1
|
Qi M, Zheng X, Tong H, Liu Y, Li D, Yan Z, Jiang D. Synergizing ruthenium oxide with bimetallic Co 2CrO 4 for highly efficient oxygen evolution reaction. J Colloid Interface Sci 2025; 677:548-556. [PMID: 39111090 DOI: 10.1016/j.jcis.2024.07.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 10/09/2024]
Abstract
Designing efficient and stable oxygen evolution reaction (OER) catalyst is the basis for the development of sustainable electrolytic water energy techniques. In this work, we presented a heterogeneous-structured electrocatalyst composed of bimetallic oxides-modified RuO2 nanosheets supported on nikel foam (Co2CrO4/RuO2) using a hybrid hydrothermal, ion-exchange and calcination method. The unique synergy and interfacial coupling between Co2CrO4/RuO2 heterostructures are favorable for optimizing the electronic configuration at this interface and strengthening the charge transport capacity, thus strengthening the catalytic activity of the Co2CrO4/RuO2 catalyst. The experimental data demonstrate that Cr leaching facilitates the rapid reconstruction of the catalyst into oxyhydroxides (CoOOH), which are acknowledged to be the real active species of OER. Theoretical calculations show that the Co2CrO4/RuO2 heterostructure increases the density state at the Fermi energy level and lowers the d-band center, thereby strengthening the catalytic activity. The synthesized Co2CrO4/RuO2 catalyst exhibited OER performance with an overpotential of 209 mV at 10 mA cm-2 and displayed a low Tafel slope of 78.2 mV dec-1, which outperforms most reported advanced alkaline OER catalysts. This work contributes to a new tactic for the design and development of ruthenium oxide/bimetallic oxides electrocatalysts.
Collapse
Affiliation(s)
- Mengyue Qi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huamei Tong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| | - Zaoxue Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Jesudass SC, Surendran S, Lim Y, Jo M, Janani G, Choi H, Kwon G, Jin K, Park H, Kim TH, Sim U. Realizing the Electrode Engineering Significance Through Porous Organic Framework Materials for High-Capacity Aqueous Zn-Alkaline Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406539. [PMID: 39506391 DOI: 10.1002/smll.202406539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Energy storage technologies are eminently developed to address renewable energy utilization efficiently. Porous framework materials possess high surface area and pore volume, allowing for efficient ion transportation and storage. Their unique structure facilitates fast electron transfer, leading to improved battery kinetics. Porous organic framework materials like metal-organic (MOF) and covalent organic (COF) frameworks have immense potential in enhancing the charge/discharge performances of aqueous Zn-alkaline batteries. Organic frameworks and their derivatives can be modified feasibly to exhibit significant chemical stability, enabling them to tolerate the harsh battery environment. Zn-alkaline batteries can achieve enhanced energy density, longer lifespan, and improved rechargeability by incorporating MOFs and COFs, such as electrodes, separators, or electrolyte additives, into the battery architecture. The present review highlights the significant electrode design strategies based on porous framework materials for aqueous Zn-alkaline batteries, such as Zn-Ni, Zn-Mn, Zn-air, and Zn-N2/NO3 batteries. Besides, the discussion on the issues faced by the Zn anode and the essential anode design strategies to solve the issues are also included.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Yoongu Lim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Minjun Jo
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Heechae Choi
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, 66045, USA
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Park
- Department of Materials Science and Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo, 58326, Republic of Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
3
|
Beglau THY, Fei Y, Janiak C. Microwave-Assisted Ultrafast Synthesis of Bimetallic Nickel-Cobalt Metal-Organic Frameworks for Application in the Oxygen Evolution Reaction. Chemistry 2024; 30:e202401644. [PMID: 38869378 DOI: 10.1002/chem.202401644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
Herein, a series of monometallic Ni-, Co- and Zn-MOFs and bimetallic NiCo-, NiZn- and CoZn-MOFs of formula M2(BDC)2DABCO and (M,M')2(BDC)2DABCO, respectively, (M, M'=metal) with the same pillar and layer linkers 1,4-diazabicyclo[2.2.2]octane (DABCO) and benzene-1,4-dicarboxylate (BDC) were prepared through a fast microwave-assisted thermal conversion synthesis method (MW) within only 12 min. In the bimetallic MOFs the ratio M:M' was 4 : 1. The mono- and bimetallic MOFs were selected to systematically explore the catalytic-activity of their derived metal oxide/hydroxides for the oxygen evolution reaction (OER). Among all tested bimetallic MOF-derived catalysts, the NiCoMOF exhibits superior catalytic activity for the OER with the lowest overpotentials of 301 mV and Tafel slopes of 42 mV dec-1 on a rotating disk glassy carbon electrode (RD-GCE) in 1 mol L-1 KOH electrolyte at a current density of 10 mA cm-2. In addition, NiCoMOF was insitu grown in just 25 min by the MW synthesis on the surface of nickel foam (NF) with, for example, a mass loading of 16.6 mgMOF/gNF, where overpotentials of 313 and 328 mV at current densities of 50 and 300 mA cm-2, respectively, were delivered and superior long-term stability for practical OER application. The low Tafel slope of 27 mV dec-1, as well as a low reaction resistance from electrochemical impedance spectroscopy (EIS) measurement (Rfar=2 Ω), confirm the excellent OER performance of this NiCoMOF/NF composite. During the electrocatalytic processes or even before upon KOH pre-treatment, the MOFs are transformed to the mixed-metal hydroxide phase α-/β-M(OH)2 which presents the active species in the reactions (turnover frequency TOF=0.252 s-1 at an overpotential of 320 mV). Compared to the TOF from β-M(OH)2 (0.002 s-1), our study demonstrates that a bimetallic MOF improves the electrocatalytic performance of the derived catalyst by giving an intimate and uniform mixture of the involved metals at the nanoscale.
Collapse
Affiliation(s)
- Thi Hai Yen Beglau
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Yanyan Fei
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| |
Collapse
|
4
|
Li J, Tian W, Li Q, Zhao S. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design. CHEMSUSCHEM 2024; 17:e202400239. [PMID: 38481084 DOI: 10.1002/cssc.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Water electrolysis driven by "green electricity" is an ideal technology to realize energy conversion and store renewable energy into hydrogen. With the development of proton exchange membrane (PEM), water electrolysis in acidic media suitable for many situations with an outstanding advantage of high gas purity has attracted significant attention. Compared with hydrogen evolution reaction (HER) in water electrolysis, oxygen evolution reaction (OER) is a kinetic sluggish process that needs a higher overpotential. Especially in acidic media, OER process poses higher requirements for the electrocatalysts, such as high efficiency, high stability and low costs. This review focuses on the acidic OER electrocatalysis, reaction mechanisms, and critical parameters used to evaluate performance. Especially the modification strategies applied in the design and construction of new-type electrocatalysts are also summarized. The characteristics of traditional noble metal-based electrocatalysts and the noble metal-free electrocatalysts developed in recent decades are compared and discussed. Finally, the current challenges for the most promising acidic OER electrocatalysts are presented, together with a perspective for future water electrolysis.
Collapse
Affiliation(s)
- Jiao Li
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
| | - Weichen Tian
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
5
|
Parreiras SO, Martín-Fuentes C, Moreno D, Mathialagan SK, Biswas K, Muñiz-Cano B, Lauwaet K, Valvidares M, Valbuena MA, Urgel JI, Gargiani P, Camarero J, Miranda R, Martínez JI, Gallego JM, Écija D. 2D Co-Directed Metal-Organic Networks Featuring Strong Antiferromagnetism and Perpendicular Anisotropy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309555. [PMID: 38155502 DOI: 10.1002/smll.202309555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Antiferromagnetic spintronics is a rapidly emerging field with the potential to revolutionize the way information is stored and processed. One of the key challenges in this field is the development of novel 2D antiferromagnetic materials. In this paper, the first on-surface synthesis of a Co-directed metal-organic network is reported in which the Co atoms are strongly antiferromagnetically coupled, while featuring a perpendicular magnetic anisotropy. This material is a promising candidate for future antiferromagnetic spintronic devices, as it combines the advantages of 2D and metal-organic chemistry with strong antiferromagnetic order and perpendicular magnetic anisotropy.
Collapse
Affiliation(s)
- Sofia O Parreiras
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
| | - Cristina Martín-Fuentes
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
| | - Daniel Moreno
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
| | | | - Kalyan Biswas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
| | - Beatriz Muñiz-Cano
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
| | - Koen Lauwaet
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
| | | | - Miguel A Valbuena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
| | - José I Urgel
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
- Unidad de Nanomateriales Avanzados, Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Unidad Asociada al CSIC por el ICMM, Madrid, 28049, Spain
| | | | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José I Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, 28049, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, 28049, Spain
| | - David Écija
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, 28049, Spain
- Unidad de Nanomateriales Avanzados, Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Unidad Asociada al CSIC por el ICMM, Madrid, 28049, Spain
| |
Collapse
|
6
|
Yang L, Ma J, Liu Y, Ma C, Yu X, Chen Z. Low platinum loading electrocatalyst supported on a carrier derived from carbon dots doped ZIF-67 for the ORR and zinc-air batteries. NANOSCALE 2024; 16:5433-5440. [PMID: 38385907 DOI: 10.1039/d3nr06245g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The development of economical and efficient platinum-based catalysts for the oxygen reduction reaction (ORR) is considered the most promising strategy for the widespread application of clean energy conversion devices. Herein, Co nanoparticles encapsulated in N-doped carbon carriers, CoCN(CDs-X), were constructed by pyrolyzing carbon dots (CDs) doped ZIF-67 and further used to anchor Pt to prepare low Pt loading catalysts, PtCoCN(CDs-X). The introduction of CDs not only improves the conductivity for efficient electron transfer, but also regulates the interaction between Pt and the CoCN(CDs-X) support and alleviates the oxidation of Pt. The optimized PtCoCN(CDs-0.10) displays decent ORR behavior with onset and half-wave potentials of 0.95 V and 0.83 V, respectively, in alkaline media and superior catalytic stability and methanol tolerance. While employing PtCoCN(CDs-0.10) as a cathode catalyst for an as-assembled zinc-air battery (ZAB), it delivers an excellent power density of 194.2 mW cm-2 and exceptional operation stability, which is indicated by a voltage efficiency loss of only 7.7% after a long cycle life of 100 h, demonstrating its great potential applications.
Collapse
Affiliation(s)
- Lijing Yang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Junhong Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Yuemei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Chaoyun Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Xue Yu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Zhaohui Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| |
Collapse
|
7
|
Beglau THY, Fetzer MNA, Boldog I, Heinen T, Suta M, Janiak C, Yücesan G. Exceptionally Stable And Super-Efficient Electrocatalysts Derived From Semiconducting Metal Phosphonate Frameworks. Chemistry 2024; 30:e202302765. [PMID: 37713258 DOI: 10.1002/chem.202302765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Two new isostructural semiconducting metal-phosphonate frameworks are reported. Co2 [1,4-NDPA] and Zn2 [1,4-NDPA] (1,4-NDPA4- is 1,4-naphthalenediphosphonate) have optical bandgaps of 1.7 eV and 2.5 eV, respectively. The electrocatalyst derived from Co2 [1,4-NPDA] as a precatalyst generated a low overpotential of 374 mV in the oxygen evolution reaction (OER) with a Tafel slope of 43 mV dec-1 at a current density of 10 mA cm-2 in alkaline electrolyte (1 mol L-1 KOH), which is indicative of remarkably superior reaction kinetics. Benchmarking of the OER of Co2 [1,4-NPDA] material as a precatalyst coupled with nickel foam (NF) showed exceptional long-term stability at a current density of 50 mA cm-2 for water splitting compared to the state-of-the-art Pt/C/RuO2 @NF after 30 h in 1 mol L-1 KOH. In order to further understand the OER mechanism, the transformation of Co2 [1,4-NPDA] into its electrocatalytically active species was investigated.
Collapse
Affiliation(s)
- Thi Hai Yen Beglau
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Marcus N A Fetzer
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Istvan Boldog
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Tobias Heinen
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Markus Suta
- Inorganic Photoactive Materials, Institute for Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Gündoğ Yücesan
- Institute of Inorganic and Structural Chemistry, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
8
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
9
|
Kuchipudi A, Das A, Bera K, Panda SK, Sreedhar G, Kundu S. Empowering the Water Oxidation Activity of the Bimetallic Metal-Organic Framework by Annexing Gold Nanoparticles over the Catalytic Surface. Inorg Chem 2023; 62:21265-21276. [PMID: 38073275 DOI: 10.1021/acs.inorgchem.3c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Electrocatalytic water splitting to an anodic oxygen evolution reaction (OER) and a cathodic hydrogen evolution reaction (HER) is believed to be the most important application for sustainable hydrogen generation. Being a four-electron, four-proton transfer process, the OER plays the main obstacle for the same. Therefore, designing an effective electrocatalyst to minimize the activation energy barrier for the OER is a research topic of prime importance. The metal-organic framework (MOF) with a highly porous network is considered an appropriate candidate for the OER in alkaline conditions. Apart from several MOFs, the bimetallic one has an advantageous electrocatalytic performance due to the synergistic electronic interaction between two metal ions. However, most bimetallic MOFs have an obstacle to electrocatalytic application due to their low conductive nature, and therefore, they possess a barrier for charge transfer kinetics at the interface. Surface functionalization via various nanoparticles (NPs) is believed to be the most effective strategy for nullifying the conductive issue. In this work, we have designed a CoNi-based bimetallic MOF that was surface-functionalized by Au NPs (Au@CoNi-Bpy-BTC) for the OER under alkaline conditions. Au@CoNi-Bpy-BTC required an overpotential of just 330 mV, which is 56 mV lower as compared to the pristine MOF. Impedance analysis confirms an improved conductivity and charge transfer at the interface, where Au@CoNi-Bpy-BTC possesses a lower Rct value than CoNi-Bpy-BTC materials. Moreover, the Au-decorated MOF shows an 8.5 times increase in the TOF value compared to the pristine MOF. Therefore, this noble strategy toward the surface functionalization of MOFs via noble metal NPs is believed to be the most effective strategy for developing effective electrocatalysts for electrocatalytic application in energy-related fields. Overall, this report displays an exceptional correlation between the decorated NPs over the MOF surface, which can regulate the OER activity, as confirmed by experimental analysis.
Collapse
Affiliation(s)
- Anup Kuchipudi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subhendu K Panda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Gosipathala Sreedhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
10
|
Li Y, Thomas B, Tang C, Asefa T. Enhancing the electrocatalytic activities of metal organic frameworks for the oxygen evolution reaction with bimetallic groups. Dalton Trans 2023; 52:17834-17845. [PMID: 37974478 DOI: 10.1039/d3dt02979d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Controlling the ratio of metals in bimetallic organic frameworks (MOFs) can not only alter the structures but also tailor the properties of MOFs. Herein, we report a series of electrocatalytically active CoxNiy-based bimetallic MOFs that are synthesized with the 3,5-pyridinedicarboxylic acid (3,5-H2pdc) ligand (where x : y = 20 : 1, 15 : 1, 10 : 1, 5 : 1, 1 : 1, and 1 : 20) and a facile, scalable, low temperature synthetic route. The materials have one-dimensional (1D), rod-like microstructures with different aspect ratios. While they all electrocatalyze the oxygen evolution reaction (OER) in alkaline solution (1 M KOH), their electrocatalytic performances vary substantially depending on their compositions. The CoxNiy-MOF with an optimal ratio of x : y = 15 : 1 (Co15Ni1-MOF) electrocatalyzes the OER with the highest maximum current density (92.2 mA cm-2 at 1.75 V vs. RHE) and the smallest overpotential (384 mV vs. RHE at 10 mA cm-2) in a 1 M KOH solution. It is also stable under constant current application during the electrocatalytic OER. This work demonstrates the application of bimetallic MOFs that are synthesized following a simple, low temperature synthetic route for the OER and their tailorable electrocatalytic properties for the OER by varying the ratio of two metals and the synthetic conditions used to produce them.
Collapse
Affiliation(s)
- Yumeng Li
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Belvin Thomas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA.
| | - Chaoyun Tang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA.
| | - Tewodros Asefa
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Yang Y, Lie WH, Unocic RR, Yuwono JA, Klingenhof M, Merzdorf T, Buchheister PW, Kroschel M, Walker A, Gallington LC, Thomsen L, Kumar PV, Strasser P, Scott JA, Bedford NM. Defect-Promoted Ni-Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305573. [PMID: 37734330 DOI: 10.1002/adma.202305573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts' deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FEFDCA ) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer-double hydroxides (UT-LDHs) is regulated by tuning the covalency of metal (M)-oxygen (O) motifs through defect site engineering and selection of M3+ co-chemistry. NiMn UT-LDHs show an ultrahigh FEFDCA of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FEFDCA of 92.7% in the OER-operating window at 1.52 V, about 2× that of NiFe UT-LDHs (49.5%) at 1.52 V. Ni-O and Mn-O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn-OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates.
Collapse
Affiliation(s)
- Yuwei Yang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - William Hadinata Lie
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Jodie A Yuwono
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Malte Klingenhof
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Thomas Merzdorf
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Paul Wolfgang Buchheister
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Matthias Kroschel
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Anne Walker
- US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD, 21010, USA
| | | | - Lars Thomsen
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, VIC, 3168, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jason A Scott
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Park JS, Seo BG, Koo J, Lim JH, Lee YS, Han GD, Prinz FB, Shim JH. High-Performance Hydroxide Exchange Membrane Fuel Cell Comprising an Atomic Layer-Deposited Silver Cathode. NANO LETTERS 2023; 23:7825-7830. [PMID: 37638642 DOI: 10.1021/acs.nanolett.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Atomic layer deposition (ALD) is emerging as an efficient tool for the precise manufacture of catalysts, owing to its sophisticated surface tailoring capabilities. To overcome the techno-economic limitations of fuel cell electric vehicles (FCEVs), which are considered suitable alternatives to battery electric vehicles (BEVs), the development of cost-efficient high-performance catalysts is essential. In this study, we successfully fabricated a Pt-free cathode for a hydroxide exchange membrane fuel cell (HEMFC) with excellent oxygen reduction activity under extremely low loading of Ag electrocatalysts using ALD. Microstructural analysis confirmed that the surface modification by ALD-Ag nanoparticles exhibited excellent step coverage characteristics on porous carbon nanotubes (CNTs). An HEMFC comprising a CNT cathode surface-decorated with ALD-Ag nanoparticles delivered a high peak power density of 2154 mW mgAg-1 in an alkaline environment at 65 °C. This study demonstrates the applicability of ALD for the manufacture of highly active low-cost electrocatalysts for high-performance HEMFCs.
Collapse
Affiliation(s)
- Jong Seon Park
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu Seoul 02841, Republic of Korea
| | - Beum Geun Seo
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu Seoul 02841, Republic of Korea
| | - Junmo Koo
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu Seoul 02841, Republic of Korea
| | - Jin Hyuk Lim
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu Seoul 02841, Republic of Korea
| | - Yong Seok Lee
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu Seoul 02841, Republic of Korea
| | - Gwon Deok Han
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford 94305, United States
| | - Fritz B Prinz
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford 94305, United States
| | - Joon Hyung Shim
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu Seoul 02841, Republic of Korea
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford 94305, United States
| |
Collapse
|
13
|
Ahmad BIZ, Keasler KT, Stacy EE, Meng S, Hicks TJ, Milner PJ. MOFganic Chemistry: Challenges and Opportunities for Metal-Organic Frameworks in Synthetic Organic Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4883-4896. [PMID: 38222037 PMCID: PMC10785605 DOI: 10.1021/acs.chemmater.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline solids constructed from organic linkers and inorganic nodes that have been widely studied for applications in gas storage, chemical separations, and drug delivery. Owing to their highly modular structures and tunable pore environments, we propose that MOFs have significant untapped potential as catalysts and reagents relevant to the synthesis of next-generation therapeutics. Herein, we outline the properties of MOFs that make them promising for applications in synthetic organic chemistry, including new reactivity and selectivity, enhanced robustness, and user-friendly preparation. In addition, we outline the challenges facing the field and propose new directions to maximize the utility of MOFs for drug synthesis. This perspective aims to bring together the organic and MOF communities to develop new heterogeneous platforms capable of achieving synthetic transformations that cannot be replicated by homogeneous systems.
Collapse
Affiliation(s)
- Bayu I. Z. Ahmad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Emily E. Stacy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Sijing Meng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Thomas J. Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
14
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
GadelHak Y, El-Azazy M, Shibl MF, Mahmoud RK. Cost estimation of synthesis and utilization of nano-adsorbents on the laboratory and industrial scales: A detailed review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162629. [PMID: 36889388 DOI: 10.1016/j.scitotenv.2023.162629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The recent regulations pertaining to the circular economy have unlocked new prospects for researchers. In contrast to the unsustainable models associated with the linear economy, integration of concepts of circular economy braces reducing, reusing, and recycling of waste materials into high-end products. In this regard, adsorption is a promising and cost-effective water treatment technology for handling conventional and emerging pollutants. Numerous studies are published annually to investigate the technical performance of nano-adsorbents and nanocomposites in terms of adsorption capacity and kinetics. Yet, economic performance evaluation is rarely discussed in the literature. Even if an adsorbent shows high removal efficiency towards a specific pollutant, its high preparation and/or utilization costs might hinder its real-life use. This tutorial review aims at illustrating cost estimation methods for the synthesis and utilization of conventional and nano-adsorbents. The current treatise discusses the synthesis of adsorbents on a laboratory scale where the raw material, transportation, chemical, energy, and any other costs are discussed. Moreover, equations for estimating the costs at the large-scale adsorption units for wastewater treatment are illustrated. This review focuses on introducing these topics to non-specialized readers in a detailed but simplified manner.
Collapse
Affiliation(s)
- Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar.
| | - Rehab K Mahmoud
- Chemistry Department. Faculty of Sciences, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
16
|
Nizamudeen C, Krishnapriya R, Mozumder MS, Mourad AHI, Ramachandran T. Photovoltaic performance of MOF-derived transition metal doped titania-based photoanodes for DSSCs. Sci Rep 2023; 13:6345. [PMID: 37072498 PMCID: PMC10113198 DOI: 10.1038/s41598-023-33565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The enduring effort toward stabilizing and improving the efficiency of dye-sensitized solar cells (DSSCs) has stirred the solar research community to follow innovative approaches. Current research centered on electrode materials design, which improves photoanodes' light-harvesting efficiency (LHE). Metal-Organic Frameworks (MOFs) are a new family of materials that can be used as competent materials due to their desirable qualities, including high porosity, flexible synthesis methodology, high thermal and chemical stability, and good light-harvesting capabilities. MOF-derived porous photoanodes can effectively adsorb dye molecules and improve LHE, resulting in high power conversion efficiency (PCE). Doping is a prospective methodology to tune the bandgap and broaden spectral absorption. Hence, a novel and cost-effective synthesis of high surface area transition metal (TM) doped TiO2 nanocrystals (NCs) via the metal-organic framework route for DSSCs is reported here. Among the TM dopants (i.e., Mn, Fe, Ni), a remarkable PCE of 7.03% was obtained for nickel-doped samples with increased Jsc (14.66 mA/cm2) due to the bandgap narrowing and porous morphology of TiO2. The findings were further confirmed using electrochemical impedance spectroscopy (EIS) and dye-desorption experiments. The present study expedites a promising way to enhance the LHE for many innovative optoelectronic devices.
Collapse
Affiliation(s)
- C Nizamudeen
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, 15551, Al Ain, United Arab Emirates
| | - R Krishnapriya
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, 15551, Al Ain, United Arab Emirates
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, Rajasthan, India
| | - M S Mozumder
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirate University, 15551, Al Ain, United Arab Emirates
| | - A-H I Mourad
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, 15551, Al Ain, United Arab Emirates.
- National Water and Energy Centre, United Arab Emirate University, 15551, Al Ain, United Arab Emirates.
- On Leave from Mechanical Design Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
| | - T Ramachandran
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, 15551, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Ali Akbari MS, Nandy S, Chae KH, Bikas R, Kozakiewicz-Piekarz A, Najafpour MM. Water Oxidation by a Copper(II) Complex with 6,6'-Dihydroxy-2,2'-Bipyridine Ligand: Challenges and an Alternative Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5542-5553. [PMID: 37029750 DOI: 10.1021/acs.langmuir.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, copper(II) complexes have been extensively investigated as oxygen-evolution reaction (OER) catalysts through a water-oxidation reaction. Herein, new findings regarding OER in the presence of a Cu(II) complex with 6,6'-dihydroxy-2,2'-bipyridine ligand are reported. Using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectroscopy, in situ visible microscopy, in situ visible spectroelectrochemistry, X-ray absorption spectroscopy, and electrochemistry, it is hypothesized that the film formed on the electrode's surface in the presence of this complex causes an appropriated matrix to produce Cu (hydr)oxide. The resulting Cu (hydr)oxide could be a candidate for OER catalysis. The formed film could form Cu (hydr)oxide and stabilize it. Thus, OER activity increases in the presence of this complex.
Collapse
Affiliation(s)
- Mohammad Saleh Ali Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
18
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
19
|
Alburaih HA, Manzoor S, Abdullah M, Ashiq MN, Aman S, Trukhanov SV, Zubar TI, Sun Z, Taha TA, Trukhanov AV. Electro-oxidation reconstitution of aluminium copper MOF-derived metal oxyhydroxides for a robust OER process. RSC Adv 2023; 13:8736-8742. [PMID: 36936821 PMCID: PMC10015629 DOI: 10.1039/d2ra07661f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023] Open
Abstract
It is common knowledge that the O2 evolution reaction (OER) is a crucial half-reaction in the electrolysis of water. However, it is currently difficult to create inexpensive OER electrode materials in a way that is efficient, simple, and environmentally friendly. In this research, metal oxy-hydroxides with numerous oxygen defects (M-OOHv) are created at surface of Cu foam (CF) using a unique, straightforward electro-oxidation reconstitution (ER) process. Different spectroscopic and microscopy methods are used to analyse the electrode characteristics of Al2Cu-MOF@M-OOHv-ER/CF; electrochemical measurements display a lower overpotential (η) of 366 mV @ 10 mA cm-2 and a Tafel slope of 95.2 mV dec-1 in 1.0 M KOH. X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Raman studies confirm the phase transition of the metal-organic framework (MOF) to the M-OOH, which acts as the active site to boost the OER activity. Through spectroscopic and microscopic investigations, it is determined that the efficiency of bimetallic electrode materials and oxygen vacancies in the M-OOHv have an impact on the electron power density. The manufactured electrode material additionally showed good durability for 50 hours. As a result, the newly developed Al2Cu-MOF@M-OOHv-ER/CF nanomaterial has greater potential for both electrolysis of water and other energy storage equipment.
Collapse
Affiliation(s)
- H A Alburaih
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - M Abdullah
- Department of Chemistry, Government College University Lahore Pakistan
| | - M N Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Salma Aman
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Sergei V Trukhanov
- Smart Sensors Laboratory, Department of Electronic Materials Technology, National University of Science and Technology MISiS Moscow 119049 Russia
- Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus Minsk 220072 Belarus
| | - Tatiana I Zubar
- Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus Minsk 220072 Belarus
| | - Zhipeng Sun
- School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center No.100 Waihuan Xi Road, Panyu District Guangzhou 510006 P. R. China
| | - T A Taha
- Physics Department, College of Science, Jouf University P.O. Box 2014 Sakaka Saudi Arabia
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University Menouf 32952 Egypt
| | - Alex V Trukhanov
- Smart Sensors Laboratory, Department of Electronic Materials Technology, National University of Science and Technology MISiS Moscow 119049 Russia
- Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus Minsk 220072 Belarus
| |
Collapse
|
20
|
Peng Y, Sanati S, Morsali A, García H. Metal-Organic Frameworks as Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202214707. [PMID: 36468543 DOI: 10.1002/anie.202214707] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Transition metal complexes are well-known homogeneous electrocatalysts. In this regard, metal-organic frameworks (MOFs) can be considered as an ensemble of transition metal complexes ordered in a periodic arrangement. In addition, MOFs have several additional positive structural features that make them suitable for electrocatalysis, including large surface area, high porosity, and high content of accessible transition metal with exchangeable coordination positions. The present review describes the current state in the use of MOFs as electrocatalysts, both as host of electroactive guests and their direct electrocatalytic activity, particularly in the case of bimetallic MOFs. The field of MOF-derived materials is purposely not covered, focusing on the direct use of MOFs or its composites as electrocatalysts. Special attention has been paid to present strategies to overcome their poor electrical conductivity and limited stability.
Collapse
Affiliation(s)
- Yong Peng
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße29a, 18059, Rostock, Germany
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Hermenegildo García
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
21
|
Lin C, He X, Tan Y, Wang S, Zou J, Yan C, Bi P, Ren G, Tian J. Accelerating Electrochemical Water Oxidation Activity by Tailoring Morphology and Electronic Structure of Nickel Organic Framework Nanoarrays with a Fe Etching Effect. Inorg Chem 2023; 62:2065-2072. [PMID: 36693004 DOI: 10.1021/acs.inorgchem.2c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fe-mediated nickel organic framework nanoarrays (NiFe-MOFs NAs) on carbon cloth were successfully constructed from ultrathin nanosheets via an etching effect. This strategy also combined the dissolution and coordination effect of acidic ligand (2,6-naphthalenedicarboxylic acid, NDC) to a self-sacrificial template of Ni(OH)2 NAs. Benefiting from the strong Fe etching effect, dense and thick brick-like Ni-NDC nanoplates were tailored into loose and ultrathin NiFe-NDC nanosheets with abundant squamous nanostructures, which were still tightly attached to carbon cloth. As a consequence, more coordinatively unsaturated metal sites (CUMSs) that served as active centers were exposed to accelerate oxygen production. Meanwhile, the electronic structure of active Ni centers was modulated by the incorporation of Fe atoms. The charge density redistribution between Ni and Fe ultimately optimized the energy barrier of the adsorption/desorption of oxygenated intermediates, promoting the kinetics for water oxidation.
Collapse
Affiliation(s)
- Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Xiao He
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Ye Tan
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Shan Wang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Junjie Zou
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Chunpei Yan
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Peiyan Bi
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Guangyuan Ren
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Jingyang Tian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
22
|
Wang C, Zhai P, Xia M, Liu W, Gao J, Sun L, Hou J. Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209307. [PMID: 36408935 DOI: 10.1002/adma.202209307] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The regulation of atomic and electronic structures of active sites plays an important role in the rational design of oxygen evolution reaction (OER) catalysts toward electrocatalytic hydrogen generation. However, the precise identification of the active sites for surface reconstruction behavior during OER remains elusive for water-alkali electrolysis. Herein, irreversible reconstruction behavior accompanied by copper dynamic evolution for cobalt iron layered double hydroxide (CoFe LDH) precatalyst to form CoFeCuOOH active species with high-valent Co species is reported, identifying the origin of reconstructed active sites through operando UV-Visible (UV-vis), in situ Raman, and X-ray absorption fine-structure (XAFS) spectroscopies. Density functional theory analysis rationalizes this typical electronic structure evolution causing the transfer of intramolecular electrons to form ligand holes, promoting the reconstruction of active sites. Specifically, unambiguous identification of active sites for CoFeCuOOH is explored by in situ 18 O isotope-labeling differential electrochemical mass spectrometry (DEMS) and supported by theoretical calculation, confirming mechanism switch to oxygen-vacancy-site mechanism (OVSM) pathway on lattice oxygen. This work enables to elucidate the vital role of dynamic active-site generation and the representative contribution of OVSM pathway for efficient OER performance.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingyue Xia
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
23
|
Metal–organic framework-based electrocatalysts for acidic oxygen evolution reaction. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
24
|
Han X, Yang S, Schröder M. Metal-Organic Framework Materials for Production and Distribution of Ammonia. J Am Chem Soc 2023; 145:1998-2012. [PMID: 36689628 PMCID: PMC9896564 DOI: 10.1021/jacs.2c06216] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The efficient production of ammonia (NH3) from dinitrogen (N2) and water (H2O) using renewable energy is an important step on the roadmap to the ammonia economy. The productivity of this conversion hinges on the design and development of new active catalysts. In the wide scope of materials that have been examined as catalysts for the photo- and electro-driven reduction of N2 to NH3, functional metal-organic framework (MOF) catalysts exhibit unique properties and appealing features. By elucidating their structural and spectroscopic properties and linking this to the observed activity of MOF-based catalysts, valuable information can be gathered to inspire new generations of advanced catalysts to produce green NH3. NH3 is also a surrogate for the hydrogen (H2) economy, and the potential application of MOFs for the practical and effective capture, safe storage, and transport of NH3 is also discussed. This Perspective analyzes the contribution that MOFs can make toward the ammonia economy.
Collapse
|
25
|
Kim M, Yi J, Park SH, Park SS. Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203791. [PMID: 35853171 DOI: 10.1002/adma.202203791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical conversion of small molecules, such as CO2 , O2 , and H2 O, has received significant attention as a potential engine for sustainable life. Metal-organic frameworks (MOFs) are a promising class of electrocatalytic materials for such processes. An attractive aspect of utilizing this class of materials as electrocatalysts is that well-known molecular active sites can be introduced to well-defined crystalline heterogeneous catalytic systems with high tunability. This review offers strategic insights into recent studies on MOF-based electrocatalysts by discussing the notable active sites that have been utilized in both homogeneous and heterogeneous catalysts, while highlighting instances where such active sites have been introduced into MOFs. In addition, material design principles enabling the integration of electrochemically active components with the MOF platform are outlined. Viewpoints on the viability of MOFs as an alternative to currently used electrocatalysts are also discussed. Finally, the future direction of MOF-based electrocatalysis research is established.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Yi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seong-Hyeon Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sarah S Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
26
|
Niu L, Wu T, Chen M, Yang L, Yang J, Wang Z, Kornyshev AA, Jiang H, Bi S, Feng G. Conductive Metal-Organic Frameworks for Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200999. [PMID: 35358341 DOI: 10.1002/adma.202200999] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Indexed: 05/13/2023]
Abstract
As a class of porous materials with crystal lattices, metal-organic frameworks (MOFs), featuring outstanding specific surface area, tunable functionality, and versatile structures, have attracted huge attention in the past two decades. Since the first conductive MOF is successfully synthesized in 2009, considerable progress has been achieved for the development of conductive MOFs, allowing their use in diverse applications for electrochemical energy storage. Among those applications, supercapacitors have received great interest because of their high power density, fast charging ability, and excellent cycling stability. Here, the efforts hitherto devoted to the synthesis and design of conductive MOFs and their auspicious capacitive performance are summarized. Using conductive MOFs as a unique platform medium, the electronic and molecular aspects of the energy storage mechanism in supercapacitors with MOF electrodes are discussed, highlighting the advantages and limitations to inspire new ideas for the development of conductive MOFs for supercapacitors.
Collapse
Affiliation(s)
- Liang Niu
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Taizheng Wu
- Department of New Energy Science and Engineering and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Chen
- Department of New Energy Science and Engineering and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Yang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingjing Yang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxiang Wang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College London and Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Huili Jiang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sheng Bi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, Paris, F-75005, France
| | - Guang Feng
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
27
|
Li FM, Huang L, Zaman S, Guo W, Liu H, Guo X, Xia BY. Corrosion Chemistry of Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200840. [PMID: 35334145 DOI: 10.1002/adma.202200840] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.
Collapse
Affiliation(s)
- Fu-Min Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Hongfang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
28
|
Xu C, Yuan B, Liu D. Editorial: Materials for electroanalysis and electrocatalysis based on advanced frameworks. Front Chem 2022; 10:1091608. [DOI: 10.3389/fchem.2022.1091608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
|
29
|
Fan C, Zhang X, Guo F, Xing Z, Wang J, Lin W, Tan J, Huang G, Zong Z. Design of five two-dimensional Co-metal-organic frameworks for oxygen evolution reaction and dye degradation properties. Front Chem 2022; 10:1044313. [DOI: 10.3389/fchem.2022.1044313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) have been extensively investigated as oxygen evolution reaction (OER) materials because of their numerous advantages such as large specific surface areas, ultrathin thicknesses, well-defined active metal centers, and adjustable pore structures. Five Co-metal-organic frameworks, namely, [Co(L) (4.4′-bbidpe)H2O]n [YMUN 1 (YMUN for Youjiang Medical University for Nationalities)], {[Co2(L)2 (4.4′-bbibp)2]·[Co3(L) (4.4′-bbibp)]·DMAC}n (YMUN 2), [Co(L) (3,5-bip)]n (YMUN 3), [Co(L) (1,4-bimb)]n (YMUN 4), and [Co(L) (4.4′-bidpe)H2O]n (YMUN 5), were designed and fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H2L) and rigid/flexible imidazole ligands. Their frameworks consist of two-dimensional lamellar networks with a number of differences in their details. Their frameworks are discussed and compared, and their oxygen evolution reaction electrochemical activities and photocatalysis dye degradation properties are investigated.
Collapse
|
30
|
|
31
|
Liu Y, Wang Y, Zhao S, Tang Z. Metal-Organic Framework-Based Nanomaterials for Electrocatalytic Oxygen Evolution. SMALL METHODS 2022; 6:e2200773. [PMID: 36050891 DOI: 10.1002/smtd.202200773] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Oxygen evolution reaction (OER) is an energy-determined half-reaction for water splitting and many other energy conversion processes, such as rechargeable metal-air batteries and CO2 reduction, due to its four-electron sluggish process. To reduce the energy consumption and cost of these advanced technologies, various transition metal-based nanomaterials, like metal oxides/hydroxides, nitride, and phosphide are synthesized. Among these, metal-organic framework (MOF)-based materials are considered as the ideal candidate for the fabrication of efficient OER electrocatalysts owing to their unique physicochemical properties. In this review, the fundamental catalytic mechanisms and key evaluation parameters of OER in acidic and alkaline media are presented first. Then, design strategies for MOF-based OER catalysts and research progress in the study of the structure-performance relationship are summarized. Subsequently, the recent research advances of MOF-based OER electrocatalysts in alkaline, acidic, and neutral electrolytes are overviewed. Finally, current challenges and future opportunities are provided under the frame of materials design, theoretical understanding, advanced characterization techniques, and industrial applications.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yihan Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
32
|
Tan Y, Lin C, He X, Zou J, Yan C, Tian J. Introducing a Synergistic Ligand Containing an Exotic Metal in Metal-Organic Framework Nanoarrays Enabling Superior Electrocatalytic Water Oxidation Performance. Inorg Chem 2022; 61:11432-11441. [PMID: 35834636 DOI: 10.1021/acs.inorgchem.2c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing and fabricating well-aligned metal-organic framework nanoarrays (MOF NAs) with high electrocatalytic activity and durability for water oxidation at large current density remain huge challenges. Here the vertical NiFc-MOF NAs constructed from agaric-like nanosheets were fabricated by introducing a ligand containing an exotic Fe atom to coordinate with Ni ion using Ni(OH)2 NAs as a self-sacrificing template. The NiFc-MOF NAs exhibited superior water oxidation performance with a very low overpotential of 161 mV at the current density of 10 mA cm-2. Chronoamperometry was tested at an overpotential of 250 mV, which delivered an initial industrial-grade current density of 702 mA cm-2 and still remained at 694 mA cm-2 after 24 h. Furthermore, it possessed fast reaction kinetics with a small Tafel slope of 29.5 mV dec-1. The superior electrocatalytic performance can be ascribed to the structural advantage of vertically grown agaric-like NAs and the synergistic electron coupling between Ni and Fe atoms, namely, electron transfer from Ni to Fe atoms in NiFc-MOF NAs. The exposed density and valence state of active Ni sites were synchronously increased. Furthermore, the energy barrier for the adsorption/desorption of oxygenated intermediates was ultimately optimized for water oxidation. This work provides a novelty orientation to accelerate electrocatalytic performance of MOF NAs by introducing self-sacrificing templates containing one metal and synergistic ligand containing dissimilar metal.
Collapse
Affiliation(s)
- Ye Tan
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Xiao He
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Junjie Zou
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Chunpei Yan
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Jingyang Tian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
33
|
Wu Y, Zhao Y, Zhai P, Wang C, Gao J, Sun L, Hou J. Triggering Lattice Oxygen Activation of Single-Atomic Mo Sites Anchored on Ni-Fe Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202523. [PMID: 35577533 DOI: 10.1002/adma.202202523] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Tuning the reactivity of lattice oxygen is of significance for lowering the energy barriers and accelerating the oxygen evolution reaction (OER). Herein, single-atomic Mo sites are anchored on Ni-Fe oxyhydroxide nanoarrays by a facile metal-organic-framework-derived strategy, exhibiting superior performance toward the OER in alkaline media. In situ electrochemical spectroscopy and isotope-labeling experiments reveal the involvement of lattice oxygen during OER cycles. Combining theoretical and experimental investigations of the electronic configuration, it is comprehensively confirmed that the incorporation of single-atomic Mo sites enables higher oxidation state of the metal and strengthened metal-oxygen hybridization, as well as the formation of oxidized ligand holes above the Fermi level. In a word, the considerable acceleration of water oxidation is achieved via enhancing the reactivity of lattice oxygen and triggering the lattice oxygen activation. This work may provide new insights for designing ideal electrocatalysts via tuning the chemical state and activating the anions ligands.
Collapse
Affiliation(s)
- Yunzhen Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuanyuan Zhao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
34
|
Riesgo-Gonzalez V, Bhattacharjee S, Dong X, Hall DS, Andrei V, Bond AD, Grey CP, Reisner E, Wright DS. Single-Source Deposition of Mixed-Metal Oxide Films Containing Zirconium and 3d Transition Metals for (Photo)electrocatalytic Water Oxidation. Inorg Chem 2022; 61:6223-6233. [PMID: 35412823 PMCID: PMC9098167 DOI: 10.1021/acs.inorgchem.2c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fabrication of mixed-metal oxide films holds promise for the development of practical photoelectrochemical catalyst coatings but currently presents challenges in terms of homogeneity, cost, and scalability. We report a straightforward and versatile approach to produce catalytically active zirconium-based films for electrochemical and photoelectrochemical water oxidation. The mixed-metal oxide catalyst films are derived from novel single-source precursor oxide cage compounds containing Zr with first-row transition metals such as Co, Fe, and Cu. The Zr-based film doped with Co on fluorine-doped tin oxide (FTO)-coated glass exhibits the highest electrocatalytic O2 evolution performance in an alkaline medium and an operational stability above 18 h. The deposition of this film onto a BiVO4 photoanode significantly enhances its photoelectrochemical activity toward solar water oxidation, lowering the onset potential by 0.12-0.21 V vs reversible hydrogen electrode (RHE) and improving the maximum photocurrent density by ∼50% to 2.41 mA cm-2 for the CoZr-coated BiVO4 photoanodes compared to that for bare BiVO4.
Collapse
Affiliation(s)
- Victor Riesgo-Gonzalez
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Subhajit Bhattacharjee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Xinsheng Dong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - David S Hall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dominic S Wright
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| |
Collapse
|
35
|
Zhang L, Wang Z, Qiu J. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109321. [PMID: 35150022 DOI: 10.1002/adma.202109321] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Electrolysis of costless and infinite seawater is a promising way toward grid-scale hydrogen production without causing freshwater stress. Practical potential of this technology, however, is hindered by low energy efficiency and anode corrosion by the detrimental chlorine chemistry in seawater in addition to unaffordable electricity expense. Herein, energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling sulfion oxidation. It yields hydrogen at a low cell voltage of 0.97 V, cutting the electricity consumption to 2.32 kWh per m3 H2 at 300 mA cm-2 . Compared to alkaline water electrolysis, the energy expense is primarily saved by 60% with 50% lower energy equivalent input. Benefiting from the ultralow cell voltage, the hazardous chlorine chemistry is fully avoided without anode corrosion regardless of Cl- crossover. Meanwhile, it also allows fast degradation of S2- pollutant from the water body to value-added sulfur with 80% efficiency, for further reducing hydrogen cost and protection of the ecosystem. Connecting such a hybrid seawater electrolyzer to a commercial solar cell can harvest the hydrogen from seawater with better sustainability. This work may offer new opportunities for low-cost hydrogen production from the unlimited ocean resources with environmental protection.
Collapse
Affiliation(s)
- Liuyang Zhang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Zhiyu Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
36
|
Salmanion M, Nandy S, Chae KH, Najafpour MM. Further Insight into the Conversion of a Ni-Fe Metal-Organic Framework during Water-Oxidation Reaction. Inorg Chem 2022; 61:5112-5123. [PMID: 35297622 DOI: 10.1021/acs.inorgchem.2c00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal-organic frameworks (MOFs) are extensively investigated as catalysts in the oxygen-evolution reaction (OER). A Ni-Fe MOF with 2,5-dihydroxy terephthalate as a linker has been claimed to be among the most efficient catalysts for the oxygen-evolution reaction (OER) under alkaline conditions. Herein, the MOF stability under the OER was reinvestigated by electrochemical methods, X-ray diffraction, X-ray absorption spectroscopy, energy-dispersive spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy, nuclear magnetic resonance, operando visible spectroscopy, electrospray ionization mass spectroscopy, and Raman spectroscopy. The peaks corresponding to the carboxylate group are observed at 1420 and 1520 cm-1 using Raman spectroscopy. The peaks disappear after the reaction, suggesting the removal of the carboxylate group. A drop in carbon content but growth in oxygen content after the OER was detected by energy-dispersive spectra. This shows that after the OER, the surface of MOF is oxidized. SEM images also show deep restructures in the surface morphology of this Ni-Fe MOF after the OER. Nuclear magnetic resonance and electrospray ionization mass spectrometry show the decomposition of the linker in alkaline conditions and even in the absence of potential. These experimental data indicate that during the OER, the synthesized MOF transforms to a Fe-Ni-layered double hydroxide, and the formed metal oxide is a candidate for the OER catalysis. Generalization is not true; however, taken together, these findings suggest that the stability of Ni-Fe MOFs under harsh oxidation conditions should be reconsidered.
Collapse
Affiliation(s)
- Mahya Salmanion
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
37
|
Hu J, Qin Y, Sun H, Ma Y, Lin L, Peng Y, Zhong J, Chen M, Zhao X, Deng Z. Combining Multivariate Electrospinning with Surface MOF Functionalization to Construct Tunable Active Sites toward Trifunctional Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106260. [PMID: 34913578 DOI: 10.1002/smll.202106260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The development of high-performance multifunctional electrocatalysts operating in the same electrolyte is key to reduce the material and process costs of renewable energy conversion and storage devices. Herein, the fabrication of freestanding integral electrodes by combining multivariate electrospinning with surface metal organic framework functionalization to arrest pyrolytic emissions from fiber interior is reported, resulting in the expression of rich active sites with controlled composition, for example, the tunable Co-P coordination. The as-fabricated electrode of CoP@CF-900, when used as both the cathode and anode for overall water splitting, is able to deliver 200 mA cm-2 at a cell voltage of 1.89 V, significantly outshining the Pt/C‖RuO2 couple; when used as the air cathode for a zinc-air battery, is able to operate more than 150 h at 10 mA cm-2 with a nearly constant round-trip energy efficiency of ≈60%, also outperforming the Pt/C+RuO2 benchmark. The activity and kinetics origin of the superb multi-functionality is further elucidated through extensive electroanalytical, post-mortem, and operando characterizations, which underscore the construction of robust integral electrodes through synergistic structure and composition engineering.
Collapse
Affiliation(s)
- Jiapeng Hu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Yongze Qin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Hao Sun
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Yong Ma
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Ling Lin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Muzi Chen
- Analysis and Testing Center, Soochow University, Suzhou, 215123, China
| | - Xiaohui Zhao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| |
Collapse
|
38
|
Wang Y, Wang S, Ma ZL, Yan LT, Zhao XB, Xue YY, Huo JM, Yuan X, Li SN, Zhai QG. Competitive Coordination-Oriented Monodispersed Ruthenium Sites in Conductive MOF/LDH Hetero-Nanotree Catalysts for Efficient Overall Water Splitting in Alkaline Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107488. [PMID: 35014086 DOI: 10.1002/adma.202107488] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Rational exploration of efficient, inexpensive, and robust electrocatalysts is critical for the efficient water splitting. Conjugated conductive metal-organic frameworks (cMOFs) with multicomponent layered double hydroxides (LDHs) to construct bifunctional heterostructure catalysts are considered as an efficient but complicated strategy. Here, the fabrication of a cMOF/LDH hetero-nanotree array catalyst (CoNiRu-NT) coupled with monodispersed ruthenium (Ru) sites via a controllable grafted-growth strategy is reported. Rich-amino hexaiminotriphenylene linkers coordinate with the LDH nanotrunk to form cMOF nanobranches, providing numerous anchoring sites to precisely confine and stabilize RuN4 sites. Moreover, monodispersed and reduced Ru moieties facilitate H2 O adsorption and dissociation, and the heterointerface between the cMOF and the LDH further modifies the chemical and electronic structures. Optimized CoNiRu-NT displays a significant increase in electrochemical water-splitting properties in alkaline media, affording low overpotentials of 22 mV at 10 mA cm-2 and 255 mV at 20 mA cm-2 for the hydrogen evolution reaction and oxygen evolution reaction, respectively. In an actual electrochemical system, CoNiRu-NT drives an overall water splitting at a low cell voltage of 1.47 V to reach 10 mA cm-2 . This performance is comparable to that of pure noble-metal-based materials and superior to most reported MOF-based catalysts.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Shuo Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Ze-Lin Ma
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Li-Ting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, China
| | - Xue-Bo Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan, 250353, China
| | - Ying-Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Jia-Min Huo
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Xiao Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
39
|
Yang D, Zuo S, Yang H, Zhou Y, Lu Q, Wang X. Tailoring Layer Number of 2D Porphyrin-Based MOFs Towards Photocoupled Electroreduction of CO 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107293. [PMID: 34859512 DOI: 10.1002/adma.202107293] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Inspired by the success of graphene, a series of single- or few-layer 2D materials have been developed and applied in the past decade. Here, the successful preparation of monolayer and bilayer 2D porphyrin-based metal-organic frameworks (MOFs) by a facile solvothermal method is reported. The structure transition from monolayer to bilayer drives distinct electronic properties and restructuring behaviors, which finally results in distinct catalytic pathways towards CO2 electrocatalysis. The monolayer favors CO2 -to-C2 pathway due to the restructuring of CuO4 sites, while CO and HCOO- are the major products over the bilayer. In photocoupled electrocatalysis, the Faradaic efficiency (FE) of the C2 compounds shows a nearly fourfold increase on the monolayer than that under dark conditions (FEC2 increases from 11.9% to 41.1% at -1.4 V). For comparison, the light field plays a negligible effect on the bilayer. The light-induced selectivity optimization is investigated by experimental characterization and density functional theory (DFT) calculations. This work opens up a novel possibility to tune the selectivity of carbon products just by tailoring the layer number of the 2D material.
Collapse
Affiliation(s)
- Deren Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shouwei Zuo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haozhou Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yue Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qichen Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Wu J, Yu Z, Zhang Y, Niu S, Zhao J, Li S, Xu P. Understanding the Effect of Second Metal on CoM (M = Ni, Cu, Zn) Metal-Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105150. [PMID: 34713572 DOI: 10.1002/smll.202105150] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Co-based bimetallic metal-organic frameworks (MOFs) have emerged as a kind of promising electrocatalyst for oxygen evolution reaction (OER). However, most of present works for Co-based bimetallic MOFs are still in try-and-wrong stage, while the OER performance trend and the underlying structure-function relationship remain unclear. To address this challenge, Co-based MOFs on carbon cloth (CC) (CoM MOFs/CC, M = Zn, Ni, and Cu) are prepared through a room-temperature method, and their structure and OER performance are compared systematically. Based on the results of overpotential and Tafel slope, the order of OER activity is ordered in the decreasing sequence: CoZn MOF > CoNi MOF > CoCu MOF > Co MOF. Spectroscopic studies clearly show that the better OER performance of CoM MOFs results from the higher oxidation state of Co, which is related to the choice of second metal. Theoretical calculations indicate that CoZn MOFs possess strengthened adsorption for O-containing intermediate, and lower energy barrier towards OER. This study figures out the effect of second metal on the OER performance of Co-based bimetallic MOFs and suggests that tuning the electronic structure of the metal site can be an effective strategy for other MOFs-based OER catalysts.
Collapse
Affiliation(s)
- Jie Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenjiang Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Siqi Niu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianying Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|