1
|
Mohamed F, Shaban M, Salem OM. Metal oxides carbon xerogel nanocomposite for methanol oxidation fuel cell. Sci Rep 2025; 15:4603. [PMID: 39920110 PMCID: PMC11805975 DOI: 10.1038/s41598-025-85579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
The primary requirement for electrode materials in direct methanol fuel cells (DMFC) is efficient electrocatalyst that exhibit high tolerance to methanol oxidation, excellent stability, and reasonable cost. The combination of distinct active materials with distinctive architectures may facilitate the attainment of this objective. The present study included the preparation of a Carbon Xerogel Doped with various metal oxides derived from Banana peels. The nanocomposites were thoroughly examined utilizing several characterization modalities including XRD, FTIR, and SEM. The electrocatalytic performance of Carbon xerogel doped with Iron (Fe3O4/CX), carbon xerogel doped with magnesium (MgO/CX), and carbon xerogel doped with Copper (CuO/CX) about the Methanol Oxidation Reaction (MOR) was investigated using electrochemical methods such as cyclic voltammetry, impedance spectroscopy, and chronoamperometry. The results showed that the Fe3O4/CX, MgO/CX, and CuO/CX are effective electrocatalysts with an onset potential of around 1.00 V and current densities of approximately 42.98 mA cm - 2, 28.2784 mA.cm - 2, and 6.60698 mA.cm - 2, respectively, in the optimized electrolyte for methanol oxidation. The stability of Fe3O4/CX, MgO/CX, and CuO/CX electrodes was examined using chronoamperometry and the Cyclic Stability method. The results revealed that the (Fe3O4/CX) electrode exhibited outstanding stability throughout the whole 60-minute chronoamperometry Technique and demonstrated great stability for 100 cycles in the Cyclic Stability technique. The remarkable electrochemical activity and stability may be attributed to the synergistic effect of Fe3O4/CX, which provided sufficient active sites for methanol electro-oxidation and reduced the equivalent series resistance, as shown by the electrochemical impedance spectroscopy analysis. This work used environmentally friendly materials, which presents a novel opportunity to enhance the efficiency of methanol oxidation via the utilization of affordable catalysts. This study of the theoretical technique methods for establishing the route of methanol decomposition, and systematizes their confirmation with experimental data, within the methodological framework.
Collapse
Affiliation(s)
- Fatma Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Nanophotonics and Applications (NPA) Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Materials Science Research Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, 42351, Madinah, Saudi Arabia
| | - Omnia M Salem
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Nanophotonics and Applications (NPA) Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
2
|
Li J, Zhang Y, Ye C, Du Y. Metal-Support Interactions in PdCu/NiZnP Nanohybrids Enhance Alcohol Electrooxidation. Inorg Chem 2025; 64:2118-2126. [PMID: 39851142 DOI: 10.1021/acs.inorgchem.4c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2025]
Abstract
Developing high-performance catalysts for the alcohol electrooxidation reaction is of significant importance for the practical application of direct fuel cells. Herein, a supported catalyst consisting of well-dispersive PdCu nanoparticles (NPs) and ultrathin NiZnP nanosheets (NSs) is synthesized. The high-surface-area NiZnP NSs provide a platform for good dispersion of PdCu NPs, resulting in stable catalysts with a large number of exposed surface atoms. Compared with PdCu NPs and commercial Pd/C, the metal-support interactions contribute to the activity and durability improvement of the PdCu/NiZnP nanohybrids. Moreover, the NiZnP NSs promote the formation of OH species, thereby facilitating the removal of carbonaceous intermediates and ensuring the long-term stability of PdCu/NiZnP nanohybrids. This study provides deep insight into the supported catalysts and a comprehensive understanding of the metal-support interactions, offering great opportunities for the design of efficient catalysts for direct fuel cells.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yuefan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Xu Z, Hu X, Jiang X, Zhu S, Lei K, Pi Y, Jiang K, Zheng S. 2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction. SMALL METHODS 2024:e2401717. [PMID: 39679765 DOI: 10.1002/smtd.202401717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/11/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Ultrafine Pt-based alloy nanoparticles supported on carbon substrates have attracted significant attention due to their catalytic potential. Nevertheless, ensuring the stability of these nanoparticles remains a critical challenge, impeding their broad application. In this work, novel nanodot arrays (NAs) are introduced where superfine alloy nanoparticles are uniformly implanted in a 2D carbon substrate and securely anchored. Electrochemical testing of the PtCo NAs demonstrates exceptional methanol oxidation reaction (MOR) activity, achieving 1.25 A mg-1. Moreover, the PtCo NAs exhibit outstanding stability throughout the testing period, underscoring the effectiveness of the anchoring mechanism. Comprehensive characterization and theoretical calculations reveal that the 2D carbon-anchored structure optimizes the electronic structure and coordination environment of Pt, restricts nanoparticle migration, and suppresses transition metal dissolution. This strategy represents a major advancement in addressing the stability limitations of ultrafine nanoparticles in catalytic applications and offers broader insights into the design of next-generation catalysts with enhanced durability and performance.
Collapse
Affiliation(s)
- Zhen Xu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xing Hu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaojie Jiang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shan Zhu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Kaixiang Lei
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Kezhu Jiang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shijian Zheng
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
4
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
5
|
Singh M, Sharma HM, Gupta RK, Kumar A. Recent advancements and prospects in noble and non-noble electrocatalysts for materials methanol oxidation reactions. DISCOVER NANO 2024; 19:128. [PMID: 39143373 PMCID: PMC11324629 DOI: 10.1186/s11671-024-04066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/14/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
The direct methanol fuel cell (DMFC) represents a highly promising alternative power source for small electronics and automobiles due to its low operating temperatures, high efficiency, and energy density. The methanol oxidation process (MOR) constitutes a fundamental chemical reaction occurring at the positive electrode of a DMFC. Pt-based materials serve as widely utilized MOR electrocatalysts in DMFCs. Nevertheless, various challenges, such as sluggish reaction rates, high production costs primarily attributed to the expensive Pt-based catalyst, and the adverse effects of CO poisoning on the Pt catalysts, hinder the commercialization of DMFCs. Consequently, endeavors to identify an alternative catalyst to Pt-based catalysts that mitigate these drawbacks represent a critical focal point of DMFC research. In pursuit of this objective, researchers have developed diverse classes of MOR electrocatalysts, encompassing those derived from noble and non-noble metals. This review paper delves into the fundamental concept of MOR and its operational mechanisms, as well as the latest advancements in electrocatalysts derived from noble and non-noble metals, such as single-atom and molecule catalysts. Moreover, a comprehensive analysis of the constraints and prospects of MOR electrocatalysts, encompassing those based on noble metals and those based on non-noble metals, has been undertaken.
Collapse
Affiliation(s)
- Monika Singh
- Department of Chemistry, GLA University, Mathura-281406, India
| | | | - Ram K Gupta
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
- National Institute of Material Advancement, Pittsburg, KS, 66762, USA.
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura-281406, India.
- National Institute of Material Advancement, Pittsburg, KS, 66762, USA.
| |
Collapse
|
6
|
Adane WD, Chandravanshi BS, Getachew N, Tessema M. A cutting-edge electrochemical sensing platform for the simultaneous determination of the residues of antimicrobial drugs, rifampicin and norfloxacin, in water samples. Anal Chim Acta 2024; 1312:342746. [PMID: 38834274 DOI: 10.1016/j.aca.2024.342746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The widespread use and abuse of antibiotics has resulted in the pollution of water sources with antibiotic residues, posing a threat to human health, the environment, and the economy. Therefore, a highly sensitive and selective method is required for their detection in water samples. Herein, advanced ultrasensitive electrochemical sensor platform was developed by integrating gold-silver alloy nanocoral clusters (Au-Ag-ANCCs) with functionalized multi-walled carbon nanotube-carbon paste electrode (f-MWCNT-CPE) and choline chloride (ChCl) nanocomposites for simultaneously determining the residues of antimicrobial drugs, rifampicin (RAMP) and norfloxacin (NFX), in water samples. RESULTS The developed sensor (Au-Ag-ANCCs/f-MWCNTs-CPE/ChCl) was extensively characterized using several analytical (UV-Vis, FT-IR, XRD, SEM, and EDX) and electrochemical (EIS, CV, and SWV) techniques. It exhibited outstanding performance in a wide linear range, from 14 pM to 115 μM for RAMP, and from 0.9 nM to 200 μM for NFX, with a limit of detection (LOD, 3σ/m, S/N = 3, n = 5) and a limit of quantification (LOQ, 10σ/m, S/N = 3, n = 5) values of 2.7 pM and 8.85 pM for RAMP, and 0.14 nM and 0.47 nM for NFX, respectively. The sensor also exhibited exceptional reproducibility, stability, and resistance to interference. SIGNIFICANCE The developed sensor was effectively utilized to determine RAMP and NFX residues in hospital wastewater, river, and tap water samples, yielding recoveries within the range of 96.8-103 % and relative standard deviations below 5 %. Generally, the proposed sensor demonstrated remarkable performance in detecting the target analytes, making it an ideal tool and the first of its kind for addressing global antibiotic residue pollutants in water sources.
Collapse
Affiliation(s)
| | | | - Negash Getachew
- Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Merid Tessema
- Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
Wang Q, Wang S, Han X, Guo X, Huang H, Kang K, Zhao P, Xie S. Wet-Chemical Synthesis of Concave Hexoctahedral Pd and Pd@Pt Nanocrystals for Methanol Electrooxidation. Inorg Chem 2024; 63:11424-11430. [PMID: 38841806 DOI: 10.1021/acs.inorgchem.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2024]
Abstract
Nanocrystals (NCs) exposed with high-index facets usually show enhanced electrocatalytic performances. However, it is a great challenge to persevere with high-index facets against their high surface energy during the synthesis. Herein, we successfully synthesize concave hexoctahedral (c-HOH) Pd NCs exposed with 48 high-index {741} facets using a facile one-pot wet-chemical protocol. Control experiments illustrate that l-ascorbic acid plays a critical role in the formation of the c-HOH morphology, acting as both reducing and capping agents. Moreover, we can extend the synthesis for fabricating c-HOH Pd@Pt core-shell NCs by simply introducing a Pt precursor into the reaction solution, attaining remarkably boosted electrocatalysis for methanol electrooxidation reaction (MOR). Integrating the merits of {741} facets, concave structure, and ligand and strain effect of the core-shell structure, c-HOH Pd4@Pt1 core-shell NCs showed an excellent MOR mass activity of 1.18 A mgPGM-1 or 3.60 A mgPt-1, which is 3.80 or 11.61 times higher than that of commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Qiuxiang Wang
- Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao Han
- Key Laboratory of Functional Materials and Applications of Fujian Province, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Xiaohua Guo
- Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Hongpu Huang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Kai Kang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Peng Zhao
- Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
8
|
Li S, Ajmal S, Zhou X, Lu M, Li X, Sun Z, Liu S, Zhu M, Li P. Mixed-Dimensional Partial Dealloyed PtCuBi/C as High-Performance Electrocatalysts for Methanol Oxidation with Enhanced CO Tolerance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309226. [PMID: 38126680 DOI: 10.1002/smll.202309226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the COads, and oxophilic metal Bi facilitates the OHads, thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mgPt -1 for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.
Collapse
Affiliation(s)
- Sichen Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Sara Ajmal
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xiaoxing Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Maoni Lu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xinghao Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
9
|
Jiang N, Zhu L, Liu P, Zhang P, Gan Y, Zhao Y, Jiang Y. Laser Irradiation Synthesis of AuPd Alloy with Decreased Alloying Degree for Efficient Ethanol Oxidation Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1876. [PMID: 38673231 PMCID: PMC11052525 DOI: 10.3390/ma17081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The preparation of electrocatalysts with high performance for the ethanol oxidation reaction is vital for the large-scale commercialization of direct ethanol fuel cells. Here, we successfully synthesized a high-performance electrocatalyst of a AuPd alloy with a decreased alloying degree via pulsed laser irradiation in liquids. As indicated by the experimental results, the photochemical effect-induced surficial deposition of Pd atoms, combined with the photothermal effect-induced interdiffusion of Au and Pd atoms, resulted in the formation of AuPd alloys with a decreased alloying degree. Structural characterization reveals that L-AuPd exhibits a lower degree of alloying compared to C-AuPd prepared via the conventional co-reduction method. This distinct structure endows L-AuPd with outstanding catalytic activity and stability in EOR, achieving mass and specific activities as high as 16.01 A mgPd-1 and 20.69 mA cm-2, 9.1 and 5.2 times than that of the commercial Pd/C respectively. Furthermore, L-AuPd retains 90.1% of its initial mass activity after 300 cycles. This work offers guidance for laser-assisted fabrication of efficient Pd-based catalysts in EOR.
Collapse
Affiliation(s)
- Nan Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Liye Zhu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Peng Liu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
| | - Pengju Zhang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuqi Gan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yijian Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Zhang Y, Jamal R, Xie S, Abdurexit A, Abdiryim T, Zhang Y, Song Y, Liu Y. Poly (3, 4-propylenedioxythiophene)/Hollow carbon sphere composites supported Pt NPs to facilitate methanol oxidation reactions. J Colloid Interface Sci 2024; 659:235-247. [PMID: 38176233 DOI: 10.1016/j.jcis.2023.12.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Direct methanol fuel cells (DMFCs) are thought of as portable, sustainable, and non-polluting energy devices. The exploration of efficient and affordable catalysts for the methanol oxidation reaction (MOR) is significant for the industrial application of DMFCs. In this study, nitrogen-doped hollow carbon spheres (HCS) derived from polydopamine were proposed for the catalyst support for platinum nanoparticles (Pt NPs) for serving as the anode catalyst for DMFCs, and a composite support material was fabricated by in-situ oxidation of 3,4-ethylenedioxythiophene (ProDOT) with HCS to get core-shell structured poly(3,4-propylenedioxythiophene) (PProDOT)-embellished hollow carbon spheres (HCS) (PProDOT/HCS) for further improving the catalytic activity for supported catalyst. The results indicated that the platinum (Pt) on the surface of HCS was well dispersed, and the Pt became smaller and more evenly distributed with the introduction of PProDOT. Simultaneously, the Schottky junction formed between PProDOT and Pt NPs contributes to enhanced charge transfer and catalytic activity of the catalyst. Notably, the core-shell structure of the ternary catalyst, its excellent charge transfer capability, and the interaction between platinum and the support contribute to its high electrocatalytic activity. Electrochemical tests demonstrated that the PProDOT/HCS/Pt catalyst exhibited a mass activity of 1169.6 mA mg-1Pt for methanol oxidation in acidic electrolytes, surpassing the activity of the HCS/Pt catalyst (472.4 mA mg-1Pt) and commercial Pt/C (281.0 mA mg-1Pt).
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Shuyue Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Abdukeyum Abdurexit
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Yaolong Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yanyan Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yajun Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| |
Collapse
|
11
|
Liu C, Yang F, Yang Y, Wang S, Feng L. An active Ni(OH) 2/MnCO 3 catalyst with efficient synergism for alkaline methanol oxidation. Chem Commun (Camb) 2024; 60:1591-1594. [PMID: 38224271 DOI: 10.1039/d3cc05656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2024]
Abstract
A novel Ni(OH)2/MnCO3 hybrid catalyst was developed for high-performing alkaline methanol electro-oxidation, which could well overcome the shortages of inactive MnCO3 and low intrinsic Ni(OH)2 due to the good synergistic catalysis effect from the Jahn-Teller distortion effect.
Collapse
Affiliation(s)
- Chunru Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, P. R. China.
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
12
|
Chen G, Ma J, Gong W, Li J, Li Z, Long R, Xiong Y. Recent progress of heterogeneous catalysts for transfer hydrogenation under the background of carbon neutrality. NANOSCALE 2024; 16:1038-1057. [PMID: 38126462 DOI: 10.1039/d3nr05207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2023]
Abstract
Under the background of carbon neutrality, the direct conversion of greenhouse CO2 to high value added fuels and chemicals is becoming an important and promising technology. Among them, the generation of liquid C1 products (formic acid and methanol) has made great progress; nevertheless, it encounters the problem of how to use it efficiently to solve the overcapacity issue. In this review, we suggest that the catalytic transfer hydrogenation using formic acid and methanol as the hydrogen sources is a critical and potential route for the substitution for the fossil fuel-derived H2 to generate essential bulk and fine chemicals. We mainly focus on summarizing the recent progress of heterogeneous catalysts in such reactions, including thermal- and photo-catalytic processes. Finally, we also propose some challenges and opportunities for this development.
Collapse
Affiliation(s)
- Guangyu Chen
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jun Ma
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Wanbing Gong
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jiayi Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zheyue Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Ran Long
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yujie Xiong
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
13
|
Zhou X, Min Y, Zhao C, Chen C, Ke MK, Xu SL, Chen JJ, Wu Y, Yu HQ. Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H 2O 2 production. Nat Commun 2024; 15:193. [PMID: 38167494 PMCID: PMC10761824 DOI: 10.1038/s41467-023-44585-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Direct electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction presents a burgeoning alternative to the conventional energy-intensive anthraquinone process for on-site applications. Nevertheless, its adoption is currently hindered by inferior H2O2 selectivity and diminished H2O2 yield induced by consecutive H2O2 reduction or Fenton reactions. Herein, guided by theoretical calculations, we endeavor to overcome this challenge by activating a main-group Pb single-atom catalyst via a local micro-environment engineering strategy employing a sulfur and oxygen super-coordinated structure. The main-group catalyst, synthesized using a carbon dot-assisted pyrolysis technique, displays an industrial current density reaching 400 mA cm-2 and elevated accumulated H2O2 concentrations (1358 mM) with remarkable Faradaic efficiencies. Both experimental results and theoretical simulations elucidate that S and O super-coordination directs a fraction of electrons from the main-group Pb sites to the coordinated oxygen atoms, consequently optimizing the *OOH binding energy and augmenting the 2e- oxygen reduction activity. This work unveils novel avenues for mitigating the production-depletion challenge in H2O2 electrosynthesis through the rational design of main-group catalysts.
Collapse
Affiliation(s)
- Xiao Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changming Zhao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Cai Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Kun Ke
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shi-Lin Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
14
|
Li Y, Li H, Zhao Y, Ji D, Guo P, Li G, Zhao X. Insights on the Roles of Nitrogen Configuration in Enhancing the Performance of Electrocatalytic Methanol Oxidation over Pt Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303065. [PMID: 37480183 DOI: 10.1002/smll.202303065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/12/2023] [Revised: 06/03/2023] [Indexed: 07/23/2023]
Abstract
Stabilization of the Pt in N-doped carbon materials is an effective method to improve the performance of electrocatalytic methanol oxidation reaction (MOR). Nevertheless, the roles of different N configurations (pyridinic N, pyrrolic N, and graphitic N) toward the electrochemical performance of Pt-based catalysts remain unclear. Herein, Density Functional Theory calculations are adopted to elucidate the synergistic promotion of MOR by different N-configurations with Pt nanoparticles (NPs). Guided by the theoretical study, a series of MOR electrocatalysts with different ratios of pyridinic N and pyrrolic N (denoted as Pt/N-CNT-X (500, 600, 700, 800, and 900)) are designed and synthesized. Surprisingly, the electrocatalytic activity of Pt/N-CNT-600 with a suitable ratio of pyrrolic-N and pyridinic-N for MOR reaches 2394.7 mA mg-1 Pt and 5515.8 mA mg-1 Pt in acidic and alkaline media, respectively, which are superior to the Pt/CNTs, commercial Pt/C, and the ever-reported Pt-based electrocatalysts. The strong metal-support interaction induced by the N-doping is the crucial reason for the superior electrocatalytic performance. More importantly, the ability of pyrrolic-N and pyridinic-N in promoting the adsorption and oxidation of CH3 OH and the oxidation of CO* is substantiated for the first time in methanol oxidation. This work provides new insights on the design of efficient electrocatalysts for MOR.
Collapse
Affiliation(s)
- Yanru Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Hongwei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Yan Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Dong Ji
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Peng Guo
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Guixian Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Xinhong Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|
15
|
Wu C, Zhou L, Zhang J, Wang B. Facile Synthesis of Multifunctional Ni(OH) 2 -Supported Core-Shell Ni@Pd Nanocomposites for the Electro-Oxidation of Small Organic Molecules. Chemistry 2023:e202303286. [PMID: 37830517 DOI: 10.1002/chem.202303286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
In the domain of proton exchange membrane fuel cells (PEMFCs), the development of efficient and durable catalysts for the electro-oxidation of small organic molecules, especially of alcohols (methanol, ethanol, ethylene glycol, et al.) has always been a hot topic. A large number of related electrocatalysts with splendid performance have been designed and synthesized till now, while the preparation processes of most of them are demanding on experimental operations and conditions. Herein, we put forward a facile and handy method for the preparation of multifunctional Ni(OH)2 -supported core-shell Ni@Pd nanocomposites (Ni(OH)2 /Ni@Pd NCs) with the assistance of galvanic replacement reaction (GRR) at room temperature and ambient pressure. As expected, the Ni(OH)2 substrate can prevent the aggregation of core-shell (CS) Ni@Pd nanoparticles (NPs) and inhibit the formation of COads and further prevent Pd from being poisoned. The synergistic effect between CS Ni@Pd NPs and Ni(OH)2 substrate and the electronic effect between Pd shell and Ni core contribute to the outstanding electrocatalytic performance for methanol, ethanol, and ethylene glycol oxidation in alkaline condition. This study provides a succinct method for the design and preparation of efficient Pd-based electrocatalysts for alcohol electro-oxidation.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Lei Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Junxiang Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Bin Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
16
|
Gupta D, Kafle A, Nagaiah TC. Dinitrogen Reduction Coupled with Methanol Oxidation for Low Overpotential Electrochemical NH 3 Synthesis Over Cobalt Pyrophosphate as Bifunctional Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208272. [PMID: 36922907 DOI: 10.1002/smll.202208272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Indexed: 06/15/2023]
Abstract
Electrochemical dinitrogen (N2 ) reduction to ammonia (NH3 ) coupled with methanol electro-oxidation is presented in the current work. Here, methanol oxidation reaction (MOR) is proposed as an alternative anode reaction to oxygen evolution reaction (OER) to accomplish electrons-induced reduction of N2 to NH3 at cathode and oxidation of methanol at anode in alkaline media thereby reducing the overall cell voltage for ammonia production. Cobalt pyrophosphate micro-flowers assembled by nanosheets are synthesized via a surfactant-assisted sonochemical approach. By virtue of structural and morphological advantages, the maximum Faradaic efficiency of 43.37% and NH3 yield rate of 159.6 µg h-1 mgca -1 is achieved at a potential of -0.2 V versus RHE. The proposed catalyst is shown to also exhibit a very high activity (100 mA mg-1 at 1.48 V), durability (2 h) and production of value-added formic acid at anode (2.78 µmol h-1 mgcat -1 and F.E. of 59.2%). The overall NH3 synthesis is achieved at a reduced cell voltage of 1.6 V (200 mV less than NRR-OER coupled NH3 synthesis) when OER at anode is replaced with MOR and a high NH3 yield rate of 95.2 µg h-1 mgcat -1 and HCOOH formation rate of 2.53 µmol h-1 mg-1 are witnessed under full-cell conditions.
Collapse
Affiliation(s)
- Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Alankar Kafle
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
17
|
Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. Recent Advances on Transition-Metal-Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207519. [PMID: 36866927 PMCID: PMC10161082 DOI: 10.1002/advs.202207519] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Transition-metal-based layered double hydroxides (TM-LDHs) nanosheets are promising electrocatalysts in the renewable electrochemical energy conversion system, which are regarded as alternatives to noble metal-based materials. In this review, recent advances on effective and facile strategies to rationally design TM-LDHs nanosheets as electrocatalysts, such as increasing the number of active sties, improving the utilization of active sites (atomic-scale catalysts), modulating the electron configurations, and controlling the lattice facets, are summarized and compared. Then, the utilization of these fabricated TM-LDHs nanosheets for oxygen evolution reaction, hydrogen evolution reaction, urea oxidation reaction, nitrogen reduction reaction, small molecule oxidations, and biomass derivatives upgrading is articulated through systematically discussing the corresponding fundamental design principles and reaction mechanism. Finally, the existing challenges in increasing the density of catalytically active sites and future prospects of TM-LDHs nanosheets-based electrocatalysts in each application are also commented.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Yaoyu Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Zhikeng Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Biying Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Meng Chen
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Guoqing Guan
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
18
|
Lenne Q, Mattiuzzi A, Jabin I, Troian-Gautier L, Hamon J, Leroux YR, Lagrost C. Chemical Surface Grafting of Pt Nanocatalysts for Reconciling Methanol Tolerance with Methanol Oxidation Activity. CHEMSUSCHEM 2023; 16:e202201990. [PMID: 36752278 DOI: 10.1002/cssc.202201990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A conceptual challenge toward more versatile direct methanol fuel cells (DMFCs) is the design of a single material electrocatalyst with high activity and durability for both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). This requires to conciliate methanol tolerance not to hinder ORR at the cathode with a good MOR activity at the anode. This is especially incompatible with Pt materials. We tackled this challenge by deriving a supramolecular concept where surface-grafted molecular ligands regulate the Pt-catalyst reactivity. ORR and MOR activities of newly reported Pt-calix[4]arenes nanocatalysts (Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C) are compared to commercial benchmark PtNPs/C. Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C exhibit a remarkable methanol tolerance without losing the MOR reactivity along with outstanding durability and chemical stability. Beyond designing single-catalyst material, operable in DMFC cathodic and anodic compartments, the results highlight a promising strategy for tuning interfacial properties.
Collapse
Affiliation(s)
- Quentin Lenne
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles, CP 160/06, avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles, CP 160/06, avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
- Institut de la Matière Condensée et des Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Jonathan Hamon
- Institut des Matériaux de Nantes_UMR 6502, Université de Nantes, 2 rue de la Houssinière, 44000, Nantes, France
| | - Yann R Leroux
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| | - Corinne Lagrost
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| |
Collapse
|
19
|
Wang Y, Pan Y, Jiang Y, Xu M, Jiang J. Wearable electrochemical gas sensor for methanol leakage detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/04/2023]
|
20
|
Effect of structure of Pd@Fe core–shell cubes on the enhancement of H2 conversion in direct reaction of H2 and O2. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/08/2023]
|
21
|
Lu Z, Zou L, Song W. Hierarchical Pt-In Nanowires for Efficient Methanol Oxidation Electrocatalysis. Molecules 2023; 28:molecules28031502. [PMID: 36771164 PMCID: PMC9920629 DOI: 10.3390/molecules28031502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Direct methanol fuel cells (DMFC) have attracted increasing research interest recently; however, their output performance is severely hindered by the sluggish kinetics of the methanol oxidation reaction (MOR) at the anode. Herein, unique hierarchical Pt-In NWs with uneven surface and abundant high-index facets are developed as efficient MOR electrocatalysts in acidic electrolytes. The developed hierarchical Pt89In11 NWs exhibit high MOR mass activity and specific activity of 1.42 A mgPt-1 and 6.2 mA cm-2, which are 5.2 and 14.4 times those of Pt/C, respectively, outperforming most of the reported MORs. In chronoamperometry tests, the hierarchical Pt89In11 NWs demonstrate a longer half-life time than Pt/C, suggesting the better CO tolerance of Pt89In11 NWs. After stability, the MOR activity can be recovered by cycling. XPS, CV measurement and CO stripping voltammetry measurements demonstrate that the outstanding catalytic activity may be attributed to the facile removal of CO due to the presence of In site-adsorbing hydroxyl species.
Collapse
Affiliation(s)
- Zhao Lu
- Analytical and Testing Center of Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Zou
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Wulin Song
- Analytical and Testing Center of Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Correspondence: ; Tel.: +86-027-875592025
| |
Collapse
|
22
|
Wang J, Zhang B, Guo W, Wang L, Chen J, Pan H, Sun W. Toward Electrocatalytic Methanol Oxidation Reaction: Longstanding Debates and Emerging Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211099. [PMID: 36706444 DOI: 10.1002/adma.202211099] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Indexed: 05/30/2023]
Abstract
The study of direct methanol fuel cells (DMFCs) has lasted around 70 years, since the first investigation in the early 1950s. Though enormous effort has been devoted in this field, it is still far from commercialization. The methanol oxidation reaction (MOR), as a semi-reaction of DMFCs, is the bottleneck reaction that restricts the overall performance of DMFCs. To date, there has been intense debate on the complex six-electron reaction, but barely any reviews have systematically discussed this topic. To this end, the controversies and progress regarding the electrocatalytic mechanisms, performance evaluations as well as the design science toward MOR electrocatalysts are summarized. This review also provides a comprehensive introduction on the recent development of emerging MOR electrocatalysts with a focus on the innovation of the alloy, core-shell structure, heterostructure, and single-atom catalysts. Finally, perspectives on the future outlook toward study of the mechanisms and design of electrocatalysts are provided.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
23
|
Wang X, Liu Y, Ma XY, Chang LY, Zhong Q, Pan Q, Wang Z, Yuan X, Cao M, Lyu F, Yang Y, Chen J, Sham TK, Zhang Q. The Role of Bismuth in Suppressing the CO Poisoning in Alkaline Methanol Electrooxidation: Switching the Reaction from the CO to Formate Pathway. NANO LETTERS 2023; 23:685-693. [PMID: 36594847 DOI: 10.1021/acs.nanolett.2c04568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.
Collapse
Affiliation(s)
- Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xing-Yu Ma
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qi Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhiqiang Wang
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Fenglei Lyu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
24
|
Ni–Co–P functionalized Nitrogen-Doped-Carbon quantum dots for efficient methanol electrooxidation and nanofluid applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
25
|
Interface engineering of Ni/NiO heterostructures with abundant catalytic active sites for enhanced methanol oxidation electrocatalysis. J Colloid Interface Sci 2023; 630:570-579. [DOI: 10.1016/j.jcis.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
26
|
Qiao M, Meng FY, Wu H, Wei Y, Zeng XF, Wang JX. PtCuRu Nanoflowers with Ru-Rich Edge for Efficient Fuel-Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204720. [PMID: 36269882 DOI: 10.1002/smll.202204720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Enhancing the catalytic activity of Pt-based alloy by a rational structural design is the key to addressing the sluggish kinetics of direct alcohol fuel cells. Herein, a facile one-pot method is reported to synthesize PtCuRu nanoflowers (NFs). The synergetic effect among Pt, Cu, and Ru can lower the d-band center of Pt, regulate the morphology, generate Ru-rich edge, and allow the exposure of more high index facets. The optimized Pt0.68 Cu0.18 Ru0.14 NFs exhibit outstanding electrocatalytic performances and excellent anti-poisoning abilities. The specific activities for the methanol oxidation reaction (MOR) (7.65 mA cm-2 ) and ethanol oxidation reaction (EOR) (7.90 mA cm-2 ) are 6.0 and 7.1 times higher than commercial Pt/C, respectively. The CO stripping experiment and the chronoamperometric (5000 s) demonstrate the superior anti-poisoning property and durability performance. Density functional theory calculations confirm that high metallization degree leads to the decrease of d-band center, the promotion of oxidation of CO, and improvement of the inherent activity and anti-poisoning ability. A Ru-rich edge exposes abundant high index facets to accelerate the reaction kinetics of rate-determining steps by decreasing the energy barrier for forming *HCOOH (MOR) and CC bond breaking (EOR).
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan-Yi Meng
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Wu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao-Fei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
27
|
Recent Developments of Methanol Electrooxidation Using Nickel‐based Nanocatalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202201807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
28
|
Zhang S, Wang P, Chen Y, Yao W, Li Z, Tang Y. One-Pot Synthesis of Pt Nanobowls Assembled from Ultrafine Nanoparticles for Methanol Oxidation Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3471. [PMID: 36234597 PMCID: PMC9565777 DOI: 10.3390/nano12193471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Simultaneously engineering a bowl-like and ultrafine nano-size structure offers an attractive route to not only increase the utilization efficiency of noble metals, the specific surface areas and the availability of active sites, but also boost the structural robustness and long-term stability. However, a great challenge remains in terms of the methods of synthesis. Herein, we report a facile one-pot hydrothermal method for the preparation of hollow porous Pt nanobowls (NBs) assembled from ultrafine particles. N,N'-methylenebisacrylamide (MBAA) acts as a structure-directing agent that forms a self-template with Pt ions and drives the nucleation and assembly of Pt metals, resulting in the fabrication of Pt NBs from ultrafine particles. By virtue of their unique structure and morphology, the optimized Pt NBs exhibited enhanced electrocatalytic methanol oxidation reaction (MOR) activity with 3.1-fold greater mass activity and 2.6-fold greater specific activities compared with those of commercial Pt black catalysts, as well as excellent stability and anti-poisoning ability.
Collapse
Affiliation(s)
- Shoulin Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Pu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yaoshun Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenqing Yao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhijuan Li
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
29
|
Sun B, Wang Z, Yuan ZH, Ding Y, Li FM, Zhao GT, Li DS, Li XF, Chen Y. Ultrathin rhodium nanosheet-gold nanowire nanocomposites for alkaline methanol oxidation reaction. Chem Commun (Camb) 2022; 58:11139-11142. [PMID: 36106578 DOI: 10.1039/d2cc04762d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Electrostatically assembled ultrathin rhodium nanosheet-gold nanowire nanocomposites (Rh-Au CNSs) were used as an advanced electrocatalyst for the methanol oxidation reaction, which revealed a mass activity of 355 mA mgRh-1 at 0.607 V potential, much higher than single metal Rh nanosheets (273 mA mgRh-1) and commercial Rh nanoparticles (165 mA mgRh-1).
Collapse
Affiliation(s)
- Bin Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Zhe Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Zi-Han Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Guang-Tao Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Xi-Fei Li
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
30
|
Tong Y, Wang L, Hou F, Dou SX, Liang J. Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. ELECTROCHEM ENERGY R 2022; 5:7. [PMID: 37522152 PMCID: PMC9437407 DOI: 10.1007/s41918-022-00163-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Accepted: 09/25/2021] [Indexed: 10/26/2022]
Abstract
Electrocatalytic production of hydrogen peroxide (H2O2) via the 2e- transfer route of the oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone process, which dominates current industrial-scale production of H2O2. The availability of cost-effective electrocatalysts exhibiting high activity, selectivity, and stability is imperative for the practical deployment of this process. Single-atom catalysts (SACs) featuring the characteristics of both homogeneous and heterogeneous catalysts are particularly well suited for H2O2 synthesis and thus, have been intensively investigated in the last few years. Herein, we present an in-depth review of the current trends for designing SACs for H2O2 production via the 2e- ORR route. We start from the electronic and geometric structures of SACs. Then, strategies for regulating these isolated metal sites and their coordination environments are presented in detail, since these fundamentally determine electrocatalytic performance. Subsequently, correlations between electronic structures and electrocatalytic performance of the materials are discussed. Furthermore, the factors that potentially impact the performance of SACs in H2O2 production are summarized. Finally, the challenges and opportunities for rational design of more targeted H2O2-producing SACs are highlighted. We hope this review will present the latest developments in this area and shed light on the design of advanced materials for electrochemical energy conversion. Graphical abstract
Collapse
Affiliation(s)
- Yueyu Tong
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin, China
| | - Feng Hou
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Ying J, Lenaerts S, Symes MD, Yang X. Hierarchical Design in Nanoporous Metals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106117. [PMID: 35900062 PMCID: PMC9507373 DOI: 10.1002/advs.202106117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Indexed: 05/28/2023]
Abstract
Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and TechnologySun Yat‐sen University (SYSU)Zhuhai519082P. R. China
| | - Silvia Lenaerts
- Research Group of Sustainable Energy and Air Purification (DuEL), Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Mark D. Symes
- WestCHEM, School of ChemistryUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
32
|
Luo JY, Hu FC, Xi BJ, Han QW, Wu XQ, Wu YP, Zhang Q, Chi R, Li DS. Fabricating of Ni-BTC/NiS2 heterostructure via self-assembly strategy for electrocatalytic methanol oxidation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
|
33
|
Liu J, Xu L, Li X. Platinum Catalysts Supported on Mixed-phase TiO2 Coated by Nitrogen-doped Carbon Derived from NH2-MIL-125 for Methanol Oxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
34
|
Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. Nanostructures and catalytic atoms engineering of tellurium‐based materials and their roles in electrochemical energy conversion. SMARTMAT 2022. [DOI: 10.1002/smm2.1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuting Deng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiao Rong
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chao He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Mi Zhou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuanjiao Tang
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Hongju Zhou
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chong Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
35
|
Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018. ENERGIES 2022. [DOI: 10.3390/en15103787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Passive small direct alcohol fuel cells (PS-DAFCs) are compact, standalone devices capable of electrochemically converting the chemical energy in the fuel/alcohol into electricity, with low pollutant emissions and high energy density. Thus, PS-DAFCs are extremely attractive as sustainable/green off-grid low-power sources (milliwatts to watts), considered as alternatives to batteries for small/portable electric and electronic devices. PS-DAFCs benefit from long life operation and low cost, assuring an efficient and stable supply of inherent non-polluting electricity. This review aims to assess innovations on PS-DAFC technology, as well as discuss the challenges and R&D needs covered on practical examples reported in the scientific literature, since 2018. Hence, this compilation intends to be a guidance tool to researchers, in order to help PS-DAFCs overcome the barriers to a broad market introduction and consequently become prime renewable energy converters and autonomous micropower generators. Only by translating research discoveries into the scale-up and commercialization process of the technology can the best balance between the economic and technical issues such as efficiency, reliability, and durability be achieved. In turn, this will certainly play a crucial role in determining how PS-DAFCs can meet pressing sustainable energy needs.
Collapse
|
36
|
Qiao M, Wu H, Meng FY, Zhuang Z, Wang JX. Defect-Rich, Highly Porous PtAg Nanoflowers with Superior Anti-Poisoning Ability for Efficient Methanol Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106643. [PMID: 35224851 DOI: 10.1002/smll.202106643] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The design of efficient and sustainable Pt-based catalysts is the key to the development of direct methanol fuel cells. However, most Pt-based catalysts still exhibit disadvantages including unsatisfied catalytic activity and serious CO poisoning in the methanol oxidation reaction (MOR). Herein, highly porous PtAg nanoflowers (NFs) with rich defects are synthesized by using liquid reduction combining chemical etching. It is demonstrated that the proportion of precursors determines the inhomogeneity of alloy elements, and the strong corrosiveness of nitric acid to silver leads to the eventual porous flower-like structure. Impressively, the optimal etched Pt1 Ag2 NFs have the mixed defects of surface steps, dislocations, and bulk holes, and their mass activity (1136 mA mgPt-1 ) is 2.6 times higher than that of commercial Pt/C catalysts, while the ratio of forward and backward peak current density (If /Ib ) can reach 3.2, exhibiting an excellent anti-poisoning ability. Density functional theory calculations further verify their high anti-poison properties from both an adsorption and an oxidation perspective of CO intermediate. The introduction of Ag makes it easier for CO to be oxidized and removed. This study provides a facile approach to prepare rich defects and porous alloy with excellent MOR performance and superior anti-poisoning ability.
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan-Yi Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
37
|
Zhang Y, Wang D, Wang S. High-Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104339. [PMID: 34741405 DOI: 10.1002/smll.202104339] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Indexed: 06/13/2023]
Abstract
High-entropy alloys (HEAs) are expected to function well as electrocatalytic materials, owing to their widely adjustable composition and unique physical and chemical properties. Recently, HEA catalysts are extensively studied in the field of electrocatalysis; this motivated the authors to investigate the relationship between the structure and composition of HEAs and their electrocatalytic performance. In this review, the latest advances in HEA electrocatalysts are systematically summarized, with special focus on nitrogen fixation, the carbon cycle, water splitting, and fuel cells; in addition, by combining this with the characterization and analysis of HEA microstructures, rational design strategies for optimizing HEA electrocatalysts, including controllable preparation, component regulation, strain engineering, defect engineering, and theoretical prediction are proposed. Moreover, the existing issues and future trends of HEAs are predicted, which will help further develop these high-entropy materials.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
38
|
Yang A, Huang Q, Wei Z, Yu Z, Cui M, Lei W, Tang Y, Qiu X. l-Lysine derived fabrication of Cu@Ni core–satellite nanoassemblies as efficient non-Pt catalysts for the methanol oxidation reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00963c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
With assistance of l-lysine, Cu@Ni core–satellite nanoassemblies were fabricated, which could serve as efficient non-Pt electrocatalysts for the methanol oxidation reaction due to both the component effects and structural features.
Collapse
Affiliation(s)
- Anzhou Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiuzi Huang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ziqi Wei
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zehan Yu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Meifeng Cui
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaoyu Qiu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
39
|
Wu D, Hao J, Wang W, Yu Y, Fu XZ, Luo JL. Energy-saving H 2 Generation Coupled with Oxidative Alcohol Refining over Bimetallic Phosphide Ni 2 P-CoP Junction Bifunctional Electrocatalysts. CHEMSUSCHEM 2021; 14:5450-5459. [PMID: 34585535 DOI: 10.1002/cssc.202101841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The realization of large-scale H2 production from electrocatalytic water splitting is severely impeded by the kinetically sluggish and economically less viable anodic oxygen evolution reaction. Here, an efficient strategy was established for the concurrent H2 production and oxidative alcohols refining into value-added formate by utilizing self-supported Ni2 P-CoP bifunctional electrocatalysts. Benefiting from high intrinsic activity, abundant active sites, and synergistic promoting effects of bimetallic phosphides, the constructed two-electrode electrolyzer required a cell voltage of around 1.3 V to achieve 10 mA cm-2 , which is more than 200 mV lower than that of pure water splitting. Moreover, simultaneous productions of H2 with near-unity conversion efficiency and formate at high faradaic efficiencies of 99.8 and 89.6 % oxidatively produced from methanol and glycerol, respectively, were achieved with excellent durability. This work presents a general and economic approach toward the fabrication of cost-effective electrocatalysts for energy-efficient and profitable large-scale renewable energy integration.
Collapse
Affiliation(s)
- Dan Wu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| | - Jie Hao
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
- Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, P. R. China
| | - Weilin Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, P. R. China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| |
Collapse
|
40
|
Yao P, Cao J, Ruan M, Song P, Gong X, Han C, Xu W. Engineering PtCu nanoparticles for a highly efficient methanol electro-oxidation reaction. Faraday Discuss 2021; 233:232-243. [PMID: 34874380 DOI: 10.1039/d1fd00047k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Achieving a highly efficient and durable methanol electro-oxidation catalyst in acid media is critical for the practical utilization of direct methanol fuel cells (DMFCs) at the commercial scale. Herein, we report a facile and effective one-pot strategy for the synthesis of carbon-supported PtCu alloy nanoparticles (PtCu NPs) with a Pt-rich surface, small particle size and uniform dispersion. The as-prepared PtCu NPs with the optimal alloy composition (Pt2Cu) exhibit a significantly improved electrochemical methanol oxidation reaction performance in terms of a high activity, superior CO tolerance and remarkable durability, in contrast to those of commercial Pt/C catalysts in acid media. Particularly, the Pt2Cu/C catalyst exerts a 4.5 times enhancement in the mass activity and a larger If/Ib value compared to those of commercial Pt/C (Pt/Ccomm). The enhanced catalytic activities can be ascribed to the high utilization of Pt and the high index facets of the surface. Also, the addition of Cu downshifts the d-band center of Pt and improves the CO tolerance during the methanol oxidation reaction process. This work provides an efficient strategy for designing desired Pt-based alloys for various catalytic reactions.
Collapse
Affiliation(s)
- Pengfei Yao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jing Cao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mingbo Ruan
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China.
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China.
| | - Xue Gong
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China.
| | - Ce Han
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China.
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
41
|
Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
|
42
|
Yuan Y, Yang Z, Lai W, Gao L, Li M, Zhang J, Huang H. Intermetallic Compounds: Liquid-Phase Synthesis and Electrocatalytic Applications. Chemistry 2021; 27:16564-16580. [PMID: 34428332 DOI: 10.1002/chem.202102500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Characterized by long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure, intermetallics have attracted increasing attention in the area of chemical synthesis and catalytic applications. Liquid-phase synthesis of intermetallics has arisen as the promising methodology due to its precise control over size, shape, and resistance toward sintering compared with the traditional metallurgy. This short review tends to provide perspectives on the liquid-phase synthesis of intermetallics in terms of both thermodynamics and methodology, as well as its applications in various catalytic reactions. Specifically, basic thermodynamics and kinetics in the synthesis of intermetallics will be first discussed, followed by discussing the main factors that will affect the formation of intermetallics during synthesis. The application of intermetallics in electrocatalysis will be demonstrated case by case at last. We conclude the review with perspectives on the future developments with respect to both synthesis and catalytic applications.
Collapse
Affiliation(s)
- Yuliang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhilong Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiawei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
43
|
Abdullah MI, Hameed A, Zhang N, Islam MH, Ma M, Pollet BG. Ultrasonically Surface-Activated Nickel Foam as a Highly Efficient Monolith Electrode for the Catalytic Oxidation of Methanol to Formate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30603-30613. [PMID: 34170102 DOI: 10.1021/acsami.1c06258] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Most of the current electrocatalysts for the methanol oxidation reaction are precious group metals such as Pt, Pd, and Ru. However, their use is limited due to their high cost, scarcity, and issues with carbon monoxide poisoning. We developed a simple method to prepare a nickel foam (NF)-based monolith electrode with a NiO nanosheet array structure as an efficient electrocatalyst toward the oxidation of methanol to produce formate. By a simple ultrasonic acid treatment and air oxidation at room temperature, an inert NF was converted to NiO/NF as a catalytically active electrode due to the uniform NiO nanosheet array that was rapidly formed on the surface of NiO/NF. In alkaline electrolytes containing methanol, the as-prepared NiO/NF catalysts exhibited a lower methanol oxidation reaction (MOR) potential of +1.53 V vs RHE at 100 mA cm-2 compared to that of inert NF samples. The difference in potentials between the EMOR and the EOER at that current density was found to be 280 mV, indicating that methanol oxidation occurred at lower potentials as compared to the oxygen evolution reaction (OER). We also observed that the NiO/NF could also efficiently catalyze the oxidation of CO without being poisoned by it. NiO/NF retained close to 100% of its initial activity after 20,000 s of methanol oxidation tests at high current densities above 200 mA cm-2. Because of the simple synthesis method and the enhanced catalytic performance and stability of NiO/NF, this allows methanol to be used as an OER masking agent for the energy-efficient generation of value-added products such as formic acid and hydrogen.
Collapse
Affiliation(s)
- Muhammad Imran Abdullah
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Asima Hameed
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Zhang
- Department of Biology and Environmental Engineering, Hefei University, Hefei, Anhui 230022, China
| | - Md Hujjatul Islam
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Mingming Ma
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
44
|
Yadav A, Li Y, Liao TW, Hu KJ, Scheerder JE, Safonova OV, Höltzl T, Janssens E, Grandjean D, Lievens P. Enhanced Methanol Electro-Oxidation Activity of Nanoclustered Gold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004541. [PMID: 33554437 DOI: 10.1002/smll.202004541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2020] [Revised: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Size-selected 3 nm gas-phase Au clusters dispersed by cluster beam deposition (CBD) on a conducting fluorine-doped tin oxide template show strong enhancement in mass activity for the methanol electro-oxidation (MEO) reaction compared to previously reported nanostructured gold electrodes. Density functional theory-based modeling on the corresponding Au clusters guided by experiments attributes this high MEO activity to the high density of exposed under-coordinated Au atoms at their faceted surface. In the description of the activity trends, vertices and edges are the most active sites due to their favorable CO and OH adsorption energies. The faceted structures occurring in this size range, partly preserved upon deposition, may also prevent destructive restructuring during the oxidation-reduction cycle. These results highlight the benefits of using CBD in fine-tuning material properties on the nanoscale and designing high-performance fuel cell electrodes with less material usage.
Collapse
Affiliation(s)
- Anupam Yadav
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Yejun Li
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Ting-Wei Liao
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Kuo-Juei Hu
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Jeroen E Scheerder
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | | | - Tibor Höltzl
- Furukawa Electric Institute of Technology, Budapest, 1158, Hungary
- MTA-BME Computation Driven Chemistry Research Group and Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Didier Grandjean
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
45
|
Cao Y, Ge J, Jiang M, Zhang F, Lei X. Acid-Etched Co 3O 4 Nanoparticles on Nickel Foam: The Highly Reactive (311) Facet and Enriched Defects for Boosting Methanol Oxidation Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29491-29499. [PMID: 34152717 DOI: 10.1021/acsami.1c04045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
The confirmation and regulation of active sites are particularly critical for the design of methanol oxidation reaction (MOR) catalysts. Here, an acid etching method for facet control combined with defect construction was utilized to synthesize Co3O4 nanoparticles on nickel foam for preferentially exposing the (311) facet with enriched oxygen vacancies (VO). The acid-leached oxides exhibited superior MOR activity with a mass activity of 710.94 mA mg-1 and an area-specific activity of 3.390 mA cm-2 as a result of (i) abundant active sites for MOR promoted by VO along with the highly active (311) facet being exposed and (ii) phase purification-reduced adsorption energy (Eads) of methanol molecules. Ex situ X-ray photoelectron spectroscopy proved that highly active CoOOH obtained via the activation of plentiful Co2+ effectively improved the MOR. Density functional theory calculations confirmed that the selective exposed (311) facet has the lowest Eads for CH3OH molecules. This work puts forward acid etching as the facet modification and defect engineer for nanostructured non-noble catalysts, which is expected to result in superior electrochemical performance required for advanced alkaline direct methanol fuel cells.
Collapse
Affiliation(s)
- Yanming Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Meihong Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| |
Collapse
|
46
|
Shen L, Ying J, Tian G, Jia M, Yang X. Ultralong PtPd Alloyed Nanowires Anchored on Graphene for Efficient Methanol Oxidation Reaction. Chem Asian J 2021; 16:1130-1137. [DOI: 10.1002/asia.202100156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2021] [Revised: 03/16/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Ling Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & International School of Materials Science and Engineering Wuhan University of Technology 122, Luoshi Road Wuhan 430070 P. R. China
| | - Jie Ying
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 P. R. China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & International School of Materials Science and Engineering Wuhan University of Technology 122, Luoshi Road Wuhan 430070 P. R. China
| | - Mingpu Jia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & International School of Materials Science and Engineering Wuhan University of Technology 122, Luoshi Road Wuhan 430070 P. R. China
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & International School of Materials Science and Engineering Wuhan University of Technology 122, Luoshi Road Wuhan 430070 P. R. China
- School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts 02138 United States
| |
Collapse
|
47
|
Li J, Xing C, Zhang Y, Zhang T, Spadaro MC, Wu Q, Yi Y, He S, Llorca J, Arbiol J, Cabot A, Cui C. Nickel Iron Diselenide for Highly Efficient and Selective Electrocatalytic Conversion of Methanol to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006623. [PMID: 33458957 DOI: 10.1002/smll.202006623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The electro-oxidation of methanol to formate is an interesting example of the potential use of renewable energies to add value to a biosourced chemical commodity. Additionally, methanol electro-oxidation can replace the sluggish oxygen evolution reaction when coupled to hydrogen evolution or to the electroreduction of other biomass-derived intermediates. But the cost-effective realization of these reaction schemes requires the development of efficient and low-cost electrocatalysts. Here, a noble metal-free catalyst, Ni1- x Fex Se2 nanorods, with a high potential for an efficient and selective methanol conversion to formate is demonstrated. At its optimum composition, Ni0.75 Fe0.25 Se2 , this diselenide is able to produce 0.47 mmol cm-2 h-1 of formate at 50 mA cm-2 with a Faradaic conversion efficiency of 99%. Additionally, this noble-metal-free catalyst is able to continuously work for over 50 000 s with a minimal loss of efficiency, delivering initial current densities above 50 mA cm-2 and 2.2 A mg-1 in a 1.0 m KOH electrolyte with 1.0 m methanol at 1.5 V versus reversible hydrogen electrode. This work demonstrates the highly efficient and selective methanol-to-formate conversion on Ni-based noble-metal-free catalysts, and more importantly it shows a very promising example to exploit the electrocatalytic conversion of biomass-derived chemicals.
Collapse
Affiliation(s)
- Junshan Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Congcong Xing
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Barcelona, 08019, Spain
| | - Yu Zhang
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
| | - Ting Zhang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yunan Yi
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shenglan He
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Barcelona, 08019, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
48
|
Wang YJ, Wei JH, Li S, Luo JY, Chang XW, Sun YY, Pi Q, Wu YP, Li DS. Convenient synthesis of polymetallic metal–organic gels for efficient methanol electro-oxidation. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01523g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Novel Ni-based AlNiCu-MOG and AB&AlNiCu-MOG composite materials were successfully fabricated, which exhibited superior MOR activities with a current density of 17.1 and 33.24 mA cm−2, respectively.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Jun-Hua Wei
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Jia-Yang Luo
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Xi-Wen Chang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Ya-Ya Sun
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Qiu Pi
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| |
Collapse
|
49
|
Wang X, Xie M, Lyu F, Yiu YM, Wang Z, Chen J, Chang LY, Xia Y, Zhong Q, Chu M, Yang H, Cheng T, Sham TK, Zhang Q. Bismuth Oxyhydroxide-Pt Inverse Interface for Enhanced Methanol Electrooxidation Performance. NANO LETTERS 2020; 20:7751-7759. [PMID: 32959660 DOI: 10.1021/acs.nanolett.0c03340] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Developing efficient Pt-based electrocatalysts for the methanol oxidation reaction (MOR) is of pivotal importance for large-scale application of direct methanol fuel cells (DMFCs), but Pt suffers from severe deactivation brought by the carbonaceous intermediates such as CO. Here, we demonstrate the formation of a bismuth oxyhydroxide (BiOx(OH)y)-Pt inverse interface via electrochemical reconstruction for enhanced methanol oxidation. By combining density functional theory calculations, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, and electrochemical characterizations, we reveal that the BiOx(OH)y-Pt inverse interface can induce the electron deficiency of neighboring Pt; this would result in weakened CO adsorption and strengthened OH adsorption, thereby facilitating the removal of the poisonous intermediates and ensuring the high activity and good stability of Pt2Bi sample. This work provides a comprehensive understanding of the inverse interface structure and deep insight into the active sites for MOR, offering great opportunities for rational fabrication of efficient electrocatalysts for DMFCs.
Collapse
Affiliation(s)
- Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Fenglei Lyu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yun-Mui Yiu
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| | - Zhiqiang Wang
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| | - Jiatang Chen
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| | - Lo-Yueh Chang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yujian Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
50
|
Xin Y, Li S, Qian Y, Zhu W, Yuan H, Jiang P, Guo R, Wang L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03617] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
| | | | | | | | | |
Collapse
|