1
|
Skirda AM, Orlov AV, Malkerov JA, Znoyko SL, Rakitina AS, Nikitin PI. Enhanced Analytical Performance in CYFRA 21-1 Detection Using Lateral Flow Assay with Magnetic Bioconjugates: Integration and Comparison of Magnetic and Optical Registration. BIOSENSORS 2024; 14:607. [PMID: 39727872 DOI: 10.3390/bios14120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique. For the first time in LFA applications, the MPQ-based and colorimetry-based detection methods were compared side by side, and superior analytical performance was demonstrated. The limit of detection (LOD) of 0.9 pg/mL was achieved using MPQ, and 2.9 pg/mL with optical detection. This study has demonstrated that MPQ provides elimination of signal saturation, higher sensitivity (slope of the calibration curve), and a 19-fold wider dynamic range of detected signals. Both optical and magnetic detection results are comparable to the best laboratory-based tests with the added benefits of a 20-min assay duration and the LFA format convenience. The assay effectiveness was validated in human serum and artificial saliva, and high recovery rates were observed. The proposed approach offers rapid and reliable detection of molecular biomarkers and holds significant potential for point-of-care diagnostics, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Juri A Malkerov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Alexandra S Rakitina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
2
|
Hendrickson OD, Byzova NA, Panferov VG, Zvereva EA, Xing S, Zherdev AV, Liu J, Lei H, Dzantiev BB. Ultrasensitive Lateral Flow Immunoassay of Fluoroquinolone Antibiotic Gatifloxacin Using Au@Ag Nanoparticles as a Signal-Enhancing Label. BIOSENSORS 2024; 14:598. [PMID: 39727863 DOI: 10.3390/bios14120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed. GAT-specific monoclonal antibodies and labeled anti-species antibodies were used in the LFIA. Bimetallic core@shell Au@Ag nanoparticles (Au@Ag NPs) were synthesized as a new label. Peroxidase-mimic properties of Au@Ag NPs allowed for the catalytic enhancement of the signal on test strips, increasing the assay sensitivity. A mechanism of Au@Ag NPs-mediated catalysis was deduced. Signal amplification was achieved through the oxidative etching of Au@Ag NPs by hydrogen peroxide. This resulted in the formation of gold nanoparticles and Ag+ ions, which catalyzed the oxidation of the peroxidase substrate. Such "chemical enhancement" allowed for reaching the instrumental limit of detection (LOD, calculated by Three Sigma approach) and cutoff of 0.8 and 20 pg/mL, respectively. The enhanced assay procedure can be completed in 21 min. The enhanced LFIA was tested for GAT detection in raw meat samples, and the recoveries from meat were 78.1-114.8%. This method can be recommended as a promising instrument for the sensitive detection of various toxicants.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Vasily G Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, ON N2L 3G1, Canada
| | - Elena A Zvereva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Shen Xing
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, ON N2L 3G1, Canada
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
3
|
Ji T, Wang W, Wang L, Gao Y, Wang Y, Gao X. Development and application of a rapid visual detection technique for VanA gene in vancomycin-resistant Enterococcus faecium. mSphere 2024; 9:e0066624. [PMID: 39254311 PMCID: PMC11520281 DOI: 10.1128/msphere.00666-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The objective of this study was to establish a rapid visual diagnosis method for vancomycin-resistant Enterococcus faecium (VREFm) based on multienzyme isothermal rapid amplification (MIRA) combined with lateral flow strips (LFSs). The MIRA primers and probes were specifically designed to maintain the sequence of the VanA gene of VREFm. We optimized the reaction time and temperature and thoroughly assessed the specificity and sensitivity of the MIRA-LFS system. We also compared the MIRA-LFS method with the polymerase chain reaction (PCR) assay and the disc diffusion method. We then evaluated the MIRA-LFS assay for consistency testing and clinical application. The MIRA-LFS technique completed the amplification process within 30 min, and the results were observed on LFS. The method demonstrated high sensitivity, with a minimum detection limit of 1.066 CFU/µL for VREFm and exhibited specificity without cross-reactivity with other pathogenic bacteria. When applied to the detection of clinical samples, the method exhibited consistency with the PCR and agar dilution methods. The combined use of MIRA and LFS in this study facilitates simplifying the workflow for detecting VREFm, which is of great significance for rapidly detecting the enterococcal infections and preventing and controlling the nosocomial infections. IMPORTANCE One of the key approaches to treating and controlling vancomycin-resistant Enterococcus faecium (VREFm) is an accurate and rapid diagnosis. To achieve this goal, a simple and rapid method must be constructed for immediate detection in the field. Multienzyme isothermal rapid amplification (MIRA) is an isothermal rapid amplification method that allows amplification reactions to be completed under room temperature conditions. When combined with lateral flow strips (LFSs), MIRA-LFS enables the rapid detection of pathogenic microorganisms. However, the MIRA method often produces false signals. These false signals are eliminated by using base mismatches introduced in primers and probes. The MIRA-LFS system was constructed with high specificity and sensitivity for the detection of VREfm, without the limitation of sophisticated instruments. This enables the prompt formulation of diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Tuo Ji
- Institute of Clinical Oncology, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Wenjun Wang
- Institute of Clinical Oncology, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Li Wang
- Institute of Clinical Oncology, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yuzhi Gao
- Institute of Clinical Oncology, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Institute of Clinical Oncology, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Xuzhu Gao
- Institute of Clinical Oncology, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| |
Collapse
|
4
|
Barshevskaya LV, Sotnikov DV, Zvereva EA, Dzantiev BB, Zherdev AV. Comparative Characteristics of Immunochromatographic Test Systems for Tylosin Antibiotic in Meat Products. SENSORS (BASEL, SWITZERLAND) 2024; 24:6865. [PMID: 39517762 PMCID: PMC11548405 DOI: 10.3390/s24216865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Tylosin (TYL) is a macrolide antibiotic widely used in animal husbandry. Due to associated health risks, there is a demand for sensitive methods for mass screening of TYL in products of animal origin. This article describes the development of lateral flow immunoassays (LFIAs) for TYL detection using direct (anti-TYL antibodies conjugated with nanoparticles) and indirect antibody labeling (anti-species antibodies conjugated with nanoparticles and combined with native anti-TYL antibodies). The choice of LFIA conditions, such as concentrations of hapten-protein conjugates, specific antibodies, and gold nanoparticle (GNP) conjugates with antibodies, as well as incubation time of reagents and the concentration of detergent in the sample buffer, is presented. The achieved limits of TYL detection using LFIAs with indirect labeling were 0.8 ng/mL (visual) and 0.07 ng/mL (instrumental), compared to 4 ng/mL (visual) and 0.4 ng/mL (instrumental) for the case of direct labeling. The sensitivity of the LFIA using the indirect format was up to seven times higher, allowing the determination of the target analyte at low concentrations. TYL detection in ground meat using LFIA with indirect antibody labeling ranged from 76-119%.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (L.V.B.); (D.V.S.); (E.A.Z.); (A.V.Z.)
| | | |
Collapse
|
5
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
6
|
Dias M, Zhang R, Lammers T, Pallares RM. Clinical translation and landscape of silver nanoparticles. Drug Deliv Transl Res 2024:10.1007/s13346-024-01716-5. [PMID: 39377875 DOI: 10.1007/s13346-024-01716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Despite being clinically used for over a century, the benefits of silver nanoparticles are perennially under debate and dispute. In the last two decades, a revived interest in their therapeutic applications has resulted in a few new formulations transitioning into clinical trials. These metal nanomedicines are used in concrete applications that are defined by the physicochemical and biological features of the silver nanoconstructs, as well as their biodistribution profiles. Examples of these applications are topical antibacterial and antiviral therapies and wound healing, as these avoid concerns regarding the long-term accumulation of the nanomedicines in fenestrated organs after intravenous administration. Here, we discuss the current landscape of silver nanoparticles, and critically analyze the characteristics that endowed their transition and use in clinical settings.
Collapse
Affiliation(s)
- Manuel Dias
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
- Department of Physics, Faculty of Science, University of Lisbon, Lisboa, 1500-274, Portugal
| | - Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Chen Z, Yang Y, Cui X, Chai L, Liu H, Pan Y, Zhang Y, Xie Y, Le T. Process, advances, and perspectives of graphene oxide-SELEX for the development of aptamer molecular probes: A comprehensive review. Anal Chim Acta 2024; 1320:343004. [PMID: 39142771 DOI: 10.1016/j.aca.2024.343004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Aptamers are screened via the systematic evolution of ligands by exponential enrichment (SELEX) and are widely used in molecular diagnostics and targeted therapies. The development of efficient and convenient SELEX technology has facilitated rapid access to high-performance aptamers, thereby advancing the aptamer industry. Graphene oxide (GO) serves as an immobilization matrix for libraries in GO-SELEX, making it suitable for screening aptamers against diverse targets. RESULTS This review summarizes the detailed steps involved in GO-SELEX, including monitoring methods, various sublibrary acquisition methods, and practical applications from its inception to the present day. In addition, the potential of GO-SELEX in the development of broad-spectrum aptamers is explored, and its current limitations for future development are emphasized. This review effectively promotes the application of the GO-SELEX technique by providing valuable insights and assisting researchers interested in conducting related studies. SIGNIFICANCE AND NOVELTY To date, no review on the topic of GO-SELEX has been published, making it challenging for researchers to initiate studies in this area. We believe that this review will broaden the SELEX options available to researchers, ensuring that they can meet the growing demand for molecular probes in the scientific domain.
Collapse
Affiliation(s)
- Zhuoer Chen
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Ying Yang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xinge Cui
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Luwei Chai
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Hongbing Liu
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yangwei Pan
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yongkang Zhang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yujia Xie
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Tao Le
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China.
| |
Collapse
|
8
|
Li W, Yang X, Wang D, Xie J, Wang S, Rong Z. A handheld fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of methamphetamine and tramadol. Talanta 2024; 277:126438. [PMID: 38897012 DOI: 10.1016/j.talanta.2024.126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The escalating issue of drug abuse poses a significant threat to public health and societal stability worldwide. An on-site drug detection platform is vital for combating drug abuse and trafficking, as it eliminates the need for additional tools, extensive processes, or specialized training. Therefore, it is imperative to develop a fast, sensitive, non-invasive, and reliable multiplex drug testing platform. In this study, we have presented a silica core@dual quantum dot-shell nanocomposite (SI/DQD)-based fluorescent lateral flow immunoassay (LFIA) platform for the highly sensitive and simultaneous point-of-care (POC) detection of methamphetamine (MET) and tramadol (TR). A 3D-printed attachment was designed to integrate optical and electrical components, facilitating the miniaturization of the instrument and reducing both cost and complexity. The device's advanced hardware and effective fluorescence extraction algorithm with waveform reconstruction enable swift, automatic noise reduction and data analysis. SI/DQD nanocomposites were utilized as fluorescent nanotags in the LFIA strips due to their outstanding luminous efficiency and robustness. This LFIA platform achieves impressive detection limits (LODs) of 0.11 ng mL-1 for MET and 0.017 ng mL-1 for TR. The method has also successfully detected MET and TR in complex biological samples, demonstrating its practical application capabilities. The proposed fluorescent LFIA platform, based on SI/DQD technology, holds significant promise for the swift and accurate POC detection of these substances. Its affordability, compact size, and excellent analytical performance make it suitable for on-site drug testing, including at borders and roadside checks, and open up new possibilities for the design and implementation of drug testing methods.
Collapse
Affiliation(s)
- Weijia Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Beijing, 100850, China
| | | | - Dongfeng Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Beijing, 100850, China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| |
Collapse
|
9
|
Mondal R, Chakraborty J, Dam P, Shaw S, Gangopadhyay D, Ertas YN, Mandal AK. Development of Aptamer-Functionalized Gold Nanoparticles as Probes in Point-of-Care Diagnostic Device for Rapid Detection of Multidrug-Resistant Bacteria in Bombyx mori L. . ACS APPLIED BIO MATERIALS 2024; 7:5740-5753. [PMID: 39110486 DOI: 10.1021/acsabm.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Paulami Dam
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
- Center for Nanotechnology Sciences (CeNS), Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| |
Collapse
|
10
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
11
|
Baron R, Haick H. Mobile Diagnostic Clinics. ACS Sens 2024; 9:2777-2792. [PMID: 38775426 PMCID: PMC11217950 DOI: 10.1021/acssensors.4c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
This article reviews the revolutionary impact of emerging technologies and artificial intelligence (AI) in reshaping modern healthcare systems, with a particular focus on the implementation of mobile diagnostic clinics. It presents an insightful analysis of the current healthcare challenges, including the shortage of healthcare workers, financial constraints, and the limitations of traditional clinics in continual patient monitoring. The concept of "Mobile Diagnostic Clinics" is introduced as a transformative approach where healthcare delivery is made accessible through the incorporation of advanced technologies. This approach is a response to the impending shortfall of medical professionals and the financial and operational burdens conventional clinics face. The proposed mobile diagnostic clinics utilize digital health tools and AI to provide a wide range of services, from everyday screenings to diagnosis and continual monitoring, facilitating remote and personalized care. The article delves into the potential of nanotechnology in diagnostics, AI's role in enhancing predictive analytics, diagnostic accuracy, and the customization of care. Furthermore, the article discusses the importance of continual, noninvasive monitoring technologies for early disease detection and the role of clinical decision support systems (CDSSs) in personalizing treatment guidance. It also addresses the challenges and ethical concerns of implementing these advanced technologies, including data privacy, integration with existing healthcare infrastructure, and the need for transparent and bias-free AI systems.
Collapse
Affiliation(s)
- Roni Baron
- Department
of Biomedical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
12
|
Liu G, Wang J, Wang J, Cui X, Wang K, Chen M, Yang Z, Gao A, Shen Y, Zhang Q, Gao G, Cui D. Deep-learning assisted zwitterionic magnetic immunochromatographic assays for multiplex diagnosis of biomarkers. Talanta 2024; 273:125868. [PMID: 38458085 DOI: 10.1016/j.talanta.2024.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Magnetic nanoparticle (MNP)-based immunochromatographic tests (ICTs) display long-term stability and an enhanced capability for multiplex biomarker detection, surpassing conventional gold nanoparticles (AuNPs) and fluorescence-based ICTs. In this study, we innovatively developed zwitterionic silica-coated MNPs (MNP@Si-Zwit/COOH) with outstanding antifouling capabilities and effectively utilised them for the simultaneous identification of the nucleocapsid protein (N protein) of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) and influenza A/B. The carboxyl-functionalised MNPs with 10% zwitterionic ligands (MNP@Si-Zwit 10/COOH) exhibited a wide linear dynamic detection range and the most pronounced signal-to-noise ratio when used as probes in the ICT. The relative limit of detection (LOD) values were achieved in 12 min by using a magnetic assay reader (MAR), with values of 0.0062 ng/mL for SARS-CoV-2 and 0.0051 and 0.0147 ng/mL, respectively, for the N protein of influenza A and influenza B. By integrating computer vision and deep learning to enhance the image processing of immunoassay results for multiplex detection, a classification accuracy in the range of 0.9672-0.9936 was achieved for evaluating the three proteins at concentrations of 0, 0.1, 1, and 10 ng/mL. The proposed MNP-based ICT for the multiplex diagnosis of biomarkers holds substantial promise for applications in both medical institutions and self-administered diagnostic settings.
Collapse
Affiliation(s)
- Guan Liu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Junhao Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Jiulin Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Xinyuan Cui
- Radiology Department of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Mingrui Chen
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Ziyang Yang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Yulan Shen
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, PR China.
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China; National Engineering Research Center for Nanotechnology, Shanghai, 200241, PR China; Henan Medical School, Henan University, Henan, 475004, PR China.
| |
Collapse
|
13
|
Sagdat K, Batyrkhan A, Kanayeva D. Exploring monkeypox virus proteins and rapid detection techniques. Front Cell Infect Microbiol 2024; 14:1414224. [PMID: 38863833 PMCID: PMC11165096 DOI: 10.3389/fcimb.2024.1414224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
Monkeypox (mpox) is an infectious disease caused by the mpox virus and can potentially lead to fatal outcomes. It resembles infections caused by viruses from other families, challenging identification. The pathogenesis, transmission, and clinical manifestations of mpox and other Orthopoxvirus species are similar due to their closely related genetic material. This review provides a comprehensive discussion of the roles of various proteins, including extracellular enveloped virus (EEV), intracellular mature virus (IMV), and profilin-like proteins of mpox. It also highlights recent diagnostic techniques based on these proteins to detect this infection rapidly.
Collapse
Affiliation(s)
| | | | - Damira Kanayeva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
14
|
Ji T, Cai Y, Gao Y, Wang G, Miao Y, Gao X. Establishment and application of a rapid visual diagnostic method for Streptococcus agalactiae based on recombinase polymerase amplification and lateral flow strips. Sci Rep 2024; 14:10064. [PMID: 38698011 PMCID: PMC11066032 DOI: 10.1038/s41598-024-56138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024] Open
Abstract
This study aims to establish a rapid diagnostic method for Streptococcus agalactiae (GBS) based on recombinase polymerase amplification (RPA) and lateral flow strips (LFS). The best primer pairs designed by SIP gene were screened according to the basic RPA reaction, then the probe was designed. The reaction condition was optimized based on the color development of the LFS detection line. To ascertain the reaction specificity, 10 common clinical pathogens and 10 clinical specimens of GBS were tested. Furthermore, the reaction sensitivity was assessed by utilizing a tenfold gradient dilution of GBS genomic DNA as templates. RPA-LFS method was compared to the qPCR assay and biochemical culture method for the Kappa consistency test. The RPA-LFS technique was able to complete the amplification process within 30 min and the results were observed on lateral flow strips. The method is highly sensitive, with a minimum detection limit of 1.31 ng for GBS. The RPA-LFS method showed consistent accuracy of results compared to qPCR and the culture-biochemical method. The establishment of this method is conducive to the development of on-site immediate detection, which can provide information for the timely development of a reasonable antimicrobial treatment plan, and has a greater potential for clinical application.
Collapse
Affiliation(s)
- Tuo Ji
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ye Cai
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical University, Lianyungang, China
| | - Yuzhi Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Gang Wang
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Yongchang Miao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Xuzhu Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| |
Collapse
|
15
|
Wang H, Chen Z, Li T, Xie H, Yin B, Wong SHD, Shi Y, Zhang AP. Optofluidic chip with directly printed polymer optical waveguide Mach-Zehnder interferometer sensors for label-free biodetection. BIOMEDICAL OPTICS EXPRESS 2024; 15:3240-3250. [PMID: 38855677 PMCID: PMC11161367 DOI: 10.1364/boe.523055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
Optofluidic devices hold great promise in biomedical diagnostics and testing because of their advantages of miniaturization, high sensitivity, high throughput, and high scalability. However, conventional silicon-based photonic chips suffer from complicated fabrication processes and less flexibility in functionalization, thus hindering their development of cost-effective biomedical diagnostic devices for daily tests and massive applications in responding to public health crises. In this paper, we present an optofluidic chip based on directly printed polymer optical waveguide Mach-Zehnder interferometer (MZI) sensors for label-free biomarker detection. With digital ultraviolet lithography technology, high-sensitivity asymmetric MZI microsensors based on a width-tailored optical waveguide are directly printed and vertically integrated with a microfluidic layer to make an optofluidic chip. Experimental results show that the sensitivity of the directly printed polymer optical waveguide MZI sensor is about 1695.95 nm/RIU. After being modified with capture molecules, i.e., goat anti-human immunoglobulin G (IgG), the polymer optical waveguide MZI sensors can on-chip detect human IgG at the concentration level of 1.78 pM. Such a polymer optical waveguide-based optofluidic chip has the advantages of miniaturization, cost-effectiveness, high sensitivity, and ease in functionalization and thus has great potential in the development of daily available point-of-care diagnostic and testing devices.
Collapse
Affiliation(s)
- Han Wang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zhituo Chen
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Taige Li
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Huimin Xie
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yaocheng Shi
- Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - A. Ping Zhang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Cai X, Luo Y, Song Y. Palladium nanoballs coupled with smartphone-thermal reader for photothermal lateral flow immunoassay of Aβ 1-40. J Mater Chem B 2024; 12:2610-2617. [PMID: 38372378 DOI: 10.1039/d3tb02641h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Amyloid beta 1-40 (Aβ 1-40) is one of the most abundant substances in the body with the capacity to form insoluble aggregates and is a universal biomarker for the prediction of Alzheimer's disease. Here, a palladium nanoball (PNB)-strip was developed and coupled with a smartphone-thermal reader as an ultrasensitive and cost-effective platform for Aβ 1-40 detection. In this study, PNB was synthesized and introduced into lateral flow strips as an alternative signal source to gold nanoparticles to improve sensitivity because the PNB has a better heat generation ability. Quantitative analysis was performed using a self-developed smartphone-thermal reader, which is portable and cost-effective. The detection limit of the system was determined to be 20 pg mL-1, which fulfils the need for clinical diagnosis at the point-of-care. This work highlights a PNB-strip coupled smartphone-thermal reader for ultrasensitive and cost-effective Aβ 1-40 detection.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yangxing Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Song
- NANOGENE LLC, Gainesville, Florida 32611, USA.
| |
Collapse
|
17
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
18
|
Jung Y, Kim S, Kim MG, Lee YE, Shin MG, Yang S. One-Step Detection of Vancomycin in Whole Blood Using the Lateral Flow Immunoassay. BIOSENSORS 2024; 14:129. [PMID: 38534236 DOI: 10.3390/bios14030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Vancomycin (VAN) is an effective antibiotic against Gram-positive bacteria and the first-line therapy to prevent and treat methicillin-resistant Staphylococcus aureus (MRSA) and severe infections. However, low concentrations of VAN can result in resistant strains. High doses of VAN can cause nephrotoxicity and ototoxicity; thus, VAN is a representative drug for which drug monitoring is recommended. Several methods have been proposed to detect VAN. Among them, lateral flow immunoassays (LFIAs) have advantages, such as simple and user-friendly operation, low sample volume requirement, and cost effectiveness. In this study, we developed an LFIA capable of rapid on-site detection such that the VAN concentration in plasma could be monitored within 20 min by a one-step detection process using whole blood without plasma separation. VAN can be detected in whole blood over a wide range of concentrations (20-10,000 ng/mL), and the LFIA reported here has a detection limit of 18 ng/mL. The applicability of the developed LFIA compared to the results of measuring VAN with a commercial enzyme-linked immunosorbent assay kit showed a satisfactory correlation (Spearman's rho, ρ = 0.891). Therefore, the developed LFIA enables rapid and wide-range VAN detection in whole blood and can aid in drug monitoring to evaluate patients' responses to treatment.
Collapse
Affiliation(s)
- Yugyung Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seonjong Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- GMD Biotech, Inc., Gwangju 61005, Republic of Korea
| | - Young-Eun Lee
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital (CNUHH), Hwasun 58128, Republic of Korea
- Accelerator Platform of Precision Medicine, Chonnam National University Hwasun Hospital (CNUHH), Hwasun 58128, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital (CNUHH), Hwasun 58128, Republic of Korea
- Accelerator Platform of Precision Medicine, Chonnam National University Hwasun Hospital (CNUHH), Hwasun 58128, Republic of Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
19
|
Ateia M, Wei H, Andreescu S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2636-2651. [PMID: 38302436 DOI: 10.1021/acs.est.3c09889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ensuring water quality and safety requires the effective detection of emerging contaminants, which present significant risks to both human health and the environment. Field deployable low-cost sensors provide solutions to detect contaminants at their source and enable large-scale water quality monitoring and management. Unfortunately, the availability and utilization of such sensors remain limited. This Perspective examines current sensing technologies for detecting emerging contaminants and analyzes critical barriers, such as high costs, lack of reliability, difficulties in implementation in real-world settings, and lack of stakeholder involvement in sensor design. These technical and nontechnical barriers severely hinder progression from proof-of-concepts and negatively impact user experience factors such as ease-of-use and actionability using sensing data, ultimately affecting successful translation and widespread adoption of these technologies. We provide examples of specific sensing systems and explore key strategies to address the remaining scientific challenges that must be overcome to translate these technologies into the field such as improving sensitivity, selectivity, robustness, and performance in real-world water environments. Other critical aspects such as tailoring research to meet end-users' requirements, integrating cost considerations and consumer needs into the early prototype design, establishing standardized evaluation and validation protocols, fostering academia-industry collaborations, maximizing data value by establishing data sharing initiatives, and promoting workforce development are also discussed. The Perspective describes a set of guidelines for the development, translation, and implementation of water quality sensors to swiftly and accurately detect, analyze, track, and manage contamination.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676-5810, United States
| |
Collapse
|
20
|
Li P, Abd El-Aty AM, Jiang H, Shen J, Wang Z, Wen K, Li J, Wang S, Wang J, Hammock BD, Jin M. Immunoassays and Emerging Analytical Techniques of Fipronil and its Metabolites for Food Safety: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2059-2076. [PMID: 38252458 DOI: 10.1021/acs.jafc.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
21
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
22
|
Bruno A, Tripodi F, Armanni A, Barbieri L, Colombo A, Fumagalli S, Moukham H, Tomaino G, Kukushkina E, Lorenzi R, Marchesi L, Monguzzi A, Paleari A, Ronchi A, Secchi V, Sironi L, Colombo M. Advancements in nanosensors for detecting pathogens in healthcare environments. ENVIRONMENTAL SCIENCE: NANO 2024; 11:4449-4474. [DOI: 10.1039/d4en00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
ESKAPEE pathogens: where we can find them in hospital environments and how to detect them through nanotechnologies devices.
Collapse
Affiliation(s)
- Antonia Bruno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alice Armanni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sara Fumagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Tomaino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Letizia Marchesi
- Department of Physics, University of Milano-Bicocca, Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| | - Alberto Paleari
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Ronchi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Valeria Secchi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Laura Sironi
- Department of Physics, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
23
|
Brannetti S, Gentile S, Chamorro-Garcia A, Barbero L, Del Grosso E, Ricci F. Decorated DNA-Based Scaffolds as Lateral Flow Biosensors. Angew Chem Int Ed Engl 2023; 62:e202313243. [PMID: 37804080 DOI: 10.1002/anie.202313243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Here we develop Lateral Flow Assays (LFAs) that employ as functional elements DNA-based structures decorated with reporter tags and recognition elements. We have rationally re-engineered tile-based DNA tubular structures that can act as scaffolds and can be decorated with recognition elements of different nature (i.e. antigens, aptamers or proteins) and with orthogonal fluorescent dyes. As a proof-of-principle we have developed sandwich and competitive multiplex lateral flow platforms for the detection of several targets, ranging from small molecules (digoxigenin, Dig and dinitrophenol, DNP), to antibodies (Anti-Dig, Anti-DNP and Anti-MUC1/EGFR bispecific antibodies) and proteins (thrombin). Coupling the advantages of functional DNA-based scaffolds together with the simplicity of LFAs, our approach offers the opportunity to detect a wide range of targets with nanomolar sensitivity and high specificity.
Collapse
Affiliation(s)
- Simone Brannetti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alejandro Chamorro-Garcia
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Luca Barbero
- RBM-Merck an affiliate of Merck KGaA, Via Ribes 1, 10010, Turin, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
24
|
Zhao Z, Wang S, Dong Z, Fan Q, Lei R, Kuang R, Zhang Y. One-Step Reverse-Transcription Recombinase-Aided Amplification CRISPR/Cas12a-Based Lateral Flow Assay for Fast Field Screening and Accurate Differentiation of Four Major Tobamoviruses Infecting Tomato and Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37916776 DOI: 10.1021/acs.jafc.3c05268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Several tobamoviruses cause substantial economic losses to tomato and pepper crops globally, especially the pepper mild mosaic virus (PMMoV), tomato brown rugose fruit virus (ToBRFV), tomato mosaic virus (ToMV), and tomato mottle mosaic virus (ToMMV). A fast and accurate detection method is essential for virus identification. An all-in-one reaction method combining a one-step reverse-transcription recombinase-aided amplification (RT-RAA) and CRISPR/Cas12a-based lateral flow assay in one mixture was developed to rapidly screen and accurately differentiate among these four tobamoviruses for field detection in tomato and pepper plants. With a generic RT-RAA primer set and a mix of four specific crRNAs, along with a portable metal incubator and the use of a crude extraction method, this method screened for PMMoV, ToBRFV, ToMV, and ToMMV concurrently in less than 1 h, enabling field workers to take action immediately. The accurate differentiation of these four viruses could be achieved by later adding a single specific crRNA.
Collapse
Affiliation(s)
- Zhenxing Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Siyuan Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zheng Dong
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qixuan Fan
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, 100193 Beijing, China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ruirui Kuang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, 100193 Beijing, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
25
|
Xi J, Bu T, Wu H, Wang Y, Cao Y, Xuan C, Feng Q, Wang L. Novel Dumbbell-like CeVO 4 Carrier-Based Immunochromatographic Assay for Highly Sensitive T-2 Toxin Detection in Food Samples. Anal Chem 2023; 95:15531-15539. [PMID: 37753722 DOI: 10.1021/acs.analchem.3c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Improving the sensitivity of immunochromatographic assays (ICAs) lies in the signal strength and probe activity of the labeled tracers, and the color properties and structure of the labeled tracers are key factors affecting the biological activity. In this study, cerium vanadate (CeVO4) of different sizes and shapes (230, 1058, and 710 nm) was synthesized to investigate its impact on the performance of ICA for T-2 detection. The prepared CeVO4 possessed outstanding stability, a large specific surface area, superior biocompatibility, and high compatibility with T-2 mAb (affinity constant was 3.14 × 108 M-1). As labeling probes for competitive ICA, the results showed that 1058 nm of CeVO4 as labels exhibited the best detection performance, with a limit of detection (LOD) of 0.079 ng/mL, which was substantially 19-fold less than the average of gold nanoparticle ICA. Additionally, CeVO4-ICA was effectively used to detect T-2 toxin, and the recovery rate for spiking corn and oatmeal samples was determined to be 81.27-115.44% (relative standard deviation <9.16%). The above information demonstrates the efficiency and applicability of CeVO4-ICA as a technique for quick and thorough identification of T-2 toxin residues in food.
Collapse
Affiliation(s)
- Jia Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Haiyu Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Chenyu Xuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Qinlin Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
26
|
Pratiwi R, Ramadhanti SP, Amatulloh A, Megantara S, Subra L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023; 12:3422. [PMID: 37761131 PMCID: PMC10527676 DOI: 10.3390/foods12183422] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.
Collapse
Affiliation(s)
- Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Shinta Permata Ramadhanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Asyifa Amatulloh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Laila Subra
- Faculty of Bioeconomic, Food and Health Sciences, University of Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| |
Collapse
|
27
|
Kwon Y, Kim D, Kim S. Quantitative injection strip platform using water-soluble paper and magnet based on a lateral flow assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4168-4178. [PMID: 37577848 DOI: 10.1039/d3ay01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Quantitative analysis for lateral flow immunoassay (LFA) strips was conducted continuously. Quantitative analysis means measuring concentration, which represents the number of molecules per unit volume. In this study, we designed a quantitative injection (QI) strip by modifying the structure of general LFA strips to inject the same unit volume. To achieve the injection of the same unit volume, we used water-soluble paper and magnet. In addition, the QI strip was fabricated to enable the physical separation of the gold conjugate pad from the nitrocellulose membrane (NC membrane) at the optimized time after sample injection. The optimized time refers to the time from the point at which the sample started flowing on the NC membrane to the point at which the strip was separated. At the samples of same concentration, the LFA strip increases detection signals as the volume of injected sample increases. In contrast to the LFA strip, the QI strip maintained consistent detection signals even with increasing volume of injected sample. Furthermore, the QI strip demonstrated an 11-fold lower deviation compared to the LFA strip. These results are attributed to the separation function of the QI strip. In conclusion, the QI strip is more suitable for quantitative analysis compared to the LFA strip due to the same unit volume without additional equipment such as a pipette. This study is expected to contribute to the development of user-friendly POCT and strip-based quantitative analysis.
Collapse
Affiliation(s)
- Yewon Kwon
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| | - Dami Kim
- Philmedi R&D Center, Philmedi Incorporation, 33, Sangimakol-ro, 62beon-gil, Jungwon-gu, Seognam, 13211, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea.
- Philmedi R&D Center, Philmedi Incorporation, 33, Sangimakol-ro, 62beon-gil, Jungwon-gu, Seognam, 13211, Republic of Korea
| |
Collapse
|
28
|
Ye L, Xu L, Kuang H, Xu X, Xu C. Colloidal gold-based immunochromatographic biosensor for quantitative detection of S100B in serum samples. NANOSCALE HORIZONS 2023; 8:1253-1261. [PMID: 37461392 DOI: 10.1039/d3nh00192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Traumatic brain injury has become a serious public health problem. Timely detection, diagnosis and treatment of brain injury are closely related to the prognosis of patients, so identification of highly sensitive and specific biochemical markers of brain injury has important clinical value. Currently, the most studied and most promising marker is the protein S100B. In this study, a rapid quantitative biosensor for S100B was established using colloidal gold labeling and double antibody (8C10-6B8) sandwich immunochromatography. The biosensor was capable of quantifying S100B within 15 min, and showed no cross-reactivity with S100A, NSE, GFAP, or PGP9.5. The detection limit was determined to be 4.6 pg mL-1 with a linear range of 0.01-2 ng mL-1. Recovery experiments also indicated that the method had an acceptable accuracy. Moreover, the quantitative colloidal gold assay correlated well with the results of a chemiluminescence immunoassay when testing 40 clinical serum samples. Our developed colloidal gold quantitative immunochromatographic biosensor is a rapid, sensitive, specific and accurate method for the detection of S100B protein in serum, which is useful in the clinic for early diagnosis, as well as assessment of disease progression and prognosis of traumatic brain injury.
Collapse
Affiliation(s)
- Liya Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
29
|
Lei X, Xu X, Wang L, Liu L, Kuang H, Xu L, Xu C. Fluorescent microsphere-based lateral-flow immunoassay for rapid and sensitive determination of eugenols. Food Chem 2023; 411:135475. [PMID: 36689870 DOI: 10.1016/j.foodchem.2023.135475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
In this study, a sensitive monoclonal antibody (mAb) 1B5 against eugenols was prepared based on a novel hapten. Based on this mAb, a paper-based lateral-flow immunoassay (LFIA) was developed using Eu-fluorescent microspheres sensor, that could achieve qualitative and quantitative detection of eugenols within 10 min. Results showed colorimetric values observed by the naked eye were 12.3 µg/kg, 12.3 µg/kg, 37 µg/kg and 111 µg/kg for eugenol, isoeugenol, methyl eugenol, and methyl isoeugenol, respectively, in both water and fish samples. For quantitative detection of eugenol, isoeugenol, methyl eugenol and methyl isoeugenol, the detection ranges were 4.49-48.4 µg/kg, 6.02-66.8 µg/kg, 16.5-150 µg/kg and 47.9-710 µg/kg in water, and 3.9-30.9 µg/kg, 5.9-62.6 µg/kg, 16.7-255 µg/kg, and 44.5-890 µg/kg in fish, respectively. The recovery test and detection in fish demonstrated the reliability of the LFIA in real samples. Therefore, the developed LFIA produced a promising alternative tool for the rapid on-site detection of eugenols.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
30
|
Jin B, Ma B, Mei Q, Xu S, Deng X, Hong Y, Li J, Xu H, Zhang M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors Combined with Recombinase Polymerase Amplification for Simultaneous Detection of Five Zoonotic Foodborne Pathogens. BIOSENSORS 2023; 13:652. [PMID: 37367017 DOI: 10.3390/bios13060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The five recognized zoonotic foodborne pathogens, namely, Listeria monocytogenes, Staphylococcus aureus, Streptococcus suis, Salmonella enterica and Escherichia coli O157:H7, pose a major threat to global health and social-economic development. These pathogenic bacteria can cause human and animal diseases through foodborne transmission and environmental contamination. Rapid and sensitive detection for pathogens is particularly important for the effective prevention of zoonotic infections. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) combined with recombinase polymerase amplification (RPA) were developed for the simultaneous quantitative detection of five foodborne pathogenic bacteria. Multiple T lines were designed in a single test strip for increasing the detection throughput. After optimizing the key parameters, the single-tube amplified reaction was completed within 15 min at 37 °C. The fluorescent strip reader recorded the intensity signals from the lateral flow strip and converted the data into a T/C value for quantification measurement. The sensitivity of the quintuple RPA-EuNP-LFSBs reached a level of 101 CFU/mL. It also exhibited good specificity and there was no cross-reaction with 20 non-target pathogens. In artificial contamination experiments, the recovery rate of the quintuple RPA-EuNP-LFSBs was 90.6-101.6%, and the results were consistent with those of the culture method. In summary, the ultrasensitive bacterial LFSBs described in this study have the potential for widespread application in resource-poor areas. The study also provides insights in respect to multiple detection in the field.
Collapse
Affiliation(s)
- Bei Jin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Qing Mei
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Shujuan Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Yi Hong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China
| | - Hanyue Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
31
|
Liu X, Kukkar D, Deng Z, Yang D, Wang J, Kim KH, Zhang D. "Lock-and-key" recognizer-encoded lateral flow assays toward foodborne pathogen detection: An overview of their fundamentals and recent advances. Biosens Bioelectron 2023; 235:115317. [PMID: 37236010 DOI: 10.1016/j.bios.2023.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
In light of severe health risks of foodborne pathogenic bacterial diseases, the potential utility of point-of-care (POC) sensors is recognized for pathogens detection. In this regard, lateral flow assay (LFA) is a promising and user-friendly option for such application among various technological approaches. This article presents a comprehensive review of "lock-and-key" recognizer-encoded LFAs with respect to their working principles and detection performance against foodborne pathogenic bacteria. For this purpose, we describe various strategies for bacteria recognition including the antibody-based antigen-antibody interactions, nucleic acid aptamer-based recognition, and phage-mediated targeting of bacterial cells. In addition, we also outline the technological challenges along with the prospects for the future development of LFA in food analysis. The LFA devices built based upon many recognition strategies are found to have great potential for rapid, convenient, and effective POC detection of pathogens in complex food matrixes. Future developments in this field should emphasize the development of high-quality bio-probes, multiplex sensors, and intelligent portable readers.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 147013, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 147013, Punjab, India
| | - Ziai Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul, 04763, South Korea.
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
32
|
Liu J, Li M, Man Q, Huang LH, Wang J, Gao M, Zhang X. Naked-Eye Readout Distance Quantitative Lateral Flow Assay Based on the Permeability Changes of Enzyme-Catalyzed Hydrogelation. Anal Chem 2023; 95:8011-8019. [PMID: 37154434 DOI: 10.1021/acs.analchem.3c00892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Traditional lateral flow assay (LFA) is restricted to providing qualitative or semi-quantitative results and often requires special equipment for obtaining quantitative results. Herein, we proposed a naked-eye readout distance quantitative lateral flow assay based on the permeability changes in enzyme-catalyzed hydrogelation, which not only has the advantages of being simple, immediate, of high efficiency and low cost, and accurate in quantification but also avoids the use of special equipment. The developed LFA method includes three principal components of a nitrocellulose (NC) membrane containing a control line (C line) loading goat anti-rabbit (GAR) antibodies and a test line (T line) loading specific antibodies, alginate-tyramine conjugates forming a hydrogel in the presence of hydrogen peroxide (H2O2) and horseradish peroxidase (HRP), and the HRP-AuNPs-Ab probe only labeling targets captured on the T line. Hemoglobin A1c (HbA1c) was chosen as a representative example to demonstrate the feasibility of our method. Under the optimal conditions, the developed LFA method shows excellent performance in standard samples and real human blood samples where the results of real human blood samples show a high linear correlation with the clinical data obtained by ion exchange chromatography (R2 = 0.9929) and the margin of recovery is only 3.8%. All results demonstrated that our developed LFA method not only has enormous potential in the quantitative detection of HbA1c in clinical complex samples but also can serve as a versatile method for highly efficient detection of other target biomolecules due to the fungibility of antibodies.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mengran Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Sotnikov DV, Barshevskaya LV, Zherdev AV, Dzantiev BB. Enhanced Lateral Flow Immunoassay with Double Competition and Two Kinds of Nanoparticles Conjugates for Control of Insecticide Imidacloprid in Honey. BIOSENSORS 2023; 13:bios13050525. [PMID: 37232886 DOI: 10.3390/bios13050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Finding optimal conditions for competitive lateral flow immunoassay is a controversial task. The content of specific antibodies labeled by nanoparticles should be simultaneously high to reach intense signals and low to register an influence on the signals for minimal concentrations of the target analyte. We propose to use two kinds of complexes of gold nanoparticles in the assay, with antigen-protein conjugates and with specific antibodies. The first complex interacts both with immobilized antibodies in the test zone and with antibodies on the surface of the second complex. In this assay, the coloration is enhanced by the binding of two-colored preparations in the test zone, whereas the antigen in the sample inhibits both the binding of the first conjugate with the immobilized antibodies and with the second conjugate. This approach is realized for the detection of insecticide imidacloprid (IMD), an important toxic contaminant connected with the recent global death of bees. The proposed technique expands the working range of the assay, that is, in accordance with its theoretical analysis. The reliable change of coloration intensity is achieved for a 2.3-times-lower concentration of the analyte. The limit of IMD detection is 0.13 ng/mL for tested solutions and 1.2 µg/kg for initial honey samples. The combination of two conjugates doubles the coloration in the absence of the analyte. The developed lateral flow immunoassay is applicable for five-fold-diluted honey samples without extraction, does not require additional stages (all reagents are pre-applied to the test strip), and is implemented in 10 min.
Collapse
Affiliation(s)
- Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Lyubov V Barshevskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
34
|
Barshevskaya LV, Sotnikov DV, Zherdev AV, Dzantiev BB. Modular Set of Reagents in Lateral Flow Immunoassay: Application for Antibiotic Neomycin Detection in Honey. BIOSENSORS 2023; 13:bios13050498. [PMID: 37232859 DOI: 10.3390/bios13050498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
A scheme of modular competitive immunochromatography with an analyte-independent test strip and changeable specific immunoreactants has been proposed. Native (detected) and biotinylated antigens interact with specific antibodies during their preincubation in solution, that is, without the immobilization of reagents. After this, the detectable complexes on the test strip are formed by the use of streptavidin (which binds biotin with high affinity), anti-species antibodies, and immunoglobulin-binding streptococcal protein G. The technique was successfully applied for the detection of neomycin in honey. The visual and instrumental detection limits were 0.3 and 0.014 mg/kg, respectively, and the degree of neomycin revealed in honey samples varied from 85% to 113%. The efficiency of the modular technique with the use of the same test strip for different analytes was confirmed for streptomycin detection. The proposed approach excludes the necessity of finding the condition of immobilization for each new specific immunoreactant and transferring the assay to other analytes by a simple choice of concentrations for preincubated specific antibodies and the hapten-biotin conjugate.
Collapse
Affiliation(s)
- Lyubov V Barshevskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
35
|
Kong Z, Liu C, Li P, Li G, Yuan J, Yan W, Zhao X, Zhang X, Xing C. Development and application of lateral flow strip with three test lines for detection of deoxynivalenol in wheat. Food Chem 2023; 421:136114. [PMID: 37086521 DOI: 10.1016/j.foodchem.2023.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Lateral flow strip was widely used and their qualitative and quantitative performance was in continuous improvement. However, the traditional strip was in a single-test-line format, which restricted operators to making a semi-quantitative judgment around a desired threshold concentration. Herein, a single strip with three test lines (TTLS) was developed for the semi-quantitative and quantitative determination of deoxynivalenol (DON). Four visual detection thresholds were obtained under optimized conditions and 35 wheat samples with DON content from 45 µg/kg to 2841 µg/kg were used to verify the method. The detection results were compared with that of the traditional strip and UPLC-MS/MS. In a three-test-line format, TTLS could reveal at least 200, 500, 1000, and 2000 µg/kg DON existed in different samples by the naked eye. The agreement analysis and statistical results indicated the new TTLS can be used as a useful tool for quantitative detection of DON with wide dynamic range.
Collapse
|
36
|
Liu X, Chen Y, Bu T, Deng Z, Zhao L, Tian Y, Jia C, Li Y, Wang R, Wang J, Zhang D. Nanosheet antibody mimics based label-free and dual-readout lateral flow immunoassay for Salmonella enteritidis rapid detection. Biosens Bioelectron 2023; 229:115239. [PMID: 36965382 DOI: 10.1016/j.bios.2023.115239] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Portable devices for on-site foodborne pathogens detection are urgently desirable. Lateral flow immunoassay (LFIA) provides an efficient strategy for pathogens detection, however, antibody labeling independence and detection reliability, are still challenging. Here, we report the development of a label-free LFIA with dual-readout using glucan-functionalized two-dimensional (2D) transition metal dichalcogenides (TMDs) tungsten disulfide (WS2) as detection probes for sensitive detection of Salmonella enteritidis (S. enteritidis). In particular, glucan-functionalized WS2, synthesized via liquid exfoliation, are reliable detection antibody candidates which served as antibody mimics for bacteria capturing. This LFIA has not only eliminated the intricate antibody labeling process and screening of paired antibodies in conventional LFIAs, but also promised dual-readout (colorimetric/Raman) for flexible detection. Under optimized conditions, this LFIA achieves selective detection of S. enteritidis with a low visual detection limit of 103 CFU/mL and a broad linear range of 103-108 CFU/mL. Additionally, the LFIA could be successfully applied in drinking water and milk with recoveries of 85%-109%. This work is desirable to expand the application of 2D TMDs in biosensors and offers a brand-new alternative protocol of detection antibodies in foodborne pathogens detection.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqian Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Ziai Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
37
|
Ye L, Lei X, Xu X, Xu L, Kuang H, Xu C. Gold-based paper for antigen detection of monkeypox virus. Analyst 2023; 148:985-994. [PMID: 36722989 DOI: 10.1039/d2an02043b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In 2022, the outbreak of the monkeypox virus occurred in many non-endemic countries, and the World Health Organization (WHO) assessed that this outbreak was "atypical". The establishment of a rapid and effective assay that can be used for the early diagnosis of monkeypox virus infection is crucial for outbreak prevention and control. In this study, the monkeypox virus A29 protein and the homologous vaccinia virus A27 protein and cowpox virus 162 protein were expressed in Escherichia coli BL21 for screening. We synthesized the monkeypox virus A2917-49 peptide as the immunogen and obtained 25 monoclonal antibodies (mAbs) against the A29 protein using mouse hybridoma techniques. Then an immunochromatographic test strip method for detecting A29 was established. The strips utilizing mAb-7C5 and 5D8 showed the best sensitivity and lowest limit of detection: 50 pg mL-1 for purified A29 and specificity tests showed that the strips did not cross-react with other orthopox viruses (vaccinia virus or cowpox virus) as well as common respiratory pathogens (SARS-CoV-2, influenza A and influenza B). Therefore, this method can be used for early and rapid diagnosis of monkeypox virus infection by antigen detection.
Collapse
Affiliation(s)
- Liya Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
38
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
39
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
40
|
Lei X, Guo L, Xu L, Kuang H, Xu C, Liu L. Fluorescent strip sensor for rapid and ultrasensitive determination of fluoroquinolones in fish and milk. Analyst 2023; 148:381-390. [PMID: 36537261 DOI: 10.1039/d2an01757a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthetic antibiotics fluoroquinolones are popular due to their good antibacterial performance and low price, but the risk to human health caused by their residues has attracted great attention. In this study, an ultra-sensitive mAb, 4D7, was prepared with an IC50 of 0.027 ng mL-1 to norfloxacin (NOR) and cross-reactivity of 19.7-47.7% to lomefloxacin (LOM), pefloxacin (PEF), ofloxacin (OFL), enrofloxacin (ENR), ciprofloxacin (CIP), and danofloxacin (DAN). Based on mAb 4D7 and Eu-fluorescent microspheres, a rapid and sensitive immunochromatographic strip was developed for the detection of fluoroquinolone residues in fish and milk. The detection ranges (IC20-IC80) of the strip for the detection of NOR, PEF, LOM, OFL, ENR, CIP and DAN were 0.19-1.1 μg kg-1, 0.39-2.1 μg kg-1, 0.5-2.6 μg kg-1, 0.43-3.3 μg kg-1, 0.61-3.5 μg kg-1, 0.69-5.5 μg kg-1, 0.52-3.4 μg kg-1 in fish, and 0.027-0.19 μg kg-1, 0.049-0.34 μg kg-1, 0.069-0.39 μg kg-1, 0.06-0.41 μg kg-1, 0.089-0.65 μg kg-1, 0.12-0.81 μg kg-1, 0.091-0.52 μg kg-1 in milk, respectively. The recovery rates in spiked sample tests were 88.6-113.6% with a coefficient of variation less than 8.4%. Thus the newly-developed strip was sensitive and reliable for rapid on-site detection of fluoroquinolone residues in fish and milk.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Lingling Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
41
|
Rink S, Baeumner AJ. Progression of Paper-Based Point-of-Care Testing toward Being an Indispensable Diagnostic Tool in Future Healthcare. Anal Chem 2023; 95:1785-1793. [PMID: 36608282 DOI: 10.1021/acs.analchem.2c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Point-of-care (POC) diagnostics in particular focuses on the timely identification of harmful conditions close to the patients' needs. For future healthcare these diagnostics could be an invaluable tool especially in a digitalized or telemedicine-based system. However, while paper-based POC tests, with the most prominent example being the lateral flow assay (LFA), have been especially successful due to their simplicity and timely response, the COVID-19 pandemic highlighted their limitations, such as low sensitivity and ambiguous responses. This perspective discusses strategies that are currently being pursued to evolve such paper-based POC tests toward a superior diagnostic tool that provides high sensitivities, objective result interpretation, and multiplexing options. Here, we pinpoint the challenges with respect to (i) measurability and (ii) public applicability, exemplified with select cases. Furthermore, we highlight promising endeavors focused on (iii) increasing the sensitivity, (iv) multiplexing capability, and (v) objective evaluation to also ready the technology for integration with machine learning into digital diagnostics and telemedicine. The status quo in academic research and industry is outlined, and the likely highly relevant role of paper-based POC tests in future healthcare is suggested.
Collapse
Affiliation(s)
- Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
42
|
Taranova NA, Bulanaya AA, Zherdev AV, Dzantiev BB. Triple Enhancement for Sensitive Immunochromatographic Assay: A Case Study for Human Fatty Acid-Binding Protein Detection. BIOSENSORS 2022; 12:1166. [PMID: 36551132 PMCID: PMC9775130 DOI: 10.3390/bios12121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The work considers a combination of three enhancing approaches for immunochromatographic assay (ICA) and the integration of their impacts into changes of the limit of detection (LOD). Human fatty acid binding protein (FABP), an early biomarker of acute myocardial infarction, was the target analyte. Starting from the common ICA protocol with an LOD equal to 11.2 ng/mL, three approaches were realized: (1) replacement of spherical gold nanoparticles with gold nanoflowers having a branched surface (20-fold lowering the LOD); (2) enhanced labeling of immune complexes via nanoparticle aggregates (15-fold lowering); (3) in-situ growth of bound nanoparticles by reduction of gold salts (3-fold lowering). Single and combined implementations of these approaches have been studied. It has been shown that the LOD decrease for combined approaches is close to the multiplied contribution of each of them. The final LOD for FABP was 0.05 ng/mL, which is 220 times lower than the LOD for the common ICA protocol. The efficiency of the enhanced ICA with three combined approaches was confirmed by testing human serum samples for FABP presence and content. The development presents a new efficient technique for rapid sensitive detection of FABP for medical diagnostics. Moreover, the demonstrated multiple enhancements could be applied for various demanded analytes.
Collapse
|
43
|
Alhammadi M, Yoo J, Sonwal S, Park SY, Umapathi R, Oh MH, Huh YS. A highly sensitive lateral flow immunoassay for the rapid and on-site detection of enrofloxacin in milk. Front Nutr 2022; 9:1036826. [PMID: 36352902 PMCID: PMC9637957 DOI: 10.3389/fnut.2022.1036826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Enrofloxacin (ENR) is a veterinary antibiotic used to treat bacterial infections in livestock. It chiefly persists in foods and dairy products, which in turn pose severe risks to human health. Hence it is very important to detect the ENR in foods and dairy products to safeguard human health. Herein, we attempted to develop a single-step detection lateral flow immunochromatographic assay (LFIA) using gold nanoparticles (AuNPs) for the rapid and on-site detection of ENR in milk samples. An anti-enrofloxacin monoclonal antibody (ENR-Ab) was conjugated with AuNPs for the specific detection of ENR in milk samples. For sensitivity improvement, many optimization steps were conducted on LFIA test strips. The visual limit of detection (vLOD) was found to be 20 ng/ml with a cut-off value of 50 ng/ml in the milk samples. The obtained LOD and cut-off value were within the safety limit guidelines of the Ministry of food and drug safety, South Korea. The test strip showed negligible cross-reactivity with ENR analogs, and other components of antibiotics, this indicates the high specificity of the LFIA test strip towards ENR. The designed test strip showed good reliability. The visual test results can be seen within 10 min without the need for special equipment. Therefore, the test strip can be employed as a potential detection strategy for the qualitative on-site detection of enrofloxacin in milk samples.
Collapse
Affiliation(s)
- Munirah Alhammadi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Jingon Yoo
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Sonam Sonwal
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - So Young Park
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Reddicherla Umapathi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- *Correspondence: Reddicherla Umapathi,
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
- Mi-Hwa Oh,
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- Yun Suk Huh,
| |
Collapse
|
44
|
Luo H, Liu S, Shi L, Li Z, Bai Q, Du X, Wang L, Zha H, Li C. Paper-Based Fluidic Sensing Platforms for β-Adrenergic Agonist Residue Point-of-Care Testing. BIOSENSORS 2022; 12:bios12070518. [PMID: 35884321 PMCID: PMC9313176 DOI: 10.3390/bios12070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The illegal use of β-adrenergic agonists during livestock growth poses a threat to public health; the long-term intake of this medication can cause serious physiological side effects and even death. Therefore, rapid detection methods for β-adrenergic agonist residues on-site are required. Traditional detection methods such as liquid chromatography have limitations in terms of expensive instruments and complex operations. In contrast, paper methods are low cost, ubiquitous, and portable, which has led to them becoming the preferred detection method in recent years. Various paper-based fluidic devices have been developed to detect β-adrenergic agonist residues, including lateral flow immunoassays (LFAs) and microfluidic paper-based analytical devices (μPADs). In this review, the application of LFAs for the detection of β-agonists is summarized comprehensively, focusing on the latest advances in novel labeling and detection strategies. The use of μPADs as an analytical platform has attracted interest over the past decade due to their unique advantages and application for detecting β-adrenergic agonists, which are introduced here. Vertical flow immunoassays are also discussed for their shorter assay time and stronger multiplexing capabilities compared with LFAs. Furthermore, the development direction and prospects for the commercialization of paper-based devices are considered, shedding light on the development of point-of-care testing devices for β-adrenergic agonist residue detection.
Collapse
Affiliation(s)
- Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu 610072, China;
| | - Lina Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Qianwen Bai
- Sichuan Jinxin Women & Children Hospital, Chengdu 610066, China;
| | - Xiaoxin Du
- Office of Scientific Research & Development, University of Electronic Science and Technology, Chengdu 610054, China;
| | - Lijun Wang
- Department of Ophthalmology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (L.W.); (H.Z.); (C.L.)
| | - He Zha
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
- Correspondence: (L.W.); (H.Z.); (C.L.)
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (L.W.); (H.Z.); (C.L.)
| |
Collapse
|
45
|
Xu X, Lin L, Kuang H, Liu L, Xu L, Xu C. Gold nanoparticle-based lateral flow immunoassay for the rapid detection of flumetralin in orange. Analyst 2022; 147:3684-3691. [DOI: 10.1039/d2an00899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive monoclonal antibody (mAb) against flumetralin was produced and a gold nanoparticle-based lateral flow immunoassay (LFIA) strip was developed for screening flumetralin in orange.
Collapse
Affiliation(s)
- Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Lu Lin
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|