1
|
Liang A, Liu W, Cui Y, Zhang P, Chen X, Zhai J, Dong W, Chen X. A pressure sensor made of laser-induced graphene@carbon ink in a waste sponge substrate using novel and simple fabricaing process for health monitoring. SENSING AND BIO-SENSING RESEARCH 2025; 47:100730. [DOI: 10.1016/j.sbsr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
2
|
Song X, Gu Y, Wang S, Fan J, An J, Yan L, Sun B, Wang J, Yu L. Scalable Integration of High Sensitivity Strain Sensors Based on Silicon Nanowire Spring Array Directly Grown on Flexible Polyimide Films. NANO LETTERS 2025. [PMID: 39881565 DOI: 10.1021/acs.nanolett.4c05553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The growth and integration of position-controlled, morphology-programmable silicon nanowires (SiNWs), directly upon low-cost polymer substrates instead of postgrowth transferring, is attractive for developing advanced flexible sensors and logics. In this work, a low temperature growth of SiNWs at only 200 °C has been demonstrated, for the first time, upon flexible polyimide (PI) films, via a planar solid-liquid-solid (IPSLS) growth mechanism. The SiNWs with diameter of ∼146 nm can be grown into precise locations on PI as orderly array and with preferred elastic geometry. Strain sensor array, built upon these spring-shape SiNWs integrated on PI, achieves a gauge factor (GF) of ∼90, sustains large stretching strains up to 3.3% (with 1.5 mm radius) and endures over 30,000 cycles. Strain sensors attached to the finger to monitor movements are also successfully demonstrated, showing high sensitivity and superior mechanical reliability, particularly suited for wearable health applications.
Collapse
Affiliation(s)
- Xiaopan Song
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China
| | - Yang Gu
- School of Future Science and Engineering, Soochow University, 215222 Suzhou, P. R. China
| | - Sheng Wang
- School of Future Science and Engineering, Soochow University, 215222 Suzhou, P. R. China
| | - Junyu Fan
- School of Future Science and Engineering, Soochow University, 215222 Suzhou, P. R. China
| | - Junyang An
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China
| | - Lei Yan
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China
| | - Bin Sun
- School of Future Science and Engineering, Soochow University, 215222 Suzhou, P. R. China
| | - Junzhuan Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China
| | - Linwei Yu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China
| |
Collapse
|
3
|
Hu X, He Q, Ma H, Li J, Jiang Y, Wang K. Flexible Eyelid Pressure and Motion Dual-Mode Sensor Using Electric Breakdown-Induced Piezoresistivity and Electrical Potential Sensing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39838908 DOI: 10.1021/acsami.4c21230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Multiple ocular surface disorders are associated with the mechanical properties of the interface between the eyelid and cornea. Determining eyelid pressure is vital for diagnosing and preventing these disorders. However, current measurements rely on flat piezoresistive pressure sensor arrays that lack eye-motion sensing capabilities, resulting in discomfort and measurement inaccuracies. This study develops and evaluates an integrated, curved, flexible, dual-mode sensor array for simultaneous eyelid pressure and motion detection, using soft thermoplastic polyurethane (TPU) films as transducers and substrates. A novel manufacturing method based on the electrical breakdown of the TPU film enables piezoresistive pressure sensing, achieving a pressure detection limit of 3.2 Pa. Eyelid motion is measured through electrical potential sensing, where changes in eyelid position alter the electric potentials at the receiving electrodes. The sensor's performance was validated with animal experiments involving rabbit eyes; eyelid pressure was successfully measured during eye opening and blinking. This flexible dual-mode eyelid sensor holds promise for monitoring eyelid pressure and assessing ocular surface disorders.
Collapse
Affiliation(s)
- Xinning Hu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Qipei He
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Hongtao Ma
- Beihang Goer (WeiFang) intelligent Robot Co Goertek, Weifang 261071, China
| | - Jiacheng Li
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yonggang Jiang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Kaijie Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China
| |
Collapse
|
4
|
Liu H, Pan H, Wang J, Xu J, Quan J, Yang H, Chen Y, Liu Y. A Decoupling Method for Multimode Flexible Capacitive Sensors to Decouple Spatial Forces and Dynamic Humidity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3548-3559. [PMID: 39746784 DOI: 10.1021/acsami.4c14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This paper focuses on a four-capacitor flexible sensor composed of two electrode materials; also, the decoupling method and sensing performance for multimodal sensing of spatial forces and dynamic humidity are described. In previous work, decoupling of multimode sensors is mostly done by monitoring the types of signals, numerical differences of the same signal, and stacking multiple parameter-sensitive materials. This paper mainly uses the different characteristics of the two electrode materials; in the simulation and experiment of humidity, the moisture-sensitive electrode quickly wets from the outside to the inside and expands, and the contact angle quickly decreases from 58.5 to 3.7° within 12.04 s, while the copper electrode has no obvious change; in the simulation and experiment of force, the capacitance value of the capacitor composed of the two electrodes changes steadily with the magnitude of the force. That is, the moisture-sensitive electrode can respond to both force and humidity, while the copper electrode responds only to force. So, we use the copper electrode to decouple the spatial force information and calculate the capacitance value of the moisture-sensitive electrode under the influence of only spatial force. The capacitance value of the moisture-sensitive electrode only affected by humidity can be obtained by the difference between the measured capacitance value and the capacitance value under the influence of only spatial force, and then, the humidity value can be obtained according to the material properties. When a single physical quantity changes, the built-in test platform of the experiment verifies that the decoupling accuracy of the force in the dual-mode sensor is as high as 0.95, and the decoupling accuracy of humidity is as high as 0.97. When the two physical quantities change synchronously, the decoupling accuracy of the force is relatively uniformly distributed within the range, and the decoupling accuracy of humidity can reach as high as 0.99 within the range of 31%RH-56%RH. As a humidity sensor, the sensitivity gradually decreases as the humidity increases. During the repeated changes from low humidity to high humidity, the dynamic characteristics, stability, and repeatability have very good performance. The repetition rate is 97.64%, the response time is 11.3 s, the recovery time is 6.8 s, and the capacitance value for 24 days remains basically unchanged. All of these provide some insight into the application of multimode sensors.
Collapse
Affiliation(s)
- Huan Liu
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hongxu Pan
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Junyao Wang
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jianxin Xu
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jingran Quan
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hanbo Yang
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Yansong Chen
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Yahao Liu
- School of Mechanical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
5
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
6
|
Wang S, Fan P, Liu W, Hu B, Guo J, Wang Z, Zhu S, Zhao Y, Fan J, Li G, Xu L. Research Progress of Flexible Electronic Devices Based on Electrospun Nanofibers. ACS NANO 2024; 18:31737-31772. [PMID: 39499656 DOI: 10.1021/acsnano.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Electrospun nanofibers have become an important component in fabricating flexible electronic devices because of their permeability, flexibility, stretchability, and conformability to three-dimensional curved surfaces. This review delves into the advancements in adaptable and flexible electronic devices using electrospun nanofibers as the substrates and explores their diverse and innovative applications. The primary development of key substrates for flexible devices is summarized. After briefly discussing the principle of electrospinning, process parameters that affect electrospinning, and two major electrospinning techniques (i.e., single-fluid electrospinning and multifluid electrospinning), the review shines a spotlight on the recent breakthroughs in multifunctional and stretchable electronic devices that are based on electrospun substrates. These advancements include flexible sensors, flexible energy harvesting and storage devices, flexible accessories for electronic devices, and flexible environmental monitoring devices. In particular, the review outlines the challenges and potential solutions of developing electrospun nanofibers for flexible electronic devices, including overcoming the incompatibility of multiple interfaces, developing 3D microstructure sensor arrays with gradient geometry for various imperceptible on-skin devices, etc. This review may provide a comprehensive understanding of the rational design of application-oriented flexible electronic devices based on electrospun nanofibers.
Collapse
Affiliation(s)
- Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Wenbo Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Jiaxuan Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zizhao Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Shengke Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yipu Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, P. R. China
| |
Collapse
|
7
|
Lv Y, Li C, Yang Z, Gan M, Wang Y, Lu M, Zhang X, Min L. Monomer Trapping Synthesis Toward Dynamic Nanoconfinement Self-healing Eutectogels for Strain Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410446. [PMID: 39279471 PMCID: PMC11558160 DOI: 10.1002/advs.202410446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 09/18/2024]
Abstract
The rapid advancement in attractive platforms such as biomedicine and human-machine interaction has generated urgent demands for intelligent materials with high strength, flexibility, and self-healing capabilities. However, existing self-healing ability materials are challenged by a trade-off between high strength, low elastic modulus, and healing ability due to the inherent low strength of noncovalent bonding. Here, drawing inspiration from human fibroblasts, a monomer trapping synthesis strategy is presented based on the dissociation and reconfiguration in amphiphilic ionic restrictors (7000-times volume monomer trapping) to develop a eutectogel. Benefiting from the nanoconfinement and dynamic interfacial interactions, the molecular chain backbone of the formed confined domains is mechanically reinforced while preserving soft movement capabilities. The resulting eutectogels demonstrate superior mechanical properties (1799% and 2753% higher tensile strength and toughness than pure polymerized deep eutectic solvent), excellent self-healing efficiency (>90%), low tangential modulus (0.367 MPa during the working stage), and the ability to sensitively monitor human activities. This strategy is poised to offer a new perspective for developing high strength, low modulus, and self-healing wearable electronics tailored to human body motion.
Collapse
Affiliation(s)
- Yuesong Lv
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Changchun Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Zhangqin Yang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Mingxi Gan
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yuyan Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Minxun Lu
- Orthopedic Research InstituteDepartment of OrthopedicsWest China Hospital of Sichuan UniversityChengdu610065China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan provinceWest China HospitalSichuan Universitychengdu610065China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Li Min
- Orthopedic Research InstituteDepartment of OrthopedicsWest China Hospital of Sichuan UniversityChengdu610065China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan provinceWest China HospitalSichuan Universitychengdu610065China
| |
Collapse
|
8
|
Kumar V, Alam MN, Park SS. Review of Recent Progress on Silicone Rubber Composites for Multifunctional Sensor Systems. Polymers (Basel) 2024; 16:1841. [PMID: 39000697 PMCID: PMC11244113 DOI: 10.3390/polym16131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The latest progress (the year 2021-2024) on multifunctional sensors based on silicone rubber is reported. These multifunctional sensors are useful for real-time monitoring through relative resistance, relative current change, and relative capacitance types. The present review contains a brief overview and literature survey on the sensors and their multifunctionalities. This contains an introduction to the different functionalities of these sensors. Following the introduction, the survey on the types of filler or rubber and their fabrication are briefly described. The coming section deals with the fabrication methodology of these composites where the sensors are integrated. The special focus on mechanical and electro-mechanical properties is discussed. Electro-mechanical properties with a special focus on response time, linearity, and gauge factor are reported. The next section of this review reports the filler dispersion and its role in influencing the properties and applications of these sensors. Finally, various types of sensors are briefly reported. These sensors are useful for monitoring human body motions, breathing activity, environment or breathing humidity, organic gas sensing, and, finally, smart textiles. Ultimately, the study summarizes the key takeaway from this review article. These conclusions are focused on the merits and demerits of the sensors and are followed by their future prospects.
Collapse
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Md Najib Alam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sang Shin Park
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
9
|
Wu M, Li Z. A wearable flexible triboelectric nanogenerator for bio-mechanical energy harvesting and badminton monitoring. Heliyon 2024; 10:e30845. [PMID: 38765035 PMCID: PMC11097072 DOI: 10.1016/j.heliyon.2024.e30845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, textile materials used for wearable flexible sensors have received much attention. Wearable textile based triboelectric nanogenerator (TENG) not only has unique advantages in mechanical energy harvesting, but also has application value in the direction of motion sensing. Here, we proposed a non-woven fabric triboelectric nanogenerator (NW-TENG) for mechanical energy harvesting and badminton monitoring. The non-woven fabric play the role of positive triboelectric, and the fluffy fiber structure endows NW-TENG with a sensitive response to pressure. The pressure sensing sensitivity of NW-TENG sensor can reach 1.22 V N-1 (Pressure range: 0-7 N) and 0.18 V N-1 (Pressure range: 8 N-55 N). Furthermore, the NW-TENG can be installed on the body joints of badminton players for analyzing joint movements, thereby achieving data-driven badminton training and facilitating the evaluation of training effectiveness. This research provide a new path to promote TENG to the badminton monitoring field.
Collapse
Affiliation(s)
- Min Wu
- Physical Education Department, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Zheng Li
- Physical Education Department, Dalian Ocean University, Dalian, 116023, Liaoning, China
| |
Collapse
|
10
|
He Y, Xu X, Xiao S, Wu J, Zhou P, Chen L, Liu H. Research Progress and Application of Multimodal Flexible Sensors for Electronic Skin. ACS Sens 2024; 9:2275-2293. [PMID: 38659386 DOI: 10.1021/acssensors.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, wearable electronic skin has garnered significant attention due to its broad range of applications in various fields, including personal health monitoring, human motion perception, human-computer interaction, and flexible display. The flexible multimodal sensor, as the core component of electronic skin, can mimic the multistimulus sensing ability of human skin, which is highly significant for the development of the next generation of electronic devices. This paper provides a summary of the latest advancements in multimodal sensors that possess two or more response capabilities (such as force, temperature, humidity, etc.) simultaneously. It explores the relationship between materials and multiple sensing capabilities, focusing on both active materials that are the same and different. The paper also discusses the preparation methods, device structures, and sensing properties of these sensors. Furthermore, it introduces the applications of multimodal sensors in human motion and health monitoring, as well as intelligent robots. Finally, the current limitations and future challenges of multimodal sensors will be presented.
Collapse
Affiliation(s)
- Yin He
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Yi mai Artificial Intelligence Medical Technology, Tianjin 300384, China
| | - Xiaoxuan Xu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| | - Shuang Xiao
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Xinxing Cathay (Shanghai) Engineering Science and Technology Research Institute Co., Ltd., Shanghai 201400, China
| | - Junxian Wu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Winner Medical (Wuhan) Co., Ltd., Wuhan 430415, Hubei province, China
| | - Peng Zhou
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Yi mai Artificial Intelligence Medical Technology, Tianjin 300384, China
| | - Li Chen
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| |
Collapse
|
11
|
Li W, Liu X, Wang Y, Peng L, Jin X, Jiang Z, Guo Z, Chen J, Wang W. Research on high sensitivity piezoresistive sensor based on structural design. DISCOVER NANO 2024; 19:88. [PMID: 38753219 PMCID: PMC11098999 DOI: 10.1186/s11671-024-03971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/08/2024] [Indexed: 05/19/2024]
Abstract
With the popularity of smart terminals, wearable electronic devices have shown great market prospects, especially high-sensitivity pressure sensors, which can monitor micro-stimuli and high-precision dynamic external stimuli, and will have an important impact on future functional development. Compressible flexible sensors have attracted wide attention due to their simple sensing mechanism and the advantages of light weight and convenience. Sensors with high sensitivity are very sensitive to pressure and can detect resistance/current changes under pressure, which has been widely studied. On this basis, this review focuses on analyzing the performance impact of device structure design strategies on high sensitivity pressure sensors. The design of structures can be divided into interface microstructures and three-dimensional framework structures. The preparation methods of various structures are introduced in detail, and the current research status and future development challenges are summarized.
Collapse
Affiliation(s)
- Wei Li
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yifan Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Lu Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Xin Jin
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Zhaohui Jiang
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang Province, People's Republic of China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing, People's Republic of China
| | - Zengge Guo
- Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jie Chen
- PLA Naval Medical Center, Shang Hai, People's Republic of China
| | - Wenyu Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
12
|
Katsumi S, Kugai Y, Louis M, Morimoto T, Yamada M, Maisonneuve S, Goto C, Métivier R, Kawai T, Allain C. C 3-Symmetric Luminescent Diketone with Amido-Linkage as a Polymorphic Fluorescence Emitter. Chemistry 2024; 30:e202304278. [PMID: 38372462 DOI: 10.1002/chem.202304278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The study introduces a novel C3-symmetric β-diketone compound, BTA-D3, and its monomeric counterpart, D, with a focus on their synthetic procedure, photophysical properties and aggregation behavior. Both compounds exhibit characteristic absorption and weak fluorescence in solution, with BTA-D3 displaying higher absorption coefficients due to its larger number of diketone units. Density Functional Theory (DFT) calculations suggest increased co-planarity of diketone groups in BTA-D3. A significant finding is the Aggregation-Induced Emission (AIE) property of BTA-D3, as its fluorescence intensity increases dramatically when exposed to specific solvent ratios. The AIE behavior is attributed to intermolecular excitonic interaction between BTA-D3 molecules in self-organized aggregates. We also studied fluorescence anisotropy of BTA-D3 and D. Despite its larger size, BTA-D3 showed reduced anisotropy values because of efficient intramolecular energy migration among three diketone units. Furthermore, BTA-D3 demonstrates unique polymorphism, yielding different emission colors and structures depending on the solvent used. A unique approach is presented for promoting the growth of self-organized aggregate structures via solvent evaporation, leading to distinct fluorescence properties. This research contributes to the understanding of C3-symmetric structural molecules and provides insights into strategies for controlling molecular alignment to achieve diverse fluorescence coloration in molecular materials.
Collapse
Affiliation(s)
- Shiho Katsumi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Yusuke Kugai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Marine Louis
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Tsumoru Morimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Mihoko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Stéphane Maisonneuve
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Chigusa Goto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Rémi Métivier
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Clémence Allain
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Geng Y, Chen G, Cao R, Dai H, Hu Z, Yu S, Wang L, Zhu L, Xiang H, Zhu M. A Skin-Inspired Self-Adaptive System for Temperature Control During Dynamic Wound Healing. NANO-MICRO LETTERS 2024; 16:152. [PMID: 38466482 PMCID: PMC10928041 DOI: 10.1007/s40820-024-01345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 03/13/2024]
Abstract
The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical. However, patients suffering from skin damage are struggling with the surrounding scene and situational awareness. Here, we report an interactive self-regulation electronic system by mimicking the human thermos-reception system. The skin-inspired self-adaptive system is composed of two highly sensitive thermistors (thermal-response composite materials), and a low-power temperature control unit (Laser-induced graphene array). The biomimetic skin can realize self-adjusting in the range of 35-42 °C, which is around physiological temperature. This thermoregulation system also contributed to skin barrier formation and wound healing. Across wound models, the treatment group healed ~ 10% more rapidly compared with the control group, and showed reduced inflammation, thus enhancing skin tissue regeneration. The skin-inspired self-adaptive system holds substantial promise for next-generation robotic and medical devices.
Collapse
Affiliation(s)
- Yaqi Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| | - Hongmei Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Le Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
14
|
Wang H, Guan J, He M, Zhu Y, Cheng F. Flexible thermoelectric CMTs/KCl/gelatin composite for a wearable pressure and temperature sensor. RSC Adv 2024; 14:6865-6873. [PMID: 38410359 PMCID: PMC10895412 DOI: 10.1039/d3ra08471j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Flexible sensors have promising applications in the fields of health monitoring and artificial intelligence, which have attracted much attention from researchers. However, the design and manufacture of sensors with multiple sensing functions (like simultaneously having both temperature and pressure sensing capabilities) still present a significant challenge. Here, an ionic thermoelectric sensor for synchronous temperature and pressure sensing was developed on the basis of a carbon microtubes (CMTs)/potassium chloride (KCl)/gelatin composite consisting of gelatin as the polymer matrix, CMTs as the conductive material and KCl as the ion source. The designed CMTs/KCl/gelatin composite with the good ductility (830%) and flexibility can achieve a Seebeck coefficient of 4 mV K-1 and a dual stimulus responsiveness to pressure and temperature. In addition, not only the movement of the human body (e.g., fingers, arms), but also the temperature difference between the human body and the environment, were able to be monitored by the designed CMTs/KCl/gelatin sensors. This study provides a novel strategy for the design and preparation of high-performance flexible sensors by utilizing ion-gel thermoelectric materials and promotes the research of temperature and pressure sensing technologies.
Collapse
Affiliation(s)
- Hongjie Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Jilun Guan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Mei He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Yanqiu Zhu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter EX4 4QF UK
| | - Fangchao Cheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- College of Material Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| |
Collapse
|
15
|
Sultana A, Alam MM, Crispin R, Zhao D. The enhanced ionic thermal potential by a polarized electrospun membrane. Chem Commun (Camb) 2024; 60:2196-2199. [PMID: 38299661 DOI: 10.1039/d3cc04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Inspired by thermally sensitive ion channels in human skin, a polarized membrane composed of a ferroelectric polymer fiber matrix is used to double the heat-induced potential in ionic thermoelectric devices. The comparison of the thermal potentials between different directions of polarization and temperature gradient indicates the importance of cation-dipole interactions for the enhancement.
Collapse
Affiliation(s)
- Ayesha Sultana
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
| | - Md Mehebub Alam
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
- Wallenberg Wood Science Center, Linköping University, Norrköping SE-601 74, Sweden
| | - Dan Zhao
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
| |
Collapse
|
16
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
17
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
18
|
Gong T, Guo JX, Shao HQ, Jia J, Ke K, Bao RY, Yang W. Linear Strain Sensors via a Spatial Heteromodulus Tricontinuous Structure Design for High-Resolution Recording of Snoring Breath. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56337-56346. [PMID: 37975857 DOI: 10.1021/acsami.3c14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Porous conductive elastomer composites are very attractive for designing flexible and air-permeable mechanical sensors for healthcare, while it is challenging to achieve a linear and sensitive electromechanical response over a wide strain range for high-resolution recording of physiological activities and body motions. Here, a scalable strategy is developed to construct porous elastomer composites with a bamboo-shaped heteromodulus microstructure in the pores for the fabrication of linear stretchable strain sensors. Such a spatial heteromodulus microstructure is fabricated via phase separation and selective location of high-modulus phase during melt compounding of elastomers and thermoplastics, together with green etching of the water-soluble plastic in the tricontinuous elastomer composites. The bamboo-shaped heteromodulus microstructure is constructed on the pore struts via the fracture of a high-modulus polymer self-assembled on the pore surface and relaxation recovery of the elastomer matrix after prestretching, which blocks the propagation of cut-through microcracks upon stretching. The composites with super low resistance after in situ growth of silver nanoparticles sustain up to 110% tensile strain with a linear and sensitive electromechanical response, demonstrating potential applications in discriminating respiration status and monitoring snoring breath. This work unveils a new approach to fabricate high-performance air-permeable strain sensors in a simple and scalable way.
Collapse
Affiliation(s)
- Tao Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jia-Xing Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - He-Qing Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
19
|
Chen L, Xu J, Zhu M, Zeng Z, Song Y, Zhang Y, Zhang X, Deng Y, Xiong R, Huang C. Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. MATERIALS HORIZONS 2023; 10:4000-4032. [PMID: 37489089 DOI: 10.1039/d3mh00236e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Recently, polymers capable of repeatedly self-healing physical damage and restoring mechanical properties have attracted extensive attention. Among the various supramolecular chemistry, hydrogen-bonding (H-bonding) featuring reversibility, directionality and high per-volume concentration has become one of the most attractive directions for the development of self-healing polymers (SHPs). Herein, we review the recent advances in the design of high-performance SHPs based on different H-bonding types, for example, H-bonding motifs and excessive H-bonding. In particular, the effects of the structural design of SHPs on their mechanical performance and healing efficiency are discussed in detail. Moreover, we also summarize how to employ H-bonding-based SHPs for the preparation of self-healable electronic devices, focusing on promising topics, including energy harvesting devices, energy storage devices, and flexible sensing devices. Finally, the current challenges and possible strategies for the development of H-bonding-based SHPs and their smart electronic applications are highlighted.
Collapse
Affiliation(s)
- Long Chen
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ziyuan Zeng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China.
| |
Collapse
|
20
|
Zhang C, Wu M, Cao S, Liu M, Guo D, Kang Z, Li M, Ye D, Yang Z, Wang X, Xie Z, Liu J. Bioinspired Environment-Adaptable and Ultrasensitive Multifunctional Electronic Skin for Human Healthcare and Robotic Sensations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304004. [PMID: 37300351 DOI: 10.1002/smll.202304004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Multifunctional electronic skins (e-skins) that can sense various stimuli have demonstrated increasing potential in many fields. However, most e-skins are human-oriented that cannot work in hash environments such as high temperature, underwater, and corrosive chemicals, impairing their applications, especially in human-machine interfaces, intelligent machines, robotics, and so on. Inspired by the crack-shaped sensory organs of spiders, an environmentally robust and ultrasensitive multifunctional e-skin is developed. By developing a polyimide-based metal crack-localization strategy, the device has excellent environment adaptability since polyimide has high thermal stability and chemical durability. The localized cracked part serves as an ultrasensitive strain sensing unit, while the non-cracked serpentine part is solely responsible for temperature. Since the two units are made of the same material and process, the signals are decoupled easily. The proposed device is the first multifunctional e-skin that can be used in harsh environments, therefore is of great potential for both human and robot-oriented applications.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Mengxi Wu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Shuye Cao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Mengjing Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Di Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Zhan Kang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Ming Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Dong Ye
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuoqing Yang
- National Key Laboratory of Science and Technology on Micro and Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuewen Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhaoqian Xie
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Junshan Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
21
|
Georgopoulou A, Hardman D, Thuruthel TG, Iida F, Clemens F. Sensorized Skin With Biomimetic Tactility Features Based on Artificial Cross-Talk of Bimodal Resistive Sensory Inputs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301590. [PMID: 37679081 PMCID: PMC10602557 DOI: 10.1002/advs.202301590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Indexed: 09/09/2023]
Abstract
Tactility in biological organisms is a faculty that relies on a variety of specialized receptors. The bimodal sensorized skin, featured in this study, combines soft resistive composites that attribute the skin with mechano- and thermoreceptive capabilities. Mimicking the position of the different natural receptors in different depths of the skin layers, a multi-layer arrangement of the soft resistive composites is achieved. However, the magnitude of the signal response and the localization ability of the stimulus change with lighter presses of the bimodal skin. Hence, a learning-based approach is employed that can help achieve predictions about the stimulus using 4500 probes. Similar to the cognitive functions in the human brain, the cross-talk of sensory information between the two types of sensory information allows the learning architecture to make more accurate predictions of localization, depth, and temperature of the stimulus contiguously. Localization accuracies of 1.8 mm, depth errors of 0.22 mm, and temperature errors of 8.2 °C using 8 mechanoreceptive and 8 thermoreceptive sensing elements are achieved for the smaller inter-element distances. Combining the bimodal sensing multilayer skins with the neural network learning approach brings the artificial tactile interface one step closer to imitating the sensory capabilities of biological skin.
Collapse
Affiliation(s)
- Antonia Georgopoulou
- Department of Functional MaterialsEmpa ‐ Swiss Federal Laboratories for Materials Science and Technology8600Switzerland
| | - David Hardman
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
| | - Thomas George Thuruthel
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
- Department of Computer ScienceUniversity College LondonE20 2AFUK
| | - Fumiya Iida
- Bio‐Inspired Robotics LabDepartment of EngineeringUniversity of CambridgeCB2 1PZUK
| | - Frank Clemens
- Department of Functional MaterialsEmpa ‐ Swiss Federal Laboratories for Materials Science and Technology8600Switzerland
| |
Collapse
|
22
|
Luo Y, Zhao L, Luo G, Dong L, Xia Y, Li M, Li Z, Wang K, Maeda R, Jiang Z. Highly sensitive piezoresistive and thermally responsive fibrous networks from the in situ growth of PEDOT on MWCNT-decorated electrospun PU fibers for pressure and temperature sensing. MICROSYSTEMS & NANOENGINEERING 2023; 9:113. [PMID: 37719415 PMCID: PMC10504313 DOI: 10.1038/s41378-023-00593-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
Flexible electronics have demonstrated various strategies to enhance the sensory ability for tactile perception and wearable physiological monitoring. Fibrous microstructures have attracted much interest because of their excellent mechanical properties and fabricability. Herein, a structurally robust fibrous mat was first fabricated by electrospinning, followed by a sequential process of functionalization utilizing ultrasonication treatment and in situ polymerization growth. Electrospun polyurethane (PU) microfibers were anchored with multi-walled carbon nanotubes (MWCNTs) to form conductive paths along each fiber by a scalable ultrasonic cavitation treatment in an MWCNT suspension. After, a layer of poly(3,4-ethylene dioxythiophene) (PEDOT) was grown on the surface of PU fibers decorated with MWCNTs to enhance the conductive conjunctions of MWCNTs. Due to the superior electromechanical behaviors and mechanical reinforcement of PEDOT, the PEDOT/MWCNT@PU mat-based device exhibits a wide working range (0-70 kPa), high sensitivity (1.6 kPa-1), and good mechanical robustness (over 18,000 cycles). The PEDOT/MWCNT@PU mat-based sensor also demonstrates a good linear response to different temperature variations because of the thermoelectricity of the PEDOT/MWCNT composite. This novel strategy for the fabrication of multifunctional fibrous mats provides a promising opportunity for future applications for high-performance wearable devices.
Collapse
Affiliation(s)
- Yunyun Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Yong Xia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Min Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China
| | - Ziping Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kaifei Wang
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ryutaro Maeda
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Arif M, Zulfiqar MH, Khan MA, Zubair M, Mehmood MQ, Massoud Y. Paper-based facile capacitive touch arrays for wireless mouse cursor control pad. Heliyon 2023; 9:e19447. [PMID: 37681176 PMCID: PMC10481284 DOI: 10.1016/j.heliyon.2023.e19447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Wireless devices have become extremely inexpensive and popular in recent years. The two most significant advantages of wireless devices over wired ones are convenience and flexibility. Considering this, a wireless mouse pad prototype for access has been developed in this study. A capacitive sensors-based mouse pad with basic operations and conventional features has been developed using sensing arrays on paper. A facile, do-it-yourself fabrication process was utilized to develop a cost-effective, thin, wearable, and cleanroom-free wireless mouse cursor control (MCC) pad. The ablation process was used to cut the traces of conductive tape and paste them onto the paper to develop the MCC pad. The pad was connected with Espressif Systems (ESP)32 to wirelessly control the cursor of mobile and laptop. The capacitive touch sensor array-based pad is easy to reproduce and recycle. This pad can contribute to future advancements in thin human-machine interfaces, soft robotics, and medical and healthcare applications.
Collapse
Affiliation(s)
- Myda Arif
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore, 54600, Pakistan
| | - Muhammad Hamza Zulfiqar
- Department of Biomedical Engineering, Narowal Campus, University of Engineering and Technology (UET), Lahore, 54890, Pakistan
| | - Muhammad Atif Khan
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Muhammad Zubair
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore, 54600, Pakistan
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| |
Collapse
|
24
|
Wang S, Zong Q, Yang H, Tan C, Huang Q, Liu X, Zhang G, French P, Ye H. Rapid Fabrication of High-Performance Flexible Pressure Sensors Using Laser Pyrolysis Direct Writing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41055-41066. [PMID: 37523469 PMCID: PMC10472334 DOI: 10.1021/acsami.3c04290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
The fabrication of flexible pressure sensors with low cost, high scalability, and easy fabrication is an essential driving force in developing flexible electronics, especially for high-performance sensors that require precise surface microstructures. However, optimizing complex fabrication processes and expensive microfabrication methods remains a significant challenge. In this study, we introduce a laser pyrolysis direct writing technology that enables rapid and efficient fabrication of high-performance flexible pressure sensors with a micro-truncated pyramid array. The pressure sensor demonstrates exceptional sensitivities, with the values of 3132.0, 322.5, and 27.8 kPa-1 in the pressure ranges of 0-0.5, 0.5-3.5, and 3.5-10 kPa, respectively. Furthermore, the sensor exhibits rapid response times (loading: 22 ms, unloading: 18 ms) and exceptional reliability, enduring over 3000 pressure loading and unloading cycles. Moreover, the pressure sensor can be easily integrated into a sensor array for spatial pressure distribution detection. The laser pyrolysis direct writing technology introduced in this study presents a highly efficient and promising approach to designing and fabricating high-performance flexible pressure sensors utilizing micro-structured polymer substrates.
Collapse
Affiliation(s)
- Shaogang Wang
- Faculty
of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
- School
of Microelectronics, Southern University
of Science and Technology, 518055 Shenzhen, China
| | - Qihang Zong
- School
of Microelectronics, Southern University
of Science and Technology, 518055 Shenzhen, China
| | - Huiru Yang
- School
of Microelectronics, Southern University
of Science and Technology, 518055 Shenzhen, China
| | - Chunjian Tan
- Faculty
of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
- School
of Microelectronics, Southern University
of Science and Technology, 518055 Shenzhen, China
| | - Qianming Huang
- School
of Microelectronics, Southern University
of Science and Technology, 518055 Shenzhen, China
| | - Xu Liu
- Faculty
of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
- School
of Microelectronics, Southern University
of Science and Technology, 518055 Shenzhen, China
| | - Guoqi Zhang
- Faculty
of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
| | - Paddy French
- Faculty
of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
| | - Huaiyu Ye
- Faculty
of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The
Netherlands
- School
of Microelectronics, Southern University
of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
25
|
Li P, Li Z, Chen H, Zhu Y, Yang D, Hou Y. Graphene-Based Flexible Strain Sensor Based on PDMS for Strain Detection of Steel Wire Core Conveyor Belt Joints. SENSORS (BASEL, SWITZERLAND) 2023; 23:7473. [PMID: 37687930 PMCID: PMC10490603 DOI: 10.3390/s23177473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Because of their superior performance, flexible strain sensors are used in a wide range of applications, including medicine and health, human-computer interaction, and precision manufacturing. Flexible strain sensors outperform conventional silicon-based sensors in high-strain environments. However, most current studies report complex flexible sensor preparation processes, and research focuses on enhancing and improving one parameter or property of the sensors, ignoring the feasibility of flexible strain sensors for applications in various fields. Since the mechanical properties of flexible sensors can be well combined with rubber conveyor belts, in this work polydimethylsiloxane (PDMS) was used as a flexible substrate by a simple way of multiple drop coating. Graphene-based flexible strain sensor films that can be used for strain detection at the joints of steel cord core conveyor belts were successfully fabricated. The results of the tests show that the sensor has a high sensitivity and can achieve a fast response (response time: 43 ms). Furthermore, the sensor can still capture the conveyor belt strain after withstanding high pressure (1.2-1.4 MPa) and high temperature (150 °C) during the belt vulcanization process. This validates the feasibility of using flexible strain sensors in steel wire core conveyor belts and has some potential for detecting abnormal strains in steel wire core conveyor belt, broadening the application field of flexible sensors.
Collapse
Affiliation(s)
| | - Zhijie Li
- School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China; (P.L.); (H.C.); (Y.Z.); (D.Y.); (Y.H.)
| | | | | | | | | |
Collapse
|
26
|
Zhang Z, Liu Z, Lei J, Chen L, Li L, Zhao N, Fang X, Ruan Y, Tian B, Zhao L. Flexible thin film thermocouples: From structure, material, fabrication to application. iScience 2023; 26:107303. [PMID: 37520735 PMCID: PMC10382892 DOI: 10.1016/j.isci.2023.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Flexible thin-film thermocouples (TFTCs) have been garnering interest as temperature sensors due to the advantages of being flexible, ultrathin, and ultralight. Additionally, they have fast response times and enable detection of temperature. These properties have made them suitable for applications such as wearable electronics, healthcare, portable personal devices, and smart detection systems. This review presents the progress in the development of flexible TFTCs. The mechanism, structural design, materials, fabrication methods, and related applications of flexible TFTCs are also elaborated. Finally, future development directions of flexible TFTCs are discussed such as wide-range temperature measurement, multiple sensor integration, and achieving reliable cold-end compensation systems.
Collapse
Affiliation(s)
- Zhongkai Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhaojun Liu
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
| | - Jiaming Lei
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Luntao Chen
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Le Li
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Na Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xudong Fang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yong Ruan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an 710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an Jiaotong University, Xi’an 710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
| |
Collapse
|
27
|
Wang S, Wang X, Wang Q, Ma S, Xiao J, Liu H, Pan J, Zhang Z, Zhang L. Flexible Optoelectronic Multimodal Proximity/Pressure/Temperature Sensors with Low Signal Interference. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304701. [PMID: 37532248 DOI: 10.1002/adma.202304701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Multimodal tactile sensors are a crucial part of intelligent human-machine interaction and collaboration. Simultaneous detection of proximity, pressure, and temperature on a single sensor can greatly promote the safety, interactivity, and compactness of interaction systems. However, severe signal interference and complex decoupling algorithms hinder the actual applications. Here, this work reports a flexible optoelectronic multimodal sensor capable of detecting and decoupling proximity/pressure/temperature by integrating a light waveguide and an interdigital electrode (IDE) into a compact fibrous sensor. Negligible signal interference is realized by combining heterogeneous sensing mechanisms of optics and electronics, which encodes proximity into capacitance, pressure into light intensity and temperature into resistance. The sensor exhibits a large sensing distance of 225 mm with fast responses for proximity detection, a pressure sensitivity of 0.42 N-1 , and a temperature sensitivity of 7% °C-1 . As a proof of concept, a doll equipped with the sensor can accurately discriminate and detect various stimuli, thus achieving safe and immersive interactions with the user. This work opens up promising paths for self-decoupled multimodal sensors and related human/machine/environment interaction applications.
Collapse
Affiliation(s)
- Shan Wang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Xiaoyu Wang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Qi Wang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Shuqi Ma
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Jianliang Xiao
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Haitao Liu
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Jing Pan
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Zhang Zhang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Lei Zhang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
28
|
Nguyen TH, Ngo BV, Nguyen TN, Vu CC. Flexible Pressure Sensors and Machine Learning Algorithms for Human Walking Phase Monitoring. MICROMACHINES 2023; 14:1411. [PMID: 37512722 PMCID: PMC10385105 DOI: 10.3390/mi14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Soft sensors are attracting much attention from researchers worldwide due to their versatility in practical projects. There are already many applications of soft sensors in aspects of life, consisting of human-robot interfaces, flexible electronics, medical monitoring, and healthcare. However, most of these studies have focused on a specific area, such as fabrication, data analysis, or experimentation. This approach can lead to challenges regarding the reliability, accuracy, or connectivity of the components. Therefore, there is a pressing need to consider the sensor's placement in an overall system and find ways to maximize the efficiency of such flexible sensors. This paper proposes a fabrication method for soft capacitive pressure sensors with spacer fabric, conductive inks, and encapsulation glue. The sensor exhibits a good sensitivity of 0.04 kPa-1, a fast recovery time of 7 milliseconds, and stability of 10,000 cycles. We also evaluate how to connect the sensor to other traditional sensors or hardware components. Some machine learning models are applied to these built-in soft sensors. As expected, the embedded wearables achieve a high accuracy of 96% when recognizing human walking phases.
Collapse
Affiliation(s)
- Thanh-Hai Nguyen
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| | - Ba-Viet Ngo
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Nghia Nguyen
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| | - Chi Cuong Vu
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
29
|
Yu H, Li H, Sun X, Pan L. Biomimetic Flexible Sensors and Their Applications in Human Health Detection. Biomimetics (Basel) 2023; 8:293. [PMID: 37504181 PMCID: PMC10807369 DOI: 10.3390/biomimetics8030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Bionic flexible sensors are a new type of biosensor with high sensitivity, selectivity, stability, and reliability to achieve detection in complex natural and physiological environments. They provide efficient, energy-saving and convenient applications in medical monitoring and diagnosis, environmental monitoring, and detection and identification. Combining sensor devices with flexible substrates to imitate flexible structures in living organisms, thus enabling the detection of various physiological signals, has become a hot topic of interest. In the field of human health detection, the application of bionic flexible sensors is flourishing and will evolve into patient-centric diagnosis and treatment in the future of healthcare. In this review, we provide an up-to-date overview of bionic flexible devices for human health detection applications and a comprehensive summary of the research progress and potential of flexible sensors. First, we evaluate the working mechanisms of different classes of bionic flexible sensors, describing the selection and fabrication of bionic flexible materials and their excellent electrochemical properties; then, we introduce some interesting applications for monitoring physical, electrophysiological, chemical, and biological signals according to more segmented health fields (e.g., medical diagnosis, rehabilitation assistance, and sports monitoring). We conclude with a summary of the advantages of current results and the challenges and possible future developments.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Shimada K. Correlations among Firing Rates of Tactile, Thermal, Gustatory, Olfactory, and Auditory Sensations Mimicked by Artificial Hybrid Fluid (HF) Rubber Mechanoreceptors. SENSORS (BASEL, SWITZERLAND) 2023; 23:4593. [PMID: 37430506 DOI: 10.3390/s23104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023]
Abstract
In order to advance the development of sensors fabricated with monofunctional sensation systems capable of a versatile response to tactile, thermal, gustatory, olfactory, and auditory sensations, mechanoreceptors fabricated as a single platform with an electric circuit require investigation. In addition, it is essential to resolve the complicated structure of the sensor. In order to realize the single platform, our proposed hybrid fluid (HF) rubber mechanoreceptors of free nerve endings, Merkel cells, Krause end bulbs, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles mimicking the bio-inspired five senses are useful enough to facilitate the fabrication process for the resolution of the complicated structure. This study used electrochemical impedance spectroscopy (EIS) to elucidate the intrinsic structure of the single platform and the physical mechanisms of the firing rate such as slow adaption (SA) and fast adaption (FA), which were induced from the structure and involved the capacitance, inductance, reactance, etc. of the HF rubber mechanoreceptors. In addition, the relations among the firing rates of the various sensations were clarified. The adaption of the firing rate in the thermal sensation is the opposite of that in the tactile sensation. The firing rates in the gustation, olfaction, and auditory sensations at frequencies of less than 1 kHz have the same adaption as in the tactile sensation. The present findings are useful not only in the field of neurophysiology, to research the biochemical reactions of neurons and brain perceptions of stimuli, but also in the field of sensors, to advance salient developments in sensors mimicking bio-inspired sensations.
Collapse
Affiliation(s)
- Kunio Shimada
- Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
31
|
Li W, Jia J, Sun X, Hao S, Ye T. A Light/Pressure Bifunctional Electronic Skin Based on a Bilayer Structure of PEDOT:PSS-Coated Cellulose Paper/CsPbBr 3 QDs Film. Polymers (Basel) 2023; 15:polym15092136. [PMID: 37177282 PMCID: PMC10181253 DOI: 10.3390/polym15092136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
With the continuous development of electronic skin (e-skin), multifunctional e-skin is approaching, and in some cases even surpassing, the capabilities of real human skin, which has garnered increasing attention. Especially, if e-skin processes eye's function, it will endow e-skins more powerful advantages, such as the vision reparation, enhanced security, improved adaptability and enhanced interactivity. Here, we first study the photodetector based on CsPbBr3 quantum dots film and the pressure sensor based on PEDOT: PSS-coated cellulose paper, respectively. On the base of these two kinds of sensors, a light/pressure bifunctional sensor was successfully fabricated. Finally, flexible bifunctional sensors were obtained by using a flexible interdigital electrode. They can simultaneously detect light and pressure stimulation. As e-skin, a high photosensitivity with a switching ratio of 168 under 405 nm light at a power of 40 mW/cm2 was obtained and they can also monitor human motions in the meantime. Our work showed that the strategy to introduce perovskite photodetectors into e-skins is feasible and may open a new way for the development of flexible multi-functional e-skin.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (W.L.); (J.J.); (X.S.)
| | - Jingyu Jia
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (W.L.); (J.J.); (X.S.)
| | - Xiaochen Sun
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (W.L.); (J.J.); (X.S.)
| | - Sue Hao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (W.L.); (J.J.); (X.S.)
| | - Tengling Ye
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou 510640, China
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (W.L.); (J.J.); (X.S.)
| |
Collapse
|
32
|
Li G, Wang C, Chen Y, Liu F, Fan H, Yao B, Hao J, Yu Y, Wen D. Dual Structural Design of Platinum-Nickel Hydrogels for Wearable Glucose Biosensing with Ultrahigh Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206868. [PMID: 36710247 DOI: 10.1002/smll.202206868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Wearable glucose sensors are of great significance and highly required in mobile health monitoring and management but suffering from limited long-term stability and wearable adaptability. Here a simultaneous component and structure engineering strategy is presented, which involves Pt with abundant Ni to achieve three-dimensional, dual-structural Pt-Ni hydrogels with interconnected networks of PtNi nanowires and Ni(OH)2 nanosheets, showing prominent electrocatalytic activity and stability in glucose oxidation under neutral condition. Specifically, the PtNi(1:3) dual hydrogels shows 2.0 and 270.6 times' activity in the glucose electro-oxidation as much as the pure Pt and Ni hydrogels. Thanks to the high activity, structural stability, good flexibility, and self-healing property, the PtNi(1:3) dual gel-based non-enzymatic glucose sensing chip is endowed with high performance. It features a high sensitivity, an excellent selectivity and flexibility, and particularly an outstanding long-term stability over 2 months. Together with a pH sensor and a wireless circuit, an accurate, real-time, and remote monitoring of sweat glucose is achieved. This facile design of novel dual-structural metallic hydrogels sheds light to rationally develop new functional materials for high-performance wearable biosensors.
Collapse
Affiliation(s)
- Guanglei Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Chenxin Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Yao Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Fei Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Haoxin Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Bin Yao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Jia Hao
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, School of Mechanical Engineering, NPU, Xi'an, 710072, P. R. China
| | - Yiting Yu
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, School of Mechanical Engineering, NPU, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| |
Collapse
|
33
|
Zhou B, Liu J, Huang X, Qiu X, Yang X, Shao H, Tang C, Zhang X. Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control. NANO-MICRO LETTERS 2023; 15:72. [PMID: 36964430 PMCID: PMC10039194 DOI: 10.1007/s40820-023-01054-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things (IoT). Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices; however, it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control. Here, we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micro-nanostructured mechanoluminescent elastomer, which can patterned-display the force trajectories. The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence (with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility). Moreover, a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances (voltage increases from 8 to 24 V). Based on the excellent bimodal sensing performances and durability of the obtained composite, a highly reliable intelligent control system by machine learning has been developed for controlling trolley, providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
34
|
Wang Y, Fu J, Xu J, Hu H, Ho D. Atomic Plasma Grafting: Precise Control of Functional Groups on Ti 3C 2T x MXene for Room Temperature Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12232-12239. [PMID: 36812910 DOI: 10.1021/acsami.2c22609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gas sensing properties of two-dimensional (2D) materials are derived from charge transfer between the analyte and surface functional groups. However, for sensing films consisting of 2D Ti3C2Tx MXene nanosheets, the precise control of surface functional groups for achieving optimal gas sensing performance and the associate mechanism are still far from well understood. Herein, we present a functional group engineering strategy based on plasma exposure for optimizing the gas sensing performance of Ti3C2Tx MXene. For performance assessment and sensing mechanism elucidation, we synthesize few-layered Ti3C2Tx MXene through liquid exfoliation and then graft functional groups via in situ plasma treatment. Functionalized Ti3C2Tx MXene with large amounts of -O functional groups shows NO2 sensing properties that are unprecedented among MXene-based gas sensors. Density functional theory (DFT) calculations reveal that -O functional groups are associated with increased NO2 adsorption energy, thereby enhancing charge transport. The -O functionalized Ti3C2Tx sensor shows a record-breaking response of 13.8% toward 10 ppm NO2, good selectivity, and long-term stability at room temperature. The proposed technique is also capable of improving selectivity, a well-known challenge in chemoresistive gas sensing. This work paves the way to the possibility of using plasma grafting for precise functionalization of MXene surfaces toward practical realization of electronic devices.
Collapse
Affiliation(s)
- Ying Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jimin Fu
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jiangang Xu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Haibo Hu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| |
Collapse
|
35
|
Wang Y, Adam ML, Zhao Y, Zheng W, Gao L, Yin Z, Zhao H. Machine Learning-Enhanced Flexible Mechanical Sensing. NANO-MICRO LETTERS 2023; 15:55. [PMID: 36800133 PMCID: PMC9936950 DOI: 10.1007/s40820-023-01013-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 05/31/2023]
Abstract
To realize a hyperconnected smart society with high productivity, advances in flexible sensing technology are highly needed. Nowadays, flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device's software. Significant research efforts have been devoted to improving materials, sensing mechanism, and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology. Meanwhile, advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors. Machine learning (ML) as an important branch of artificial intelligence can efficiently handle such complex data, which can be multi-dimensional and multi-faceted, thus providing a powerful tool for easy interpretation of sensing data. In this review, the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented. Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human-machine interfaces, object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
Collapse
Affiliation(s)
- Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mukhtar Lawan Adam
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yunlong Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xi'an , 710071, People's Republic of China
| | - Libo Gao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
36
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
37
|
Kim H, Choi S, Lee B, Seo J, Lee S, Yoon J, Hong Y. Nonpatterned Soft Piezoresistive Films with Filamentous Conduction Paths for Mimicking Multiple-Resolution Receptors of Human Skin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55088-55097. [PMID: 36458332 DOI: 10.1021/acsami.2c16929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft pressure sensors play key roles as input devices of electronic skin (E-skin) to imitate real human skin. For efficient data acquisition according to stimulus types such as detailed pressure images or macroscopic strength of stimuli, soft pressure sensors can have variable spatial resolution, just like the uneven spatial distribution of pressure-sensing receptors on the human body. However, previous methods on soft pressure sensors cannot achieve such tunability of spatial resolution because their sensor materials and read-out electrodes need to be elaborately patterned for a specific sensor density. Here, we report a universal soft pressure-sensitive platform based on anisotropically self-assembled ferromagnetic particles embedded in elastomer matrices whose spatial resolution can be facilely tuned. Various spatial densities of pressure-sensing receptors of human body parts can be implemented by simply sandwiching the film between soft electrodes with different pitches. Since the anisotropically aligned nickel particles form independent filamentous conductive paths, the pressure sensors show spatial sensing ability without crosstalk, whose spatial resolution up to 100 dpi can be achieved from a single platform. The sensor array shows a wide dynamic range capable of detecting various pressure levels, such as liquid drops (∼30 Pa) and plantar (∼300 kPa) pressures. Our universal soft pressure-sensing platform would be a key enabling technology for actually imitating the receptor systems of human skin in robot and biomedical applications.
Collapse
Affiliation(s)
- Hanul Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | | | - Byeongmoon Lee
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Jiseok Seo
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Seunghwan Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| |
Collapse
|
38
|
Shi H, Wang K, Liu Y, He K, Huo P, Dong J, Jiang Z, Zhang D. Rapidly UV-curable resin for soft sensors of embedded 3D printing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Zhao L, Qiao J, Li F, Yuan D, Huang J, Wang M, Xu S. Laser-Patterned Hierarchical Aligned Micro-/Nanowire Network for Highly Sensitive Multidimensional Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48276-48284. [PMID: 36228148 DOI: 10.1021/acsami.2c14642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible multidirectional strain sensors capable of simultaneously detecting strain amplitudes and directions have attracted tremendous interest. Herein, we propose a flexible multidirectional strain sensor based on a newly designed single-layer hierarchical aligned micro-/nanowire (HAMN) network. The HAMN network is efficiently fabricated using a one-step femtosecond laser patterning technology based on a modulated line-shaped beam. The anisotropic performance is attributed to the significantly different morphological changes caused by an inhomogeneous strain redistribution among the HAMN network. The fabricated strain sensor exhibits high sensitivity (gauge factor of 65 under 2.5% strain and 462 under larger strains), low response/recovery time (140 and 322 ms), and good stability (over 1000 cycles). Moreover, this single-layer strain sensor with high selectivity (gauge factor differences of ∼73 between orthogonal strains) is capable of distinguishing multidimensional strains and exhibits decoupled responses under low strains (<1%). Therefore, the strain sensors enable the precise monitoring of subtle movements, including radial pulses and wrist bending, and the rectification of pen-holding posture. Benefitting from these remarkable performances, the HAMN-based strain sensors show potential applications, including healthcare and complex human motion monitoring.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Jingyu Qiao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Fangmei Li
- School of Microelectronics, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Dandan Yuan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Jiaxu Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Shaolin Xu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| |
Collapse
|
40
|
Liu L, Ni Y, Mao J, Li S, Ng KH, Chen Z, Huang J, Cai W, Lai Y. Flexible and Highly Conductive Textiles Induced by Click Chemistry for Sensitive Motion and Humidity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37878-37886. [PMID: 35948056 DOI: 10.1021/acsami.2c06937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, multifunctional sensors have aroused widespread concerns owing to their vital roles in the healthcare area. However, there are still significant challenges in the fabrication of functionalized integrated devices. In this work, hydrophobic-hydrophilic patterns are constructed on polyester-spandex-blended knitted fabric surface by the chemical click method, enabling accurate deposition of functionalized materials for sensitive and stable motion and humidity sensing. Representatively, a conductive silver nanowire (Ag NW) network was deliberately deposited on only the designated hydrophilic fabric surface to realize accurate, repeatable, and stable motion sensing. Such a Ag NWs sensor recorded a low electrical resistance (below 60 Ω), stable resistance cycling response (over 2000 cycles), and fast response time to humidity (0.46 s) during the sensing evaluation. In addition to experimental sensing, real human motions, such as mouth-opening and joint-flexing (wrist and neck), could also be detected using the same sensor. Similar promising outputs were also obtained over the humidity sensor fabricated over the same chemical click method, except the sensing material was replaced with polydopamine-modified carboxylated carbon nanotubes. The resultant sensor exhibits excellent sensitivity to not only experimentally adjusted environment humidity but also to the moisture content of breath and skin during daily activities. On top of all these, both sensors were fabricated over highly flexible fabric that offers high wearability, promising great application potential in the field of healthcare monitoring.
Collapse
Affiliation(s)
- Lexin Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jiajun Mao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
41
|
Lei M, Feng K, Ding S, Wang M, Dai Z, Liu R, Gao Y, Zhou Y, Xu Q, Zhou B. Breathable and Waterproof Electronic Skin with Three-Dimensional Architecture for Pressure and Strain Sensing in Nonoverlapping Mode. ACS NANO 2022; 16:12620-12634. [PMID: 35856940 DOI: 10.1021/acsnano.2c04188] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wearable sensors have recently attracted extensive interest not only in the field of healthcare monitoring but also for convenient and intelligent human-machine interactions. However, challenges such as wearable comfort, multiple applicable conditions, and differentiation of mechanical stimuli are yet to be fully addressed. Herein, we developed a breathable and waterproof electronic skin (E-skin) that can perceive pressure/strain with nonoverlapping signals. The synergistic effect from magnetic attraction and nanoscaled aggregation renders the E-skin with microscaled pores for breathability and three-dimensional microcilia for superhydrophobicity. Upon applied pressure, the bending of conductive microcilia enables sufficient contacts for resistance decrease, while the stretching causes increased resistance due to the separation of conductive materials. The optimized E-skin exhibits a high gauge factor of 7.747 for small strain (0-80%) and a detection limit down to 0.04%. The three-dimensional microcilia also exhibit a sensitivity of -0.0198 kPa-1 (0-3 kPa) and a broad detection range up to 200 kPa with robustness. The E-skin can reliably and precisely distinguish kinds of the human joint motions, covering a broad spectrum including bending, stretching, and pressure. With the nonoverlapping readouts, ternary inputs "1", "0", and "-1" could be produced with different stimuli, which expands the command capacity for logic outputs such as effective Morse code and intuitive robotic control. Owing to the rapid response, long-term stability (10 000 cycles), breathability, and superhydrophobicity, we believe that the E-skin can be widely applied as wearable devices from body motion monitoring to human-machine interactions toward a more convenient and intelligent future.
Collapse
Affiliation(s)
- Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Kai Feng
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Mingrui Wang
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ruolin Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen 518000, Guangdong, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
42
|
Liu L, Zhang X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. MICROMACHINES 2022; 13:1356. [PMID: 36014277 PMCID: PMC9412724 DOI: 10.3390/mi13081356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
As an important branch of wearable electronics, highly flexible and wearable sensors are gaining huge attention due to their emerging applications. In recent years, the participation of wearable devices in sports has revolutionized the way to capture the kinematical and physiological status of athletes. This review focuses on the rapid development of flexible and wearable sensor technologies for sports. We identify and discuss the indicators that reveal the performance and physical condition of players. The kinematical indicators are mentioned according to the relevant body parts, and the physiological indicators are classified into vital signs and metabolisms. Additionally, the available wearable devices and their significant applications in monitoring these kinematical and physiological parameters are described with emphasis. The potential challenges and prospects for the future developments of wearable sensors in sports are discussed comprehensively. This review paper will assist both athletic individuals and researchers to have a comprehensive glimpse of the wearable techniques applied in different sports.
Collapse
Affiliation(s)
- Lei Liu
- Department of Sports, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuefeng Zhang
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
43
|
Ullah H, Wahab MA, Will G, Karim MR, Pan T, Gao M, Lai D, Lin Y, Miraz MH. Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. BIOSENSORS 2022; 12:bios12080630. [PMID: 36005025 PMCID: PMC9406032 DOI: 10.3390/bios12080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 05/27/2023]
Abstract
Over the past several years, wearable electrophysiological sensors with stretchability have received significant research attention because of their capability to continuously monitor electrophysiological signals from the human body with minimal body motion artifacts, long-term tracking, and comfort for real-time health monitoring. Among the four different sensors, i.e., piezoresistive, piezoelectric, iontronic, and capacitive, capacitive sensors are the most advantageous owing to their reusability, high durability, device sterilization ability, and minimum leakage currents between the electrode and the body to reduce the health risk arising from any short circuit. This review focuses on the development of wearable, flexible capacitive sensors for monitoring electrophysiological conditions, including the electrode materials and configuration, the sensing mechanisms, and the fabrication strategies. In addition, several design strategies of flexible/stretchable electrodes, body-to-electrode signal transduction, and measurements have been critically evaluated. We have also highlighted the gaps and opportunities needed for enhancing the suitability and practical applicability of wearable capacitive sensors. Finally, the potential applications, research challenges, and future research directions on stretchable and wearable capacitive sensors are outlined in this review.
Collapse
Affiliation(s)
- Hadaate Ullah
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Md A. Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Geoffrey Will
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Mohammad R. Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dakun Lai
- Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mahdi H. Miraz
- School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia
- School of Computing, Faculty of Arts, Science and Technology, Wrexham Glyndŵr University, Wrexham LL112AW, UK
| |
Collapse
|
44
|
Yang Y, Cui T, Li D, Ji S, Chen Z, Shao W, Liu H, Ren TL. Breathable Electronic Skins for Daily Physiological Signal Monitoring. NANO-MICRO LETTERS 2022; 14:161. [PMID: 35943631 PMCID: PMC9362661 DOI: 10.1007/s40820-022-00911-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
With the aging of society and the increase in people's concern for personal health, long-term physiological signal monitoring in daily life is in demand. In recent years, electronic skin (e-skin) for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations. Among them, the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life. In this review, the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed. By dividing them into breathable e-skin electrodes, breathable e-skin sensors, and breathable e-skin systems, we sort out their design ideas, manufacturing processes, performances, and applications and show their advantages in long-term physiological signal monitoring in daily life. In addition, the development directions and challenges of the breathable e-skin are discussed and prospected.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tianrui Cui
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ding Li
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Shourui Ji
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhikang Chen
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wancheng Shao
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Houfang Liu
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
45
|
Zazoum B, Batoo KM, Khan MAA. Recent Advances in Flexible Sensors and Their Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4653. [PMID: 35746434 PMCID: PMC9228765 DOI: 10.3390/s22124653] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 05/03/2023]
Abstract
Flexible sensors are low cost, wearable, and lightweight, as well as having a simple structure as per the requirements of engineering applications. Furthermore, for many potential applications, such as human health monitoring, robotics, wearable electronics, and artificial intelligence, flexible sensors require high sensitivity and stretchability. Herein, this paper systematically summarizes the latest progress in the development of flexible sensors. The review briefly presents the state of the art in flexible sensors, including the materials involved, sensing mechanisms, manufacturing methods, and the latest development of flexible sensors in health monitoring and soft robotic applications. Moreover, this paper provides perspectives on the challenges in this field and the prospect of flexible sensors.
Collapse
Affiliation(s)
- Bouchaib Zazoum
- Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia;
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Azhar Ali Khan
- Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia;
| |
Collapse
|
46
|
Li Y, Jia J, Yu H, Wang S, Jin ZY, Zhang YH, Ma HZ, Zhang K, Ke K, Yin B, Yang MB. Macromolecule Relaxation Directed 3D Nanofiber Architecture in Stretchable Fibrous Mats for Wearable Multifunctional Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15678-15686. [PMID: 35321545 DOI: 10.1021/acsami.2c02090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elastomer fiber mat sensors, which are capable of perceiving mechanical stimuli, temperature, and vapor of chemicals, are highly desirable for designing wearable electronics and human-robot interfacing devices due to good wearability, skin affinity, and durability, and so on. However, it is still challenging to fabricate multiresponsive flexible wearable sensors with three-dimensional (3D) architecture using simple material and structure design. Herein, we report an all-in-one multiresponsive thermoplastic polyurethane (TPU) nanofiber mat sensors composed of crimped elastomer fibers with deposited platinum nanoparticles (PtNPs) on the fiber surface. The 1D TPU nanofibers could be transferred to nanofibers with different 3D nanofiber architectures by controllable macromolecular chain relaxation of aligned elastomer polymers upon poor solvent annealing. The conductive networks of PtNPs on wavy TPU fibers enable the sensor susceptible to multiple stimuli like strain/pressure, humidity, and organic vapors. Besides, the 3D nanofiber architectures allow the strain sensor to detect wider tensile strain and pressure with higher sensitivity due to delicate fiber morphology and structure control. Therefore, this work provides new insights into the fabrication of multifunctional flexible sensors with 3D architecture in an easy way, advancing the establishment of a multiple signal monitoring platform for the health care and human-machine interfacing.
Collapse
Affiliation(s)
- Yan Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Jin Jia
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Hua Yu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Shan Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Zhao-Yuan Jin
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Yu-Hao Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Hong-Zhi Ma
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Kai Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Bo Yin
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, PR China
| |
Collapse
|