1
|
Jin Y, Wang J, Tang R, Jiang Y, Xi D. Nucleic Acid-Based Biological Nanopore Sensing Strategies for Tumor Marker Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21327-21340. [PMID: 39356337 DOI: 10.1021/acs.langmuir.4c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Cancer, which is characterized by high mortality rates, poses a significant threat to global human health. Early diagnosis is of paramount importance in managing cancer, and tumor markers have emerged as crucial indicators for achieving this goal. The advent of precision medicine has further emphasized the need for the effective detection of these markers. However, traditional detection methods are hampered by numerous limitations. In recent years, nanopore technology has emerged as a promising alternative, due to its unique physical and chemical properties, which facilitate rapid, label-free, and amplification-free detection. This Review focuses on the direct detection of tumor markers through nucleic acid analysis and indirect detection mediated by nucleic acids and facilitated by biological nanopores. Furthermore, it also discusses the challenges and prospects of applying biological nanopore sensing technology in early cancer diagnosis, underscoring its potential to revolutionize tumor marker detection.
Collapse
Affiliation(s)
- Yameng Jin
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Junxiao Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Ruping Tang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Yao Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| |
Collapse
|
2
|
Cai S, Ren R, He J, Wang X, Zhang Z, Luo Z, Tan W, Korchev Y, Edel JB, Ivanov AP. Selective Single-Molecule Nanopore Detection of mpox A29 Protein Directly in Biofluids. NANO LETTERS 2023; 23:11438-11446. [PMID: 38051760 PMCID: PMC10755749 DOI: 10.1021/acs.nanolett.3c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Single-molecule antigen detection using nanopores offers a promising alternative for accurate virus testing to contain their transmission. However, the selective and efficient identification of small viral proteins directly in human biofluids remains a challenge. Here, we report a nanopore sensing strategy based on a customized DNA molecular probe that combines an aptamer and an antibody to enhance the single-molecule detection of mpox virus (MPXV) A29 protein, a small protein with an M.W. of ca. 14 kDa. The formation of the aptamer-target-antibody sandwich structures enables efficient identification of targets when translocating through the nanopore. This technique can accurately detect A29 protein with a limit of detection of ∼11 fM and can distinguish the MPXV A29 from vaccinia virus A27 protein (a difference of only four amino acids) and Varicella Zoster Virus (VZV) protein directly in biofluids. The simplicity, high selectivity, and sensitivity of this approach have the potential to contribute to the diagnosis of viruses in point-of-care settings.
Collapse
Affiliation(s)
- Shenglin Cai
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ren Ren
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith
Campus, Du Cane Road, London W12 0NN, U.K.
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jiaxuan He
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Xiaoyi Wang
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| | - Zheng Zhang
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Zhaofeng Luo
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Weihong Tan
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Yuri Korchev
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith
Campus, Du Cane Road, London W12 0NN, U.K.
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
3
|
Wang X, Wei X, van der Zalm MM, Zhang Z, Subramanian N, Demers AM, Walters EG, Hesseling A, Liu C. Quantitation of Circulating Mycobacterium tuberculosis Antigens by Nanopore Biosensing in Children Evaluated for Pulmonary Tuberculosis in South Africa. ACS NANO 2023; 17:21093-21104. [PMID: 37643288 PMCID: PMC10668583 DOI: 10.1021/acsnano.3c04420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nanopore sensing of proteomic biomarkers lacks accuracy due to the ultralow abundance of targets, a wide variety of interferents in clinical samples, and the mismatch between pore and analyte sizes. By converting antigens to DNA probes via click chemistry and quantifying their characteristic signals, we show a nanopore assay with several amplification mechanisms to achieve an attomolar level limit of detection that enables quantitation of the circulating Mycobacterium tuberculosis (Mtb) antigen ESAT-6/CFP-10 complex in human serum. The assay's nonsputum-based feature and low-volume sample requirements make it particularly well-suited for detecting pediatric tuberculosis (TB) disease, where establishing an accurate diagnosis is greatly complicated by the paucibacillary nature of respiratory secretions, nonspecific symptoms, and challenges with sample collection. In the clinical assessment, the assay was applied to analyze ESAT-6/CFP-10 levels in serum samples collected during baseline investigation for TB in 75 children, aged 0-12 years, enrolled in a diagnostic study conducted in Cape Town, South Africa. This nanopore assay showed superior sensitivity in children with confirmed TB (94.4%) compared to clinical "gold standard" diagnostic technologies (Xpert MTB/RIF 44.4% and Mtb culture 72.2%) and filled the diagnostic gap for children with unconfirmed TB, where these traditional technologies fell short. We envision that, in combination with automated sample processing and portable nanopore devices, this methodology will offer a powerful tool to support the diagnosis of pulmonary TB in children.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Marieke M. van der Zalm
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Nandhini Subramanian
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Anne-Marie Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Division of Microbiology, Department of Laboratory Medicine, CHU Sainte-Justine, and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Elisabetta Ghimenton Walters
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE1 4LP, United Kingdom
| | - Anneke Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
4
|
Davis F, Higson SPJ. Synthetic Receptors for Early Detection and Treatment of Cancer. BIOSENSORS 2023; 13:953. [PMID: 37998127 PMCID: PMC10669836 DOI: 10.3390/bios13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
Over recent decades, synthetic macrocyclic compounds have attracted interest from the scientific community due to their ability to selectively and reversibly form complexes with a huge variety of guest moieties. These molecules have been studied within a wide range of sensing and other fields. Within this review, we will give an overview of the most common synthetic macrocyclic compounds including cyclodextrins, calixarenes, calixresorcinarenes, pillarenes and cucurbiturils. These species all display the ability to form a wide range of complexes. This makes these compounds suitable in the field of cancer detection since they can bind to either cancer cell surfaces or indeed to marker compounds for a wide variety of cancers. The formation of such complexes allows sensitive and selective detection and quantification of such guests. Many of these compounds also show potential for the detection and encapsulation of environmental carcinogens. Furthermore, many anti-cancer drugs, although effective in in vitro tests, are not suitable for use directly for cancer treatment due to low solubility, inherent instability in in vivo environments or an inability to be adsorbed by or transported to the required sites for treatment. The reversible encapsulation of these species in a macrocyclic compound can greatly improve their solubility, stability and transport to required sites where they can be released for maximum therapeutic effect. Within this review, we intend to present the use of these species both in cancer sensing and treatment. The various macrocyclic compound families will be described, along with brief descriptions of their synthesis and properties, with an outline of their use in cancer detection and usage as therapeutic agents. Their use in the sensing of environmental carcinogens as well as their potential utilisation in the clean-up of some of these species will also be discussed.
Collapse
Affiliation(s)
| | - Séamus P. J. Higson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| |
Collapse
|
5
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Erofeev AS. Recent Advances in Nanopore Technology for Copper Detection and Their Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091573. [PMID: 37177118 PMCID: PMC10181076 DOI: 10.3390/nano13091573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Recently, nanopore technology has emerged as a promising technique for the rapid, sensitive, and selective detection of various analytes. In particular, the use of nanopores for the detection of copper ions has attracted considerable attention due to their high sensitivity and selectivity. This review discusses the principles of nanopore technology and its advantages over conventional techniques for copper detection. It covers the different types of nanopores used for copper detection, including biological and synthetic nanopores, and the various mechanisms used to detect copper ions. Furthermore, this review provides an overview of the recent advancements in nanopore technology for copper detection, including the development of new nanopore materials, improvements in signal amplification, and the integration of nanopore technology with other analytical methods for enhanced detection sensitivity and accuracy. Finally, we summarize the extensive applications, current challenges, and future perspectives of using nanopore technology for copper detection, highlighting the need for further research in the field to optimize the performance and applicability of the technique.
Collapse
Affiliation(s)
- Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Roman V Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Petr V Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| |
Collapse
|
6
|
Pan J, Xu W, Li W, Chen S, Dai Y, Yu S, Zhou Q, Xia F. Electrochemical Aptamer-Based Sensors with Tunable Detection Range. Anal Chem 2023; 95:420-432. [PMID: 36625123 DOI: 10.1021/acs.analchem.2c04498] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxia Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanlu Li
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuwen Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shanwu Yu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Wei L, Wang Z, Chen Y. Optical Biosensor for Ochratoxin A Detection in Grains Using an Enzyme-Mediated Click Reaction and Polystyrene Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14798-14804. [PMID: 36372964 DOI: 10.1021/acs.jafc.2c05137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we develop an optical biosensor for highly sensitive and facile detection of ochratoxin A (OTA) using an enzyme-mediated click reaction for signal amplification and polystyrene nanoparticles (PNPs) for signal readout. Alkaline phosphatase was employed to hydrolyze the ascorbic acid-phosphate to generate ascorbic acid, which reduces Cu(II) to Cu(I). Cu(I) can catalyze the click reaction between alkyne-functionalized magnetic beads and azide-functionalized PNPs to form complexes, while unbound PNPs acted as the signal probe. This strategy utilized the high efficiency of click chemistry and the inherent optical absorption properties of PNPs, which effectively improved the sensitivity of conventional immunoassays and simplified the procedures using magnetic separation technology. This optical biosensor enabled OTA detection in a linear range of 0.1 to 50 ng/mL with a detection limit of 54 pg/mL. Moreover, it has been successfully challenged with OTA detection in maize samples, revealing its potential as a promising tool for mycotoxin screening.
Collapse
Affiliation(s)
- Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
| |
Collapse
|
8
|
Wei X, Wang X, Zhang Z, Luo Y, Wang Z, Xiong W, Jain PK, Monnier JR, Wang H, Hu TY, Tang C, Albrecht H, Liu C. A click chemistry amplified nanopore assay for ultrasensitive quantification of HIV-1 p24 antigen in clinical samples. Nat Commun 2022; 13:6852. [PMID: 36369146 PMCID: PMC9651128 DOI: 10.1038/s41467-022-34273-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Despite major advances in HIV testing, ultrasensitive detection of early infection remains challenging, especially for the viral capsid protein p24, which is an early virological biomarker of HIV-1 infection. Here, To improve p24 detection in patients missed by immunological tests that dominate the diagnostics market, we show a click chemistry amplified nanopore (CAN) assay for ultrasensitive quantitative detection. This strategy achieves a 20.8 fM (0.5 pg/ml) limit of detection for HIV-1 p24 antigen in human serum, demonstrating 20~100-fold higher analytical sensitivity than nanocluster-based immunoassays and clinically used enzyme-linked immunosorbent assay, respectively. Clinical validation of the CAN assay in a pilot cohort shows p24 quantification at ultra-low concentration range and correlation with CD4 count and viral load. We believe that this strategy can improve the utility of p24 antigen in detecting early infection and monitoring HIV progression and treatment efficacy, and also can be readily modified to detect other infectious diseases.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Yuanyuan Luo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wen Xiong
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Piyush K Jain
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32608, USA
| | - John R Monnier
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Helmut Albrecht
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
- Center of Infectious Diseases Research and Policy, Prisma Health, Columbia, SC, 29203, USA
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Chen P, Jiang P, Lin Q, Zeng X, Liu T, Li M, Yuan Y, Song S, Zhang J, Huang J, Ying B, Chen J. Simultaneous Homogeneous Fluorescence Detection of AFP and GPC3 in Hepatocellular Carcinoma Clinical Samples Assisted by Enzyme-Free Catalytic Hairpin Assembly. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28697-28705. [PMID: 35699181 DOI: 10.1021/acsami.2c09135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Simultaneous sensitive and cost-effective detection of multiple tumor markers has shown great potential for cancer diagnostics. Herein, we reported a simple enzyme-free parallel catalytic hairpin assembly (CHA) amplification strategy with N-methyl mesoporphyrin IX (NMM) and quantum dots (QDs) as signal reporters for the homogeneous fluorescent simultaneous detection of alpha-fetoprotein (AFP) and glypican-3 (GPC3). Upon selective binding, the released single-stranded DNA (ssDNA) from the two-aptamer double-stranded DNA (dsDNA) probes triggers CHA amplification, further releasing the G-quadruplex sequence and Ag+ from the C-Ag+-C structures at the same time. Then, NMM and CdTe QDs selectively recognize G-quadruplex and Ag+, respectively. Under optimized conditions, limits of detections (LODs) as low as 3 fg/mL for AFP and 0.25 fg/mL for GPC3 were achieved using fluorescence readout. Using color- and distance-based visual readouts, an LOD of 1 fg/mL for GPC3 was reached. This method was applied to quantitatively analyze AFP and GPC3 in 41 clinical serum samples of hepatocellular carcinoma (HCC) patients. The quantitative test results for AFP and GPC3 were consistent with those obtained using the electrochemiluminescence immunoassay (ECL-IA) clinical kit and correlated with radiological and pathological findings. The results of clinical tests demonstrated the potential of GPC3 as a tumor biomarker, and we propose a cut-off value of 2 ng/mL GPC3 for HCC.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianli Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghu Zeng
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Li
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyang Song
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Huang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Wang Z, Wei L, Zeng L, Feng N, Chen J, Chen Y. Click Chemistry-Mediated Particle Counting Sensing via Cu(II)-Polyglutamic Acid Coordination Chemistry and Enzymatic Reaction. Anal Chem 2022; 94:5293-5300. [PMID: 35319873 DOI: 10.1021/acs.analchem.1c05127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrical resistance-based particle counter (ERPC) with simple operation and high resolution has proved to be a promising biosensing toolkit, whereas amplification-free ERPC biosensors are incapable of analyzing trace small molecules due to their relatively low sensitivity. In this work, click chemistry-mediated particle counting sensing of small-molecule hazards in food samples with high sensitivity was developed. In this strategy, unbound alkyne-functionalized polystyrene microspheres were collected by magnetic separation from the copper-ion-mediated click reaction between alkyne-functionalized polystyrene microspheres and azido-functionalized magnetic beads, which could be used as signal probes for the readout. This click chemistry-mediated ERPC biosensor converts the detection of targets to the quantification of copper ions or ascorbic acid by performing competitive immunoassay-based coordination chemistry and enzymatic reaction, respectively. The sensitivity of the ERPC biosensor has been improved by an order of magnitude due to the signal amplification effects of click chemistry, coordination adsorption, and enzyme catalysis. Furthermore, because of the efficient separation and enrichment of immunomagnetic beads and the robustness of click chemistry, the interference from food matrixes and immunoassay is effectively reduced, and thus, our strategy is exceedingly suitable for detecting trace targets in complex samples.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Luyu Wei
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Lingwen Zeng
- Wuhan Zhongke Zhikang Biological Technology Co., Ltd., Gaoxin Avenue, East Lake High-tech Zone, Wuhan 430074, China
| | - Niu Feng
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Jianjun Chen
- Wuhan Shangcheng Biotechnology Co., Ltd., Gaoxin Avenue, East Lake New Technology Development Zone, Wuhan 430063, China
| | - Yiping Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Pengfei Road, Dapeng District, Shenzhen 518120, China
| |
Collapse
|
12
|
A colorimetric sensor for Staphylococcus aureus detection based on controlled click chemical-induced aggregation of gold nanoparticles and immunomagnetic separation. Mikrochim Acta 2022; 189:104. [DOI: 10.1007/s00604-022-05211-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
|
13
|
Ferrofluids transport in bioinspired nanochannels: Application to electrochemical biosensing with magnetic-controlled detection. Biosens Bioelectron 2022; 201:113963. [PMID: 35007994 DOI: 10.1016/j.bios.2022.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/28/2021] [Accepted: 01/02/2022] [Indexed: 11/21/2022]
Abstract
Controllable transport of ions, molecules or fluids in bioinspired nanochannels is crucial to study biointeraction occurred in confined space and also develop biosensing platforms or devices. Herein, ferrofluids transport in biofunctionalized nanochannels was investigated and a novel electrochemical biosensing platform with the characteristic of label-free, high sensitivity and rapid response was constructed. The hydrophilic ferrofluids can flux swiftly through the antibody-immobilized nanochannels with the assistance of a permanent magnet. It was initially found that the presence of ferrofluids would depress the redox current of the electrochemical probe [Fe(CN)6]3-. The mechanism of the depressing effect was ascribed to the constrained diffusion of [Fe(CN)6]3- which lowered the concentration of it at the electrode surface and the weak adsorption of the ferrofluids which increased the charge transfer resistance of the interface. Therefore, redox current of the probe was applied to indicate the amount of the ferrofluids fluxing through the bioinspired nanochannels. The steric hindrance of the bioinspired nanochannels changed with the amount of the corresponding target being incubated, resulting in quantitative variation of the redox current. In this way, electrochemical biosensing platform based on ferrofluids transport was constructed. Using carbohydrate antigen 153 (CA153) as a model target, a low detection limit of 0.0013 U·mL-1 was acquired. This magnetic-controlled bioelectrochemical platform was expected to be expanded to other applications such as genetic testing, drug analysis, and molecular identification.
Collapse
|
14
|
Wei H, Bu S, Zhang W, Ma L, Liu X, Wang Z, Li Z, Hao Z, He X, Wan J. An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu 3(PO 4) 2-mediated click chemistry and DNAzymes. Analyst 2021; 146:4841-4847. [PMID: 34223580 DOI: 10.1039/d1an00982f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel electrochemical biosensor for detecting pathogenic bacteria was designed based on specific magnetic separation and highly sensitive click chemistry. Instead of enzyme-antibody conjugates, organic-inorganic hybrid nanoflowers [concanavalin A (Con A)-Cu3(PO4)2] were used as the signal probe of the sandwich structure. The inorganic component, the copper ions of hybrid nanoflowers, was first used to amplify signal transduction for enzyme-free detection. Sodium ascorbate could dissolve Cu3(PO4)2 of the signal probe to produce Cu2+, which was subsequently converted to Cu+, triggering the Cu+-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between azide-functionalized ssDNA (a fragment of the DNAzyme-containing sequence) and alkyne-functionalized ssDNA immobilized onto the electrode surface. As a result, the DNAzyme was immobilized onto the gold electrode, which produced a positive and stable electrical signal. An exceptional linear relationship was observed between the electrical signal and the concentration of Salmonella typhimurium (101-107 CFU mL-1) with a detection limit of 10 CFU mL-1. The developed electrochemical biosensor based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes exhibited good results in detecting S. typhimurium in milk samples.
Collapse
Affiliation(s)
- Hongguo Wei
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China. and Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shengjun Bu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Wenguang Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Li Ma
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Xiu Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Ze Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Zhongyi Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Zhuo Hao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | - Jiayu Wan
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China.
| |
Collapse
|
15
|
Rajpal S, Bhakta S, Mishra P. Biomarker imprinted magnetic core-shell nanoparticles for rapid, culture free detection of pathogenic bacteria. J Mater Chem B 2021; 9:2436-2446. [PMID: 33625438 DOI: 10.1039/d0tb02842h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rapid and selective detection of microorganisms in complex biological systems draws huge attention to address the rising issue of antimicrobial resistance. Diagnostics based on the identification of whole microorganisms are laborious, time-consuming and costly, thus alternative strategies for early clinical diagnosis include biomarker based microbial detection. This paper describes a low-cost, easy-to-use method for the detection of Pseudomonas aeruginosa infections by specifically identifying a biomarker pyocyanin, using surface-molecularly imprinted nanoparticles or "plastibodies". The selective nanopockets are created by templating pyocyanin onto 20 nm allyl-functionalized magnetic nanoparticles coated with a thin layer of the acrylamide-based polymer. This functional material with an impressive imprinting factor (IF) of 5 and a binding capacity of ∼2.5 mg g-1 of polymers can be directly applied for the detection of bacteria in complex biological samples based on the presence of pyocyanin. These MIPs are highly selective and sensitive to pyocyanin and can consistently bind with pyocyanin in repeated use. Finally, the facile and efficient capture of pyocyanin has versatile applications ranging from biomarker based culture free detection of P. aeruginosa to monitoring of the therapeutic regime, in addition to developing a new class of antibiotics.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Snehasis Bhakta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India. and Department of Chemistry, Cooch Behar College, West Bengal 736101, India and Nanoscale Research Facilities, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
16
|
Zhang Z, Wang X, Wei X, Zheng SW, Lenhart BJ, Xu P, Li J, Pan J, Albrecht H, Liu C. Multiplex quantitative detection of SARS-CoV-2 specific IgG and IgM antibodies based on DNA-assisted nanopore sensing. Biosens Bioelectron 2021; 181:113134. [PMID: 33761415 PMCID: PMC7927651 DOI: 10.1016/j.bios.2021.113134] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread into a global pandemic. Early and accurate diagnosis and quarantine remain the most effective mitigation strategy. Although reverse transcriptase polymerase chain reaction (RT-qPCR) is the gold standard for COVID-19 diagnosis, recent studies suggest that nucleic acids were undetectable in a significant number of cases with clinical features of COVID-19. Serologic assays that detect human antibodies to SARS-CoV-2 serve as a complementary method to diagnose these cases, as well as to identify asymptomatic cases and qualified convalescent serum donors. However, commercially available enzyme-linked immunosorbent assays (ELISA) are laborious and non-quantitative, while point-of-care assays suffer from low detection accuracy. To provide a serologic assay with high performance and portability for potential point-of-care applications, we developed DNA-assisted nanopore sensing for quantification of SARS-CoV-2 related antibodies in human serum. Different DNA structures were used as detection reporters for multiplex quantification of immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against the nucleocapsid protein of SARS-CoV-2 in serum specimens from patients with conformed or suspected infection. Comparing to a clinically used point-of-care assay and an ELISA assay, our technology can reliably quantify SARS-CoV-2 antibodies with higher accuracy, large dynamic range, and potential for assay automation.
Collapse
Affiliation(s)
- Zehui Zhang
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaoqin Wang
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaojun Wei
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA; Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Sophia W Zheng
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Brian J Lenhart
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jie Li
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jing Pan
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Helmut Albrecht
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; Department of Internal Medicine, Palmetto Health USC Medical Group, Columbia, SC 29203, USA
| | - Chang Liu
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA; Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
17
|
Sun K, Chen P, Yan S, Yuan W, Wang Y, Li X, Dou L, Zhao C, Zhang J, Wang Q, Fu Z, Wei L, Xin Z, Tang Z, Yan Y, Peng Y, Ying B, Chen J, Geng J. Ultrasensitive Nanopore Sensing of Mucin 1 and Circulating Tumor Cells in Whole Blood of Breast Cancer Patients by Analyte-Triggered Triplex-DNA Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21030-21039. [PMID: 33905228 DOI: 10.1021/acsami.1c03538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The characterization of circulating tumor cells (CTCs) by liquid biopsy has a great potential for precision medicine in oncology. Here, a universal and tandem logic-based strategy is developed by combining multiple nanomaterials and nanopore sensing for the determination of mucin 1 protein (MUC1) and breast cancer CTCs in real samples. The strategy consists of analyte-triggered signal conversion, cascaded amplification via nanomaterials including copper sulfide nanoparticles (CuS NPs), silver nanoparticles (Ag NPs), and biomaterials including DNA hydrogel and DNAzyme, and single-molecule-level detection by nanopore sensing. The amplification of the non-DNA nanomaterial gives this method considerable stability, significantly lowers the limit of detection (LOD), and enhances the anti-interference performance for complicated samples. As a result, the ultrasensitive detection of MUC1 could be achieved in the range of 0.0005-0.5 pg/mL, with an LOD of 0.1 fg/mL. Moreover, we further tested MUC1 as a biomarker for the clinical diagnosis of breast cancer CTCs under double-blind conditions on the basis of this strategy, and MCF-7 cells could be accurately detected in the range from 5 to 2000 cells/mL, with an LOD of 2 cells/mL within 6 h. The detection results of the 19 clinical samples were highly consistent with those of the clinical pathological sections, nuclear magnetic resonance imaging, and color ultrasound. These results demonstrate the validity and reliability of our method and further proved the feasibility of MUC1 as a clinical diagnostic biomarker for CTCs.
Collapse
Affiliation(s)
- Ke Sun
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Shixin Yan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Weidan Yuan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xinqiong Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Linqin Dou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jianfu Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qiang Wang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhoukai Fu
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Wei
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Zhuoyun Tang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yichen Yan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yiman Peng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jie Chen
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| |
Collapse
|
18
|
Wei X, Zhang Z, Wang X, Lenhart B, Gambarini R, Gray J, Liu C. Insight into the effects of electrochemical factors on host-guest interaction induced signature events in a biological nanopore. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021; 3:2-8. [PMID: 33786424 PMCID: PMC8006565 DOI: 10.1016/j.npe.2019.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The signature events caused by host-guest interactions in the nanopore system can be used as a novel and characteristic signal in quantitative detection and analysis of various molecules. However, the effect of several electrochemical factors on the host-guest interactions in nanopore still remains unknown. Here, we systematically studied host-guest interactions, especially oscillation of DNA-azide adamantane@cucurbit[6] in α-Hemolysin nanopore under varying pH, concentration of electrolytes and counterions (Li+, Na+, K+). Our results indicate correlations between the change of pH and the duration of the oscillation signal. In addition, the asymmetric electrolyte concentration and the charge of the counterions affects the frequency of signature events in oscillation signals, and even the integrity of the protein nanopore. This study provides insight into the design of a future biosensing platform based on signature oscillation signals of the host-guest interaction within a nanopore.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA.,Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Brian Lenhart
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Roberto Gambarini
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Jonathan Gray
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA.,Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Zhai C, Azhar U, Yue W, Dou Y, Zhang L, Yang X, Zhang Y, Xu P, Zong C, Zhang S. Preparation and Insights of Smart Foams with Phototunable Foamability Based on Azobenzene-Containing Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15423-15429. [PMID: 33300789 DOI: 10.1021/acs.langmuir.0c03028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Smart foams with tunable foamability exhibit superb applications in many fields such as colloidal and interface science. Herein, we have synthesized an azobenzene-containing surfactant with excellent photoresponsiveness by a simple thiol-maleimide click reaction between thioglycolic acid and 4-(N-maleimide) azobenzene (MAB). The structure and the photoresponsive behavior of the novel surfactant are characterized. Depending on the solution concentration, the synthesized surfactant demonstrated various speeds for the trans/cis photoisomerization varying from 9 to 24 s for the given concentration range and excellent reversible photoisomerization cycling stability (more than 20 cycles) upon light irradiation. Based on these conformational switches, a series of phototriggered obvious surface properties (e.g., critical micelle concentration (CMC), surface tension (γ), and surface excess concentration (Γ)) changes of the surfactant are achieved. More specifically, the smart foam system with tunable foamability is realized. As-formed smart foams with rapid photocontrolled reversible foaming/defoaming transition and excellent cycling stability make them very attractive candidates for applications in wastewater treatment, green textile, oil extraction, and emulsification.
Collapse
Affiliation(s)
- Congcong Zhai
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Department of Polymer Engineering, National Textile University, Karachi Campus, Karachi 74900, Pakistan
| | - Wence Yue
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yingqian Dou
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Luqing Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoyu Yang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yabin Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peiming Xu
- Taishan Sports Industry Group Co., Ltd., Dezhou 253600, China
| | - Chuanyong Zong
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Taishan Sports Industry Group Co., Ltd., Dezhou 253600, China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
20
|
Chernikova EY, Berdnikova DV. Cucurbiturils in nucleic acids research. Chem Commun (Camb) 2020; 56:15360-15376. [PMID: 33206072 DOI: 10.1039/d0cc06583h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the past ten years, the importance of cucurbiturils (CB[n]) as macrocyclic hosts in supramolecular assemblies with various types of natural and synthetic nucleic acids (NAs) has increased explosively. As a component of such systems, CB[n] macrocycles can play a wide spectrum of roles from drug and gene delivery vehicles to catalysts/inhibitors of biochemical reactions and even building blocks for NA-based materials. The aim of this highlight article is to describe the development of the CB[n] applications in nucleic acids research and to outline the current situation and perspectives of this fascinating synergistic combination of supramolecular chemistry of CB[n] and NAs.
Collapse
Affiliation(s)
- Ekaterina Y Chernikova
- Laboratory of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, Russia.
| | | |
Collapse
|
21
|
Wang Y, Zhang Y, Chen X, Guan X, Wang L. Analysis with biological nanopore: On-pore, off-pore strategies and application in biological fluids. Talanta 2020; 223:121684. [PMID: 33303138 DOI: 10.1016/j.talanta.2020.121684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Inspired from ion channels in biology, nanopores have been developed as promising analytical tools. In principle, nanopores provide crucial information from the observation and analysis of ionic current modulations caused by the interaction between target analytes and fluidic pores. In this respect, the biological, chemical and physical parameters of the nanopore regime need to be well-understood and regulated for intermolecular interaction. Because of well-defined molecular structures, biological nanopores consequently are of a focal point, allowing precise interaction analysis at single-molecule level. In this overview, two analytical strategies are summarized and discussed accordingly, upon the challenges arising in case-dependent analysis using biological nanopores. One kind of strategies relies on modification, functionalization and engineering on nanopore confined interface to improve molecular recognition sites (on-pore strategies); The other kind of highlighted strategies concerns to measurement of various chemistry/biochemistry based interactions triggered by employed molecular agents or probes (off-pore strategies). In particularly, a few recent paradigms using these strategies for practical application of accurate analysis of biomarkers in biological fluids are illustrated. To end, the challenging and future outlook of using analytical tools by means of biological nanopores are depicted.
Collapse
Affiliation(s)
- Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
22
|
Huang B, Wang P, Ouyang Y, Pang R, Liu S, Hong C, Ma S, Gao Y, Tian J, Zhang W. Pillar[5]arene-Based Switched Supramolecular Photosensitizer for Self-Amplified and pH-Activated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41038-41046. [PMID: 32830945 DOI: 10.1021/acsami.0c10372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising and spatiotemporally controllable cancer treatment modality. However, serious skin photosensitization during the PDT process limits the clinical application of PDT. Thus, the construction of "smart" and multifunctional photosensitizers has attracted substantial interest. Herein, we develop a mitochondria-targeting and pH-switched hybrid supramolecular photosensitizer by the host-guest interaction. The PDT efficacy of supramolecular photosensitizers can be quenched by the Förster resonance energy transfer (FRET) effect during long circulation and activated by the dissociation of supramolecular photosensitizers in an acidic tumor microenvironment, benefitting from the dynamic feature of the host-guest interaction and pH responsiveness of the water-soluble pillar[5]arene on gold nanoparticles. The rational integration of mitochondria-targeting and reductive glutathione (GSH) elimination in the hybrid switchable supramolecular photosensitizer prolongs the lifetime of reactive oxygen species generated in the PDT near mitochondria and further amplifies the PDT efficacy. Thus, the facile and versatile construction of switchable supramolecular photosensitizer offers not only the targeted and precise phototherapy but also high therapeutic efficacy, which would provide a new path for the clinic application of PDT.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ruiqi Pang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Siyi Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chenyu Hong
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Shaohua Ma
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
23
|
Dai Y, Han B, Dong L, Zhao J, Cao Y. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Chen P, Bai Y, Tang Y, Yan S, Wang X, Wei W, Wang J, Zhang M, Ying B, Geng J. Rapid and highly sensitive visual detection of oxalate for metabolic assessment of urolithiasis via selective recognition reaction of CdTe quantum dots. J Mater Chem B 2020; 8:7677-7684. [PMID: 32716463 DOI: 10.1039/d0tb01108h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A homogeneous visual determination of oxalate method based on selective quenching reaction of QDs was constructed for metabolic assessment of urolithiasis.
Collapse
|
25
|
Fang Z, Liu L, Wang Y, Xi D, Zhang S. Unambiguous Discrimination of Multiple Protein Biomarkers by Nanopore Sensing with Double-Stranded DNA-Based Probes. Anal Chem 2019; 92:1730-1737. [DOI: 10.1021/acs.analchem.9b02965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhen Fang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P.R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Liping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P.R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
26
|
Wu L, Xianyu Y, Wang Z, Dong Y, Hu X, Chen Y. Amplified Magnetic Resonance Sensing via Enzyme-Mediated Click Chemistry and Magnetic Separation. Anal Chem 2019; 91:15555-15562. [DOI: 10.1021/acs.analchem.9b03550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Long Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Yunlei Xianyu
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
- National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiaobo Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| |
Collapse
|
27
|
Dong Y, Zheng W, Chen D, Li X, Wang J, Wang Z, Chen Y. Click Reaction-Mediated T2 Immunosensor for Ultrasensitive Detection of Pesticide Residues via Brush-like Nanostructure-Triggered Coordination Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9942-9949. [PMID: 31403785 DOI: 10.1021/acs.jafc.9b03463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We develop an ultrasensitive T2-mediated immunosensor based on the coordination chemistry and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide andalkyne (CuAAC) and apply it for the detection of pesticide residues. We functionalize polyglutamic acid (PGA) on polystyrene to form a brush-like nanostructure that has a large loading capacity of Cu(II) through the coordination chemistry between PGA and Cu(II). Such a brush-like nanostructure could be used to chelate Cu(II) to modulate the CuAAC between azide-functionalized 1000 nm polystyrene (PS1000) and alkyne-functionalized 30 nm magnetic nanoparticles (MNP30), and the MNP30-PS1000 conjugate as a product of CuAAC can act as a magnetic probe in this T2-based immunosensor. This click chemistry and coordination chemistry-mediated immunosensor allows for an ultrasensitive detection for chlorpyrifos residue (0.022 ng/mL), a 58-fold enhancement compared with that of enzyme-linked immunosorbent assay (1.28 ng/mL), providing a promising platform for detection of trace small molecules.
Collapse
Affiliation(s)
- Yongzhen Dong
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Wenshu Zheng
- National Center for NanoScience and Technology , 11 Beiyitiao , ZhongGuanCun , Beijing 100190 , China
| | - Da Chen
- Center for Aircraft Fire and Emergency , Civil Aviation University of China , Tianjin 300300 , China
| | - Xiujuan Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Jia Wang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Zhilong Wang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Yiping Chen
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| |
Collapse
|
28
|
Wang Z, Xianyu Y, Liu W, Li Y, Cai Z, Fu X, Jin G, Niu Y, Qi C, Chen Y. Nanoparticles-Enabled Surface-Enhanced Imaging Ellipsometry for Amplified Biosensing. Anal Chem 2019; 91:6769-6774. [DOI: 10.1021/acs.analchem.9b00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunlei Xianyu
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Liu
- NML, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yike Li
- NML, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaoxia Cai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Jin
- NML, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Niu
- NML, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Cai Qi
- Guizhou Jinjiu Biotech. Co. Ltd., Guiyang 550005, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|