1
|
Safarpour R, Pooresmaeil M, Namazi H. Folic acid functionalized Ag@MOF(Ag) decorated carboxymethyl starch nanoparticles as a new doxorubicin delivery system with inherent antibacterial activity. Int J Biol Macromol 2024:137096. [PMID: 39486742 DOI: 10.1016/j.ijbiomac.2024.137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Considering the benefits of controlled drug delivery in cancer treatment, as well as the importance of biological macromolecules in this area, herein, the pre-synthesized carboxymethyl starch (CMS) was converted to CMS nanoparticles (CMS NPs) in one easy nanoprecipitation way. Thereafter, the Ag@MOF(Ag) was in situ synthesized in the presence of pre-prepared CMS NPs (CMS NPs/Ag@MOF(Ag)). Eventually, the functionalization with folic acid (FA) obtained the CMS NPs/Ag@MOF(Ag)-FA. The success of the accomplished process was approved by doing several techniques, including FT-IR, XRD, EDX, AFM, etc. The SEM analysis showed a combination of rod-like and spherical-like morphology for the fabricated bio-nanocomposite. The generated CMS NPs/Ag@MOF(Ag)-FA with a surface area of 10.595 m2/g displayed a pore size of 13.666 nm and 82.99 % of doxorubicin (DOX) loading efficiency (DOX@CMS NPs/Ag@MOF(Ag)-FA). The 38.46 % and 58.19 % of loaded DOX were released respectively within 240 h at pH 7.4 and pH 5.0, referring to the pH-responsivity of the constructed system. 27.25 % of inhibitory effects on HeLa cells were obtained for the drug-loaded bio-nanocomposite. The CMS NPs/Ag@MOF(Ag)-FA also displayed an inherent antibacterial activity towards two common gram-negative and gram-positive bacteria. All of these results can contribute to developing polysaccharide-based porous systems in controlled cancer therapy.
Collapse
Affiliation(s)
- Rahim Safarpour
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
2
|
Alharbi HM. Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine. Drug Des Devel Ther 2024; 18:2063-2087. [PMID: 38882042 PMCID: PMC11178098 DOI: 10.2147/dddt.s441325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The burgeoning global mortality rates attributed to cancer have precipitated a critical reassessment of conventional therapeutic modalities, most notably chemotherapy, due to their pronounced adverse effects. This reassessment has instigated a paradigmatic shift towards nanomedicine, with a particular emphasis on the potentialities of biopolymer-assisted drug delivery systems. Biopolymers, distinguished by their impeccable biocompatibility, versatility, and intrinsic biomimetic properties, are rapidly ascending as formidable vectors within the cancer theragnostic arena. This review endeavors to meticulously dissect the avant-garde methodologies central to biopolymer-based nanomedicine, exploring their synthesis, functional mechanisms, and subsequent clinical ramifications. A key focus of this analysis is the pioneering roles and efficacies of lipid-based, polysaccharide, and composite nano-carriers in enhancing drug delivery, notably amplifying the enhanced permeation and retention effect. This examination is further enriched by referencing flagship nano formulations that have received FDA endorsement, thereby underscoring the transformative potential and clinical viability of biopolymer-based nanomedicines. Furthermore, this discourse illuminates groundbreaking advancements in the realm of photodynamic therapy and elucidates the implications of advanced imaging techniques in live models. Conclusively, this review not only synthesizes current research trajectories but also delineates visionary pathways for the integration of cutting-edge biomaterials in cancer treatment. It charts a course for future explorations within the dynamic domain of biopolymer-nanomedicine, thereby contributing to a deeper understanding and enhanced application of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Jafari H, Namazi H. pH-sensitive biosystem based on laponite RD/chitosan/polyvinyl alcohol hydrogels for controlled delivery of curcumin to breast cancer cells. Colloids Surf B Biointerfaces 2023; 231:113585. [PMID: 37837689 DOI: 10.1016/j.colsurfb.2023.113585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this study, a pH-responsive hydrogels based on laponite rapid dispersion (Lap®)/chitosan (CS)/polyvinyl alcohol (PVA) designed and was used for controlled delivery of the anticancer drug curcumin (CUR). First, it was accomplished by dissolving CUR in Lap® dispersion under the influence of the pH of the environment. Then, in the presence of Lap®CUR cross-linking was incorporated between CS and PVA polymers. The structural features of Lap®CUR/CS@PVA hydrogels are characterized using FT-IR, XRD, SEM/EDS, TEM, TGA, Zeta potential, and XPS. The in vitro drug release profiles confirmed a pH-responsive controlled release of CUR in acidic pH for all hydrogels. During 12 h, the cumulative release of CUR from Lap®CUR/0.1CS@PVA hydrogel was 27.9% and 12.3%, at pH 5.5 and 7.4, respectively. While during three days the release rate reached 48.5% and 18.5%. The CUR release kinetic from hydrogels also suggests that the kinetic data well fitted to the Korsmeyer-Peppas, diffusion-controlled and Fickian diffusion. Furthermore, in vitro cytotoxicity and DAPI staining study clearly illustrated that Lap®CUR/0.1CS@PVA hydrogel had lower cytotoxicity than CUR against MDA-MB 231 cancer cells, which confirmed the controlled release of drug through hydrogels. Meanwhile, in vitro hemolysis, antioxidant and antibacterial tests revealed that the prepared hydrogels have good blood compatibility, excellent antioxidant properties, and antibacterial activity. Based on the obtained results, the designed hydrogels could be potentially applied as pH-controlled drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Hessam Jafari
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
4
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
5
|
Biological Applications of Ball-Milled Synthesized Biochar-Zinc Oxide Nanocomposite Using Zea mays L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165333. [PMID: 36014570 PMCID: PMC9412314 DOI: 10.3390/molecules27165333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Nanotechnology is one of the vital and quickly developing areas and has several uses in various commercial zones. Among the various types of metal oxide-based nanoparticles, zinc oxide nanoparticles (ZnO NPs) are frequently used because of their effective properties. The ZnO nanocomposites are risk-free and biodegradable biopolymers, and they are widely being applied in the biomedical and therapeutics fields. In the current study, the biochar-zinc oxide (MB-ZnO) nanocomposites were prepared using a solvent-free ball-milling technique. The prepared MB-ZnO nanocomposites were characterized through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV) spectroscopy. The MB-ZnO particles were measured as 43 nm via the X-ray line broadening technique by applying the Scherrer equation at the highest peak of 36.36°. The FTIR spectroscope results confirmed MB-ZnO’s formation. The band gap energy gap values of the MB-ZnO nanocomposites were calculated as 2.77 eV by using UV–Vis spectra. The MB-ZnO nanocomposites were tested in various in vitro biological assays, including biocompatibility assays against the macrophages and RBCs and the enzymes’ inhibition potential assay against the protein kinase, alpha-amylase, cytotoxicity assays of the leishmanial parasites, anti-inflammatory activity, antifungal activity, and antioxidant activities. The maximum TAC (30.09%), TRP (36.29%), and DPPH radicals’ scavenging potential (49.19%) were determined at the maximum dose of 200 µg/mL. Similarly, the maximum activity at the highest dose for the anti-inflammatory (76%), at 1000 μg/mL, alpha-amylase inhibition potential (45%), at 1000 μg/mL, antileishmanial activity (68%), at 100 μg/mL, and antifungal activity (73 ± 2.1%), at 19 mg/mL, was perceived, respectively. It did not cause any potential harm during the biocompatibility and cytotoxic assay and performed better during the anti-inflammatory and antioxidant assay. MB-ZnO caused moderate enzyme inhibition and was more effective against pathogenic fungus. The results of the current study indicated that MB-ZnO nanocomposites could be applied as effective catalysts in various processes. Moreover, this research provides valuable and the latest information to the readers and researchers working on biopolymers and nanocomposites.
Collapse
|
6
|
Pooresmaeil M, Namazi H. D-mannose functionalized MgAl-LDH/Fe-MOF nanocomposite as a new intelligent nanoplatform for MTX and DOX co-drug delivery. Int J Pharm 2022; 625:122112. [PMID: 35970281 DOI: 10.1016/j.ijpharm.2022.122112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Commonly the directly administered chemotherapy drugs lack targeting in tumor treatment. Thus, trying to improve cancer treatment efficiency led us to design a new intelligent system for cancer treatment. Considering these, in the current work, at first, the 2-aminoterephthalic acid (NH2-BDC) intercalated layered double hydroxides (MgAl-(NH2-BDC) LDH) were synthesized simply. Afterward, the in situ growth of the iron-based metal-organic frameworks in the presence of MgAl-(NH2-BDC) LDH occurred (MgAl-LDH/Fe-MOF). In the end, the reaction of MgAl-LDH/Fe-MOF with D-mannose (D-Man) achieved the MgAl-LDH/Fe-MOF/D-Man ternary hybrid nanostructure. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis confirmed the formation of the monodisperse Fe-MOF with nanosize in the presence of MgAl-LDH. Importantly, methotrexate (MTX) and doxorubicin (DOX) entrapment efficiency reached respectively about 28 wt% and 21% for MgAl-LDH/Fe-MOF/D-Man. The in vitro drug release experiments revealed a higher drug release at pH 5.0 in comparison with pH 7.4 which revealed its promising potential for anticancer drug delivery applications. Bioassay results revealed that the co-drug-loaded MgAl-LDH/Fe-MOF/D-Man has higher cytotoxicity on MDA-MB 231 cells. At last, fluorescence microscopy and flow cytometric analysis confirmed the successful uptake of MgAl-LDH/Fe-MOF/D-Man into MDA-MB 231 cell lines, as well as its bioimaging potential. A survey in the published literature approved that this work is the first report on the evaluation of the MgAl-LDH/Fe-MOF/D-Man for targeted co-delivery of both MTX and DOX. Finally, results collectively demonstrate the importance of the biocompatible MgAl-LDH/Fe-MOF/D-Man as a hopeful candidate for biomedicinal applications from the targeted co-drug delivery and bioimaging potential viewpoints.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
7
|
Namazi H, Pooresmaeil M, Oskooie MN. New glyco-copolymers containing α-D-glucofuranose and α-D-mannofuranose groups synthesized by free-radical polymerization of sugar-based monomers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03731-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Bradley M, Patrojanasophon P. Maleimide-functionalized carboxymethyl cellulose: A novel mucoadhesive polymer for transmucosal drug delivery. Carbohydr Polym 2022; 288:119368. [DOI: 10.1016/j.carbpol.2022.119368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
|
9
|
Ranjbar E, Namazi H, Pooresmaeil M. Carboxymethyl starch encapsulated 5-FU and DOX co-loaded layered double hydroxide for evaluation of its in vitro performance as a drug delivery agent. Int J Biol Macromol 2022; 201:193-202. [PMID: 35007629 DOI: 10.1016/j.ijbiomac.2021.12.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
Achieving a new oral drug delivery system with controlled drug release behavior is valuable in cancer therapy. Therefore, for the first time, doxorubicin (DOX) and 5-fluorouracil (5-Fu) were simultaneously co-loaded on the as-synthesized layered double hydroxides LDH(MgAl). The resulted system was encapsulated with carboxymethyl starch to improve its efficiency for colon cancer therapy. Several characterization techniques were used to evaluate the successful synthesis of the CMS@LDH(MgAl)@DOX,5-Fu microspheres. The scanning electron microscopy result showed that the size of prepared microspheres is about 72 μm. Additionally, the presence of one broad peak at 2θ ~ 20 of the X-ray diffraction spectrum approved its amorph nature. The drug release study showed a controlled release profile with ~22% of DOX and 29% of 5-Fu. In addition, the cell viability test outcome confirmed the sustained drug release pattern from CMS@LDH(MgAl)@DOX,5-Fu against the colon cancer cell line. The results suggest that the prepared microspheres are capable to operate as an acceptable formulation for oral co-drug delivery.
Collapse
Affiliation(s)
- Elaheh Ranjbar
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| | - Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Nontoxic double-network polymeric hybrid aerogel functionalized with reduced graphene oxide: Preparation, characterization, and evaluation as drug delivery agent. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02902-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Karimian A, Yousefi B, Sadeghi F, Feizi F, Najafzadehvarzi H, Parsian H. Synthesis of biocompatible nanocrystalline cellulose against folate receptors as a novel carrier for targeted delivery of doxorubicin. Chem Biol Interact 2022; 351:109731. [PMID: 34728188 DOI: 10.1016/j.cbi.2021.109731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/02/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023]
Abstract
We designed amine-functionalized nanocrystalline cellulose grafted folic acid/magnetic nanoparticles (AF-NCC/Fe3O4 NPs) against folate receptors for targeted delivery of doxorubicin (DOX). Toxicity is a major side effect of DOX, damaging vital organs such as the heart, kidney, and liver; for example, it causes dilated cardiomyopathy and hepatotoxicity. Accordingly, we aimed to reduce this adverse effect and increase the targeted delivery of DOX to the right point of cancer cells by using the unique features of cancer cells. The characterizations were approved in each step using Fourier transform infrared (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), zeta potential, and dynamic light scattering (DLS) analysis techniques. Encapsulation efficacy of AF-NCC/Fe3O4 NPs was 99.6%; drug release investigations showed excellent stability in physiological conditions (pH ∼ 7.4) and a high release rate in the low pH condition of cancer environments (pH ∼ 5.0). The hemolysis assay and Masson's trichrome and hematoxylin and eosin (H&E) staining results showed that the nanocarrier was entirely biocompatible. In vitro cell viability study approved that the designed nanocarrier increased the therapeutic effects of DOX on Saos-2 cells. The cellular internalization results displayed a high percentage of uptake within 2 h. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was applied for the evaluation of tumor protein p53 (p53), p21, and Bcl-2-associated X protein (Bax). DOX exerted its effects through DNA damage and oxidative stress that led to p53 upregulation, and p53 inhibited cell cycle progression. This arrest initiated apoptosis and inhibited cell migration. In summary, encapsulating DOX in AF-NCC/Fe3O4 NPs dramatically decreases the toxic effects of this chemotherapeutic agent on vital organs, especially on the heart. This smart nanocarrier increases the delivery of DOX using acid folic on its surface and also enhances the DOX release in the acidic environment of cancer cells. DOX exerts its therapeutic effects by the initiation of apoptosis and inhibition of migration.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
12
|
Pooresmaeil M, Namazi H. Facile coating of the methotrexate-layered double hydroxide nanohybrid via carboxymethyl starch as a pH-responsive biopolymer to improve its performance for colon-specific therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
14
|
Aslani R, Namazi H. Simple fabrication of multifunctional hyperbranched copolymer based on l-lysine and citric acid for co-delivery of anticancer drugs to breast cancer cells. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
16
|
Karimi S, Namazi H. Synthesis of folic acid-conjugated glycodendrimer with magnetic β-cyclodextrin core as a pH-responsive system for tumor-targeted co-delivery of doxorubicin and curcumin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Pooresmaeil M, Asl EA, Namazi H. Simple fabrication of biocompatible chitosan/graphene oxide microspheres for pH-controlled amoxicillin delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Bagheri B, Pooresmaeil M, Namazi H. Improve the performance of proton exchange membranes based on sulfopropylated amino polyethersulfone/poly [2,2ʹ-(m-pyrazolidene)-5,5ʹ-bibenzimidazole] blend through SiO2 nanoparticles importing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Carbon fiber/epoxy resin/α-aluminum oxide nanocomposites; fabrication, mechanical and thermal analysis. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00909-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Pooresmaeil M, Namazi H. Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review. Carbohydr Polym 2021; 258:117654. [DOI: 10.1016/j.carbpol.2021.117654] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
|
21
|
Fabrication of a smart and biocompatible brush copolymer decorated on magnetic graphene oxide hybrid nanostructure for drug delivery application. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110126] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Khaki D, Namazi H, Amininasab SM. Synthesis and identification of new thermostable polyamides containing xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Karimi S, Namazi H. A photoluminescent folic acid-derived carbon dot functionalized magnetic dendrimer as a pH-responsive carrier for targeted doxorubicin delivery. NEW J CHEM 2021. [DOI: 10.1039/d0nj06261h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent folic acid carbon dot-grafted magnetic dendrimer was synthesized as a potential carrier for targeted delivery of DOX drug in an acidic medium (pH 5). The carrier showed biodegradability, high colloidal stability, and good biocompatibility towards A549 cells.
Collapse
Affiliation(s)
- Soheyla Karimi
- Research Laboratory of Dendrimers and Nanopolymers
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| |
Collapse
|
24
|
Pooresmaeil M, Namazi H, Salehi R. Simple method for fabrication of metal-organic framework within a carboxymethylcellulose/graphene quantum dots matrix as a carrier for anticancer drug. Int J Biol Macromol 2020; 164:2301-2311. [DOI: 10.1016/j.ijbiomac.2020.08.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023]
|
25
|
Preethi S, Abarna K, Nithyasri M, Kishore P, Deepika K, Ranjithkumar R, Bhuvaneshwari V, Bharathi D. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int J Biol Macromol 2020; 164:2779-2787. [DOI: 10.1016/j.ijbiomac.2020.08.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/11/2023]
|
26
|
Urbina L, Eceiza A, Gabilondo N, Corcuera MÁ, Retegi A. Tailoring the in situ conformation of bacterial cellulose-graphene oxide spherical nanocarriers. Int J Biol Macromol 2020; 163:1249-1260. [PMID: 32673723 DOI: 10.1016/j.ijbiomac.2020.07.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC)/graphene oxide (GO) sphere-like hydrogels have been biosynthesized by in situ route in dynamic cultivation. The GO concentration during BC biosynthesis (0.01 and 0.05 mg mL-1) was the determining factor for the conformation of the final hydrogels: encapsulation (BC/GO 0.01) or distribution through all the body of the spheres (BC/GO 0.05). The as-prepared sphere hydrogels were characterized in terms of physico-chemical properties, thermal stability, microstructure, and swelling capacity in different media. In addition, a chemical treatment with ascorbic acid was performed in order to obtain reduced graphene oxide (rGO) into the spheres (BC/rGO). After the chemical treatment, electrostatic force microscopy (EFM) revealed electrical interactions due to the presence of rGO inside the spheres and resistivity values in the range of semiconductive materials were obtained (106 Ω·cm), making BC/rGO spheres promising for the development of electro-stimulated systems. The in vitro release study of ibuprofen (IB), showed that the reduction process led to an increase of 73 and 92% of drug release with respect to BC/GO 0.05 and BC/GO 0.01 spheres, respectively. Moreover, the encapsulation conformation showed more homogeneous porous structure and thus, a cumulative drug release of 63% was reached after 6 h.
Collapse
Affiliation(s)
- Leire Urbina
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - María Ángeles Corcuera
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
27
|
Nain V, Kaur M, Sandhu KS, Thory R, Sinhmar A. Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. Int J Biol Macromol 2020; 162:24-30. [DOI: 10.1016/j.ijbiomac.2020.06.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022]
|
28
|
Khushbu, Warkar SG. Potential applications and various aspects of polyfunctional macromolecule- carboxymethyl tamarind kernel gum. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Karimi S, Namazi H. Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. Int J Biol Macromol 2020; 156:648-659. [DOI: 10.1016/j.ijbiomac.2020.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
|
30
|
Namazi H, Pooresmaeil M, Hasani M. Oxidized starch/CuO bio-nanocomposite hydrogels as an antibacterial and stimuli-responsive agent with potential colon-specific naproxen delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1798431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohsen Hasani
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
31
|
Green Synthesized Montmorillonite/Carrageenan/Fe 3O 4 Nanocomposites for pH-Responsive Release of Protocatechuic Acid and Its Anticancer Activity. Int J Mol Sci 2020; 21:ijms21144851. [PMID: 32659939 PMCID: PMC7402292 DOI: 10.3390/ijms21144851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50–0.734 mg/mL) compared to the unloaded NCs (IC50–1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
Collapse
|
32
|
Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int J Biol Macromol 2020; 155:876-882. [DOI: 10.1016/j.ijbiomac.2019.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
|
33
|
Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. Int J Biol Macromol 2020; 162:501-511. [PMID: 32574741 DOI: 10.1016/j.ijbiomac.2020.06.183] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Curcumin (CUR) is a lowly water-soluble natural polyphenol with chemopreventive and chemotherapeutic activities. Hence, to achieve the system with good CUR loading ability, porous MIL-88 (Fe) was prepared in the presence of the presynthesized graphene quantum dots (GQDs) (GQDs@MIL-88 (Fe)). In the following, CUR loaded in the fabricated GQDs@MIL-88 (Fe) nanohybrid. The characterization techniques; Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL), and Brunauer-Emmett-Teller (BET) analysis showed success in the synthesis of GQDs@MIL-88 (Fe). Moreover, the FT-IR analysis displayed the loading of CUR and the formation of CUR@GQDs@MIL-88(Fe). Chitosan (CS) was used as a green coating to enhance the biocompatibility of the prepared system (CS/CUR@GQDs@MIL-88(Fe). The fabricated microspheres showed pH-sensitive swelling behavior and released 38.3% of CUR in pH 5.0 which is better fitted with the First-order kinetic model (R2 = 0.9726). In comparison with CUR@GQDs@MIL-88(Fe), the MTT and DAPI assay exhibited less toxic effect for CS/CUR@GQDs@MIL-88(Fe) against MDA-MB 231 cells. Moreover, the safety of the CS/CUR@GQDs@MIL-88(Fe) confirmed after incubation against MCF 10A as a model of the normal cell line. The results conveyed a new concept that the CS/CUR@GQDs@MIL-88(Fe) is a potential candidate for using as a biocompatible carrier with controlled drug delivery ability.
Collapse
|
34
|
Pooresmaeil M, Namazi H, Salehi R. Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohydr Polym 2020; 246:116658. [PMID: 32747290 DOI: 10.1016/j.carbpol.2020.116658] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
In the present research, we prepared new glycodendrimer containing β-cyclodextrin (β-CD) in three steps. At first, graphene quantum dots (GQDs) synthesized through pyrolysis of the citric acid (CA). Then the polyamidoamine (PAMAM) dendrimer was grown from the surface of the modified GQDs (GQDs-PAMAM). Finally, the prepared GQDs-PAMAM was functionalized with β-CD to obtain the glycodendrimer (GQDs-PAMAM-β-CD). The synthesized glycodendrimer characterized using several techniques. The phenol-sulfuric acid test obtained the amount of the β-CD about 30.37 %. 61.2 % of doxorubicin (DOX) was loaded in the prepared glycodendrimer. DOX@GQDs-PAMAM-β-CD displayed the pH-sensitive drug release profile, which fitted the Higuchi kinetic model. The biological test outcomes showed that the GQDs-PAMAM-β-CD is a safe carrier with good capability in penetration to the cancer cells. Moreover, DOX@GQDs-PAMAM-β-CD exhibited more efficiency in the killing of the cancer cells compared to neat DOX. Obtained results suggested that prepared glycodendrimer could be a potential nanosystem for breast cancer treatment.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| | - Roya Salehi
- Drug Applied Research Center, and Department of Medical Nanotechnology, Department of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Xu W, Peng J, Ni D, Zhang W, Wu H, Mu W. Preparation, characterization and application of levan/montmorillonite biocomposite and levan/BSA nanoparticle. Carbohydr Polym 2020; 234:115921. [DOI: 10.1016/j.carbpol.2020.115921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
|
36
|
Star-shaped polylactic acid-based triazine dendrimers: the catalyst type and time factors influence on polylactic acid molecular weight. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00807-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Alipour N, Namazi H. Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110459. [DOI: 10.1016/j.msec.2019.110459] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/09/2019] [Accepted: 11/17/2019] [Indexed: 01/16/2023]
|
38
|
Sharifzadeh G, Hezaveh H, Muhamad II, Hashim S, Khairuddin N. Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 110:110609. [PMID: 32204060 DOI: 10.1016/j.msec.2019.110609] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 01/21/2023]
Abstract
Vaginal drug delivery is regarded as a promising route against women-related health issues such as unwanted pregnancies and sexually transmitted infections. However, only a very few studies have been reported on the use of hydrogel rings with low cytotoxicity for vaginal drug delivery applications. Moreover, the effect of nanoparticles on hydrogel vaginal rings has not been clearly evaluated. To overcome these challenges, we hereby developed nanocomposite hydrogel rings based on polyacrylamide-sodium carboxymethyl cellulose-montmorillonite nanoparticles in the ring-shaped aluminum mold for controlled drug delivery. The hydrogel rings were synthesized by using N,N'-methylene bisacrylamide, N,N,N',N'-tetramethyl ethylene diamine, and ammonium persulfate, as a crosslinker, accelerator, and initiator, respectively. The obtained rings were 5.5 cm in diameters and 0.5 cm in rims. Chemical structures of the nanocomposite rings were confirmed by Fourier transform infrared, and Nuclear Magnetic Resonance spectroscopies. Additionally, the swelling ratio of hydrogels was appeared to be adjusted by the introduction of nanoparticles. In vitro release experiment of methylene blue, as a hydrophilic model drug, revealed that the nanocomposite rings could not only reduce burst effect (almost more than twice), but also achieve prolonged release for 15 days in the vaginal fluid simulant which mimic the vaginal conditions at pH of almost 4.2, and a temperature of 37 °C. Importantly, the resultant hydrogel rings with or without various concentrations of montmorillonite showed low cytotoxicity toward human skin fibroblasts. Furthermore, different antibacterial activities against Escherichia coli were observed for various concentrations of montmorillonite in hydrogels. These results suggest the great potential of montmorillonite-based hydrogel rings for vaginal drug delivery.
Collapse
Affiliation(s)
- Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, 81310, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Hadi Hezaveh
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3169, Australia
| | - Ida Idayu Muhamad
- Food and Biomaterial Engineering Research Group (FoBERG), Bioprocess and Polymer Engineering Department, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; Biomaterials Cluster, IJN-UTM Cardiovascular Engineering Centre, Block B, V01, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
| | - Shahrir Hashim
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Nozieana Khairuddin
- Department of Basic Science and Engineering, Faculty of Agriculture and Food Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, P.O. Box 396, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
| |
Collapse
|
39
|
Jamróz E, Kopel P, Tkaczewska J, Dordevic D, Jancikova S, Kulawik P, Milosavljevic V, Dolezelikova K, Smerkova K, Svec P, Adam V. Nanocomposite Furcellaran Films-the Influence of Nanofillers on Functional Properties of Furcellaran Films and Effect on Linseed Oil Preservation. Polymers (Basel) 2019; 11:E2046. [PMID: 31835441 PMCID: PMC6960603 DOI: 10.3390/polym11122046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Nanocomposite films that were based on furcellaran (FUR) and nanofillers (carbon quantum dots (CQDs), maghemite nanoparticles (MAN), and graphene oxide (GO)) were obtained by the casting method. The microstructure, as well as the structural, physical, mechanical, antimicrobial, and antioxidant properties of the films was investigated. The incorporation of MAN and GO remarkably increased the tensile strength of furcellaran films. However, the water content, solubility, and elongation at break were significantly reduced by the addition of the nanofillers. Moreover, furcellaran films containing the nanofillers exhibited potent free radical scavenging ability. FUR films with CQDs showed an inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli. The nanocomposite films were used to cover transparent glass containers to study the potential UV-blocking properties in an oil oxidation test and compare with tinted glass. The samples were irradiated for 30 min. with UV-B and then analyzed for oxidation markers (peroxide value, free fatty acids, malondialdehyde content, and degradation of carotenoids). The test showed that covering the transparent glass with MAN films was as effective in inhibiting the oxidation as the use of tinted glass, while the GO and CQDs films did not inhibit oxidation. It can be concluded that the active nanocomposite films can be used as a desirable material for food packaging.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
- Faculty of Electrical Engineering and Communication, Department of Microelectronics, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka 122 Street, PL-30-149 Cracow, Poland; (J.T.); (P.K.)
| | - Dani Dordevic
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, CZ-612 42 Brno, Czech Republic; (D.D.); (S.J.)
- Department of Technology and Organization of Public Catering, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia
| | - Simona Jancikova
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, CZ-612 42 Brno, Czech Republic; (D.D.); (S.J.)
| | - Piotr Kulawik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka 122 Street, PL-30-149 Cracow, Poland; (J.T.); (P.K.)
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613-00 Brno, Czech Republic; (V.M.); (K.D.); (K.S.); (P.S.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
40
|
Nasiri Oskooie M, Pooresmaeil M, Namazi H. Design and synthesis of vinylic glycomonomers and glycopolymer based on α-D-glucofuranose moieties. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1969-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Potential anticancer activity of protocatechuic acid loaded in montmorillonite/Fe 3O 4 nanocomposites stabilized by seaweed Kappaphycus alvarezii. Int J Pharm 2019; 572:118743. [PMID: 31705969 DOI: 10.1016/j.ijpharm.2019.118743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022]
Abstract
Superparamagnetic magnetite nanocomposites (Fe3O4-NCs) were successfully synthesized, which comprised of montmorillonite (MMT) as matrix support, Kappaphycus alvarezii (SW) as bio-stabilizer and Fe3O4 as filler in the composites to form MMT/SW/Fe3O4-NCs. Nanocomposite with 0.5 g Fe3O4 (MMT/SW/0.5Fe3O4) was selected for anticancer activity study because it revealed high crystallinity, particle size of 7.2 ± 1.7 nm with majority of spherical shape, and Ms = 5.85 emu/g with negligible coercivity. Drug loading and release studies were carried out using protocatechuic acid (PCA) as the model for anticancer drug, which showed 19% and 87% of PCA release in pH 7.4 and 4.8, respectively. Monolayer anticancer assay showed that PCA-loaded MMT/SW/Fe3O4 (MMT/SW/Fe3O4-PCA) had selectivity towards HCT116 (colorectal cancer cell line). Although MMT/SW/Fe3O4-PCA (0.64 mg/mL) showed higher IC50 than PCA (0.148 mg/mL) and MMT/SW/Fe3O4 (0.306 mg/mL, MMT/SW/Fe3O4-PCA showed more effective killing towards tumour spheroid model generated from HCT116. The IC50 for MMT/SW/Fe3O4-PCA, MMT/SW/Fe3O4 and PCA were 0.132, 0.23 and 0.55 mg/mL, respectively. This suggests the improved penetration efficiency and drug release of MMT/SW/Fe3O4-PCA towards HCT116 spheroids. Moreover, concentration that lower than 2 mg/mL MMT/SW/Fe3O4-PCA did not result any hemolysis in human blood, which suggests them to be ideal for intravenous injection. This study highlights the potential of MMT/SW/Fe3O4-NCs as drug delivery agent.
Collapse
|
42
|
Guo J, Wang J, Zheng G, Jiang X. A TiO 2/crosslinked carboxymethyl starch composite for high-efficiency adsorption and photodegradation of cationic golden yellow X-GL dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24395-24406. [PMID: 31228072 DOI: 10.1007/s11356-019-05685-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
In this paper, a crosslinked carboxymethyl starch (CCMS) was prepared with corn starch as the raw material, epichlorohydrin as the crosslinking agent, and chloroacetic acid as the etherifying agent through a series of crosslinking, alkalization, and etherification reactions, respectively. Nano-TiO2 was loaded onto the surface of the CCMS by the sol-gel method to obtain a TiO2/CCMS composite. The TiO2/CCMS composite was characterized by XPS, XRD, SEM, and BET. XPS showed that the surface chemical composition of the TiO2/CCMS composite material contained titanium; XRD diffraction patterns indicated that the crystal form of the TiO2/CCMS composite was a combination of the CCMS and anatase TiO2. The surface morphology obtained by SEM showed that there were nano-TiO2 particles on the surface of the CCMS. The specific surface area of the TiO2/CCMS composite was larger than that of CCMS. The adsorption-photodegradation performance of the TiO2/CCMS composite was also studied under UV irradiation, and the results showed that significant adsorption-photodegradation synergies occurred.
Collapse
Affiliation(s)
- Jing Guo
- School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, PR China.
| | - Jiankun Wang
- School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Guo Zheng
- School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Xiaodong Jiang
- School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, PR China
| |
Collapse
|
43
|
Li Q, Feng Y, Gu G, Guo Z. Synthesis of Novel Amino Lactose and Evaluation of Its Antioxidant Property. STARCH-STARKE 2018. [DOI: 10.1002/star.201700293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
| | - Yan Feng
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Guodong Gu
- Alliance Pharma, Inc.; 17 Lee Boulevard Malvern PA 19355 USA
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization; Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai 264003 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
44
|
Namazi H, Abdollahzadeh E. Drug nanocarrier agents based on starch-g-amino acids. ACTA ACUST UNITED AC 2017; 8:99-106. [PMID: 29977831 PMCID: PMC6026521 DOI: 10.15171/bi.2018.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023]
Abstract
Introduction: In the recent decades, starch has been modified using different methods for the various forms of applications. Some new starch derivatives were prepared through a simple and convenient method in the grafting of amino acids: L-alanine, L-leucine and L-phenyl alanine to starch. Methods: First, the amine groups of amino acids were protected using phthalic anhydride then the acidic side of amino acids were activated with chlorination using thionyl chloride, and the resultant acid chlorides were reacted with starch in aqueous media at room temperature. Results: Performing the various spectroscopy experiments on the obtained compounds showed that the new derivative of starch has been formed. The structure of all synthesized materials was determined and confirmed using common spectroscopy methods and their thermal behavior was examined using DSC experiment. Conclusion: New amino acid derivatives of starch and their nanocarriers successfully prepared through a simple and convenient method. The size of nanocarriers evaluated using DLS and TEM experiments. The spherical shape of particles shows that nanocarriers have been formed and the size of these particles are approximately 92, 137 and 97 nm. Performing the wettability test determined that all the resulted materials are soluble in water. Nanocarriers of the obtained modified starches were prepared using dialysis method and naproxen was utilized as a model drug molecule. The drug release dynamics in buffered solution were studied and investigation of the drug release mechanism showed that in case of L-alanine- and L-phenylalanine-modified starches, drug release followed the Fickian diffusion with a slight deviation.
Collapse
Affiliation(s)
- Hassan Namazi
- Laboratory of Dendrimers and Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanonotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Abdollahzadeh
- Laboratory of Dendrimers and Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
45
|
Synthesis of eccentric core-shell particles by surfactant-free emulsion polymerization with enzymatically hydrolyzed starch as the stabilizer. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4200-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Tan W, Guo Z, Chen Q, Dong F, Li Q. Synthesis of aminopyridinium-grafted starch derivatives and evaluation of their antioxidant property. STARCH-STARKE 2017. [DOI: 10.1002/star.201600259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P.R. China
- University of Chinese Academy of Sciences; Beijing P.R. China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P.R. China
| | - Qiuhong Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P.R. China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P.R. China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research; Chinese Academy of Sciences; Yantai P.R. China
| |
Collapse
|