovaccine Depots. ACS Biomater Sci Eng 2021; 7:5622-5632. [PMID: 34734689 PMCID: PMC8672349 DOI: 10.1021/acsbiomaterials.0c01648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
Synthetic cancer vaccines may boost anticancer immune responses by co-delivering tumor antigens and adjuvants to dendritic cells (DCs). The accessibility of cancer vaccines to DCs and thereby the delivery efficiency of antigenic material greatly depends on the vaccine platform that is used. Three-dimensional scaffolds have been developed to deliver antigens and adjuvants locally in an immunostimulatory environment to DCs to enable sustained availability. However, current systems have little control over the release profiles of the cargo that is incorporated and are often characterized by an initial high-burst release. Here, an alternative system is designed that co-delivers antigens and adjuvants to DCs through cargo-loaded nanoparticles (NPs) incorporated within biomaterial-based scaffolds. This creates a programmable system with the potential for controlled delivery of their cargo to DCs. Cargo-loaded poly(d,l-lactic-co-glycolic acid) NPs are entrapped within the polymer walls of alginate cryogels with high efficiency while retaining the favorable physical properties of cryogels, including syringe injection. DCs cultured within these NP-loaded scaffolds acquire strong antigen-specific T cell-activating capabilities. These findings demonstrate that introduction of NPs into the walls of macroporous alginate cryogels creates a fully synthetic immunostimulatory niche that stimulates DCs and evokes strong antigen-specific T cell responses.
Collapse
Affiliation(s)
- Jorieke Weiden
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, Nijmegen 6525 GA, Netherlands
- Institute
for Chemical Immunology, Nijmegen 6525 GA, Netherlands
| | - Marjolein Schluck
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, Nijmegen 6525 GA, Netherlands
- Institute
for Chemical Immunology, Nijmegen 6525 GA, Netherlands
| | - Melina Ioannidis
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Eric A. W. van Dinther
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Mahboobeh Rezaeeyazdi
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Fawad Omar
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Juulke Steuten
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
| | - Dion Voerman
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, Nijmegen 6525 GA, Netherlands
- Institute
for Chemical Immunology, Nijmegen 6525 GA, Netherlands
| | - Jurjen Tel
- Department
of Biomedical Engineering, Laboratory of Immunoengineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, Netherlands
| | - Mustafa Diken
- TRON-Translational
Oncology at the University Medical Center of the Johannes Gutenberg
University gGmbH, Mainz 55131, Germany
| | - Sidi A. Bencherif
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Biomechanics
and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology
of Compiègne, Sorbonne University, Compiègne 60203, France
| | - Carl G. Figdor
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, Nijmegen 6525 GA, Netherlands
- Institute
for Chemical Immunology, Nijmegen 6525 GA, Netherlands
| | - Martijn Verdoes
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, Netherlands
- Institute
for Chemical Immunology, Nijmegen 6525 GA, Netherlands
| |
Collapse
|
15
|
Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay. Nat Commun 2021; 12:3721. [PMID: 34140497 PMCID: PMC8211857 DOI: 10.1038/s41467-021-23997-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Cytosolic transport is an essential requirement but a major obstacle to efficient delivery of therapeutic peptides, proteins and nucleic acids. Current understanding of cytosolic delivery mechanisms remains limited due to a significant number of conflicting reports, which are compounded by low sensitivity and indirect assays. To resolve this, we develop a highly sensitive Split Luciferase Endosomal Escape Quantification (SLEEQ) assay to probe mechanisms of cytosolic delivery. We apply SLEEQ to evaluate the cytosolic delivery of a range of widely studied cell-penetrating peptides (CPPs) fused to a model protein. We demonstrate that positively charged CPPs enhance cytosolic delivery as a result of increased non-specific cell membrane association, rather than increased endosomal escape efficiency. These findings transform our current understanding of how CPPs increase cytosolic delivery. SLEEQ is a powerful tool that addresses fundamental questions in intracellular drug delivery and will significantly improve the way materials are engineered to increase therapeutic delivery to the cytosol.
Collapse
|
16
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Liu D, Deng B, Liu Z, Ma B, Leng X, Kong D, Ji T, Liu L. Enhanced Antitumor Immune Responses via a Self-Assembled Carrier-Free Nanovaccine. NANO LETTERS 2021; 21:3965-3973. [PMID: 33886338 DOI: 10.1021/acs.nanolett.1c00648] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanovaccines have emerged as promising agents for cancer immunotherapy. However, insufficient antitumor immunity caused by inefficient antigen/adjuvant loading and complicated preparation processes are the major obstacles that limit their clinical application. Herein, two adjuvants, monophosphatidyl A (MPLA) and CpG ODN, with antigens were designed into a nanovaccine to overcome the above obstacles. This nanovaccine was constructed with adjuvants (without additional materials) through facile self-assembly, which not only ensured a high loading efficacy and desirable safety but also facilitated clinical translation for convenient fabrication. More importantly, the selected adjuvants could achieve a notable immune response through synergistic activation of Toll-like receptor 4 (TLR4) and TLR9 signaling pathways, and the resulting nanovaccine remarkably inhibited the tumor growth and prolonged the survival of tumor-implanted mice. This nanovaccine system provides an effective strategy to construct vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Dan Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Bo Deng
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Zongran Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Ma
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Xigang Leng
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Deling Kong
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanxia Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| |
Collapse
|
18
|
Dölen Y, Gileadi U, Chen JL, Valente M, Creemers JHA, Van Dinther EAW, van Riessen NK, Jäger E, Hruby M, Cerundolo V, Diken M, Figdor CG, de Vries IJM. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front Immunol 2021; 12:641703. [PMID: 33717196 PMCID: PMC7947615 DOI: 10.3389/fimmu.2021.641703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-specific neoantigens can be highly immunogenic, but their identification for each patient and the production of personalized cancer vaccines can be time-consuming and prohibitively expensive. In contrast, tumor-associated antigens are widely expressed and suitable as an off the shelf immunotherapy. Here, we developed a PLGA-based nanoparticle vaccine that contains both the immunogenic cancer germline antigen NY-ESO-1 and an α-GalCer analog IMM60, as a novel iNKT cell agonist and dendritic cell transactivator. Three peptide sequences (85-111, 117-143, and 157-165) derived from immunodominant regions of NY-ESO-1 were selected. These peptides have a wide HLA coverage and were efficiently processed and presented by dendritic cells via various HLA subtypes. Co-delivery of IMM60 enhanced CD4 and CD8 T cell responses and antibody levels against NY-ESO-1 in vivo. Moreover, the nanoparticles have negligible systemic toxicity in high doses, and they could be produced according to GMP guidelines. Together, we demonstrated the feasibility of producing a PLGA-based nanovaccine containing immunogenic peptides and an iNKT cell agonist, that is activating DCs to induce antigen-specific T cell responses.
Collapse
Affiliation(s)
- Yusuf Dölen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ji-Li Chen
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Valente
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jeroen H A Creemers
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - Eric A W Van Dinther
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Eliezer Jäger
- Institute of Macromolecular Chemistry v. v. i., Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Martin Hruby
- Institute of Macromolecular Chemistry v. v. i., Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Oncode Institute, Nijmegen, Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| |
Collapse
|
19
|
Liu Q, Fan T, Zheng Y, Yang SL, Yu Z, Duo Y, Zhang Y, Adah D, Shi L, Sun Z, Wang D, Xie J, Wu H, Wu Z, Ge C, Qiao L, Wei C, Huang L, Yan Q, Yang Q, Bao S, Liu LP, Zhang H. Immunogenic exosome-encapsulated black phosphorus nanoparticles as an effective anticancer photo-nanovaccine. NANOSCALE 2020; 12:19939-19952. [PMID: 32991664 DOI: 10.1039/d0nr05953f] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Tumor vaccines are a promising form of cancer immunotherapy, but difficulties such as neo-antigen identification, activation of immune cells, and tumor infiltration prevent their clinical breakthrough. Interestingly, nanotechnology-based photothermal therapy (PTT) has great potential to overcome these barriers. Previous studies have shown that serum exosomes (hEX) from hyperthermia-treated tumor-bearing mice displayed an array of patient-specific tumor-associated antigens (TAAs), and strong immunoregulatory abilities in promoting dendritic cell (DC) differentiation and maturation. Here, we developed a tumor vaccine (hEX@BP) by encapsulating black phosphorus quantum dots (BPQDs) with exosomes (hEX) against a murine subcutaneous lung cancer model. In comparison with BPQDs alone (BP), hEX@BP demonstrated better long-term PTT performance, greater elevation of tumor temperature and tumor targeting efficacy in vivo. Vaccination with hEX@BP in combination with PTT further demonstrated an outstanding therapeutic efficacy against established lung cancer, and promoted the infiltration of T lymphocytes into the tumor tissue. Our findings demonstrated that hEX@BP might be an innovative cancer photo-nanovaccine that offers effective immuno-PTT against cancers.
Collapse
Affiliation(s)
- Quan Liu
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China. and Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Taojian Fan
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University and Collaborative Innovation Center for Optoelectronic Science and Technology of Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yuanyuan Zheng
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P. R. China
| | - Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Duo
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University and Collaborative Innovation Center for Optoelectronic Science and Technology of Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yuhua Zhang
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dickson Adah
- State Key Laboratory of Respiratory Disease, Department of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P. R. China
| | - Lulin Shi
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Zhe Sun
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China. and Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dou Wang
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Jianlei Xie
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University and Collaborative Innovation Center for Optoelectronic Science and Technology of Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Hong Wu
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zongze Wu
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Chenchen Ge
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China. and Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Lijun Qiao
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Chaoying Wei
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Luodan Huang
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiaoting Yan
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China.
| | - Shiyun Bao
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China. and Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, Guangdong 518020, P. R. China
| | - Han Zhang
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University and Collaborative Innovation Center for Optoelectronic Science and Technology of Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
20
|
Huang J, Zhou J, Ghinnagow R, Seki T, Iketani S, Soulard D, Paczkowski P, Tsuji Y, MacKay S, Cruz LJ, Trottein F, Tsuji M. Targeted Co-delivery of Tumor Antigen and α-Galactosylceramide to CD141 + Dendritic Cells Induces a Potent Tumor Antigen-Specific Human CD8 + T Cell Response in Human Immune System Mice. Front Immunol 2020; 11:2043. [PMID: 32973811 PMCID: PMC7461784 DOI: 10.3389/fimmu.2020.02043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Active co-delivery of tumor antigens (Ag) and α-galactosylceramide (α-GalCer), a potent agonist for invariant Natural Killer T (iNKT) cells, to cross-priming CD8α+ dendritic cells (DCs) was previously shown to promote strong anti-tumor responses in mice. Here, we designed a nanoparticle-based vaccine able to target human CD141+ (BDCA3+) DCs - the equivalent of murine CD8α+ DCs – and deliver both tumor Ag (Melan A) and α-GalCer. This nanovaccine was inoculated into humanized mice that mimic the human immune system (HIS) and possess functional iNKT cells and CD8+ T cells, called HIS-CD8/NKT mice. We found that multiple immunizations of HIS-CD8/NKT mice with the nanovaccine resulted in the activation and/or expansion of human CD141+ DCs and iNKT cells and ultimately elicited a potent Melan-A-specific CD8+ T cell response, as determined by tetramer staining and ELISpot assay. Single-cell proteomics further detailed the highly polyfunctional CD8+ T cells induced by the nanovaccine and revealed their predictive potential for vaccine potency. This finding demonstrates for the first time the unique ability of human iNKT cells to license cross-priming DCs in vivo and adds a new dimension to the current strategy of cancer vaccine development.
Collapse
Affiliation(s)
- Jing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Jing Zhou
- IsoPlexis, Branford, CT, United States
| | - Reem Ghinnagow
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Toshiyuki Seki
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | | | - Yukiko Tsuji
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States
| | | | - Luis Javier Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
21
|
Zhang T, Zhang L, Wu X, Xu H, Hao P, Huang W, Zhang Y, Zan X. Hexahistidine-Metal Assemblies: A Facile and Effective Codelivery System of Subunit Vaccines for Potent Humoral and Cellular Immune Responses. Mol Pharm 2020; 17:2487-2498. [PMID: 32469222 DOI: 10.1021/acs.molpharmaceut.0c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fully effective vaccines must induce both potent humoral and cellular immunities. Nanoparticles coencapsulating antigens and adjuvants have shown promising advantages as subunit vaccines in many aspects. However, the low loading efficiency and complicated synthesis process of these nanomaterials need to be improved. Here, we utilized hexahistidine (His6)-metal assembly (HmA) particles as carriers to codeliver ovalbumin peptides and cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs). We found that antigen/adjuvant-carrying HmA can efficiently enter into antigen-presenting cells and help the antigens escape from lysosomes to induce the maturation of these cells in vitro, characterized by increasing expression levels of costimulatory molecules and cytokines. More importantly, the vaccines with high biocompatibility can elicit strong humoral and cellular immunities by improving secretion of specific antibodies and cytokines, enhancing activation of DCs and T cells in vivo. Our results suggest that HmA provides a new approach for subunit vaccines by codelivery of antigens and adjuvants.
Collapse
Affiliation(s)
- Tinghong Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| | - Long Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| |
Collapse
|
22
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Wei L, Zhao Y, Hu X, Tang L. Redox-Responsive Polycondensate Neoepitope for Enhanced Personalized Cancer Vaccine. ACS CENTRAL SCIENCE 2020; 6:404-412. [PMID: 32232140 PMCID: PMC7099592 DOI: 10.1021/acscentsci.9b01174] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 05/19/2023]
Abstract
A versatile and highly effective platform remains a major challenge in the development of personalized cancer vaccines. Here, we devised a redox-responsive polycondensate neoepitope (PNE) through a reversible polycondensation reaction of peptide neoantigens and adjuvants together with a tracelessly responsive linker-monomer. Peptide-based neoantigens with diverse sequences and structures could be copolymerized with molecular adjuvants to form PNEs of high loading capacity for vaccine delivery without adding any carriers. The redox-responsive PNEs with controlled molecular weights and sizes efficiently targeted and accumulated in draining lymph nodes and greatly promoted the antigen capture and cross-presentation by professional antigen presenting cells. Mice immunized with PNEs showed markedly enhanced antigen-specific T cell response and the protective immunity against the tumor cell challenge.
Collapse
Affiliation(s)
- Lixia Wei
- Institute
of Materials Science and Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Yu Zhao
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Xiaomeng Hu
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Li Tang
- Institute
of Materials Science and Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
- E-mail:
| |
Collapse
|
24
|
Liu F, Sun J, Yu W, Jiang Q, Pan M, Xu Z, Mo F, Liu X. Quantum dot-pulsed dendritic cell vaccines plus macrophage polarization for amplified cancer immunotherapy. Biomaterials 2020; 242:119928. [PMID: 32145508 DOI: 10.1016/j.biomaterials.2020.119928] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Dendritic cell (DC) vaccines hold great potential in cancer immunotherapy, but the suboptimal design of DC vaccines and the immunosuppressive tumor microenvironment largely impair their anti-tumor efficacy. Here, quantum dot (QD) pulsed-DC vaccines integrating with tumor-associated macrophage polarization are developed for amplified anti-tumor immunity. Semiconductor QDs are engineered with diverse functions to act as fluorescence nanoprobes, immunomodulatory adjuvants, and nanocarriers to load tumor antigens and Toll-like receptor 9 agonists. The QD-pulsed DC vaccines enable spatiotemporal tracking of lymphatic drainage and efficacy evaluation of DC immunotherapy, and trigger potent immunoactivation. Specifically, designer DC vaccine plus macrophage polarization elicits potent immune response to stimulate innate and adaptive antitumor immunity and ameliorate the immunosuppressive tumor microenvironment. As a new combination therapy, this strategy greatly boosts antigen-specific T-cell immunity and thus strongly inhibits local tumor growth and tumor metastasis in vivo. This study may provide an applicable treatment for cancer immunotherapy.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Junlin Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Wenqian Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Qunying Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Min Pan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Zhen Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Fengye Mo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
25
|
Krekorian M, Fruhwirth GO, Srinivas M, Figdor CG, Heskamp S, Witney TH, Aarntzen EH. Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics 2019; 9:7924-7947. [PMID: 31656546 PMCID: PMC6814447 DOI: 10.7150/thno.37924] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has proven to be an effective approach in a growing number of cancers. Despite durable clinical responses achieved with antibodies targeting immune checkpoint molecules, many patients do not respond. The common denominator for immunotherapies that have successfully been introduced in the clinic is their potential to induce or enhance infiltration of cytotoxic T-cells into the tumour. However, in clinical research the molecules, cells and processes involved in effective responses during immunotherapy remain largely obscure. Therefore, in vivo imaging technologies that interrogate T-cell responses in patients represent a powerful tool to boost further development of immunotherapy. This review comprises a comprehensive analysis of the in vivo imaging technologies that allow the characterisation of T-cell responses induced by anti-cancer immunotherapy, with emphasis on technologies that are clinically available or have high translational potential. Throughout we discuss their respective strengths and weaknesses, providing arguments for selecting the optimal imaging options for future research and patient management.
Collapse
Affiliation(s)
- Massis Krekorian
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Gilbert O. Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Timothy H. Witney
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Erik H.J.G. Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Musetti S, Huang L. Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy. ACS NANO 2018; 12:11740-11755. [PMID: 30508378 DOI: 10.1021/acsnano.8b05893] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoscience has long been lauded as a method through which tumor-associated barriers could be overcome. As successful as cancer immunotherapy has been, limitations associated with the tumor microenvironment or side effects of systemic treatment have become more apparent. In this Review, we seek to lay out the therapeutic challenges associated with the tumor microenvironment and the ways in which nanoscience is being applied to remodel the tumor microenvironment and increase the susceptibility of many cancer types to immunotherapy. We detail the nanomedicines on the cutting edge of cancer immunotherapy and how their interactions with the tumor microenvironment make them more effective than systemically administered immunotherapies.
Collapse
Affiliation(s)
- Sara Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
27
|
Liu J, Liu X, Han Y, Zhang J, Liu D, Ma G, Li C, Liu L, Kong D. Nanovaccine Incorporated with Hydroxychloroquine Enhances Antigen Cross-Presentation and Promotes Antitumor Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30983-30993. [PMID: 30136844 DOI: 10.1021/acsami.8b09348] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Induction of effective antigen-specific CD8+ T-cell responses is critical for cancer immunotherapy success. Hydroxychloroquine (HCQ) is a widely used classical antimalarial and antirheumatic drug. HCQ is also an endosomal membrane disrupting agent that can lead to vesicular swelling and membrane permeabilization, which likely facilitates the release of therapeutic agents from lysosomes into the cytoplasm. Here, we develop a minimalistic nanovaccine, which is composed of poly(lactide- co-glycolide)acid (PLGA) nanoparticles (NPs) encapsulating a physical mixture of ovalbumin (OVA, a model antigen) and HCQ (HCQ-OVA-PLGA NPs). We tested whether HCQ could spatiotemporally control the cytosolic delivery of antigens, enhance antigen processing and presentation via the major histocompatibility complex (MHC)-I pathway, and thus generate a sufficient antitumor cytotoxic T-cell response. The results of in vitro experiments showed that HCQ-OVA-PLGA NPs significantly enhanced OVA escape from lysosomes into the cytoplasm within bone-marrow-derived dendritic cells. We also observed that HCQ-OVA-PLGA NPs enhanced the expression level of MHC-I on dendritic cells and improved cross-presentation of antigen, compared to free OVA or OVA-PLGA NPs. Results of in vivo experiments confirmed that HCQ initiated Th1-type responses and strong CD8+ T-cell responses that induced tumor cell apoptosis. Moreover, vaccination of mice with HCQ-OVA-PLGA NPs effectively generated memory immune responses in vivo and prevented tumor progression. We conclude that co-encapsulation of HCQ with antigens in nanovaccines can boost antigen-specific antitumor immune responses, particularly through CD8+ T-cells, serving as a simple and effective platform for the treatment of tumors and infectious diseases.
Collapse
Affiliation(s)
- Jiale Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Xiaoxuan Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Yanfeng Han
- Institute of Biomedical & Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , China
- School of Biomedical Sciences , University of Queensland , St Lucia, Brisbane , Queensland 4072 , Australia
| | - Jing Zhang
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Dan Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Guilei Ma
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Chen Li
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Lanxia Liu
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
| | - Deling Kong
- The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering , Peking Union Medical College & Chinese Academy of Medical Sciences , Tianjin 300192 , China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences , Nankai University , Tianjin 300071 , China
| |
Collapse
|