1
|
Zhang Y, Liu L, Li M, Wang S, Fu J, Yang M, Yan C, Liu Y, Zheng Y. Dose-dependent enhancement of in vitro osteogenic activity on strontium-decorated polyetheretherketone. Sci Rep 2025; 15:3063. [PMID: 39856116 PMCID: PMC11760343 DOI: 10.1038/s41598-025-86561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity. X-ray photoelectron spectroscopy and ion release assay results confirm that different concentrations of Sr are incorporated onto the PEEK substrate surfaces. The strontium-modified PEEK samples show a stable Sr ion release in 35 days of detection. Better results of MC3T3-E1 pre-osteoblasts adhesion, spreading, and proliferation can be observed in strontium-modified PEEK groups, which demonstrates strontium-modified PEEK samples with the improved MC3T3-E1 pre-osteoblasts compatibility. The boosted osteogenic activity of strontium-modified PEEK samples has been demonstrated by the better performed of ALP activity, extracellular matrix mineralization, collagen secretion, and the remarkable up-regulation of ALP, OCN, OPN, Runx2, Col-I, BSP, and OSX of the MC3T3-E1 pre-osteoblasts. Additionally, the strontium-modified PEEK samples exhibit a dose-dependent enhancement of osteoblasts compatibility and osteogenic activity, and the PEEK-Sr10 group shows the best. These findings indicate that strontium-decorated PEEK implants show promising application in orthopedic and dental implants.
Collapse
Affiliation(s)
- Yongheng Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Lvhua Liu
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Mengqi Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Shufu Wang
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Jingjing Fu
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Mingyuan Yang
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Chunxi Yan
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| | - Yanyan Zheng
- School of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China.
- Innovative Platform of Basic Medical Sciences, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Yan K, Xing J, Guo X, Yang C, Wang W, Wang D. Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection. Int J Biol Macromol 2024:139243. [PMID: 39740708 DOI: 10.1016/j.ijbiomac.2024.139243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Designing an ideal catalyst with antifouling performance and enhanced conversion efficiency can prevent microbial or dye contamination and protect the active phase of the catalysts at the triple-phase interface during disinfection processes. Herein, we developed an Lous-leaf-inspired nanometal anchored redox-active Janus nanoarchitecture with dynamic wetting abilities and synergistic catalytic/antibacterial performances. Specifically, the redox-active hydrophilic polydopamine (PDA) was used to mediate the localized self-assembly and nucleation of Ag on a cotton fabric without using other reductants. This catalyst coating features a superficial Janus nanoarchitecture and context-dependent hydrophobic surface, resulting in a charge- and/or air bubble-involved spontaneous wetting phenomenon for contamination droplet during catalytic reactions. Their synergistically enhanced catalytic degradation of industrial dyes and free radical scavenging abilities were validated. The PDA@Ag modified fabric exhibited excellent washing resistance, achieving >99 % antibacterial performance against E. coli after being washed 20 times. The proof-of-concept for an optimal catalyst and protective coating has been demonstrated with multiple anti-fouling strategies such as a self-cleaning/anti-adhesion surface, enhanced photothermal effect and antibacterial properties. Eventually, this rationally designed Janus nanoarchitecture interface was supposed to address the trade-off issues commonly encountered at the droplet-based triple-phase interfacial reaction with a dynamic changed active phase and excellent catalytic/antibacterial performances.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Jiaxin Xing
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoming Guo
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| |
Collapse
|
4
|
Jia Y, Gao F, Wang P, Bai S, Li H, Li J. Supramolecular assembly of Polydopamine@Fe nanoparticles with near-infrared light-accelerated cascade catalysis applied for synergistic photothermal-enhanced chemodynamic therapy. J Colloid Interface Sci 2024; 676:626-635. [PMID: 39053410 DOI: 10.1016/j.jcis.2024.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Chemodynamic therapy (CDT) via Fenton-like reaction is greatly attractive owing to its capability to generate highly cytotoxic •OH radicals from tumoral hydrogen peroxide (H2O2). However, the antitumor efficacy of CDT is often challenged by the relatively low radical generation efficiency and the high levels of antioxidative glutathione (GSH) in tumor microenvironment. Herein, an innovative photothermal Fenton-like catalyst, Fe-chelated polydopamine (PDA@Fe) nanoparticle, with excellent GSH-depleting capability is constructed via one-step molecular assembly strategy for dual-modal imaging-guided synergetic photothermal-enhanced chemodynamic therapy. Fe(III) ions in PDA@Fe nanoparticles can consume the GSH overexpressed in tumor microenvironment to avoid the potential •OH consumption, while the as-produced Fe(II) ions subsequently convert tumoral H2O2 into cytotoxic •OH radicals through the Fenton reaction. Notably, PDA@Fe nanoparticles demonstrate excellent near-infrared light absorption that results in superior photothermal conversion ability, which further boosts above-mentioned cascade catalysis to yield more •OH radicals for enhanced CDT. Taken together with T1-weighted magnetic resonance imaging (MRI) contrast enhancement (r1 = 8.13 mM-1 s-1) and strong photoacoustic (PA) imaging signal of PDA@Fe nanoparticles, this design finally realizes the synergistic photothermal-chemodynamic therapy. Overall, this work offers a new promising paradigm to effectively accommodate both imaging and therapy functions in one well-defined framework for personalized precision disease treatment.
Collapse
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Peizhi Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Kunkel E, Loker CB, Cowden HN, Robinson HD. Microscale Metal Patterning on Any Substrate: Exploring the Potential of Poly(dopamine) Films in High Resolution, High Contrast, Conformal Lithography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66387-66401. [PMID: 39565837 PMCID: PMC11622185 DOI: 10.1021/acsami.4c07115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
We have explored the potential of poly(dopamine) (PDA) thin films as versatile, high resolution conformal photoresists, using catalytic photoreduction of silver ions to micropattern the film. The combination of photosensitivity, biocompatibilty, and straightforward deposition under mild conditions into thin (∼45 nm) conformal coatings on nearly any material makes PDA films of interest in lithographic patterning on highly nonplanar geometries as well as on soft and biological materials where standard photoresists cannot be used. PDA and poly(norepinephrine) (PNE) films deposited with a standard autoxidation process were investigated along with PDA film deposited with a fast oxidation (FO) technique. Notably, we find that nonspecific deposition of silver off the lithographic pattern is strongly suppressed in PNE and nearly absent in FO-PDA films, which makes very high contrast lithography possible. We attribute this to a lower ratio of catechol to quinone moieties in these films compared to standard PDA films. PNE and FO-PDA films also exhibit smaller silver grain sizes (<40 nm) than standard PDA films, where grains are up to 200 nm in size. We demonstrate laser-scanning lithography patterns at 1.7 μm spatial resolution near the optical resolution limit of the experiment. Continuous silver films can readily be deposited on PDA, PNE, and FO-PDA with blue (λ = 473 nm) and UV-A (375 nm) light, but not with green (515 nm) light. The UV light at lower intensities deposits silver several times faster than the blue light but also degrades the deposited silver at high light intensities. Silver films deposited in this way reach the percolation threshold at optical doses (at λ = 473 nm) in the range of 10-50 kJ/cm2, and SEM images of the films appear nearly pinhole free at comparable doses.
Collapse
Affiliation(s)
- Elliott
D. Kunkel
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - C. Blake Loker
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Hunter N. Cowden
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Hans D. Robinson
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
6
|
Bigaj-Józefowska MJ, Zalewski T, Załęski K, Coy E, Frankowski M, Mrówczyński R, Grześkowiak BF. Three musketeers of PDA-based MRI contrasting and therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:321-333. [PMID: 38795050 DOI: 10.1080/21691401.2024.2356773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.
Collapse
Affiliation(s)
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Radosław Mrówczyński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
7
|
Luo Y, He X, Du Q, Xu L, Xu J, Wang J, Zhang W, Zhong Y, Guo D, Liu Y, Chen X. Metal-based smart nanosystems in cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230134. [PMID: 39713201 PMCID: PMC11655314 DOI: 10.1002/exp.20230134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/12/2024] [Indexed: 12/24/2024]
Abstract
Metals are an emerging topic in cancer immunotherapy that have shown great potential in modulating cancer immunity cycle and promoting antitumor immunity by activating the intrinsic immunostimulatory mechanisms which have been identified in recent years. The main challenge of metal-assisted immunotherapy lies in the fact that the free metals as ion forms are easily cleared during circulation, and even cause systemic metal toxicity due to the off-target effects. With the rapid development of nanomedicine, metal-based smart nanosystems (MSNs) with unique controllable structure become one of the most promising delivery carriers to solve the issue, owing to their various endogenous/external stimuli-responsiveness to release free metal ions for metalloimmunotherapy. In this review, the state-of-the-art research progress in metal-related immunotherapy is comprehensively summarized. First, the mainstream mechanisms of MSNs-assisted immunotherapy will be delineated. The immunological effects of certain metals and categorization of MSNs with different characters and compositions are then provided, followed by the representative exemplar applications of MSNs in cancer treatment, and synergistic combination immunotherapy. Finally, we conclude this review with a summary of the remaining challenges associated with MSNs and provide the authors' perspective on their further advances.
Collapse
Affiliation(s)
- Ying Luo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaojing He
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qianying Du
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Lian Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Jie Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Junrui Wang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenli Zhang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yixin Zhong
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Dajing Guo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yun Liu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
8
|
Li H, Jia Y, Bai S, Peng H, Li J. Metal-chelated polydopamine nanomaterials: Nanoarchitectonics and applications in biomedicine, catalysis, and energy storage. Adv Colloid Interface Sci 2024; 334:103316. [PMID: 39442423 DOI: 10.1016/j.cis.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Polydopamine (PDA)-based materials inspired by the adhesive proteins of mussels have attracted increasing attention owing to the universal adhesiveness, antioxidant activity, fluorescence quenching ability, excellent biocompatibility, and especially photothermal conversion capability. The high binding ability of PDA to a variety of metal ions offers a paradigm for the exploration of metal-chelated polydopamine nanomaterials with fantastic properties and functions. This review systematically summarizes the latest progress of metal-chelated polydopamine nanomaterials for the applications in biomedicine, catalysis, and energy storage. Different fabrication strategies for metal-chelated polydopamine nanomaterials with various composition, structure, size, and surface chemistry, such as the pre-functionalization method, the one-pot co-assembly method, and the post-modification method, are summarized. Furthermore, emerging applications of metal-chelated polydopamine nanomaterials in the fields ranging from cancer therapy, theranostics, antibacterial, catalysis to energy storage are highlighted. Additionally, the critical remaining challenges and future directions of this area are discussed to promote the further development and practical applications of PDA-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
9
|
Guo H, Luo Q, Liu D, Li X, Zhang C, He X, Miao C, Zhang X, Qin X. Super Moisture-Sorbent Sponge for Sustainable Atmospheric Water Harvesting and Power Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414285. [PMID: 39508548 DOI: 10.1002/adma.202414285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Sorption-based atmospheric water harvesting (SAWH) shows great promise to mitigate the worldwide water scarcity, especially in the arid regions. Salt-based composite materials are the extensively used sorbents for SAWH, however, they suffer from complex preparation to avoid salt leakage. Furthermore, the significant amount of heat produced during water harvesting process is often neglected and wasted. Herein, an integrated strategy is developed to synthesis salt-based stable super moisture-sorbent sponge by using the chelation of LiCl and dopamine (DA), and the simultaneous polymerization of DA on melamine sponge (PMS). The as-prepared LiCl/PMS/CNTs showed high water uptake, reaching 1.26 and 1.81 g g-1 at 15% and 30% RH, respectively, and no salt leakage is observed during the water absorption process. Remarkable daily water production of 3.47 kg kg-1 day-1 in an arid environment (30% RH) is achieved. Moreover, a dual-function system is successfully constructed by combining the LiCl/PMS/CNTs with a thermoelectric module to fully utilize the heat generated from the SAWH process, which can realize the simultaneous production of fresh water and electricity. The maximum output power density is up to 35.4 and 454.4 mW m-2 during the water absorption and desorption process, respectively.
Collapse
Affiliation(s)
- Hanyu Guo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qingliang Luo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangyu Li
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Chentian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinyang He
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Changling Miao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xueping Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Sun S, Li K, Li X, Shi S. Dual-Redox Responsive Interfaces Based on Donor-Acceptor Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65592-65599. [PMID: 39531015 DOI: 10.1021/acsami.4c14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticle surfactant (NPS) is a highly competitive means for stabilizing liquid-liquid interfaces, endowing interfacial assemblies with functionalities, and enabling the construction of all-liquid devices. Integrating different types of supramolecular interactions into NPSs would open possibilities to generate interfaces that are responsive to multiple stimuli. Here, by using donor-acceptor interactions between polydopamine nanoparticles (PDA NPs) and methyl viologen (MV2+) terminated polystyrene, the formation, assembly, and jamming of a supramolecular NPS at the water-toluene interface is demonstrated. Harnessing the redox properties of both catechol and MV2+, the dual-redox responsiveness can be achieved, allowing the reconfiguration of NPS-based structured liquids. Using NPS as an emulsifier, oil-in-water (O/W), water-in-oil (W/O), and oil-in-water-in-oil (O/W/O) Pickering emulsions can be obtained in one step, which exhibit smart responsiveness to redox reagents. Taking advantage of the adsorption capacity of PDA NPs, the purification of dye-polluted water can be achieved through O/W Pickering emulsions. We envision that this unique dual-redox responsive biphasic system would hold great potential for developing sophisticated controlled-release systems as well as other intelligent, functional materials.
Collapse
Affiliation(s)
- Shuyi Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Wang L, Song K, Jiang C, Liu S, Huang S, Yang H, Li X, Zhao F. Metal-Coordinated Polydopamine Structures for Tumor Imaging and Therapy. Adv Healthc Mater 2024; 13:e2401451. [PMID: 39021319 DOI: 10.1002/adhm.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Meticulously engineered nanomaterials achieve significant advances in the diagnosis and therapy of solid tumors by improving tumor delivery efficiency; and thereby, enhancing imaging and therapeutic efficacy. Currently, polydopamine (PDA) attracts widespread attention because of its biocompatibility, simplicity of preparation, abundant surface groups, and high photothermal conversion efficiency, which can be applied in drug delivery, photothermal therapy, theranostics, and other nanomedicine fields. Inspired by PDA structures that are rich in catechol and amino functional groups that can coordinate with various metal ions, which have charming qualities and characteristics, metal-coordinated PDA structures are exploited for tumor theranostics, but are not thoroughly summarized. Herein, this review summarizes the recent progress in the fabrication of metal-coordinated PDA structures and their availabilities in tumor imaging and therapy, with further in-depth discussion of the challenges and future perspectives of metal-coordinated PDA structures, with the aim that this systematic review can promote interdisciplinary intersections and provide inspiration for the further growth and clinical translation of PDA materials.
Collapse
Affiliation(s)
- Lihua Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shanping Liu
- Library of Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310003, China
| | - Xianglong Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Feng Zhao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
12
|
Ahuja D, Jose NP, Kamal R, Panduranga V, Nambiar S, Isloor AM. In vitro determination of genotoxicity and cytotoxicity induced by stainless steel brackets with and without surface coating in cultures of oral mucosal cells. BMC Oral Health 2024; 24:1233. [PMID: 39415190 PMCID: PMC11484226 DOI: 10.1186/s12903-024-04976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Orthodontics is a speciality of dentistry that uses a plethora of devices made from myriad materials to manage various malocclusions. Prolonged contact of orthodontic appliances with oral tissues can lead to cellular damage, highlighting the need for biocompatible materials to mitigate health risks. OBJECTIVES To analyze the genotoxicity and cytotoxicity produced by metal brackets and coated metallic brackets with polymeric and nanoparticle coatings in oral mucosal cells. MATERIALS & METHODS The current study compares the toxicity of 3 different types of orthodontic brackets with control groups of oral mucosal cells. Each of the three treatment groups consisted of 10 samples of orthodontic brackets: stainless steel brackets(Group 1), nanoparticle-coated brackets(Group 2), and polymeric-coated brackets(Group 3) exposed to corrosion eluates employing an oral biomimicry model. Two types of oral mucosal cells- Human Gingival Fibroblasts and Buccal Epithelial Cells were used to study the cytotoxic and/or genotoxic effects of the elutes. Intergroup comparisons were conducted using one-way analysis of variance, while scanning electron microscopy evaluated surface characteristic. RESULTS The interaction between metal ions and oral mucosal cells showed no statistically significant difference for toxicity assays between the three groups(p > 0.005). However, polymeric and nanoparticle-coated groups showed reduced cellular differentiation when compared with conventional stainless-steel brackets. CONCLUSION This in-vitro study shows that polymeric or nanoparticle coating of conventional metal brackets aids in enhancing corrosion-resistant characteristics of orthodontic appliances and reduces the toxic oral environment created by metal release in the oral cavity.
Collapse
Affiliation(s)
- Dhruv Ahuja
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, Faridabad Manav Rachna International Institute of Research and Studies(MRIIRS), Faridabad, Haryana, 121004, India
| | - Nidhin Philip Jose
- Department of Orthodontics and Dentofacial Orthopedics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Rozy Kamal
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinaya Panduranga
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Supriya Nambiar
- Department of Orthodontics and Dentofacial Orthopedics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arun M Isloor
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| |
Collapse
|
13
|
Chen Y, Li H, Liu N, Feng D, Wu W, Gu K, Wu A, Li C, Wang X. Multi-mechanism antitumor/antibacterial effects of Cu-EGCG self-assembling nanocomposite in tumor nanotherapy and drug-resistant bacterial wound infections. J Colloid Interface Sci 2024; 671:751-769. [PMID: 38824748 DOI: 10.1016/j.jcis.2024.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.
Collapse
Affiliation(s)
- Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Nana Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Dongju Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
d’Alessandro N, Coccia F, Vitali LA, Rastelli G, Cinosi A, Mascitti A, Tonucci L. Cu-ZnO Embedded in a Polydopamine Shell for the Generation of Antibacterial Surgical Face Masks. Molecules 2024; 29:4512. [PMID: 39339506 PMCID: PMC11434467 DOI: 10.3390/molecules29184512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
A new easy protocol to functionalize the middle layer of commercial surgical face masks (FMs) with Zn and Cu oxides is proposed in order to obtain antibacterial personal protective equipment. Zinc and copper oxides were synthesized embedded in a polydopamine (PDA) shell as potential antibacterial agents; they were analyzed by XRD and TEM, revealing, in all the cases, the formation of metal oxide nanoparticles (NPs). PDA is a natural polymer appreciated for its simple and rapid synthesis, biocompatibility, and high functionalization; it is used in this work as an organic matrix that, in addition to stabilizing NPs, also acts as a diluent in the functionalization step, decreasing the metal loading on the polypropylene (PP) surface. The functionalized middle layers of the FMs were characterized by SEM, XRD, FTIR, and TXRF and tested in their bacterial-growth-inhibiting effect against Klebsiella pneumoniae and Staphylococcus aureus. Among all functionalizing agents, Cu2O-doped-ZnO NPs enclosed in PDA shell, prepared by an ultrasound-assisted method, showed the best antibacterial effect, even at low metal loading, without changing the hydrophobicity of the FM. This approach offers a sustainable solution by prolonging FM lifespan and reducing material waste.
Collapse
Affiliation(s)
- Nicola d’Alessandro
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesca Coccia
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Luca Agostino Vitali
- School of Pharmacy, University of Camerino via Gentile III da Varano, 62032 Camerino, Italy;
| | - Giorgia Rastelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Amedeo Cinosi
- G.N.R. s.r.l., Via Torino 7, 28010 Agrate Conturbia, Italy;
| | - Andrea Mascitti
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
| | - Lucia Tonucci
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
15
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
16
|
Ding M, Zhang Y, Li X, Li Q, Xiu W, He A, Dai Z, Dong H, Shan J, Mou Y. Simultaneous Biofilm Disruption, Bacterial Killing, and Inflammation Elimination for Wound Treatment Using Silver Embellished Polydopamine Nanoplatform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400927. [PMID: 38726949 DOI: 10.1002/smll.202400927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Due to the presence of spatial barriers, persistent bacteria, and excessive inflammation in bacteria biofilm-infected wounds, current nanoplatforms cannot effectively address these issues simultaneously during the therapeutic process. Herein, a novel biomimetic photothermal nanoplatform integrating silver and polydopamine nanoparticles (Ag/PDAs) that can damage biofilms, kill bacterial persisters, and reduce inflammation for wound treatment is presented. These findings reveal that Ag/PDAs exhibit a broad-spectrum antimicrobial activity through direct damage to the bacterial membrane structure. Additionally, Ag/PDAs demonstrate a potent photothermal conversion efficiency. When combined with near-infrared (NIR) irradiation, Ag/PDAs effectively disrupt the spatial structure of biofilms and synergistically eradicate the resident bacteria. Furthermore, Ag/PDAs show remarkable anti-inflammatory properties in counteracting bacterium-induced macrophage polarization. The in vivo results confirm that the topical application of Ag/PDAs significantly suppress Staphylococcus aureus biofilm-infected wounds in murine models, concurrently facilitating wound healing. This research provides a promising avenue for the eradication of bacterial biofilms and the treatment of biofilm-infected wounds.
Collapse
Affiliation(s)
- Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Xiaoye Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Weijun Xiu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ao He
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Zhuo Dai
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| | - Jingyang Shan
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210049, China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
17
|
Wu H, Sun Q, Guo C, Wei X, Wei J, Wu X, Zhong Z, Wang H. Tailoring Surface Engineering with Expanded Precursor Libraries via Rapid Mussel-Inspired Chemistry. Chempluschem 2024; 89:e202400101. [PMID: 38822555 DOI: 10.1002/cplu.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Mussel-inspired coating is a substrate-independent surface modification technology. However, its application is limited by time-consuming, tailoring specific functions require tedious secondary reaction. To overcome those drawbacks, a strategy for the rapid fabrication of diverse coatings by expanding the library of precursors using oxidation coupled with polyamine was proposed. Based on DFT simulations of the reaction pathways, a method was developed to achieve rapid deposition of coatings by coupling oxidation and polyamines, which simultaneously accelerated the oxidation of precursors and polymer chain growth. The feasibility and generalizability of the strategy was validated by the rapid coating of 10 catechol derivatives and polyamines on various substrates. The surface properties of the substrates such as functional group densities, Zeta potential and contact angles can be easily tuned. The tailored surface engineering application of the strategy was demonstrated by the heavy metal adsorbents and superwetting materials prepared through the delicate combination of different building blocks. Our strategy was flexible in terms of diverse surface engineering design which greatly enriched the connotation of mussel-inspired technique.
Collapse
Affiliation(s)
- Hailiang Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Qiang Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Caihong Guo
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, Shanxi Province, 041000, P.R. China
| | - Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Junfu Wei
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| | - Xiaoqing Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Zhili Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| |
Collapse
|
18
|
Gao Y, Luo Y, Chen W, Xue X, Xiao C, Wei K. Theranostic Nanoplatform Based on Polydopamine-Coated Magnetic Mesoporous Silicon for Precise Cancer Triplex Nanotherapy and Multimodal Imaging. Anal Chem 2024; 96:13557-13565. [PMID: 39115161 DOI: 10.1021/acs.analchem.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Although targeted therapy has revolutionized oncotherapy, engineering a versatile oncotherapy nanoplatform integrating both diagnostics and therapeutics has always been an intractable challenge to overcome the limitations of monotherapy. Herein, a theranostics platform based on DI/MP-MB has successfully realized the fluorescence detection of disease marker miR-21 and the gene/photothermal/chemo triple synergetic cancer therapy, which can trace the tumor through photothermal and fluorescence dual-mode imaging and overcome the limitations of monotherapy to improve the treatment efficiency of tumors. DI/MP-MB was prepared by magnetic mesoporous silicon nanoparticles (M-MSNs) loaded with doxorubicin (Dox) and new indocyanine green (IR820), and subsequently coating polydopamine as a "gatekeeper", followed by the surface adsorbed with molecular beacons capable of targeting miR-21 for responsive imaging. Under the action of enhanced permeability retention and external magnetic field, DI/MP-MB were targeted and selectively accumulated in the tumor. MiR-21 MB hybridized with miR-21 to form a double strand, which led to the desorption of miR-21 MB from the polydopamine surface and the fluorescence recovery to realize gene silencing and fluorescence imaging for tracking the treatment process. Meanwhile, with the response to the near-infrared irradiation and the tumor's microacid environment, the outer layer polydopamine will decompose, releasing Dox and IR820 to realize chemotherapy and photothermal therapy. Finally, the ability of DI/MP-MB to efficiently suppress tumor growth was comprehensively assessed and validated both in vitro and in vivo. Noteworthily, the excellent anticancer efficiency by the synergistic effect of gene/photothermal/chemo triple therapy of DI/MP-MB makes it an ideal nanoplatform for tumor therapy and imaging.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yujia Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenyu Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinrui Xue
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chujie Xiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Menichetti A, Mordini D, Montalti M. Melanin as a Photothermal Agent in Antimicrobial Systems. Int J Mol Sci 2024; 25:8975. [PMID: 39201661 PMCID: PMC11354747 DOI: 10.3390/ijms25168975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Bacterial infection is one of the most problematic issues for human health and the resistance of bacteria to traditional antibiotics is a matter of huge concern. Therefore, research is focusing on the development of new strategies to efficiently kill these microorganisms. Recently, melanin is starting to be investigated for this purpose. Indeed, this very versatile material presents outstanding photothermal properties, already studied for photothermal therapy, which can be very useful for the light-induced eradication of bacteria. In this review, we present antibacterial melanin applications based on the photothermal effect, focusing both on the single action of melanin and on its combination with other antibacterial systems. Melanin, also thanks to its biocompatibility and ease of functionalization, has been demonstrated to be easily applicable as an antimicrobial agent, especially for the treatment of local infections.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
20
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
21
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
22
|
Nair A, Chandrashekhar H R, Day CM, Garg S, Nayak Y, Shenoy PA, Nayak UY. Polymeric functionalization of mesoporous silica nanoparticles: Biomedical insights. Int J Pharm 2024; 660:124314. [PMID: 38862066 DOI: 10.1016/j.ijpharm.2024.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.
Collapse
Affiliation(s)
- Akhil Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekhar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Candace M Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
23
|
Liu L, Lu C, Tao Z, Zha Z, Wang H, Miao Z. 2D Is Better: Engineering Polydopamine into Cationic Nanosheets to Enhance Anti-Inflammatory Capability. Adv Healthc Mater 2024; 13:e2400048. [PMID: 38466315 DOI: 10.1002/adhm.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Polydopamine nanomaterials have emerged as one of the most popular organic materials for the management of oxidative stress-mediated inflammatory diseases. However, their current anti-inflammatory ability is still unsatisfactory because of limited phenolic hydroxyl groups, and oxidation reaction-medicated reactive oxygen and nitrogen species (RONS) scavenging. Herein, via fusing dimension engineering and surface charge engineering, 2D cationic polydopamine nanosheets (PDA NSs) capable of scavenging multiple danger signals to enhance anti-inflammatory capability are reported. Compared with conventional spherical polydopamine nanoparticles, 2D PDA NSs exhibit three- to fourfold enhancement in RONS scavenging capability, which should be attributed to high specific surface area and abundant phenol groups of 2D ultrathin structure. To further enhance the anti-inflammatory ability, polylysine molecules are absorbed on the surface of PDA NSs to endow the scavenging capability of cell-free DNA (cfDNA), another typical inflammatory factor to exacerbate the pathogenesis of inflammation. Molecular mechanisms reveal that cationic PDA NSs can concurrently activate Keap1-Nrf2 and block TLR9 signaling pathway, achieving synergistical inflammation inhibition. As a proof of concept, cationic PDA NSs with RONS and cfDNA dual-scavenging capability effectively alleviate the inflammatory bowel disease in both delayed and prophylactic models, much better than the clinical drug 5-aminosalicylic acid.
Collapse
Affiliation(s)
- Lulu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chenxin Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zhenchao Tao
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, 230031, P. R. China
- The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
24
|
Feng J, Xu L, Qi L, Fu Z, Hu Q. Polydopamine-Mediated Metal-Organic Frameworks Modification for Improved Biocompatibility. Macromol Biosci 2024; 24:e2400071. [PMID: 38569562 DOI: 10.1002/mabi.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Engineered nanomaterials are promising in biomedical application. However, insufficient understanding of their biocompatibility at the cellular and organic levels prevents their widely biomedical applications. Metal-organic frameworks (MOFs) have attracted increasing attention in recent years. In this work, zeolitic imidazolate framework-8 (ZIF-8) and polydopamine (PDA)-modified ZIF-8 are chosen as model nanomaterials due to its emergent role in nanomedicine. In vitro, the results demonstrate that the PDA coating greatly alleviates the cytotoxicity of ZIF-8 to RAW264.7, LO2, and HST6, which represent three different cell types in liver organs. Mechanistically, ZIF-8 entering into the cells can greatly induce the reactive oxygen species generation, which subsequently induces cell cycle delay and autophagy, ultimately leads to enhanced cytotoxicity. Further, human umbilical vein endothelial cells model and zebrafish embryos assay also confirm that PDA can compromise the ZIF-8 toxicity significantly. This study reveals that PDA-coated MOFs nanomaterials show great potential in nano-based drug delivery systems .
Collapse
Affiliation(s)
- Jiayu Feng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lulu Qi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
25
|
Yao C, Liang S, Yu M, Wu H, Ahmed MH, Liu Y, Yu J, Zhao Y, Van der Bruggen B, Huang C, Van Meerbeek B. High-Performance Bioinspired Microspheres for Boosting Dental Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310251. [PMID: 38362704 DOI: 10.1002/smll.202310251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Indexed: 02/17/2024]
Abstract
Dental adhesives are widely used in daily practice for minimally invasive restorative dentistry but suffer from bond degradation and biofilm attack. Bio-inspired by marine mussels having excellent surface-adhesion capability and high chemical affinity of polydopamine (PDA) to metal ions, herein, experimental zinc (Zn)-containing polydopamine-based adhesive formulation, further being referred to as "Zn-PDA@SiO2"-incorporated adhesive is proposed as a novel dental adhesive. Different Zn contents (5 and 10 mm) of Zn-PDA@SiO2 are prepared. Considering the synergistic effect of Zn and PDA, Zn-PDA@SiO2 not only presents excellent antibacterial potential and notably inhibits enzymatic activity (soluble and matrix-bound proteases), but also exhibits superior biocompatibility and biosafety in vitro/vivo. The long-term bond stability is substantially improved by adding 5 wt% 5 mm Zn-PDA@SiO2 to the primer. The aged bond strength of the experimentally formulated dental adhesives applied in self-etch (SE) bonding mode is 1.9 times higher than that of the SE gold-standard adhesive. Molecular dynamics calculations indicate the stable formation of covalent bonds, Zn-assisted coordinative bonds, and hydrogen bonds between PDA and collagen. Overall, this bioinspired dental adhesive provides an avenue technology for innovative biomedical applications and has already revealed promising perspectives for dental restorative dentistry.
Collapse
Affiliation(s)
- Chenmin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
| | - Shengjie Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Miaoyang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongling Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Mohammed H Ahmed
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
- Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta, 31511, Egypt
| | - Yingheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven (University of Leuven), Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven (University of Leuven), Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
| |
Collapse
|
26
|
Wang J, Zhang Y, Liao S, Chen D, Mensah A, Wei Q. MoNP-doped Defective Carbon Fibers with Bark-like Nanosurface as Effective Bifunctional Electrocatalysts for Zn-air Batteries. CHEMSUSCHEM 2024; 17:e202301510. [PMID: 38286748 DOI: 10.1002/cssc.202301510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
The flexible air electrode with high oxygen electrocatalytic performance and outstanding stability under various deformations plays a vital role in high-performance flexible Zn-air batteries (ZABs). Herein, a self-supported Mo, N, and P co-doped carbon cloth (CC) denoted as MoNP@CC with bark-like surface structure is fabricated by a facile two-step approach via a one-pot method and pyrolysis. The surface of the electrode shows a nanoscale "rift valley" and uniformly distributed active sites. Taking advantage of the nano-surface as well as transition metal and heteroatom doping, the self-supported electrocatalysis air electrode exhibits considerable oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) performance in terms of low overpotential (388 mV at 10 mA cm-2) for OER and a much positive potential (0.74 V) at 1.0 mA cm-2 for ORR. Furthermore, MoNP@CC is further used for the flexible ZAB to demonstrate its practical application. The MoNP@CC-based ZAB displays a good cycling performance for 2800 min and an open-circuit voltage of 1.44 V. This work provides a new approach to the construction of a high-performance, self-supported electrocatalysis electrode used for a flexible energy storage device.
Collapse
Affiliation(s)
- Jiangbo Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Jiangsu Province, Wuxi, 214122, PR China
| | - Yanan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, PR China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, PR China
| | - Dongsheng Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, PR China
| | - Alfred Mensah
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Jiangsu Province, Wuxi, 214122, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Jiangsu Province, Wuxi, 214122, PR China
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, PR China
| |
Collapse
|
27
|
Zhang G, Xiao M. Enhancing color saturation in photonic glasses through optimized absorption. OPTICS EXPRESS 2024; 32:20432-20448. [PMID: 38859425 DOI: 10.1364/oe.516278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
Photonic glasses, isotropically assembled nanoparticles with short-range correlation, can produce angle independent structural colors. They show broader reflectance spectra and lower saturated colors, compared to photonic crystals. Low color saturation creates barriers for photonic glasses to be used for coatings, cosmetics, and colors. Broadband absorbing materials are commonly used to absorb incoherently scattered light to enhance the saturation. However, there is limited understanding on how the absorption quantitatively affects the colors of photonic glasses. To this end, we here use a validated Monte Carlo-based multiple scattering model to investigate how absorption impacts the reflectance spectra in photonic glasses. We show that the color saturation can be maximized with an optimal level of absorption regardless of sample thickness or refractive index contrast between particles and matrix. We quantitatively demonstrate that the multiple scattering is largely reduced with the optimal absorption level and the reflectance is dominantly contributed by the single scattering. The optimal absorption occurs when the sample absorption mean free path is comparable to the transport mean free path, which offers a guidance on how much absorbing material is needed for creating highly saturated photonic glasses. This work will not only pave ways for pushing applications of angle-independent structural colors, but also improve our understanding of light scattering and absorption in short-range correlated disordered systems.
Collapse
|
28
|
Shen B, Zhang JH, Liu Y, Ma J, Li Y, Hao X, Zhang R. Enhanced Absolute Recovered Energy under Low Electric Field in All-Inorganic 0-3 Nanocomposition Thick Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309486. [PMID: 38174606 DOI: 10.1002/smll.202309486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Inorganic thick-film dielectric capacitors with ultrahigh absolute recovered energy at low electric fields are extremely desired for their wide application in pulsed power systems. However, a long-standing technological bottleneck exists between high absolute energy and large recovered energy density. A new strategy is offered to fabricate selected all-inorganic 0-3 composite thick films up to 10 µm by a modified sol-slurry method. Here, the ceramic powder is dispersed into the sol-gel matrix to form a uniform suspension, assisted by powder, therefore, the 2 µm-thickness after single layer spin coating. To enhance the energy-storage performances, the composites process is thoroughly optimized by ultrafine powder (<50 nm) technique based on a low-cost coprecipitation method instead of the solid-state and sol-gel methods. 0D coprecipitation powder has a similar dielectric constant to the corresponding 3D films, thus uneven electrical field distributions is overcome. Moreover, the increase of interfacial polarization is realized due to the larger specific surface area. A maximum recoverable energy density of 14.62 J cm-3 is obtained in coprecipitation thick films ≈2.2 times that of the solid-state powder and ≈1.3 times for sol-gel powder. This study provides a new paradigm for further guiding the design of composite materials.
Collapse
Affiliation(s)
- Bingzhong Shen
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jia-Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yang Liu
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jinpeng Ma
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Yong Li
- Inner Mongolia Key Laboratory of Ferroelectric-Related New Energy Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, P. R. China
| | - Xihong Hao
- Inner Mongolia Key Laboratory of Ferroelectric-Related New Energy Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, P. R. China
| | - Rui Zhang
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| |
Collapse
|
29
|
Wu Z, Li Q, Zhu K, Zheng S, Hu H, Hou M, Qi L, Chen S, Xu Y, Zhao B, Yan C. Cancer Radiosensitization Nanoagent to Activate cGAS-STING Pathway for Molecular Imaging Guided Synergistic Radio/Chemo/Immunotherapy. Adv Healthc Mater 2024; 13:e2303626. [PMID: 38387885 DOI: 10.1002/adhm.202303626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Immunotherapy has emerged as an innovative strategy with the potential to improve outcomes in cancer patients. Recent evidence indicates that radiation-induced DNA damage can activate the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to enhance the antitumor immune response. Even so, only a small fraction of patients currently benefits from radioimmunotherapy due to the radioresistance and the inadequate activation of the cGAS-STING pathway. Herein, this work integrates hafnium oxide (HfO2) nanoparticles (radiosensitizer) and 7-Ethyl-10-hydroxycamptothecin (SN38, chemotherapy drug, STING agonist) into a polydopamine (PDA)-coated core-shell nanoplatform (HfO2@PDA/Fe/SN38) to achieve synergistic chemoradiotherapy and immunotherapy. The co-delivery of HfO2/SN38 greatly enhances radiotherapy efficacy by effectively activating the cGAS-STING pathway, which then triggers dendritic cells maturation and CD8+ T cells recruitment. Consequently, the growth of both primary and abscopal tumors in tumor-bearing mice is efficiently inhibited. Moreover, the HfO2@PDA/Fe/SN38 complexes exhibit favorable magnetic resonance imaging (MRI)/photoacoustic (PA) bimodal molecular imaging properties. In summary, these developed multifunctional complexes have the potential to intensify immune activation to realize simultaneous cancer Radio/Chemo/Immunotherapy for clinical translation.
Collapse
Affiliation(s)
- Zede Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyu Li
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kai Zhu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Honglei Hu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Siwen Chen
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
30
|
Yuan J, Liu Y, Li Y, Chang Q, Deng X, Xie Y. Metal-Loaded Synthetic Melanin via Oxidative Polymerization of Neurotransmitter Norepinephrine Exhibiting High Photothermal Conversion. NANO LETTERS 2024; 24:6353-6361. [PMID: 38757814 DOI: 10.1021/acs.nanolett.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Polydopamine (PDA)-derived melanin-like materials exhibit significant photothermal conversion owing to their broad-spectrum light absorption. However, their low near-infrared (NIR) absorption and inadequate hydrophilicity compromise their utilization of solar energy. Herein, we developed metal-loaded poly(norepinephrine) nanoparticles (PNE NPs) by predoping metal ions (Fe3+, Mn3+, Co2+, Ca2+, Ga3+, and Mg2+) with norepinephrine, a neuron-derived biomimetic molecule, to address the limitations of PDA. The chelation between catechol and metal ions induces a ligand-to-metal charge transfer (LMCT) through the formation of donor-acceptor pairs, modulating the light absorption behavior and reducing the band gap. Under 1 sun illumination, the Fe-loaded PNE coated wood evaporator achieved a high seawater evaporation rate and efficiency of 1.75 kg m-2 h-1 and 92.4%, respectively, owing to the superior hydrophilicity and photothermal performance of PNE. Therefore, this study offers a comprehensive exploration of the role of metal ions in enhancing the photothermal properties of synthetic melanins.
Collapse
Affiliation(s)
- Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yukong Li
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, People's Republic of China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
31
|
Menichetti A, Mordini D, Vicenzi S, Montalti M. Melanin for Photoprotection and Hair Coloration in the Emerging Era of Nanocosmetics. Int J Mol Sci 2024; 25:5862. [PMID: 38892049 PMCID: PMC11172709 DOI: 10.3390/ijms25115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Nanotechnology is revolutionizing fields of high social and economic impact. such as human health preservation, energy conversion and storage, environmental decontamination, and art restoration. However, the possible global-scale application of nanomaterials is raising increasing concerns, mostly related to the possible toxicity of materials at the nanoscale. The possibility of using nanomaterials in cosmetics, and hence in products aimed to be applied directly to the human body, even just externally, is strongly debated. Preoccupation arises especially from the consideration that nanomaterials are mostly of synthetic origin, and hence are often seen as "artificial" and their effects as unpredictable. Melanin, in this framework, is a unique material since in nature it plays important roles that specific cosmetics are aimed to cover, such as photoprotection and hair and skin coloration. Moreover, melanin is mostly present in nature in the form of nanoparticles, as is clearly observable in the ink of some animals, like cuttlefish. Moreover, artificial melanin nanoparticles share the same high biocompatibility of the natural ones and the same unique chemical and photochemical properties. Melanin is hence a natural nanocosmetic agent, but its actual application in cosmetics is still under development, also because of regulatory issues. Here, we critically discuss the most recent examples of the application of natural and biomimetic melanin to cosmetics and highlight the requirements and future steps that would improve melanin-based cosmetics in the view of future applications in the everyday market.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Silvia Vicenzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
32
|
Guo Q, Li P, Zhang Y, Yan H, Yan Q, Su R, Su W. Polydopamine-curcumin coating of titanium for remarkable antibacterial activity via synergistic photodynamic and photothermal properties. Photochem Photobiol 2024; 100:699-711. [PMID: 37882412 DOI: 10.1111/php.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Combined photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a novel and effective antibacterial strategy. In order to endow titanium (Ti) with antibacterial properties, the Ti-PDA-Cur composite was prepared using the excellent adhesion properties of polydopamine (PDA) to load curcumin (Cur) on the surface of Ti. The Ti-PDA-Cur coating can produce singlet oxygen (1O2) and heat under 405 + 808 nm light irradiation, which can effectively kill Staphylococcus aureus and Escherichia coli. Moreover, the cytotoxicity and hemolysis rate of Ti-PDA-Cur were low, indicating its good biocompatibility. Therefore, this study provided a new strategy for the development of new Ti implants.
Collapse
Affiliation(s)
- Qing Guo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiuyan Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| |
Collapse
|
33
|
Wang X, Zhang J, Li H, Zhang R, Yang X, Li W, Li Z, Gu Z, Li Y. Quaternary Ammonium Assisted Synthesis of Melanin-like Poly(l-DOPA) Nanoparticles with a Boosted Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22493-22503. [PMID: 38647220 DOI: 10.1021/acsami.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Poly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios. In this work, P(l-DOPA) NPs were successfully prepared in hot water with the assistant of organic quaternary ammonium, due to the extra physical cross-linking mediated by cations. The employed physical interactions could also be affected by quaternary ammonium structure (i.e., number of cation heads, length of alkyl chain) to achieve different polymerization acceleration effects. The obtained P(l-DOPA) NPs retained superior photothermal properties and outperformed PDA-based melanin materials. Furthermore, P(l-DOPA) NPs were used in photothermal tumor therapy and showed better efficacy. This study offers new insights into the synthesis of melanin-like materials, as well as new understanding of the interaction between quaternary ammonium and bioinspired polyphenolic materials.
Collapse
Affiliation(s)
- Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
Wang X, Zhang J, Yang L, Wang T, Duan G, Gu Z, Li Y. Eumelanin-like Poly(levodopa) Nanoscavengers for Inflammation Disease Therapy. Biomacromolecules 2024; 25:2563-2573. [PMID: 38485470 DOI: 10.1021/acs.biomac.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (l-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions. Herein, poly(levodopa) nanoparticles [P(l-DOPA) NPs] were synthesized with the assistance of zinc oxide as a supplement to synthetic eumelanin. This study found that P(l-DOPA) NPs had ∼90% DHICA-derived subunits on their surface and exhibited superior antioxidant activity compared to PDA NPs due to their looser polymeric microstructure. Benefitting from a stronger ROS scavenging ability, P(l-DOPA) NPs outperformed PDA NPs in treating cellular oxidative stress and acute inflammation. This research opens up new possibilities for the development and application of novel melanin-like materials.
Collapse
Affiliation(s)
- Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Hercan Mammad M, Gülfen M, Olgun U, Özdemir A. Synthesis, spectroscopy, band gap energy and electrical conductivity of poly(dopamine-co-aniline) copolymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123712. [PMID: 38042126 DOI: 10.1016/j.saa.2023.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Copolymerization is used to improve the solubility and processability of polymers and copolymers includes the individual properties of homopolymer. In this study, the poly(dopamine-co-aniline) (poly(DA-co-ANI) copolymer was synthesized and the UV-vis. absorption, optical band gap energy, fluorescence, FT-IR, SEM-EDS, MALDI-TOF-MS, XRD and electrical conductivity have been investigated. The obtained results for the poly(DA-co-ANI) copolymer were compared with the PDA and PANI homopolymers. It was observed that the poly(DA-co-ANI copolymer is soluble easily in NMP and DMF solvents. The optical band gap energy of the poly(DA-co-ANI) copolymer film were calculated. as 1.00 eV with favorable indirect transition. The poly(DA-co-ANI) copolymer showed the FL emission maximum bands at 390 and 533 nm wavelengths. It was observed from the SEM images that the poly(DA-co-ANI) has 0-1500 nm crystalline rectangular particles prepared in acidic media and 0-600 nm amorphous particles prepared in basic media. The electrical conductivity of the poly(DA-co-ANI) was 1.35 × 10-6 S/cm. In the MALDI-TOF-MS measurements, the number-average molecular weight of the copolymer was found as 2628 Da with a distribution up to 5500 Da. The poly(DA-co-ANI) copolymer, soluble in NMP and DMF solvents and with a low optical band gap energy can be utilized as optical, fluorescent, and semi-conductive material in biomedical applications.
Collapse
Affiliation(s)
- Merve Hercan Mammad
- Department of Chemistry, Institute of Sciences, Sakarya University, 54187, Serdivan, Sakarya, Turkey
| | - Mustafa Gülfen
- Department of Chemistry, Faculty of Sciences, Sakarya University, 54187 Serdivan, Sakarya, Turkey; Polymer Materials and Technologies Research Application Center, Sargem Research-Development and Application Center, Sakarya University, 54187 Serdivan, Sakarya, Turkey.
| | - Uğursoy Olgun
- Department of Chemistry, Faculty of Sciences, Sakarya University, 54187 Serdivan, Sakarya, Turkey; Polymer Materials and Technologies Research Application Center, Sargem Research-Development and Application Center, Sakarya University, 54187 Serdivan, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Sciences, Sakarya University, 54187 Serdivan, Sakarya, Turkey
| |
Collapse
|
36
|
Tan L, Zhu T, Huang Y, Yuan H, Shi L, Zhu Z, Yao P, Zhu C, Xu J. Ozone-Induced Rapid and Green Synthesis of Polydopamine Coatings with High Uniformity and Enhanced Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308153. [PMID: 38112232 PMCID: PMC10933648 DOI: 10.1002/advs.202308153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The development of green, controllable, and simplified pathways for rapid dopamine polymerization holds significant importance in the field of polydopamine (PDA) surface chemistry. In this study, a green strategy is successfully devised to accelerate and control the polymerization of dopamine through the introduction of ozone (O3 ). The findings reveal that ozone serves as an eco-friendly trigger, significantly accelerating the dopamine polymerization process across a broad pH range, spanning from 4.0 to 10.0. Notably, the deposition rate of PDA coatings on a silicon wafer reaches an impressive value of ≈64.8 nm h-1 (pH 8.5), which is 30 times higher than that of traditional air-assisted PDA and comparable to the fastest reported method. Furthermore, ozone exhibits the ability to accelerate dopamine polymerization even under low temperatures. It also enables control over the inhibition-initiation of the polymerization process by regulating the "ON/OFF" mode of the ozone gas. Moreover, the ozone-induced PDA coatings demonstrate exceptional characteristics, including high homogeneity, good hydrophilicity, and remarkable chemical and mechanical stability. Additionally, the ozone-induced PDA coatings can be rapidly and effectively deposited onto a wide range of substrates, particularly those that are adhesion-resistant, such as polytetrafluoroethylene (PTFE).
Collapse
Affiliation(s)
- Liru Tan
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Tang Zhu
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Yuchan Huang
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Huixin Yuan
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Ludi Shi
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Zijuan Zhu
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Pingping Yao
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Caizhen Zhu
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| | - Jian Xu
- Institute of Low‐dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityGuangdong518060P. R. China
| |
Collapse
|
37
|
Wang B, Fei X, Yin HF, Xu XN, Zhu JJ, Guo ZY, Wu JW, Zhu XS, Zhang Y, Xu Y, Yang Y, Chen LS. Photothermal-Controllable Microneedles with Antitumor, Antioxidant, Angiogenic, and Chondrogenic Activities to Sequential Eliminate Tracheal Neoplasm and Reconstruct Tracheal Cartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309454. [PMID: 38098368 DOI: 10.1002/smll.202309454] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 03/16/2024]
Abstract
The optimal treatment for tracheal tumors necessitates sequential tumor elimination and tracheal cartilage reconstruction. This study introduces an innovative inorganic nanosheet, MnO2 /PDA@Cu, comprising manganese dioxide (MnO2 ) loaded with copper ions (Cu) through in situ polymerization using polydopamine (PDA) as an intermediary. Additionally, a specialized methacrylic anhydride modified decellularized cartilage matrix (MDC) hydrogel with chondrogenic effects is developed by modifying a decellularized cartilage matrix with methacrylic anhydride. The MnO2 /PDA@Cu nanosheet is encapsulated within MDC-derived microneedles, creating a photothermal-controllable MnO2 /PDA@Cu-MDC microneedle. Effectiveness evaluation involved deep insertion of the MnO2 /PDA@Cu-MDC microneedle into tracheal orthotopic tumor in a murine model. Under 808 nm near-infrared irradiation, facilitated by PDA, the microneedle exhibited rapid overheating, efficiently eliminating tumors. PDA's photothermal effects triggered controlled MnO2 and Cu release. The MnO2 nanosheet acted as a potent inorganic nanoenzyme, scavenging reactive oxygen species for an antioxidant effect, while Cu facilitated angiogenesis. This intervention enhanced blood supply at the tumor excision site, promoting stem cell enrichment and nutrient provision. The MDC hydrogel played a pivotal role in creating a chondrogenic niche, fostering stem cells to secrete cartilaginous matrix. In conclusion, the MnO2 /PDA@Cu-MDC microneedle is a versatile platform with photothermal control, sequentially combining antitumor, antioxidant, pro-angiogenic, and chondrogenic activities to orchestrate precise tracheal tumor eradication and cartilage regeneration.
Collapse
Affiliation(s)
- B Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - H F Yin
- Department of Infection Management, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X N Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - J J Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Z Y Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - J W Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X S Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Y Zhang
- Department of Orthopedics, Shanghai Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Y Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Y Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - L S Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
38
|
Zhao Z, Song X, Zhang Y, Zeng B, Wu H, Guo S. Biomineralization-Inspired Copper Sulfide Decorated Aramid Textiles via In Situ Anchoring toward Versatile Wearable Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307873. [PMID: 37853209 DOI: 10.1002/smll.202307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Bingbing Zeng
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
39
|
Abdel Khalek MA, Abdelhameed AM, Abdel Gaber SA. The Use of Photoactive Polymeric Nanoparticles and Nanofibers to Generate a Photodynamic-Mediated Antimicrobial Effect, with a Special Emphasis on Chronic Wounds. Pharmaceutics 2024; 16:229. [PMID: 38399283 PMCID: PMC10893342 DOI: 10.3390/pharmaceutics16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review is concerned with chronic wounds, with an emphasis on biofilm and its complicated management process. The basics of antimicrobial photodynamic therapy (PDT) and its underlying mechanisms for microbial eradication are presented. Intrinsically active nanocarriers (polydopamine NPs, chitosan NPs, and polymeric micelles) that can further potentiate the antimicrobial photodynamic effect are discussed. This review also delves into the role of photoactive electrospun nanofibers, either in their eluting or non-eluting mode of action, in microbial eradication and accelerating the healing of wounds. Synergic strategies to augment the PDT-mediated effect of photoactive nanofibers are reviewed.
Collapse
Affiliation(s)
- Mohamed A. Abdel Khalek
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amr M. Abdelhameed
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, Cairo 11385, Egypt
- Bioscience Research Laboratories Department, MARC for Medical Services and Scientific Research, Giza 11716, Egypt
| | - Sara A. Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
40
|
Liu ZH, Ma FX, Fan HS, Liu ZQ, Du Y, Zhen L, Xu CY. Formulating N-Doped Carbon Hollow Nanospheres with Highly Accessible Through-Pores to Isolate Fe Single-Atoms for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305700. [PMID: 37797186 DOI: 10.1002/smll.202305700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fei-Xiang Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hong-Shuang Fan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zheng-Qi Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yue Du
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
41
|
Hu Z, Wu K, Lin J, Tan X, Jiang X, Xiao Y, Xiang L, Yang S, Zhang M, Xu W, Chen P. Synergistic antibacterial attributes of copper-doped polydopamine nanoparticles: an insight into photothermal enhanced antibacterial efficacy. NANOTECHNOLOGY 2024; 35:155102. [PMID: 38157559 DOI: 10.1088/1361-6528/ad19ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Antibiotic-resistant bacteria and associated infectious diseases pose a grave threat to human health. The antibacterial activity of metal nanoparticles has been extensively utilized in several biomedical applications, showing that they can effectively inhibit the growth of various bacteria. In this research, copper-doped polydopamine nanoparticles (Cu@PDA NPs) were synthesized through an economical process employing deionized water and ethanol as a solvent. By harnessing the high photothermal conversion efficiency of polydopamine nanoparticles (PDA NPs) and the inherent antibacterial attributes of copper ions, we engineered nanoparticles with enhanced antibacterial characteristics. Cu@PDA NPs exhibited a rougher surface and a higher zeta potential in comparison to PDA NPs, and both demonstrated remarkable photothermal conversion efficiency. Comprehensive antibacterial evaluations substantiated the superior efficacy of Cu@PDA NPs attributable to their copper content. These readily prepared nano-antibacterial materials exhibit substantial potential in infection prevention and treatment, owing to their synergistic combination of photothermal and spectral antibacterial features.
Collapse
Affiliation(s)
- Zhiqiong Hu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Kexian Wu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Jiahong Lin
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Xiaoqian Tan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Xinyuan Jiang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Yuhang Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Lanxin Xiang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Shuang Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Maolan Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Peixing Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| |
Collapse
|
42
|
Liu S, Ding R, Yuan J, Zhang X, Deng X, Xie Y, Wang Z. Melanin-Inspired Composite Materials: From Nanoarchitectonics to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3001-3018. [PMID: 38195388 DOI: 10.1021/acsami.3c14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Ding
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xicheng Zhang
- The Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Liu S, Liu Y, Chang Q, Celia C, Deng X, Xie Y. pH-Responsive Sorafenib/Iron-Co-Loaded Mesoporous Polydopamine Nanoparticles for Synergistic Ferroptosis and Photothermal Therapy. Biomacromolecules 2024; 25:522-531. [PMID: 38087829 DOI: 10.1021/acs.biomac.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ferroptosis has attracted significant attention as a new mechanism of cell death. Sorafenib (SRF) is widely considered a prototypical ferroptosis-inducing drug, particularly for liver cancer treatment. However, the low solubility and hydrophobic nature of SRF, along with the absence of synergistic therapeutic strategies, still limit its application in cancer treatment. Herein, we report a dual therapeutic method incorporating photothermal therapy and ferroptosis by using Fe-doped mesoporous polydopamine nanoparticles (Fe-mPDA@SRF-TPP) as a carrier for loading SRF and targeting triphenylphosphine (TPP). SRF molecules are efficiently encapsulated within the polydopamine nanospheres with a high loading ratio (80%) attributed to the porosity of Fe-mPDA, and the inherent biocompatibility and hydrophilicity of Fe-mPDA@SRF-TPP facilitate the transport of SRF to the target cancer cells. Under the external stimuli of acidic environment (pH 5.0), glutathione (GSH), and laser irradiation, Fe-mPDA@SRF-TPP shows sustained release of SRF and Fe ions with the ratio of 72 and 50% within 48 h. Fe-mPDA@SRF-TPP nanoparticles induce intracellular GSH depletion, inhibit glutathione peroxidase 4 (GPX4) activity, and generate hydroxyl radicals, all of which are essential components of the therapeutic ferroptosis process for killing MDA-MB-231 cancer cells. Additionally, the excellent near-infrared (NIR) light absorption of Fe-mPDA@SRF-TPP nanoparticles demonstrates their capability for photothermal therapy and further enhances the therapeutic efficiency. Therefore, this nanosystem provides a multifunctional therapeutic platform that overcomes the therapeutic limitations associated with standalone ferroptosis and enhances the therapeutic efficacy of SRF for breast cancer.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
44
|
He R, Fan C, Liang Q, Wang Y, Gao Y, Wu J, Wu Q, Tai F. Directed assembly of fullerenols via electrostatic and coordination interactions to fabricate diverse and water-soluble metal cation-fullerene nanocluster complexes. RSC Adv 2024; 14:1472-1487. [PMID: 38174261 PMCID: PMC10763661 DOI: 10.1039/d3ra07725j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ion-nanocluster coordination complexes can produce a variety of functional engineered nanomaterials with promising characteristics to enable widespread applications. Herein, the visualization observation of the interactions of metal ions and fullerene derivatives, particularly anionic fullerenols (Fol), were carried out in aqueous solutions. The alkali metal salts only resulted in salting out of Fol to gain re-soluble sediments, whereas multivalent metal cations (Mn+, n = 2, 3) modulated further assembly of Fol to produce insoluble hybrids. These provide crucial insights into the directed assembly of Fol that two major forces involved in actuation are electrostatic and coordination effects. Through the precise modulation of feed ratios of Fol to Mn+, a variety of water-soluble Mn+@Fol coordination complexes were facilely prepared and subsequently characterized by various measurements. Among them, X-ray photoelectron spectra validated the coordination effects through the metal cation and oxygen binding feature. Transmission electron microscopy delivered valuable information about diverse morphologies and locally-ordered microstructures at the nanoscale. This study opens a new opportunity for developing a preparation strategy to fabricate water-soluble metal cation-fullerenol coordination complexes with various merits for potential application in biomedical fields.
Collapse
Affiliation(s)
- Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingyuan Liang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yan Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yanyan Gao
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Jiakai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingnan Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University Zhengzhou 450046 China
| |
Collapse
|
45
|
Zhou Y, Xu B, Zhou P, Chen X, Jiao G, Li H. Gold@mesoporous polydopamine nanoparticles modified self-healing hydrogel for sport-injuring therapy. Int J Biol Macromol 2023; 253:127441. [PMID: 37839604 DOI: 10.1016/j.ijbiomac.2023.127441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Sports-related damage is a prevalent issue, which a combination therapy including photothermal irradiation, self-healing dressing and antibacterial treatment is an effective way to rehabilitate it. In the study, a multifunctional hydrogel was developed to meet the requirement. Firstly, mesoporous polydopamine (MPDA) was prepared, where gold nanoparticles (Au NPs) were formed in its mesoporous structure, to construct Au@MPDA NPs with nanosize about 200 nm. Synergetic and efficient photothermal effect was achieved by the combination of the two photothermal agents. The Au@MPDA NPs were then added to modify polyvinyl alcohol-carboxymethyl chitosan-borax (PCB) hydrogel. Via rheological property characterization, cell experiments and antibacterial evaluation, high photothermal efficiency and effective antibacterial activity of Au@MPDA@PCB hydrogel was obtained with the aid of Au@MPDA NPs, together with self-healing property. When treated in motion-related tissue, the modified hydrogel showed excellent adaptive property and photothermal effect in situ. This study is beneficial for developing a novel rehabilitation treatment strategy for sports-related injuries.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Baoyong Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Pan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xiaohui Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Genlong Jiao
- Department of Orthopaedics, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan 523560, China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
46
|
Xie F, Wang T, Li Y, Pan Y, Guo P, Liu C, Shen C, Liu X. Ag Nanoparticles-Coated Shish-Kebab Superstructure Film for Wearable Heater. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38040021 DOI: 10.1021/acsami.3c14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Passive and active wearable heaters have received widespread attention due to their efficient utilization of solar energy and all-weather heating capabilities, but the current challenges are their preparation processes being time-consuming and equipment expensive. Herein, a simple and facilitated preparation method for the multifunctional wearable heater was developed, which springs Ag nanoparticles on the shish-kebab superstructure film via deposited melanin-like polydopamine as the adhesive. The light absorption ability of the resultant wearable heater in the visible region can be significantly enhanced by the addition of polydopamine, realizing a highly efficient photothermal conversion ability. Accordingly, it can achieve rapid warming ability whether passive heating (up to 45 °C about 60 s at 100 mW/cm2) or active heating (up to 72 °C about 40 s at 0.6 V), compared to ordinary cotton fabric. In addition, it can realize a 6.3 °C temperature difference with Cotton, showing excellent heat preservation ability. This study demonstrates a simple and low-cost approach for the prepared shish-kebab superstructure-based wearable heaters.
Collapse
Affiliation(s)
- Fengsen Xie
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Tengrui Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yingnuo Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yamin Pan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Pan Guo
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
47
|
Wang T, Qin Y, Hu R, Wei Z, Yang Y. Anchoring tungsten oxide nanorods on TiO 2 nanowires coupled with carbon for efficient lithium-ion storage. Dalton Trans 2023; 52:17299-17307. [PMID: 37937439 DOI: 10.1039/d3dt03102k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Reasonable construction of hierarchical electrode materials is verified as a promising way to improve the electrochemical performance due to the synergistic effect between unique components and constructions. Hence, a hierarchical nanostructure composed of tungsten oxide nanorods anchored on TiO2 nanowires coupled with a carbon layer (TiO2@WOx-C NWs) was synthesized as an electrode material by exploiting the self-assembly function of dopamine and carbonization. The inner one-dimensional TiO2 nanowires served as the stable substrate with WOx anchored on the surface of TiO2 NWs and the tightly coupled carbon nanosheets, which can not only facilitate electron transport but also provide more active sites for electrochemical reactions. As a result, benefitting from the synergistic effects between three functional components and the multi-dimensional hierarchical structures, the as-prepared TiO2@WOx-C NWs displayed excellent lithium storage performance with a specific capacity of 651.4 mA h g-1 after 500 cycles at 1.0 A g-1, which is superior to most Ti-based structures. The enhanced electrochemical performance is mainly attributed to the synergistic effect of the different dimensional structures, the high capacity of tungsten oxide and the surface coating of the conductive carbon material. This work provides a simple and effective approach to designing functional hierarchical structures for energy storage and conversion.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
| | - Yifan Qin
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
| | - Renquan Hu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
| | - Zehui Wei
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
48
|
Xu Y, Wang K, Zhu Y, Wang J, Ci D, Sang M, Fang Q, Deng H, Gong X, Leung KCF, Xuan S. Size-dependent magnetomechanically enhanced photothermal antibacterial effect of Fe 3O 4@Au/PDA nanodurian. Dalton Trans 2023; 52:17148-17162. [PMID: 37947135 DOI: 10.1039/d3dt03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The global health crisis of bacterial resistance to antibiotics requires innovative antibacterial strategies. One promising solution is the exploitation of multifunctional nanoplatforms based on non-resistant antibacterial mechanisms. This work reports a novel Fe3O4@Au/polydopamine (PDA) nanodurian with excellent photothermal-magnetomechanic synergistic antibacterial effects. The one-step formed Au/PDA hybrid shell provides good photothermal properties and spiky surfaces for enhanced magnetomechanic effects. Upon near-infrared (NIR) irradiation, the Fe3O4@Au/PDA nanodurian (200 μg mL-1) achieved nearly 100% antibacterial effect against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The efficiency of photothermal antimicrobial activity was further enhanced by the application of a rotating magnetic field (RMF), with the sterilization efficiency being increased by up to more than a half compared to the action alone. Interestingly, the size of the nanodurian has a significant impact on the synergistic sterilization effect, with larger particles showing a superior performance due to stronger chain-like structures in the magnetic field. Finally, the Fe3O4@Au/PDA nanodurian also demonstrates effective biofilm removal, with larger particles exhibiting the best eradication effect under the photothermal-magnetomechanic treatment. Overall, this magnetic field enhanced photothermal antibacterial strategy provides a promising broad-spectrum antimicrobial solution to combat bacterial infections. Thus, it possesses great potential in future nanomedicine and pollution treatment.
Collapse
Affiliation(s)
- Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Kang Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Yi Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China.
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Dazheng Ci
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Huaxia Deng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon, Hong Kong SAR, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
49
|
Hu Y, Xu Z, Guo X, Xiong P, Xu C, Chen C, Zhang Q, Wang S, Wu TS, Soo YL, Li MMJ, Wang D, Zhu Y. Hollow-Carbon Confinement Annealing: A New Synthetic Approach to Make High-Entropy Solid-Solution and Intermetallic Nanoparticles. NANO LETTERS 2023. [PMID: 37963268 DOI: 10.1021/acs.nanolett.3c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
High-entropy alloy (HEA) nanoparticles (NPs) have been emerging with superior compositional tunability and multielemental synergy, presenting a unique platform for material discovery and performance optimization. Here we report a synthetic approach utilizing hollow-carbon confinement in the ordinary furnace annealing to achieve the nonequilibrium HEA-NPs such as Pt0.45Fe0.18Co0.12Ni0.15Mn0.10 with uniform size ∼5.9 nm. The facile temperature control allows us not only to reveal the detailed reaction pathway through ex situ characterization but also to tailor the HEA-NP structure from the crystalline solid solution to intermetallic. The preconfinement of metal precursors is the key to ensure the uniform distribution of metal nanoparticles with confined volume, which is essential to prevent the thermodynamically favored phase separation even during the ordinary furnace annealing. Besides, the synthesized HEA-NPs exhibit remarkable activity and stability in oxygen reduction catalysis. The demonstrated synthetic approach may significantly expand the scope of HEA-NPs with uncharted composition and performance.
Collapse
Affiliation(s)
- Yezhou Hu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Pei Xiong
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Chao Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Changsheng Chen
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Qian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Molly Meng-Jung Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| |
Collapse
|
50
|
Olejnik A, Polaczek K, Szkodo M, Stanisławska A, Ryl J, Siuzdak K. Laser-Induced Graphitization of Polydopamine on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37915241 PMCID: PMC10658452 DOI: 10.1021/acsami.3c11580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Since the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported by water contact angle, nanomechanical, and electrochemical measurements. Reactive molecular dynamics simulations confirm the possibility of graphitization in the nanosecond time scale with the evolution of NH3, H2O, and CO2 gases. A thorough exploration of the lasing parameter space (wavelength, pulse energy, and number of pulses) was conducted with the aim of improving either electrochemical activity or photocurrent generation. Whereas the 532 nm laser pulses interacted mostly with the PDA coating, the 365 nm pulses were absorbed by both PDA and the substrate nanotubes, leading to a higher graphitization degree. The majority of the photocurrent and quantum efficiency enhancement is observed in the visible light between 400 and 550 nm. The proposed composite is applied as a photoelectrochemical (PEC) sensor of serotonin in nanomolar concentrations. Because of the suppressed recombination and facilitated charge transfer caused by the laser graphitization, the proposed composite exhibits significantly enhanced PEC performance. In the sensing application, it showed superior sensitivity and a limit of detection competitive with nonprecious metal materials.
Collapse
Affiliation(s)
- Adrian Olejnik
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| | - Krzysztof Polaczek
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
- Department
of Biomedical Chemistry, Faculty of Chemistry
University of Gdansk, Wita Stwosza 63 St, Gdańsk 80-308, Poland
| | - Marek Szkodo
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Alicja Stanisławska
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Katarzyna Siuzdak
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| |
Collapse
|