1
|
Cui J, Zhao G, Xie W, Yang Y, Fu X, Meng H, Liu H, Tan M, Chen D, Rong C, Wang Y, Wang Y, Zhang LW. Exacerbated hepatotoxicity in in vivo and in vitro non-alcoholic fatty liver models by biomineralized copper sulfide nanoparticles. BIOMATERIALS ADVANCES 2025; 168:214117. [PMID: 39580989 DOI: 10.1016/j.bioadv.2024.214117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Copper sulfide nanoparticles (NPs) synthesized through biomineralization have significant commercial potential as photothermal agents, while the safety evaluation of these NPs, especially for patients with non-alcoholic fatty liver (NAFL), remains insufficient. To explore the differential hepatotoxicity of copper sulfide NPs in NAFL conditions, we synthesized large-sized (LNPs, 15.1 nm) and small-sized (SNPs, 3.5 nm) BSA@Cu2-xS NPs. A NAFL rat model fed with high fat diet (HFD) was successfully established for a 14-day subacute toxicity study by daily repeated administration of BSA@Cu2-xS NPs. Our findings from serum biochemistry and histopathological examinations revealed that copper sulfide at both sizes NPs induced more pronounced liver damage in NAFL rats than rats fed with normal diet. Transcriptome sequencing analysis showed that LNPs activated inflammation and DNA damage repair pathways in the livers of NAFL rats, while SNPs displayed minimal inflammation. A three-dimensional spheroid model of NAFL developed in our in-house cell spheroid culture honeycomb chips demonstrated that LNPs, but not SNPs, triggered a distinct release of inflammatory factors and increased reactive oxygen species through Kupffer cells. These results highlight that NAFL condition exacerbated the hepatotoxicity of BSA@Cu2-xS NPs, with SNPs emerging as safer photothermal agents compared to LNPs, suggesting superior potential for clinical applications.
Collapse
Affiliation(s)
- Jinbin Cui
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Zhao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Xie
- The College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Yang Yang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Fu
- Suzhou Vivoid Biotechnology Co., Ltd, Suzhou 215124, China
| | - Hezhang Meng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - He Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengfei Tan
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Chen
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Rong
- Department of Pathology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Leshuai W Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Liao Y, Li B, Chen H, Ma Y, Wang F, Huang L, Shen B, Song H, Yue P. Stimuli-responsive mesoporous silica nanoplatforms for smart antibacterial therapies: From single to combination strategies. J Control Release 2024; 378:60-91. [PMID: 39615754 DOI: 10.1016/j.jconrel.2024.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The demand for new antibacterial therapies is urgent and crucial in the clinical setting because of the growing degree of antibiotic resistance and the limits of conventional antibacterial therapies. Stimuli- responsive nanoplatforms, are sensitive to endogenous or exogenous stimulus (pH, temperature, light, and magnetic fields, etc.) which activate cargo release locally and on-demand, hold great potential in developing next generation personalized precision medicine. For instance, pH-sensitive nanoplatforms can selectively release antibacterial agents in the acidic environment of infection sites. To achieve the stimuli-responsive delivery, mesoporous silica nanoplatforms (MSNs) have demonstrated as prospective candidates for efficient cargo loading and controlled release through strategies such as tunable pore engineering, versatile surface modification/coating, and tailored framework composition. Furthermore, aiming for more precise delivery of MSNs, current research interests are increasingly shifting from single-stimuli antibacterial strategy to integrated strategy that combine multiple-stimulus. In this review, we briefly discuss the microenvironment of bacterial infections and provide a comprehensive summary of current stimuli-responsive strategies, and associated materials design principles of stimuli-responsive mesoporous silica-based smart nanoplatforms (SRMSNs). Additionally, integrative antibacterial strategies with synergistic effects, combining chemodynamic, photodynamic, photothermal, sonodynamic and gas therapies, have also been elaborated. Present research advances and limitations of SRMSNs-based antibacterial therapies, such as limited biodegradability and potential cytotoxicity, have been overviewed with future outlooks presented. This review aims to inspire and guide future research in developing novel antibacterial strategies with integrative solutions.
Collapse
Affiliation(s)
- Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
3
|
Silva AC, Viçozzi GP, Farina M, Ávila DS. Caenorhabditis elegans as a Model for Evaluating the Toxicology of Inorganic Nanoparticles. J Appl Toxicol 2024. [PMID: 39506203 DOI: 10.1002/jat.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
Inorganic nanoparticles are nanomaterials with a central core composed of inorganic specimens, especially metals, which give them interesting applications but can impact the environment and human health. Their short- and long-term effects are not completely known and to investigate that, alternative models have been successfully used. Among these, the nematode Caenorhabditis elegans has been increasingly applied in nanotoxicology in recent years because of its many features and advantages for toxicological screening. This non-parasitic nematode may inhabit any environment where organic matter is available; therefore, it is interesting for ecotoxicological assessments. Moreover, this worm has a high genetic homology to humans, making the findings translatable. A notable number of published studies unraveled the level of toxicity of different nanoparticles, including the mechanisms by which their toxicity occurs. This narrative review collects and describes the most relevant toxicological data for inorganic nanoparticles obtained using C. elegans and also supports its application in safety assessments for regulatory purposes.
Collapse
Affiliation(s)
- Aline Castro Silva
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Gabriel Pedroso Viçozzi
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Daiana Silva Ávila
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Kahil N, Abouzeinab NS, Hussein MAA, Khalil MI. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Nanotoxicology 2024; 18:583-598. [PMID: 39319754 DOI: 10.1080/17435390.2024.2407352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.
Collapse
Affiliation(s)
- Nour Kahil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Noura S Abouzeinab
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mohamed A A Hussein
- Department of Internal Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Internal Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud I Khalil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Li Q, Yang X, Xia X, Xia XX, Yan D. Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy. Biomacromolecules 2024; 25:6474-6484. [PMID: 39235966 DOI: 10.1021/acs.biomac.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.
Collapse
Affiliation(s)
- Qingrong Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
6
|
Zhao X, Zhu Y, Yao Q, Zhao B, Lin G, Zhang M, Guo C, Li Y. Lipidomics Investigation Reveals the Reversibility of Hepatic Injury by Silica Nanoparticles in Rats After a 6-Week Recovery Duration. SMALL METHODS 2024; 8:e2301430. [PMID: 38191992 DOI: 10.1002/smtd.202301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Given the inevitable human exposure owing to its increasing production and utilization, the comprehensive safety evaluation of silica nanoparticles (SiNPs) has sparked concerns. Substantial evidence indicated liver damage by inhaled SiNPs. Notwithstanding, few reports focused on the persistence or reversibility of hepatic injuries, and the intricate molecular mechanisms involved remain limited. Here, rats are intratracheally instilled with SiNPs in two regimens (a 3-month exposure and a subsequent 6-week recovery after terminating SiNPs administration) to assess the hepatic effects. Nontargeted lipidomics revealed alterations in lipid metabolites as a contributor to the hepatic response and recovery effects of SiNPs. In line with the functional analysis of differential lipid metabolites, SiNPs activated oxidative stress, and induced lipid peroxidation and lipid deposition in the liver, as evidenced by the elevated hepatic levels of ROS, MDA, TC, and TG. Of note, these indicators showed great improvements after a 6-week recovery, even returning to the control levels. According to the correlation, ROC curve, and SEM analysis, 11 lipids identified as potential regulatory molecules for ameliorating liver injury by SiNPs. Collectively, the work first revealed the reversibility of SiNP-elicited hepatotoxicity from the perspective of lipidomics and offered valuable laboratory evidence and therapeutic strategy to facilitate nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guimiao Lin
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
7
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Yapa PN, Munaweera I, Weerasekera MM, Weerasinghe L. Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR). J Biol Inorg Chem 2024; 29:477-498. [PMID: 38995397 DOI: 10.1007/s00775-024-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The global threat posed by antimicrobial resistance (AMR) to public health is an immensurable problem. The effectiveness of treating infections would be more at risk in the absence of effective antimicrobials. Researchers have shown an amplified interest in alternatives, such as developing advanced metallic nanohybrids as new therapeutic candidates for antibiotics due to their promising effectiveness against resistant microorganisms. In recent decades, the antimicrobial activity of monometallic nanoparticles has received extensive study and solid proof, providing new opportunities for developing multimetallic nanohybrid antimicrobials. Advanced metallic nanohybrids are an emerging remedy for a number of issues that develop in the field of medicine. Advanced metallic nanohybrids have shown a promising ability to combat resistant microorganisms due to their overall synergistic activity. Formulating advanced multimetallic nanohybrids falling under the umbrella of the growing field of nanoarchitectonics, which extends beyond nanotechnology. The underlying theory of nanoarchitectonics involves utilizing nanoscale units that follow the concepts of nanotechnology to architect nanomaterials. This review focuses on a comprehensive description of antimicrobial mechanisms of metallic nanohybrids and their enabling future insights on the research directions of developing the nanoarchitectonics of advanced multimetallic nanohybrids as novel antibiotics through their synergistic activity.
Collapse
Affiliation(s)
- Piumika N Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka.
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| |
Collapse
|
9
|
Rodimova S, Kozlov D, Krylov D, Mikhailova L, Kozlova V, Gavrina A, Mozherov A, Elagin V, Kuznetsova D. Nanoparticles for Creating a Strategy to Stimulate Liver Regeneration. Sovrem Tekhnologii Med 2024; 16:31-41. [PMID: 39650276 PMCID: PMC11618528 DOI: 10.17691/stm2024.16.3.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 12/11/2024] Open
Abstract
Presently, there is a need in the developing new approaches to stimulate liver regeneration, which would make its recovery more effective after resection. Application of nanoparticles, loaded with small bioactive molecules, with their targeted delivery into the liver is a promising approach. The aim of the investigation is to study the interaction of nanoparticles with various types of hepatic cells on the models of liver slices and primary hepatic cell cultures using the methods of multiphoton microscopy with fluorescence lifetime imaging. Materials and Methods Nanoparticles have been synthetized from polylactide (PLA), gold (Au), and silicon (SiO2), and characterized using scanning and transmission electron microscopy. These types of particles were labeled with a fluorescent Cy5 dye for their visualization. Liver slices and a primary hepatocyte culture were used as models for biological testing of nanoparticles. Biodistribution of the nanoparticles in the tissue and cells, their cytotoxicity, and the effect on the cell metabolism were assessed using optical bioimaging methods. Results The silicon nanoparticles are accumulated mainly by macrophages, which generate reactive oxygen species in a large amount and impair the native metabolic state of hepatocytes. The gold nanoparticles accumulate in all types of the liver cells but possess a marked toxic effect, which is indicated by the appearance of necrotic and apoptotic cells and a sharp change in the hepatocyte metabolic state. The polylactide nanoparticles accumulate most effectively in the liver cells, preferably in hepatocytes, do not change their native metabolic state, making this type of nanoparticles most promising for creating the bioactive molecule delivery systems to stimulate liver regeneration.
Collapse
Affiliation(s)
- S.A. Rodimova
- Junior Researcher, Research Laboratory of Regenerative Medicine; Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - D.S. Kozlov
- Laboratory Assistant, Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia; Student; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - D.P. Krylov
- Laboratory Assistant, Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia Student; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - L.V. Mikhailova
- Engineer, Department of Physics; ITMO University (Saint Petersburg National Research University of Information Technologies, Mechanics and Optics), 49 Kronverksky Pr., Saint Petersburg, 197101, Russia
| | - V.A. Kozlova
- Student; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - A.I. Gavrina
- Junior Researcher, Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - A.M. Mozherov
- Junior Researcher, Research Laboratory of Optical Spectroscopy and Microscopy, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - V.V. Elagin
- PhD, Researcher, Research Laboratory of Optical Spectroscopy and Microscopy; Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| |
Collapse
|
10
|
Jia T, Nie P, Xu H. Combined exposure of nano-titanium dioxide and polystyrene nanoplastics exacerbate oxidative stress-induced liver injury in mice by regulating the Keap-1/Nrf2/ARE pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2681-2691. [PMID: 38234154 DOI: 10.1002/tox.24141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
It is well known that polystyrene nanoplastics (PS-NaP) and nano-titanium dioxide (TiO2 NPs) are frequently co-appeared in daily life and can cause liver injury when they accumulate in the liver. Nonetheless, the combined toxicological impacts and potential molecular mechanisms of PS-NaP and TiO2 NPs in the hepatic system have not been revealed. Thus, we conducted experiments on C57BL/6 mice exposed to PS-NaP or/and TiO2 NPs for 4 weeks. The findings suggested that PS-NaP and TiO2 NPs co-exposed significantly altered the hepatic function parameters, levels of antioxidant-related enzymes and genes expression of Keap-1/Nrf2/ARE signaling pathway, as well as significantly increased the hepatic Ti contents, aggravated hepatic pathological and oxidative stress (OS) damage compared with individual exposure to PS-NaP or TiO2 NPs. Using N-Acetyl-L-cysteine (NAC), an OS inhibitor, we further demonstrated that OS played a pivotal role in coexposure-induced liver injury. NAC reduced the levels of OS in mice, which mitigated co-exposure-induced liver injury. Taken together, we proposed that PS-NaP and TiO2 NPs co-exposed activated the Keap-1, then inhibited the recognition of Nrf2 and ARE, consequently exacerbated liver injury. These findings shed light on the co-toxicity and potential mechanism of nanoplastics and nanoparticles, which informed the risk assessment of human exposure to environmental pollutants.
Collapse
Affiliation(s)
- Tiantian Jia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, People's Republic of China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, People's Republic of China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
11
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
Chen Z, Li Y, Xia H, Wang Y, Pang S, Ma C, Bi L, Wang F, Song M, Jiang G. Chronic exposure to polystyrene microplastics increased the chemosensitivity of normal human liver cells via ABC transporter inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169050. [PMID: 38065500 DOI: 10.1016/j.scitotenv.2023.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in environmental compartments and consumer products. Although liver is frequently reported to be a target organ of MP accumulation in mammals, few studies have focused on MP hepatoxicity in humans. In this study, we used normal human liver cells, THLE-2, to assess the acute and chronic toxicity of polystyrene (PS) MPs with sizes of 0.1 and 1 μm. The results showed that after 48 h of exposure, both kinds of PS MPs could enter THLE-2 cells and cause no obviously acute cytotoxicity at <20 μg/mL. In contrast, metabolomic analysis revealed that 90 days of PS MPs exposure at environmentally relevant dose (0.2 μg/mL) could significantly alter the metabolic profiles of the cells, especially the nanosized MPs. KEGG pathway analysis showed that the ATP-binding cassette (ABC) transporter pathway was the most significantly changed pathway. Cell functional tests confirmed that chronic PS MP treatment could inhibit the activity of the ABC efflux transporter and further increase the cytotoxicity of arsenic, indicating that the PS MPs had a chemosensitizing effect. These findings underline the chronic risk of MPs to human liver.
Collapse
Affiliation(s)
- Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghuan Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Ling K, Zheng J, Jiang X, Huang W, Mai Y, Liao C, Fan S, Bu J, Li R, Zeng B, Zheng Q, Huang R, Li Z, Wong NK, Jiang H. Mn 2+/CpG Oligodeoxynucleotides Codecorated Black Phosphorus Nanosheet Platform for Enhanced Antitumor Potency in Multimodal Therapy. ACS NANO 2024; 18:2841-2860. [PMID: 38251849 DOI: 10.1021/acsnano.3c07123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Manganese ions (Mn2+)-coordinated nanoparticles have emerged as a promising class of antitumor nanotherapeutics, capable of simultaneously disrupting the immunosuppressive tumor microenvironment (TME) and triggering the stimulator of interferon genes (STING) pathway-dependent antitumor immunity. However, the activation of STING signaling by Mn2+-based monotherapies is suboptimal for comprehensive stimulation of antigen presenting cells and reversal of immunosuppression in the TME. Here, we report the design of a Mn2+/CpG oligodeoxynucleotides (ODNs) codecorated black phosphorus nanosheet (BPNS@Mn2+/CpG) platform based on the Mn2+ modification of BPNS and subsequent adsorption of synthetic CpG ODNs. The coordination of Mn2+ significantly improved the stability of BPNS and the adsorption of CpG ODNs. The acidic TME and endosomal compartments can disrupt the Mn2+ coordination, triggering pH-responsive release of CpG ODNs and Mn2+ to effectively activate the Toll-like receptor 9 and STING pathways. As a result, M2-type macrophages and immature dendritic cells were strongly stimulated in the TME, thereby increasing T lymphocyte infiltration and reversing the immunosuppression within the TME. Phototherapy and chemodynamic therapy, utilizing the BPNS@Mn2+/CpG platform, have demonstrated efficacy in inducing immunogenic cell death upon 808 nm laser irradiation. Importantly, the treatment of BPNS@Mn2+/CpG with laser irradiation exhibited significant therapeutic efficacy against the irradiated primary tumor and effectively suppressed the growth of nonirradiated distant tumor. Moreover, it induced a robust immune memory, providing long-lasting protection against tumor recurrence. This study demonstrated the enhanced antitumor potency of BPNS@Mn2+/CpG in multimodal therapy, and its proof-of-concept application as a metal ion-modified BPNS material for effective DNA/drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Kai Ling
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jintao Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xiaohong Jiang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Weijie Huang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Youqing Mai
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Chuanghong Liao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Shuting Fan
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Jianlan Bu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Rui Li
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Bingchun Zeng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Qiunuan Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Ruibin Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Hongyan Jiang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
14
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
16
|
Li Y, Lin X, Wang J, Xu G, Yu Y. Mass-based trophic transfer of polystyrene nanoplastics in the lettuce-snail food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165383. [PMID: 37422223 DOI: 10.1016/j.scitotenv.2023.165383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
To investigate the potential transfer of nanoplastics (NPs) from water to plants and subsequently to a higher trophic level, we established a food chain and evaluated the trophic transfer of polystyrene (PS) NPs based on mass concentrations by pyrolysis gas chromatography-mass spectrometry. Lettuce plants were cultivated in Hoagland solution with varying concentrations of PS-NPs (0.1, 1, 10, 100 and 1000 mg/L) for a period of 60 d and then a total of 7 g lettuce shoot was fed to snails for 27 d. Shoot biomass exposed at 1000 mg/L PS-NPs was reduced by 36.1 %. No significant change in root biomass was observed, however, root volume was reduced by 25.6 % at 100 mg/L. Moreover, PS-NPs were detected in both lettuce roots and shoots across all concentrations. Additionally, PS-NPs were transferred to snails and primarily found in feces (>75 %). Only 28 ng/g of PS-NPs were detected in the soft tissue of snails indirectly exposed at 1000 mg/L. Although PS-NPs were bio-diluted when transferred to species at higher trophic levels, they significantly inhibited the growth of snails, indicating that their potential risk to high trophic levels cannot be ignored. This study provides key information on trophic transfer and patterns of PS-NPs in food chains and helps to evaluate risk of NPs in terrestrial ecosystem.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
17
|
Paramo L, Jiménez-Chávez A, Medina-Ramirez IE, Böhnel HN, Escobar-Alarcón L, Esquivel K. Biocompatibility Evaluation of TiO 2, Fe 3O 4, and TiO 2/Fe 3O 4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2824. [PMID: 37947670 PMCID: PMC10648038 DOI: 10.3390/nano13212824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Nanomaterials such as titanium dioxide and magnetite are increasingly used in several fields, such as water remediation and agriculture. However, this has raised environmental concerns due to potential exposure to organisms like humans. Nanomaterials can cause adverse interactions depending on physicochemical characteristics, like size, morphology, and composition, when interacting with living beings. To ensure safe use and prevent the risk of exposure to nanomaterials, their biocompatibility must be assessed. In vitro cell cultures are beneficial for assessing nanomaterial-cell interactions due to their easy handling. The present study evaluated the biocompatibility of TiO2, Fe3O4, and TiO2/Fe3O4 nanomaterials thermally treated at 350 °C and 450 °C in erythrocytes and HepG2 cells. According to the hemolysis experiments, non-thermally treated NMs are toxic (>5% hemolysis), but their thermally treated counterparts do not present toxicity (<2%). This behavior indicates that the toxicity derives from some precursor (solvent or surfactant) used in the synthesis of the nanomaterials. All the thermally treated nanomaterials did not show hemolytic activity under different conditions, such as low-light exposure or the absence of blood plasma proteins. In contrast, non-thermally treated nanomaterials showed a high hemolytic behavior, which was reduced after the purification (washing and thermal treatment) of nanomaterials, indicating the presence of surfactant residue used during synthesis. An MTS cell viability assay shows that calcined nanomaterials do not reduce cell viability (>11%) during 24 h of exposure. On the other hand, a lactate dehydrogenase leakage assay resulted in a higher variability, indicating that several nanomaterials did not cause an increase in cell death as compared to the control. However, a holotomographic microscopy analysis reveals a high accumulation of nanomaterials in the cell structure at a low concentration (10 µg mL-1), altering cell morphology, which could lead to cell membrane damage and cell viability reduction.
Collapse
Affiliation(s)
- Luis Paramo
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico;
| | - Arturo Jiménez-Chávez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico;
| | | | - Harald Norbert Böhnel
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla, 3001, Santiago de Querétaro 76230, Mexico;
| | - Luis Escobar-Alarcón
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca, La Marquesa, Ocoyoacac 52750, Mexico;
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico;
| |
Collapse
|
18
|
Silva AC, Dos Santos AGR, Pieretti JC, Rolim WR, Seabra AB, Ávila DS. Iron oxide/silver hybrid nanoparticles impair the cholinergic system and cause reprotoxicity in Caenorhabditis elegans. Food Chem Toxicol 2023; 179:113945. [PMID: 37451599 DOI: 10.1016/j.fct.2023.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Iron oxide nanoparticles present superparamagnetic properties that enable their application in various areas, including drug delivery at specific locations in the organism. Silver nanoparticles have potent antimicrobial effects. Although the combination of Fe3O4-NPs and Ag-NPs in one hybrid nanostructure (Fe3O4@Ag-NPs) demonstrated promising targeted biomedical applications, their toxicological effects are unknown and need to be assessed. Caenorhabditis elegans is a promising model for nanotoxicological analysis, as it allows an initial screening of new substances. After exposure to Fe3O4-NPs, Ag-NPs and Fe3O4@Ag-NPs, we observed that hybrid NPs reduced the C. elegans survival and reproduction. Higher concentrations of Fe3O4@Ag-NPs caused an increase in cell apoptosis in the germline and a decrease in egg laying, which was associated with a decrease in worm swimming movements and abnormalities in the cholinergic neurons. Fe3O4@Ag-NPs caused an increase in reactive oxygen species, along with activation of DAF-16 transcription factor. A higher expression of the target genes GST-4::GFP and SOD-3::GFP were evidenced, which suggests the activation of the antioxidant system. Our results indicate the reprotoxicity caused by high levels of Fe3O4@Ag-NPs, as well as cholinergic neurotoxicity and activation of the antioxidant system in C. elegans, suggesting that high concentrations of these nanomaterials can be harmful to living organisms.
Collapse
Affiliation(s)
- Aline Castro Silva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Federal University of Pampa, Uruguaiana, RS, Zip code 97500-970, Brazil
| | - Alisson Gleysson Rodrigues Dos Santos
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Federal University of Pampa, Uruguaiana, RS, Zip code 97500-970, Brazil
| | - Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Zip code 09210-580, Brazil
| | - Wallace Rosado Rolim
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Zip code 09210-580, Brazil
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Zip code 09210-580, Brazil
| | - Daiana Silva Ávila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Federal University of Pampa, Uruguaiana, RS, Zip code 97500-970, Brazil.
| |
Collapse
|
19
|
Feng C, Xiong Z, Sun X, Zhou H, Wang T, Wang Y, Bai HX, Lei P, Liao W. Beyond antioxidation: Harnessing the CeO 2 nanoparticles as a renoprotective contrast agent for in vivo spectral CT angiography. Biomaterials 2023; 299:122164. [PMID: 37229807 DOI: 10.1016/j.biomaterials.2023.122164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
It is a challenging task to develop a contrast agent that not only provides excellent image contrast but also protects impaired kidneys from oxidative-related stress during angiography. Clinically approved iodinated CT contrast media are associated with potential renal toxicity, making it necessary to develop a renoprotective contrast agent. Here, we develop a CeO2 nanoparticles (NPs)-mediated three-in-one renoprotective imaging strategy, namely, i) renal clearable CeO2 NPs serve as a one-stone-two-birds antioxidative contrast agent, ii) low contrast media dose, and iii) spectral CT, for in vivo CT angiography (CTA). Benefiting from the merits of advanced sensitivity of spectral CT and K-edge energy of Cerium (Ce, 40.4 keV), an improved image quality of in vivo CTA is successfully achieved with a 10 times reduction of contrast agent dosage. In parallel, the sizes of CeO2 NPs and broad catalytic activities are suitable to be filtered via glomerulus thus directly alleviating the oxidative stress and the accompanying inflammatory injury of the kidney tubules. In addition, the low dosage of CeO2 NPs reduces the hypoperfusion stress of renal tubules induced by concentrated contrast agents used in angiography. This three-in-one renoprotective imaging strategy helps prevent kidney injury from being worsened during the CTA examination.
Collapse
Affiliation(s)
- Cai Feng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zongling Xiong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianting Sun
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hao Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianming Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Harrison X Bai
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Peng Lei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Molecular Imaging Research Center of Central South University, Changsha, 410008, China.
| |
Collapse
|
20
|
Zhou S, Li H, Wang H, Wang R, Song W, Li D, Wei C, Guo Y, He X, Deng Y. Nickel Nanoparticles Induced Hepatotoxicity in Mice via Lipid-Metabolism-Dysfunction-Regulated Inflammatory Injury. Molecules 2023; 28:5757. [PMID: 37570729 PMCID: PMC10421287 DOI: 10.3390/molecules28155757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles and potential mechanisms of hepatic effects on NiNPs administration. In this study, we explored the liver impacts in male C57/BL6 mice through intraperitoneal injection with NiNPs at doses of 10, 20 and 40 mg/kg/day for 7 and 28 days. The results showed that NiNPs treatment increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and induced pathological changes in liver tissues. Moreover, hepatic triglyceride (TG) content and lipid droplet deposition identified via de novo lipogenesis (DNL) progression were enhanced after NiNPs injection. Additionally, sustained NiNPs exposure induced a remarkable hepatic inflammatory response, significantly promoted endoplasmic reticulum stress (ER stress) sensors Ire1α, Perk and Atf6, and activated the occurrence of liver cell apoptosis. Overall, the research indicated that NiNPs exposure induced liver injury and disturbance of lipid metabolism. These findings revealed the public hazard from extreme exposure to NiNPs and provided new information on biological toxicity and biosafety evaluation.
Collapse
Affiliation(s)
- Shuang Zhou
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| | - Hua Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Hui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Rui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Wei Song
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Da Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Changlei Wei
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yu Guo
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Xueying He
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yulin Deng
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| |
Collapse
|
21
|
Amatya R, Lee D, Min KA, Shin MC. Pharmaceutical Strategies to Improve Druggability of Potential Drug Candidates in Nonalcoholic Fatty Liver Disease Therapy. Pharmaceutics 2023; 15:1963. [PMID: 37514148 PMCID: PMC10386216 DOI: 10.3390/pharmaceutics15071963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become globally prevalent and is the leading cause of chronic liver disease. Although NAFLD is reversible without medical intervention in the early stage, the condition could be sequentially worsened to nonalcoholic steatohepatitis (NASH) and, eventually, cirrhosis and hepatic cancer. The progression of NAFLD is related to various factors such as genetics, pre-disposed metabolic disorders, and immunologic factors. Thankfully, to date, there have been accumulating research efforts and, as a result, different classes of potent drug candidates have been discovered. In addition, there have also been various attempts to explore pharmaceutical strategies to improve the druggability of drug candidates. In this review, we provided a brief overview of the drug candidates that have undergone clinical trials. In the latter part, strategies for developing better drugs are discussed.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Donghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| |
Collapse
|
22
|
Yu C, Li L, Wang S, Xu Y, Wang L, Huang Y, Hieawy A, Liu H, Ma J. Advances in nanomaterials for the diagnosis and treatment of head and neck cancers: A review. Bioact Mater 2023; 25:430-444. [PMID: 37056270 PMCID: PMC10087112 DOI: 10.1016/j.bioactmat.2022.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Nanomaterials (NMs) have increasingly been used for the diagnosis and treatment of head and neck cancers (HNCs) over the past decade. HNCs can easily infiltrate surrounding tissues and form distant metastases, meaning that most patients with HNC are diagnosed at an advanced stage and often have a poor prognosis. Since NMs can be used to deliver various agents, including imaging agents, drugs, genes, vaccines, radiosensitisers, and photosensitisers, they play a crucial role in the development of novel technologies for the diagnosis and treatment of HNCs. Indeed, NMs have been reported to enhance delivery efficiency and improve the prognosis of patients with HNC by allowing targeted delivery, controlled release, responses to stimuli, and the delivery of multiple agents. In this review, we consider recent advances in NMs that could be used to improve the diagnosis, treatment, and prognosis of patients with HNC and the potential for future research.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiwen Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanhang Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ahmed Hieawy
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
23
|
Zarenezhad E, Kanaan MHG, Abdollah SS, Vakil MK, Marzi M, Mazarzaei A, Ghasemian A. Metallic Nanoparticles: Their Potential Role in Breast Cancer Immunotherapy via Trained Immunity Provocation. Biomedicines 2023; 11:biomedicines11051245. [PMID: 37238916 DOI: 10.3390/biomedicines11051245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 05/28/2023] Open
Abstract
Owing to drawbacks in the current common cancer therapies including surgery, chemotherapy and radiotherapy, the development of more reliable, low toxic, cost-effective and specific approaches such as immunotherapy is crucial. Breast cancer is among the leading causes of morbidity and mortality with a developed anticancer resistance. Accordingly, we attempted to uncover the efficacy of metallic nanoparticles (MNPs)-based breast cancer immunotherapy emphasizing trained immunity provocation or innate immunity adaptation. Due to the immunosuppressive nature of the tumor microenvironment (TME) and the poor infiltration of immune cells, the potentiation of an immune response or direct combat is a goal employing NPs as a burgeoning field. During the recent decades, the adaptation of the innate immunity responses against infectious diseases and cancer has been recognized. Although the data is in a scarcity with regard to a trained immunity function in breast cancer cells' elimination, this study introduced the potential of this arm of immunity adaptation using MNPs.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Manal Hadi Ghaffoori Kanaan
- Department of Agriculture, Technical Institute of Suwaria, Middle Technical University, Baghdad 9768876516, Iraq
| | - Sura Saad Abdollah
- Suwaria Primary Health Care Sector, Wassit Health Office, Sharjah 9668866516, Iraq
| | - Mohammad Kazem Vakil
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Abdulbaset Mazarzaei
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr 7618815676, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| |
Collapse
|
24
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
25
|
Mohammed RS, Aadim KA, Ahmed KA. Histological, haematological, and thyroid hormones toxicity of female rats orally exposed to CuO/ZnO core/shell nanoparticles synthesized by Ar plasma jets. Arch Toxicol 2023; 97:1017-1031. [PMID: 36847821 PMCID: PMC9969385 DOI: 10.1007/s00204-023-03462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Advancements in nanomedicine helped scientists design a new class of nanoparticles known as hybrid nanoparticles (core/shell) for diagnostic and therapeutic purposes. An essential requirement for the successful use of nanoparticles in biomedical applications is their low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of nanoparticles. The current study aimed to assess the toxicological potential of CuO/ZnO core/shell nanoparticles with a size of 32 nm in Albino female rats. In vivo toxicity was evaluated by oral administration of 0, 5, 10, 20, and 40 (mg/L) of CuO/ZnO core/shell nanoparticles to a female rate for 30 consecutive days. During the time of treatment, no deaths were observed. The toxicological evaluation revealed significant (p < 0.01) alteration in white blood cells (WBC) at a 5 (mg/L) dose. Also, increase in red blood cells (RBC) at 5, 10 (mg/L) doses, while hemoglobin (Hb) levels and hematocrit (HCT) increased at all doses. This maybe indicates that the CuO/ZnO core/shell nanoparticles stimulated the rate of blood corpuscle generation. The anaemia diagnostic indices (mean corpuscular volume MCV and mean corpuscular haemoglobin MCH) remained unchanged throughout the experiment for all the doses tested 5, 10, 20, and 40 (mg/L). According to the results of this study, exposure to CuO/ZnO core/shell NPs deteriorates the Triiodothyronine hormone (T3) and a Thyroxine hormone (T4) activated by Thyroid-Stimulating Hormone (TSH), which is generated and secreted from the pituitary gland. There is possibly related to an increase in free radicals and a decrease in antioxidant activity. Significant (p < 0.01) growth retardation in all groups treated due to rats' infection by Hyperthyroidism induced by thyroxine (T4) level increase. Hyperthyroidism is a catabolic state related to increased energy consumption, protein turnover, and lipolysis. Usually, these metabolic effects result in weight reduction and a decrease in fat storage and lean body mass. The histological examination indicates that the low concentrations of CuO/ZnO core/shell nanoparticles are safe for desired biomedical applications.
Collapse
Affiliation(s)
- Raghad S Mohammed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | - Kadhim A Aadim
- Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
| | - Khalid A Ahmed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
26
|
Li Q, Hatakeyama M, Kitaoka T. Polysaccharide Nanofiber-Stabilized Pickering Emulsion Microparticles Induce Pyroptotic Cell Death in Hepatocytes and Kupffer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207433. [PMID: 36978239 DOI: 10.1002/smll.202207433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The intracellular uptake and interaction behavior of emulsion microparticles in liver cells critical to host defense and inflammation is significant to understanding their potential cytotoxicity and biomedical applications. In this study, the cell death responses of fibroblastic, hepatocyte, and Kupffer cells (KCs) induced by four types of emulsion particles that are stabilized by polysaccharide nanofibers (cellulose or chitin), an inorganic nanoparticle (β-tricalcium phosphate), or surfactants are compared. Pickering emulsion (PE) microparticles stabilized by polysaccharide nanofibers or inorganic nanoparticles have a droplet size of 1-3 µm, while the surfactant-stabilized emulsion has a diameter of ≈190 nm. Polysaccharide nanofiber-stabilized PEs (PPEs) markedly induce lactate dehydrogenase release in all cell types. Additionally, characteristic pyroptotic cell death, which is accompanied by cell swelling, membrane blebbing, and caspase-1 activation, occurs in hepatocytes and KCs. These PE microparticles are co-cultured with lipopolysaccharide-primed KCs associated with cytokine interleukin-1β release, and the PPEs demonstrate biological activity as a mediator of the inflammation response. Well-designed PPE microparticles induce pyroptosis of liver cells, which may provide new insight into regulating inflammation-related diseases for designing potent anticancer drugs and vaccine adjuvants.
Collapse
Affiliation(s)
- Qi Li
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
27
|
Cai W, Tan Y, He K, Tang B, Liu J. Manganese(II)-Guided Separation in the Sub-Nanometer Regime for Precise Identification of In Vivo Size Dependence. Angew Chem Int Ed Engl 2023; 62:e202214720. [PMID: 36652185 DOI: 10.1002/anie.202214720] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
A precise understanding of nano-bio interactions in the sub-nanometer regime is necessary for advancements in nanomedicine. However, this is currently hindered by the control of the nanoparticle size in the sub-nanometer regime. Herein, we report a facile in situ Mn2+ -guided centrifugation strategy for the synthesis of large-scale ultrasmall gold nanoparticles (AuNPs) with a precisely controlled size gradient at the sub-nanometer regime. With the discovery that [Mn(OH)]+ , especially metallic manganese (Mn0 @[Mn(OH)]+ ) nanoparticles, could selectively interact with larger AuNPs through synergistic coordination and hydrogen bonding to form aggregates, we also realized the fast (<1 h) synthesis of water-soluble atomically precise Au25 with high yields (>56 %). We further demonstrated that sub-nanometer size differences (approximately 0.5 nm) significantly alter non-specific phagocytosis of AuNPs in the reticuloendothelial system macrophages, elimination rate, and nanotoxicology.
Collapse
Affiliation(s)
- Wei Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bing Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
28
|
Enhanced glypican-3-targeted identification of hepatocellular carcinoma with liver fibrosis by pre-degrading excess fibrotic collagen. Acta Biomater 2023; 158:435-448. [PMID: 36603729 DOI: 10.1016/j.actbio.2022.12.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Most hepatocellular carcinomas (HCCs) occur in cirrhotic livers, but unequivocal diagnosis of early HCC from the fibrotic microenvironment remains a formidable challenge with conventional imaging strategies, mainly because of the massive fibrotic collagen deposition leading to hepatic nodules formation and dysfunction of contrast agent metabolism. Here, we developed a "sweep-and-illuminate" imaging strategy, pre-degrade hepatic fibrotic collagen with collagenase I conjugated human serum albumin (HSA-C) and then targeting visualize HCC lesion with GPC3 targeting nanoparticles (TSI NPs, TJ2 peptide-superparamagnetic iron oxide-indocyanine green) via fluorescence imaging (FLI) and magnetic particle imaging (MPI). TSI NPs delineated a clear boundary of HCC and normal liver, and the tumor-to-background ratios (TBRs) detected by FLI and MPI were 5.43- and 1.34-fold higher than the non-targeted group, respectively. HSA-C could degrade 24.7% fibrotic collagen, followed by 27.2% reduction of nonspecific NPs retention in mice with liver fibrosis. In a pathological state in which HCC occurs in the fibrotic microenvironment, HSA-C-mediated pre-degradation of fibrotic collagen reduced background signal interference in fibrotic tissues and enhanced the intratumoral uptake of TSI NPs, resulting in the clear demarcation between HCC and liver fibrosis, and the TBR was increased 2.61-fold compared to the group without HSA-C pretreatment. We demonstrated the feasibility of combined pre-degradation of fibrotic collagen and application of a GPC3-targeted FLI/MPI contrast agent for early HCC identification, as well as its clinical value in the management of patients with advanced liver fibrosis. STATEMENT OF SIGNIFICANCE: Given that liver fibrosis hinders early detection and treatment options of hepatocellular carcinomas (HCCs), we report a "sweep-and-illuminate" imaging strategy to enhance the efficiency of HCC identification by modulating the irreversible liver fibrosis. We first "sweep" nonspecific interference of contrast agent by pre-degrading fibrotic collagen with human serum albumin-carried collagenase I (HSA-C); and then specifically "illuminate" HCC lesions with GPC3-targeted-SPIO-ICG nanoparticles (TSI NPs). HSA-C can degrade 24.7% fibrotic collagen, followed by 27.2% reduction of nonspecific NPs retention in mice with liver fibrosis. Furthermore, in HCC models coexisting with liver fibrosis, the combined application of HSA-C and TSI NPs can clarify the demarcation between HCC and liver fibrosis with a 2.61-fold increase in the tumor-to-background ratio. This study may expand the potential of combinatorial biomaterials for early HCC diagnosis.
Collapse
|
29
|
Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies. ACS NANO 2022; 16:19840-19872. [PMID: 36441973 DOI: 10.1021/acsnano.2c08262] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections remain the leading cause of death worldwide today. The emergence of antibiotic resistance has urged the development of alternative antibacterial technologies to complement or replace traditional antibiotic treatments. In this regard, metal nanomaterials have attracted great attention for their controllable antibacterial functions that are less prone to resistance. This review discusses a particular family of stimuli-activable metal-bearing nanomaterials (denoted as SAMNs) and the associated on-demand antibacterial strategies. The various SAMN-enabled antibacterial strategies stem from basic light and magnet activation, with the addition of bacterial microenvironment responsiveness and/or bacteria-targeting selectivity and therefore offer higher spatiotemporal controllability. The discussion focuses on nanomaterial design principles, antibacterial mechanisms, and antibacterial performance, as well as emerging applications that desire on-demand and selective activation (i.e., medical antibacterial treatments, surface anti-biofilm, water disinfection, and wearable antibacterial materials). The review concludes with the authors' perspectives on the challenges and future directions for developing industrial translatable next-generation antibacterial strategies.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, 117543 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| |
Collapse
|
30
|
Kunte N, Westerfield M, McGraw E, Choi J, Akinsipe T, Whitaker SK, Brannen A, Panizzi P, Tomich JM, Avila LA. Evaluation of transfection efficacy, biodistribution, and toxicity of branched amphiphilic peptide capsules (BAPCs) associated with mRNA. Biomater Sci 2022; 10:6980-6991. [PMID: 36254388 DOI: 10.1039/d2bm01314b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NPs) have been shown to be a suitable mRNA delivery platform by conferring protection against ribonucleases and facilitating cellular uptake. Several NPs have succeeded in delivering mRNA intranasally, intratracheally, and intramuscularly in preclinical settings. However, intravenous mRNA delivery has been less explored. Only a few NPs have been tested for systemic delivery of mRNA, many of which are formulated with polyethylene glycol (PEG). The incorporation of PEG presents some tradeoffs that must be carefully considered when designing a systemic delivery model. For example, while the addition of PEG may prolong circulation time by preventing early clearance by the mononuclear phagocytic system (MPS), it has also been reported that treating patients with PEGylated drugs can result in hypersensitivity reactions due to anti-PEG antibodies. Thus, it is desirable to have alternative PEG-free delivery methods for mRNA to avoid these adverse effects while preserving the beneficial effects. Our research group developed BAPCs (branched amphiphilic peptide capsules), a peptide-based nanoparticle that resists disruption by chaotropes, proteases, and elevated temperature, thus displaying significant stability and shelf-life. In this study, we demonstrated that similarly to PEG, mRNA shields the BAPC cationic surface to avoid early clearance by the MPS. Multispectral optoacoustic tomography (MSOT) and fluorescence reflectance imaging were imaging techniques used to analyze biodistribution within major MPS organs. Analysis of pro-inflammatory cytokine expression showed that BAPC-mRNA complexes do not cause chronic inflammation. Additionally, BAPCs enhance intracellular delivery of mRNA with negligible cytotoxicity or oxidative stress. These results might pave the way for future therapeutic applications of BAPCs as a delivery platform for systemic mRNA delivery.
Collapse
Affiliation(s)
- Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Matthew Westerfield
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Jiyeong Choi
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas- 66506, USA
| | | | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - John M Tomich
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - L Adriana Avila
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| |
Collapse
|
31
|
Di Cristo L, Ude VC, Tsiliki G, Tatulli G, Romaldini A, Murphy F, Wohlleben W, Oomen AG, Pompa PP, Arts J, Stone V, Sabella S. Grouping of orally ingested silica nanomaterials via use of an integrated approach to testing and assessment to streamline risk assessment. Part Fibre Toxicol 2022; 19:68. [PMID: 36461106 PMCID: PMC9719179 DOI: 10.1186/s12989-022-00508-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Nanomaterials can exist in different nanoforms (NFs). Their grouping may be supported by the formulation of hypotheses which can be interrogated via integrated approaches to testing and assessment (IATA). IATAs are decision trees that guide the user through tiered testing strategies (TTS) to collect the required evidence needed to accept or reject a grouping hypothesis. In the present paper, we investigated the applicability of IATAs for ingested NFs using a case study that includes different silicon dioxide, SiO2 NFs. Two oral grouping hypotheses addressing local and systemic toxicity were identified relevant for the grouping of these NFs and verified through the application of oral IATAs. Following different Tier 1 and/or Tier 2 in vitro methods of the TTS (i.e., in vitro dissolution, barrier integrity and inflammation assays), we generated the NF datasets. Furthermore, similarity algorithms (e.g., Bayesian method and Cluster analysis) were utilized to identify similarities among the NFs and establish a provisional group(s). The grouping based on Tier 1 and/or Tier 2 testing was analyzed in relation to available Tier 3 in vivo data in order to verify if the read-across was possible and therefore support a grouping decision. RESULTS The measurement of the dissolution rate of the silica NFs in the oro-gastrointestinal tract and in the lysosome identified them as gradually dissolving and biopersistent NFs. For the local toxicity to intestinal epithelium (e.g. cytotoxicity, membrane integrity and inflammation), the biological results of the gastrointestinal tract models indicate that all of the silica NFs were similar with respect to the lack of local toxicity and, therefore, belong to the same group; in vivo data (although limited) confirmed the lack of local toxicity of NFs. For systemic toxicity, Tier 1 data did not identify similarity across the NFs, with results across different decision nodes being inconsistent in providing homogeneous group(s). Moreover, the available Tier 3 in vivo data were also insufficient to support decisions based upon the obtained in vitro results and relating to the toxicity of the tested NFs. CONCLUSIONS The information generated by the tested oral IATAs can be effectively used for similarity assessment to support a grouping decision upon the application of a hypothesis related to toxicity in the gastrointestinal tract. The IATAs facilitated a structured data analysis and, by means of the expert's interpretation, supported read-across with the available in vivo data. The IATAs also supported the users in decision making, for example, reducing the testing when the grouping was well supported by the evidence and/or moving forward to advanced testing (e.g., the use of more suitable cellular models or chronic exposure) to improve the confidence level of the data and obtain more focused information.
Collapse
Affiliation(s)
- Luisana Di Cristo
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Victor C. Ude
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Georgia Tsiliki
- grid.19843.370000 0004 0393 5688Institute for the Management of Information Systems, Athena Research Center, Marousi, Greece
| | - Giuseppina Tatulli
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | - Alessio Romaldini
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Fiona Murphy
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Wendel Wohlleben
- grid.3319.80000 0001 1551 0781Department Material Physics and Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen, Germany
| | - Agnes G. Oomen
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands ,grid.7177.60000000084992262Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pier P. Pompa
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | | | - Vicki Stone
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Stefania Sabella
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| |
Collapse
|
32
|
Li J, Diamante G, Ahn IS, Wijaya D, Wang X, Chang CH, Ha SM, Immadisetty K, Meng H, Nel A, Yang X, Xia T. Determination of the nanoparticle- and cell-specific toxicological mechanisms in 3D liver spheroids using scRNAseq analysis. NANO TODAY 2022; 47:101652. [PMID: 36911538 PMCID: PMC10004129 DOI: 10.1016/j.nantod.2022.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Engineered nanomaterials (ENMs) are commonly used in consumer products, allowing exposure to target organs such as the lung, liver, and skin that could lead to adverse health effects in humans. To better reflect on toxicological effects in liver cells, it is important to consider the contribution of hepatocyte morphology, function, and intercellular interactions in a dynamic 3D microenvironment. Herein, we used a 3D liver spheroid model containing hepatocyte and Kupffer cells (KCs) to study the effects of three different material compositions, namely vanadium pentoxide (V2O5), titanium dioxide (TiO2), or graphene oxide (GO). Additionally, we used single-cell RNA sequencing (scRNAseq) to determine the nanoparticle (NP) and cell-specific toxicological responses. A general finding was that hepatocytes exhibit more variation in gene expression and adaptation of signaling pathways than KCs. TNF-α production tied to the NF-κB pathway was a commonly affected pathway by all NPs while impacts on the metabolic function of hepatocytes were unique to V2O5. V2O5 NPs also showed the largest number of differentially expressed genes in both cell types, many of which are related to pro-inflammatory and apoptotic response pathways. There was also evidence of mitochondrial ROS generation and caspase-1 activation after GO and V2O5 treatment, in association with cytokine production. All considered, this study provides insight into the impact of nanoparticles on gene responses in key liver cell types, providing us with a scRNAseq platform that can be used for high-content screening of nanomaterial impact on the liver, for use in biosafety and biomedical applications.
Collapse
Affiliation(s)
- Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Darren Wijaya
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sung-min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kavya Immadisetty
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - André Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Tan Y, Cai W, Luo C, Tang J, Kwok RTK, Lam JWY, Sun J, Liu J, Tang BZ. Rapid Biotransformation of Luminescent Bimetallic Nanoparticles in Hepatic Sinusoids. J Am Chem Soc 2022; 144:20653-20660. [DOI: 10.1021/jacs.2c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Tan
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Wei Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Caiming Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiahao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ryan T. K. Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
- Center for Aggregation-Induced Emission and Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
34
|
Hashim M, Mujahid H, Hassan S, Bukhari S, Anjum I, Hano C, Abbasi BH, Anjum S. Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives. Biomolecules 2022; 12:1337. [PMID: 36291548 PMCID: PMC9599274 DOI: 10.3390/biom12101337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, acute kidney injury, and liver and renal failure. In this regard, the use of nanoparticles (NPs) such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnONPs) has emerged as a rapidly developing field of study in terms of safe delivery of various medications to target organs with minimal side effects. Due to their physical characteristics, NPs have inherent pharmacological effects, and an accidental buildup can have a significant impact on the structure and function of the liver and kidney. By suppressing the expression of the proinflammatory cytokines iNOS and COX-2, NPs are known to possess anti-inflammatory effects. Additionally, NPs have demonstrated their ability to operate as an antioxidant, squelching the generation of ROS caused by substances that cause oxidative stress. Finally, because of their pro-oxidant properties, they are also known to increase the level of ROS, which causes malignant liver and kidney cells to undergo apoptosis. As a result, NPs can be regarded as a double-edged sword whose inherent therapeutic benefits can be refined as we work to comprehend them in terms of their toxicity.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Shanila Bukhari
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure & Loir Campus, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
35
|
Zhang W, Shen Z, Wu Y, Zhang W, Zhang T, Yu BY, Zheng X, Tian J. Renal-clearable and biodegradable black phosphorus quantum dots for photoacoustic imaging of kidney dysfunction. Anal Chim Acta 2022; 1204:339737. [PMID: 35397900 DOI: 10.1016/j.aca.2022.339737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
The kidney is a vital organ and susceptible to various diseases. Photoacoustic (PA) imaging provides a powerful technique for studying kidney dysfunction, for which many smart photoacoustic imaging agents have been developed. But the complete clearance of the introduced contrast agents after imaging remains to be challenging, leading to long-term toxicity concerns. In this study, we synthesized black phosphorous quantum dots (BPQDs) with ultra-small size (1.74 ± 0.23 nm after surface modification) and strong PA signal for imaging kidney dysfunction. Importantly, the renal-clearance property and biodegradability of the developed BPQDs help circumvent the long-term toxicity issue for in vivo studies. Based on these BPQDs, both acute kidney injury and chronic kidney disease were successfully detected in the living mice by PA imaging, with higher detection sensitivity than the clinical serum indices examination method. This BPQDs-based PA imaging method should have a promising potential for the early diagnosis of kidney dysfunction in clinic.
Collapse
Affiliation(s)
- Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhuoxia Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenze Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
36
|
Nanoliposomes in Cancer Therapy: Marketed Products and Current Clinical Trials. Int J Mol Sci 2022; 23:ijms23084249. [PMID: 35457065 PMCID: PMC9030431 DOI: 10.3390/ijms23084249] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The drugs used for cancer treatment have many drawbacks, as they damage both tumor and healthy cells and, in addition, they tend to be poorly soluble drugs. Their transport in nanoparticles can solve these problems as these can release the drug into tumor tissues, as well as improve their solubility, bioavailability, and efficacy, reducing their adverse effects. This article focuses on the advantages that nanotechnology can bring to medicine, with special emphasis on nanoliposomes. For this, a review has been made of the nanoliposomal systems marketed for the treatment of cancer, as well as those that are in the research phase, highlighting the clinical trials being carried out. All marketed liposomes studied are intravenously administered, showing a reduced intensity of side-effects compared with the nonliposomal form. Doxorubicin is the active ingredient most frequently employed. Ongoing clinical trials expand the availability of liposomal medicines with new clinical indications. In conclusion, the introduction of drugs in nanoliposomes means an improvement in their efficacy and the quality of life of patients. The future focus of research could be directed to develop multifunctional targeted nanoliposomes using new anticancer drugs, different types of existing drugs, or new standardized methodologies easily translated into industrial scale.
Collapse
|
37
|
Li J, Chen C, Xia T. Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106456. [PMID: 35029313 PMCID: PMC9040585 DOI: 10.1002/adma.202106456] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Nanomaterials (NMs) are widely used in commercial and medical products, such as cosmetics, vaccines, and drug carriers. Exposure to NMs via various routes such as dermal, inhalation, and ingestion has been shown to gain access to the systemic circulation, resulting in the accumulation of NMs in the liver. The unique organ structures and blood flow features facilitate the liver sequestration of NMs, which may cause adverse effects in the liver. Currently, most in vivo studies are focused on NMs accumulation at the organ level and evaluation of the gross changes in liver structure and functions, however, cell-type-specific uptake and responses, as well as the molecular mechanisms at cellular levels leading to effects at organ levels are lagging. Herein, the authors systematically review diverse interactions of NMs with the liver, specifically on major liver cell types including Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), and hepatocytes as well as the detailed molecular mechanisms involved. In addition, the knowledge gained on nano-liver interactions that can facilitate the development of safer nanoproducts and nanomedicine is also reviewed.
Collapse
Affiliation(s)
- Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
38
|
Lei P, Chen H, Feng C, Yuan X, Xiong Z, Liu Y, Liao W. Noninvasive Visualization of Sub-5 mm Orthotopic Hepatic Tumors by a Nanoprobe-Mediated Positive and Reverse Contrast-Balanced Imaging Strategy. ACS NANO 2022; 16:897-909. [PMID: 35005889 DOI: 10.1021/acsnano.1c08477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Delineation of small malignant lesions and their vasculature enables early and accurate diagnosis of hepatocellular carcinoma (HCC). However, it remains challenging to identify these features simultaneously by noninvasive imaging technology. Reverse contrast imaging emerges as a powerful means to detect early-stage HCC by taking inspiration from the intrinsic liver phagocytosis toward exogenous agents to generate negative tumor-to-normal tissue signals. However, this mechanism conflicts with the signal-enhancing requirements for vasculature visualization. Here, we solve this conundrum by designing a positive and reverse contrast-balanced imaging strategy based on a multifunctional PEG-Ta2O5@CuS nanoprobe that combines advanced gemstone spectral computer tomography (GSCT) with photoacoustic (PA) imaging. The nanoprobe exhibits preferential accumulation in Kupffer cells and hepatocytes over tumor cells, and its spectral properties are well matched with GSCT, leading to the enhancement of reverse contrast signals that enable clear delineation of 2-4 mm orthotopic HCC lesions. Meanwhile, its strong PA imaging capability at the second near-infrared (NIR-II) window makes vascular evaluation accessible by monitoring the positive signal enhancement derived from the limited tumor accumulation of the nanoprobe. In addition, the nanoprobe enables NIR-II photohyperthermia for timely tumor ablation. Overall, this proposed strategy shows potential in early detection and theranostics of HCC for improved clinical outcomes.
Collapse
Affiliation(s)
- Peng Lei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Cai Feng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zongling Xiong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
39
|
Kim J, Hwang DW, Jung HS, Kim KW, Pham XH, Lee SH, Byun JW, Kim W, Kim HM, Hahm E, Ham KM, Rho WY, Lee DS, Jun BH. High-quantum yield alloy-typed core/shell CdSeZnS/ZnS quantum dots for bio-applications. J Nanobiotechnology 2022; 20:22. [PMID: 34991619 PMCID: PMC8739727 DOI: 10.1186/s12951-021-01227-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023] Open
Abstract
Background Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application. Results In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs). The structure of the alloy QDs was confirmed using time-of-flight medium-energy ion scattering spectroscopy. The alloy QDs exhibited strong fluorescence and a high QY of 98.0%. After hydrophilic surface modification, the alloy QDs exhibited a QY of 84.7%, which is 1.5 times higher than that of MQDs. The QY was 77.8% after the alloy QDs were conjugated with folic acid (FA). Alloy QDs and MQDs, after conjugation with FA, were successfully used for targeting human KB cells. The alloy QDs exhibited a stronger fluorescence signal than MQD; these signals were retained in the popliteal lymph node area for 24 h. Conclusion The alloy QDs maintained a higher QY in hydrophilization for biological applications than MQDs. And also, alloy QDs showed the potential as nanoprobes for highly sensitive bioimaging analysis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01227-2.
Collapse
Affiliation(s)
- Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,THERABEST, Co. Inc., Seocho-daero 40-gil, Seoul, Republic of Korea
| | - Heung Su Jung
- Company of Global Zeus, Hwaseong, Gyeonggi-do, Republic of Korea
| | - Kyu Wan Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sang-Hun Lee
- Department of Chemical and Biological Engineering, Hanbat University, Daejeon, Republic of Korea
| | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea.,KIURI Research Center, Ajou University, Suwon, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Omar AS. Nanoformulation Safety versus Toxicity; What do the Recent Studies Tell Us? INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2022. [DOI: 10.51847/spfpldpsvl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Exploring the Gamut of Receptor Tyrosine Kinases for Their Promise in the Management of Non-Alcoholic Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9121776. [PMID: 34944593 PMCID: PMC8698495 DOI: 10.3390/biomedicines9121776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, non-alcoholic fatty liver disease (NAFLD) has emerged as a predominant health concern affecting approximately a quarter of the world’s population. NAFLD is a spectrum of liver ailments arising from nascent lipid accumulation and leading to inflammation, fibrosis or even carcinogenesis. Despite its prevalence and severity, no targeted pharmacological intervention is approved to date. Thus, it is imperative to identify suitable drug targets critical to the development and progression of NAFLD. In this quest, a ray of hope is nestled within a group of proteins, receptor tyrosine kinases (RTKs), as targets to contain or even reverse NAFLD. RTKs control numerous vital biological processes and their selective expression and activity in specific diseases have rendered them useful as drug targets. In this review, we discuss the recent advancements in characterizing the role of RTKs in NAFLD progression and qualify their suitability as pharmacological targets. Available data suggests inhibition of Epidermal Growth Factor Receptor, AXL, Fibroblast Growth Factor Receptor 4 and Vascular Endothelial Growth Factor Receptor, and activation of cellular mesenchymal-epithelial transition factor and Fibroblast Growth Factor Receptor 1 could pave the way for novel NAFLD therapeutics. Thus, it is important to characterize these RTKs for target validation and proof-of-concept through clinical trials.
Collapse
|
42
|
Fatima R, Yasin MS, Anwar H, Ullah I, Shehzad W, Murtaza I, Ali T. Vitamin E boosted the protective potential of Aloe vera in CCl4-treated rats. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00932-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Zhang X, Wei Y, Li C, Wang W, Zhang R, Jia J, Yan B. Intracellular Exposure Dose-Associated Susceptibility of Steatotic Hepatocytes to Metallic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312643. [PMID: 34884447 PMCID: PMC8657991 DOI: 10.3390/ijms222312643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), mainly characterized by the accumulation of excess fat in hepatocytes, is the most prevalent liver disorder afflicting ~25% of adults worldwide. In vivo studies have shown that adult rodents with NAFLD were more sensitive to metallic nanoparticles (MNPs) than healthy MNPs. However, due to the complex interactions between various cell types in a fatty liver, it has become a major challenge to reveal the toxic effects of MNPs to specific types of liver cells such as steatotic hepatocytes. In this study, we reported the susceptibility of steatotic hepatocytes in cytotoxicity and the induction of oxidative stress to direct exposures to MNPs with different components (silver, ZrO2, and TiO2 NPs) and sizes (20-30 nm and 125 nm) in an oleic acid (OA) -induced steatotic HepG2 (sHepG2) cell model. Furthermore, the inhibitory potential of MNPs against the process of fatty acid oxidation (FAO) were obvious in sHepG2 cells, even at extremely low doses of 2 or 4 μg/mL, which was not observed in non-steatotic HepG2 (nHepG2) cells. Further experiments on the differential cell uptake of MNPs in nHepG2 and sHepG2 cells demonstrated that the susceptibility of steatotic hepatocytes to MNP exposures was in association with the higher cellular accumulation of MNPs. Overall, our study demonstrated that it is necessary and urgent to take the intracellular exposure dose into consideration when assessing the potential toxicity of environmentally exposed MNPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Yongyi Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Chengjun Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Weiyu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Rui Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
- Correspondence: ; Tel.: +86-20-3714-2113
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China; (X.Z.); (C.L.); (W.W.); (R.Z.); (B.Y.)
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| |
Collapse
|
44
|
Cerium Oxide Nanoparticles Alleviate Hepatic Fibrosis Phenotypes In Vitro. Int J Mol Sci 2021; 22:ijms222111777. [PMID: 34769206 PMCID: PMC8584085 DOI: 10.3390/ijms222111777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Exposure to metallic nanoparticles (NPs) can result in inadvertent NP accumulation in body tissues. While their subsequent cellular interactions can lead to unintended consequences and are generally regarded as detrimental for health, they can on occasion mediate biologically beneficial effects. Among NPs, cerium oxide nanoparticles (CeO2 NP) possess strong antioxidant properties and have shown to alleviate certain pathological conditions. Herein, we show that the presence of cubic 25 nm CeO2 NP was able to reduce TGF-β-mediated activation in the cultured hepatic stellate cell line LX2 by reducing oxidative stress levels and TGF-β-mediated signalling. These cells displayed reduced classical liver fibrosis phenotypes, such as diminished fibrogenesis, altered matrix degradation, decreased cell motility, modified contractability and potentially lowered autophagy. These findings demonstrate that CeO2 NP may be able to ameliorate hepatic fibrosis and suggest a possible therapeutic pathway for an otherwise difficult-to-treat condition.
Collapse
|
45
|
Ali A, Ijaz M, Khan YR, Sajid HA, Hussain K, Rabbani AH, Shahid M, Naseer O, Ghaffar A, Naeem MA, Zafar MZ, Malik AI, Ahmed I. Role of nanotechnology in animal production and veterinary medicine. Trop Anim Health Prod 2021; 53:508. [PMID: 34626253 DOI: 10.1007/s11250-021-02951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
Nanotechnology is the discipline and technology of small and specific things that are < 100 nm in size. Because of their extremely miniscule size, any changes in their chemical and physical structure may show higher reactivity and solubility than larger particles. Nanotechnology plays a vital role in every field of life. It is considered one of the most bleeding edge field of scientific research. It has already several applications in a myriad of disciplines while its application in the field of animal production and veterinary medicine is still experimental in nature. But, in recent years, the role of nanotechnology in the aforementioned fields of scientific inquiry has shown great progress. These days, nanotechnology has been employed to revolutionize drug delivery systems and diagnose atypical diseases. Applications of nanoparticle technology in the field of animal reproduction and development of efficacious vaccines have been at the forefront of scientific endeavors. Additionally, their impacts on meat and milk quality are also being judiciously inquired in recent decades. Veterinary nanotechnology has great potential to improve diagnosis and treatment, and provide new tools to this field. This review focuses on some noteworthy applications of nanoparticles in the field of animal production and their future perspectives.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan.
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yasir Razzaq Khan
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Hina Afzal Sajid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kashif Hussain
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Ameer Hamza Rabbani
- Department of Surgery, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Shahid
- Department of Surgery, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Omer Naseer
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Awais Ghaffar
- Department of Clinical Sciences, KBCMA, College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Anas Naeem
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Zeeshan Zafar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amir Iftikhar Malik
- Department of Clinical Medicine and Surgery, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irfan Ahmed
- Department of Animal Nutrition, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
46
|
Li JB, Xi WS, Tan SY, Liu YY, Wu H, Liu Y, Cao A, Wang H. Effects of VO 2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders. NANOIMPACT 2021; 24:100351. [PMID: 35559810 DOI: 10.1016/j.impact.2021.100351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 06/15/2023]
Abstract
The rapid development of smart materials stimulates the production of vanadium dioxide (VO2) nanomaterials. This significantly increases the population exposure to VO2 nanomaterials via different pathways, and thus urges us to pay more attentions to their biosafety. Liver is the primary accumulation organ of nanomaterials in vivo, but the knowledge of effects of VO2 nanomaterials on the liver is extremely lacking. In this work, we comprehensively evaluated the effects of a commercial VO2 nanoparticle, S-VO2, in a liver cell line HepG2 to illuminate the potential hepatic toxicity of VO2 nanomaterials. The results indicated that S-VO2 was cytotoxic and genotoxic to HepG2 cells, mainly by inhibiting the cell proliferation. Apoptosis was observed at higher dose of S-VO2, while DNA damage was detected at all tested concentrations. S-VO2 particles were internalized by HepG2 cells and kept almost intact inside cells. Both the particle and dissolved species of S-VO2 contributed to the observed toxicities. They induced the overproduction of ROS, and then caused the mitochondrial dysfunction, ATP synthesis interruption, and DNA damages, consequently arrested the cell cycle in G2/M phase and inhibited the proliferation of HepG2 cells. The S-VO2 exposure also resulted in the upregulations of glucose uptake and lipid content in HepG2 cells, which were attributed to the ROS production and autophagy flux block, respectively. Our findings offer valuable insights into the liver toxicity of VO2 nanomaterials, benefiting their safely practical applications.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Wen-Song Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Shi-Ying Tan
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
47
|
Guo J, Yang Z, Wang X, Xu Y, Lu Y, Qin Z, Zhang L, Xu J, Wang W, Zhang J, Tang J. Advances in Nanomaterials for Injured Heart Repair. Front Bioeng Biotechnol 2021; 9:686684. [PMID: 34513807 PMCID: PMC8424111 DOI: 10.3389/fbioe.2021.686684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of mortality worldwide. Because of the limited regenerative capacity of adult myocardium to compensate for the loss of heart tissue after ischemic infarction, scientists have been exploring the possible mechanisms involved in the pathological process of ASCVD and searching for alternative means to regenerate infarcted cardiac tissue. Although numerous studies have pursued innovative solutions for reversing the pathological process of ASCVD and improving the effectiveness of delivering therapeutics, the translation of those advances into downstream clinical applications remains unsatisfactory because of poor safety and low efficacy. Recently, nanomaterials (NMs) have emerged as a promising new strategy to strengthen both the efficacy and safety of ASCVD therapy. Thus, a comprehensive review of NMs used in ASCVD treatment will be useful. This paper presents an overview of the pathophysiological mechanisms of ASCVD and the multifunctional mechanisms of NM-based therapy, including antioxidative, anti-inflammation and antiapoptosis mechanisms. The technological improvements of NM delivery are summarized and the clinical transformations concerning the use of NMs to treat ASCVD are examined. Finally, this paper discusses the challenges and future perspectives of NMs in cardiac regeneration to provide insightful information for health professionals on the latest advancements in nanotechnologies for ASCVD treatment.
Collapse
Affiliation(s)
- Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Jing Xu
- Department of Cardiac Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan Medical Association, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
48
|
Li J, Wang X, Chang CH, Jiang J, Liu Q, Liu X, Liao YP, Ma T, Meng H, Xia T. Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102545. [PMID: 34363305 PMCID: PMC8460616 DOI: 10.1002/smll.202102545] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/23/2021] [Indexed: 05/18/2023]
Abstract
Nanocellulose including cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) has attracted much attention due to its exceptional mechanical, chemical, and rheological properties. Although considered biocompatible, recent reports have demonstrated nanocellulose can be hazardous, including serving as drug carriers that accumulate in the liver. However, the nanocellulose effects on liver cells, including Kupffer cells (KCs) and hepatocytes are unclear. Here, the toxicity of nanocellulose with different lengths is compared, including the shorter CNCs (CNC-1, CNC-2, and CNC-3) and longer CNF (CNF-1 and CNF-2), to liver cells. While all CNCs triggered significant cytotoxicity in KCs and only CNC-2 induced toxicity to hepatocytes, CNFs failed to induce significant cytotoxicity due to their minimal cellular uptake. The phagocytosis of CNCs by KCs induced mitochondria ROS generation, caspase-3/7 activation, and apoptotic cell death as well as lysosomal damage, cathepsin B release, NLRP3 inflammasome and caspase-1 activation, and IL-1β production. The cellular uptake of CNC-2 by hepatocytes is through clathrin-mediated endocytosis, and it induced the caspase-3/7-mediated apoptosis. CNC-2 shows the highest levels of uptake and cytotoxicity among CNCs. These results demonstrate the length-dependent mechanisms of toxicity on liver cells in a cell type-dependent fashion, providing information to safely use nanocellulose for biomedical applications.
Collapse
Affiliation(s)
- Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tiancong Ma
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
49
|
Suciu M, Mirescu C, Crăciunescu I, Macavei SG, Leoștean C, Ştefan R, Olar LE, Tripon SC, Ciorîță A, Barbu-Tudoran L. In Vivo Distribution of Poly(ethylene glycol) Functionalized Iron Oxide Nanoclusters: An Ultrastructural Study. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2184. [PMID: 34578500 PMCID: PMC8469409 DOI: 10.3390/nano11092184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
The in vivo distribution of 50 nm clusters of polyethylene glycol-conjugated superparamagnetic iron oxide nanoparticles (SPIONs-PEG) was conducted in this study. SPIONs-PEG were synthesized de novo, and their structure and paramagnetic behaviors were analyzed by specific methods (TEM, DLS, XRD, VSM). Wistar rats were treated with 10 mg Fe/kg body weight SPIONs-PEG and their organs and blood were examined at two intervals for short-term (15, 30, 60, 180 min) and long-term (6, 12, 24 h) exposure evaluation. Most exposed organs were investigated through light and transmission electron microscopy, and blood and urine samples were examined through fluorescence spectrophotometry. SPIONs-PEG clusters entered the bloodstream after intraperitoneal and intravenous administrations and ended up in the urine, with the highest clearance at 12 h. The skin and spleen were within normal histological parameters, while the liver, kidney, brain, and lungs showed signs of transient local anoxia or other transient pathological affections. This study shows that once internalized, the synthesized SPIONs-PEG disperse well through the bloodstream with minor to nil induced tissue damage, are biocompatible, have good clearance, and are suited for biomedical applications.
Collapse
Affiliation(s)
- Maria Suciu
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Claudiu Mirescu
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
| | - Izabell Crăciunescu
- Physics of Nanostructured Systems Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.C.); (S.G.M.); (C.L.)
| | - Sergiu Gabriel Macavei
- Physics of Nanostructured Systems Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.C.); (S.G.M.); (C.L.)
| | - Cristian Leoștean
- Physics of Nanostructured Systems Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.C.); (S.G.M.); (C.L.)
| | - Rǎzvan Ştefan
- Research Centre for Biophysics, Life Sciences Institute, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (R.Ş.); (L.E.O.)
| | - Loredana E. Olar
- Research Centre for Biophysics, Life Sciences Institute, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (R.Ş.); (L.E.O.)
| | - Septimiu-Cassian Tripon
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| |
Collapse
|
50
|
Li J, Guiney LM, Downing JR, Wang X, Chang CH, Jiang J, Liu Q, Liu X, Mei KC, Liao YP, Ma T, Meng H, Hersam MC, Nel AE, Xia T. Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Non-Toxic 2D Boron Nitride Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101084. [PMID: 34032006 PMCID: PMC8225588 DOI: 10.1002/smll.202101084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Indexed: 05/07/2023]
Abstract
2D boron nitride (BN) and molybdenum disulfide (MoS2 ) materials are increasingly being used for applications due to novel chemical, electronic, and optical properties. Although generally considered biocompatible, recent data have shown that BN and MoS2 could potentially be hazardous under some biological conditions, for example, during, biodistribution of drug carriers or imaging agents to the liver. However, the effects of these 2D materials on liver cells such as Kupffer cells (KCs), liver sinusoidal endothelial cells, and hepatocytes, are unknown. Here, the toxicity of BN and MoS2 , dispersed in Pluronic F87 (designated BN-PF and MoS2 -PF) is compared with aggregated forms of these materials (BN-Agg and MoS2 -Agg) in liver cells. MoS2 induces dose-dependent cytotoxicity in KCs, but not other cell types, while the BN derivatives are non-toxic. The effect of MoS2 could be ascribed to nanosheet dissolution and the release of hexavalent Mo, capable of inducing mitochondrial reactive oxygen species generation and caspases 3/7-mediated apoptosis in KUP5 cells. In addition, the phagocytosis of MoS2 -Agg triggers an independent response pathway involving lysosomal damage, NLRP3 inflammasome activation, caspase-1 activation, IL-1β, and IL-18 production. These findings demonstrate the importance of Mo release and the state of dispersion of MoS2 in impacting KC viability.
Collapse
Affiliation(s)
- Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Linda M Guiney
- Departments of Materials Science and Engineering Chemistry and Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Julia R Downing
- Departments of Materials Science and Engineering Chemistry and Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tiancong Ma
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark C Hersam
- Departments of Materials Science and Engineering Chemistry and Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - André E Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|