1
|
Maneechai K, Khopanlert W, Noiperm P, Udomsak P, Viboonjuntra P, Julamanee J. Generation of ex vivo autologous hematopoietic stem cell-derived T lymphocytes for cancer immunotherapy. Heliyon 2024; 10:e38447. [PMID: 39398019 PMCID: PMC11467635 DOI: 10.1016/j.heliyon.2024.e38447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
CD19CAR-T cell therapy demonstrated promising outcomes in relapsed/refractory B-cell malignancies. Nonetheless, the limited T-cell function and ineffective T-cell apheresis for therapeutic purposes are still concern in heavily pretreated patients. We investigated the feasibility of generating hematopoietic stem cell-derived T lymphocytes (HSC-T) for cancer immunotherapy. The patients' autologous peripheral blood HSCs were enriched for CD34+ and CD3+ cells. The CD34+ cells were then cultured following three steps of lymphoid progenitor differentiation, T-cell differentiation, and T-cell maturation processes. HSC-T cells were successfully generated with robust fold expansion of 3735 times. After lymphoid progenitor differentiation, CD5+ and CD7+ cells remarkably increased (65-84 %) while CD34+ cells consequentially declined. The mature CD3+ cells were detected up to 40 % and 90 % on days 42 and 52, respectively. The majority of HSC-T population was naïve phenotype compared to CD3-T cells (73 % vs 34 %) and CD8:CD4 ratio was 2:1. The higher level of cytokine and cytotoxic granule secretion in HSC-T was observed after activation. HSC-T cells were assessed for clinical application and found that CD19CAR-transduced HSC-T cells demonstrated higher cytokine secretion and a trend of superior cytotoxicity against CD19+ target cells compared to control CAR-T cells. A chronic antigen stimulation assay revealed similar T-cell proliferation, stemness, and exhaustion phenotypes among CAR-T cell types. In conclusions, autologous HSC-T was feasible to generate with preserved T-cell efficacy. The HSC-T cells are potentially utilized as an alternative option for cellular immunotherapy.
Collapse
Affiliation(s)
- Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Anatomical Pathology Unit, Division of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Panarat Noiperm
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Phakaporn Udomsak
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Pongtep Viboonjuntra
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| |
Collapse
|
2
|
Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell Stem Cell 2024; 31:597-616. [PMID: 38593798 DOI: 10.1016/j.stem.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
3
|
Bastone AL, Dziadek V, John-Neek P, Mansel F, Fleischauer J, Agyeman-Duah E, Schaudien D, Dittrich-Breiholz O, Schwarzer A, Schambach A, Rothe M. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol Ther Methods Clin Dev 2023; 30:515-533. [PMID: 37693949 PMCID: PMC10491817 DOI: 10.1016/j.omtm.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.
Collapse
Affiliation(s)
- Antonella L. Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Lei YY, Chen XR, Jiang S, Guo M, Yu CL, Qiao JH, Cai B, Ai HS, Wang Y, Hu KX. Mechanisms of thymic repair of in vitro-induced precursor T cells as a haplo-identical HSCT regimen. Transplant Cell Ther 2023:S2666-6367(23)01174-0. [PMID: 36944387 DOI: 10.1016/j.jtct.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is currently an effective treatment for malignant hematological disease, but the immune deficiency and severe infection triggered by slow immune reconstitution are the main causes of high mortality and transplant failure. One of these outstanding problems is thymus damage, which is associated with graft-versus-host disease (GVHD), and preconditioning including irradiation and chemotherapy. Therefore, rapid repair of damaged thymus and rapid proliferation of thymus-derived donor T cells after transplantation are key to solving the problem. This study is designed to accelerate the recovery of thymus-derived T cells after transplantation. Wild-type mice with normal immunity were used as recipients in a haplo-HSCT mouse model to mimic clinical haplo-HSCT. A modified cell culture system using Notch ligand Delta4 and IL-7 was established that is capable of inducing and amplifying the differentiation and proliferation of hematopoietic stem cells into precursor T (preT) cells in vitro. Haplo-HSCT protocol included the preT and G-CSF mobilized donor splenic mononuclear cells (MNC) co-infusion or MNC alone. Thymic GVHD, thymic repair, and thymus-derived T cell development were compared in two groups by polychromatic immunofluorescence tracking, flow cytometry and detection of T cell receptor Vβ. The thymus homing and T-cell regeneration of allogenic preT cells were observed. The functions of preT cells in accelerating immune reconstitution, restoring thymic architecture, weakening GVH effects, and enhancing immuno-tolerance after transplantation were demonstrated. Further studies revealed that allogeneic preT cells induced by a culture system containing IL7 and Delta4 highly express ccr9 and RANKL. Interestingly, the RANK expression was promoted after preT cells' thymus homing. These results suggested that the RANK/RANKL pathway may play an important role in thymus homing. Our results provide a potential therapeutic option to optimize haplo-HSCT. It further opened up a new field of T cell therapy for artificial induction of allogeneic precursor T cells in vitro to repair the damaged thymus from irradiation and chemotherapy, and to compensate for the recovery of immune function in patients with immune deficiency caused by multiple reasons.
Collapse
Affiliation(s)
- Yang-Yang Lei
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| | - Xin-Rui Chen
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Shan Jiang
- Anhui medical university, anhui province, China
| | - Mei Guo
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Chang-Lin Yu
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Jian-Hui Qiao
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Bo Cai
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Hui-Sheng Ai
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Yi Wang
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| | - Kai-Xun Hu
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| |
Collapse
|
5
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
6
|
Mohtashami M, Li YR, Lee CR, Zúñiga-Pflücker JC. Thymus Reconstitution in Young and Aged Mice Is Facilitated by In Vitro-Generated Progenitor T Cells. Front Immunol 2022; 13:926773. [PMID: 35874726 PMCID: PMC9304753 DOI: 10.3389/fimmu.2022.926773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged lag in T cell recovery seen in older patients undergoing hematopoietic stem cell transplant (HSCT), after chemo-/radiotherapy, can lead to immune dysfunction. As a result, recovering patients may experience a relapse in malignancies and opportunistic infections, leading to high mortality rates. The delay in T cell recovery is partly due to thymic involution, a natural collapse in the size and function of the thymus, as individuals age, and partly due to the damage sustained by the thymic stromal cells through exposure to chemo-/radiotherapy. There is a clear need for new strategies to accelerate intrathymic T cell reconstitution when treating aged patients to counter the effects of involution and cancer therapy regimens. Adoptive transfer of human progenitor T (proT) cells has been shown to accelerate T cell regeneration in radiation-treated young mice and to restore thymic architecture in immunodeficient mice. Here, we demonstrate that the adoptive transfer of in vitro-generated proT cells in aged mice (18-24 months) accelerated thymic reconstitution after treatment with chemotherapy and gamma irradiation compared to HSCT alone. We noted that aged mice appeared to have a more limited expansion of CD4-CD8- thymocytes and slower temporal kinetics in the development of donor proT cells into mature T cells, when compared to younger mice, despite following the same chemo/radiation regimen. This suggests a greater resilience of the young thymus compared to the aged thymus. Nevertheless, newly generated T cells from proT cell engrafted aged and young mice were readily present in the periphery accelerating the reappearance of new naïve T cells. Accelerated T cell recovery was also observed in both aged and young mice receiving both proT cells and HSCT. The strategy of transferring proT cells can potentially be used as an effective cellular therapy in aged patients to improve immune recovery and reduce the risk of opportunistic infections post-HSCT.
Collapse
Affiliation(s)
| | - Yue Ru Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Christina R. Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Gaudeaux P, Moirangthem RD, Bauquet A, Simons L, Joshi A, Cavazzana M, Nègre O, Soheili S, André I. T-Cell Progenitors As A New Immunotherapy to Bypass Hurdles of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:956919. [PMID: 35874778 PMCID: PMC9300856 DOI: 10.3389/fimmu.2022.956919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference for numerous malignant and non-malignant hemopathies. The outcome of this approach is significantly hampered by not only graft-versus-host disease (GvHD), but also infections and relapses that may occur because of persistent T-cell immunodeficiency following transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year. Thus, the major challenge in the management of allogeneic HSCT relies on the possibility of shortening the window of immune deficiency through the acceleration of T-cell recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations that can give rise to mature T cells faster than HSCs while maintaining a safety profile compatible with clinical use is of major interest. In this review, we summarize current advances in the characterization of thymus seeding progenitors, and their ex vivo generated counterparts, T-cell progenitors. Transplantation of the latter has been identified as a worthwhile approach to shorten the period of immune deficiency in patients following allogeneic HSCT, and to fulfill the clinical objective of reducing morbimortality due to infections and relapses. We further discuss current opportunities for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-the-shelf strategies. These opportunities will be analyzed in the light of results from ongoing clinical studies involving T-cell progenitors.
Collapse
Affiliation(s)
- Pierre Gaudeaux
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Smart Immune, Paris, France
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Laura Simons
- Smart Immune, Paris, France
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Akshay Joshi
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Marina Cavazzana
- Smart Immune, Paris, France
- Department of Biotherapy, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Paris Cité, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | | | | | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Sottoriva K, Paik NY, White Z, Bandara T, Shao L, Sano T, Pajcini KV. A Notch/IL-21 signaling axis primes bone marrow T cell progenitor expansion. JCI Insight 2022; 7:e157015. [PMID: 35349492 PMCID: PMC9090257 DOI: 10.1172/jci.insight.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term impairment in T cell-mediated adaptive immunity is a major clinical obstacle following treatment of blood disorders with hematopoietic stem cell transplantation. Although T cell development in the thymus has been extensively characterized, there are significant gaps in our understanding of prethymic processes that influence early T cell potential. We have uncovered a Notch/IL-21 signaling axis in bone marrow common lymphoid progenitor (CLP) cells. IL-21 receptor expression was driven by Notch activation in CLPs, and in vivo treatment with IL-21 induced Notch-dependent CLP proliferation. Taking advantage of this potentially novel signaling axis, we generated T cell progenitors ex vivo, which improved repopulation of the thymus and peripheral lymphoid organs of mice in an allogeneic transplant model. Importantly, Notch and IL-21 activation were equally effective in the priming and expansion of human cord blood cells toward the T cell fate, confirming the translational potential of the combined treatment.
Collapse
Affiliation(s)
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine and
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine and
| | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
9
|
Montel-Hagen A, Tsai S, Seet CS, Crooks GM. Generation of Artificial Thymic Organoids from Human and Murine Hematopoietic Stem and Progenitor Cells. Curr Protoc 2022; 2:e403. [PMID: 35384408 DOI: 10.1002/cpz1.403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The generation of T cells is a complex, carefully orchestrated process that occurs in the thymus. The ability to mimic T cell differentiation in vitro has opened up avenues to better understand different stages of thymopoiesis but has also enabled the in vitro production of mature T cells suitable for immunotherapy. Among existing protocols, the artificial thymic organoid (ATO) system has been shown to be the most efficient at producing mature conventional T cells. In this serum-free model, human or murine hematopoietic stem and progenitor cells (HSPCs) are combined with a murine stromal cell line expressing a Notch ligand in a 3D cell aggregate. In ATOs, although only simple medium changes are required throughout the cultures, HSPCs differentiate into T cells with kinetics and phenotypes similar to those of endogenous thymopoiesis. This article describes protocols for the generation of ATOs from human and murine HSPCs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expansion and preparation of MS5-hDLL4 or MS5-mDLL4 cells Basic Protocol 2: Isolation of human hematopoietic stem and progenitor cells (HSPCs; CD34+ cells) Support Protocol 1: Transduction of human HSPCs (CD34+ cells) Basic Protocol 3: Production of thymic progenitors and mature T cells from human HSPCs in artificial thymic organoids (ATOs) Support Protocol 2: Phenotype analysis of human ATO cells by flow cytometry Basic Protocol 4: Isolation of murine HSPCs (Lin- Sca1+ cKit+; LSK) and hematopoietic stem cells (LSK CD150+ CD48-) Basic Protocol 5: Production of thymic progenitors and mature T cells from murine HSPCs in ATOs Support Protocol 3: Phenotype analysis of murine ATO cells by flow cytometry Alternate Protocol: Generation of ATOs from single HSPCs.
Collapse
Affiliation(s)
- Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Steven Tsai
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California.,Broad Stem Cell Research Center, UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California.,Broad Stem Cell Research Center, UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
10
|
Multi-objective optimization reveals time- and dose-dependent inflammatory cytokine-mediated regulation of human stem cell derived T-cell development. NPJ Regen Med 2022; 7:11. [PMID: 35087040 PMCID: PMC8795204 DOI: 10.1038/s41536-022-00210-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
The generation of T-cells from stem cells in vitro could provide an alternative source of cells for immunotherapies. T-cell development from hematopoietic stem and progenitor cells (HSPCs) is tightly regulated through Notch pathway activation by Delta-like (DL) ligands 1 and 4. Other molecules, such as stem cell factor (SCF) and interleukin (IL)-7, play a supportive role in regulating the survival, differentiation, and proliferation of developing T-cells. Numerous other signaling molecules influence T-lineage development in vivo, but little work has been done to understand and optimize their use for T-cell production. Using a defined engineered thymic niche system, we undertook a multi-stage statistical learning-based optimization campaign and identified IL-3 and tumor necrosis factor α (TNFα) as a stage- and dose-specific enhancers of cell proliferation and T-lineage differentiation. We used this information to construct an efficient three-stage process for generating conventional TCRαβ+CD8+ T-cells expressing a diverse TCR repertoire from blood stem cells. Our work provides new insight into T-cell development and a robust system for generating T-cells to enable clinical therapies for treating cancer and immune disorders.
Collapse
|
11
|
Gutierrez-Guerrero A, Abrey Recalde MJ, Mangeot PE, Costa C, Bernadin O, Périan S, Fusil F, Froment G, Martinez-Turtos A, Krug A, Martin F, Benabdellah K, Ricci EP, Giovannozzi S, Gijsbers R, Ayuso E, Cosset FL, Verhoeyen E. Baboon Envelope Pseudotyped "Nanoblades" Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34 + Cells and Knock-in of AAV6-Encoded Donor DNA in CD34 + Cells. Front Genome Ed 2021; 3:604371. [PMID: 34713246 PMCID: PMC8525375 DOI: 10.3389/fgeed.2021.604371] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into human blood cells can be challenging. Here, we have utilized "nanoblades," a new technology that delivers a genomic cleaving agent into cells. These are modified murine leukemia virus (MLV) or HIV-derived virus-like particle (VLP), in which the viral structural protein Gag has been fused to Cas9. These VLPs are thus loaded with Cas9 protein complexed with the guide RNAs. Highly efficient gene editing was obtained in cell lines, IPS and primary mouse and human cells. Here, we showed that nanoblades were remarkably efficient for entry into human T, B, and hematopoietic stem and progenitor cells (HSPCs) thanks to their surface co-pseudotyping with baboon retroviral and VSV-G envelope glycoproteins. A brief incubation of human T and B cells with nanoblades incorporating two gRNAs resulted in 40 and 15% edited deletion in the Wiskott-Aldrich syndrome (WAS) gene locus, respectively. CD34+ cells (HSPCs) treated with the same nanoblades allowed 30-40% exon 1 drop-out in the WAS gene locus. Importantly, no toxicity was detected upon nanoblade-mediated gene editing of these blood cells. Finally, we also treated HSPCs with nanoblades in combination with a donor-encoding rAAV6 vector resulting in up to 40% of stable expression cassette knock-in into the WAS gene locus. Summarizing, this new technology is simple to implement, shows high flexibility for different targets including primary immune cells of human and murine origin, is relatively inexpensive and therefore gives important prospects for basic and clinical translation in the area of gene therapy.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Maria Jimena Abrey Recalde
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Lentiviral Vectors and Gene Therapy, University Institute of Italian Hospital, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Philippe E Mangeot
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Caroline Costa
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Ornellie Bernadin
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Séverine Périan
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Floriane Fusil
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Gisèle Froment
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | | | - Adrien Krug
- Université Côte d'Azur, INSERM, Nice, France
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Karim Benabdellah
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Emiliano P Ricci
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon (ENS de Lyon), Université Claude Bernard, Inserm, U1210, CNRS, UMR5239, Lyon, France
| | - Simone Giovannozzi
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Université Côte d'Azur, INSERM, Nice, France
| |
Collapse
|
12
|
Boyd N, Cartledge K, Cao H, Evtimov V, Pupovac A, Trounson A, Boyd R. 'Off-the-Shelf' Immunotherapy: Manufacture of CD8 + T Cells Derived from Hematopoietic Stem Cells. Cells 2021; 10:2631. [PMID: 34685611 PMCID: PMC8534391 DOI: 10.3390/cells10102631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
Cellular immunotherapy is revolutionizing cancer treatment. However, autologous transplants are complex, costly, and limited by the number and quality of T cells that can be isolated from and expanded for re-infusion into each patient. This paper demonstrates a stromal support cell-free in vitro method for the differentiation of T cells from umbilical cord blood hematopoietic stem cells (HSCs). For each single HSC cell input, approximately 5 × 104 T cells were created with an initial five days of HSC expansion and subsequent T cell differentiation over 49 days. When the induced in vitro differentiated T cells were activated by cytokines and anti-CD3/CD28 beads, CD8+ T cell receptor (TCR) γδ+ T cells were preferentially generated and elicited cytotoxic function against ovarian cancer cells in vitro. This process of inducing de novo functional T cells offers a possible strategy to increase T cell yields, simplify manufacturing, and reduce costs with application potential for conversion into chimeric antigen receptor (CAR)-T cells for cancer immunotherapy and for allogeneic transplantation to restore immune competence.
Collapse
Affiliation(s)
- Nicholas Boyd
- Cartherics Pty Ltd., Clayton, VIC 3168, Australia; (N.B.); (K.C.); (H.C.); (V.E.); (A.P.); (A.T.)
| | - Kellie Cartledge
- Cartherics Pty Ltd., Clayton, VIC 3168, Australia; (N.B.); (K.C.); (H.C.); (V.E.); (A.P.); (A.T.)
| | - Huimin Cao
- Cartherics Pty Ltd., Clayton, VIC 3168, Australia; (N.B.); (K.C.); (H.C.); (V.E.); (A.P.); (A.T.)
| | - Vera Evtimov
- Cartherics Pty Ltd., Clayton, VIC 3168, Australia; (N.B.); (K.C.); (H.C.); (V.E.); (A.P.); (A.T.)
| | - Aleta Pupovac
- Cartherics Pty Ltd., Clayton, VIC 3168, Australia; (N.B.); (K.C.); (H.C.); (V.E.); (A.P.); (A.T.)
| | - Alan Trounson
- Cartherics Pty Ltd., Clayton, VIC 3168, Australia; (N.B.); (K.C.); (H.C.); (V.E.); (A.P.); (A.T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Richard Boyd
- Cartherics Pty Ltd., Clayton, VIC 3168, Australia; (N.B.); (K.C.); (H.C.); (V.E.); (A.P.); (A.T.)
| |
Collapse
|
13
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
14
|
DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nat Commun 2021; 12:5023. [PMID: 34408144 PMCID: PMC8373879 DOI: 10.1038/s41467-021-25245-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
T cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources. T cells derived from stem cells can be harnessed for regenerative medicine and cancer immunotherapy, but current technologies limit production and translation. Here, the authors present a serum-free, stromal-cell free DLL4-coated microbead method for the scalable production of T-lineage cells from multiple sources of stem cells.
Collapse
|
15
|
Moirangthem RD, Ma K, Lizot S, Cordesse A, Olivré J, de Chappedelaine C, Joshi A, Cieslak A, Tchen J, Cagnard N, Asnafi V, Rausell A, Simons L, Zuber J, Taghon T, Staal FJT, Pflumio F, Six E, Cavazzana M, Lagresle-Peyrou C, Soheili T, André I. A DL-4- and TNFα-based culture system to generate high numbers of nonmodified or genetically modified immunotherapeutic human T-lymphoid progenitors. Cell Mol Immunol 2021; 18:1662-1676. [PMID: 34117371 PMCID: PMC8245454 DOI: 10.1038/s41423-021-00706-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Several obstacles to the production, expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy. In the context of HSCT, delayed naïve T-cell recovery contributes to poor outcomes. A novel approach to overcome the major limitations of both T-cell immunotherapy and HSCT would be to transplant human T-lymphoid progenitors (HTLPs), allowing reconstitution of a fully functional naïve T-cell pool in the patient thymus. However, it is challenging to produce HTLPs in the high numbers required to meet clinical needs. Here, we found that adding tumor necrosis factor alpha (TNFα) to a DL-4-based culture system led to the generation of a large number of nonmodified or genetically modified HTLPs possessing highly efficient in vitro and in vivo T-cell potential from either CB HSPCs or mPB HSPCs through accelerated T-cell differentiation and enhanced HTLP cell cycling and survival. This study provides a clinically suitable cell culture platform to generate high numbers of clinically potent nonmodified or genetically modified HTLPs for accelerating immune recovery after HSCT and for T-cell-based immunotherapy (including CAR T-cell therapy).
Collapse
Affiliation(s)
- Ranjita Devi Moirangthem
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Kuiying Ma
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Sabrina Lizot
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Anne Cordesse
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Juliette Olivré
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Corinne de Chappedelaine
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Akshay Joshi
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Agata Cieslak
- grid.412134.10000 0004 0593 9113Laboratory of Onco-Hematology, AP-HP, Hôpital Necker-Enfants Malades., Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM UMR 1151, Paris, France
| | - John Tchen
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Nicolas Cagnard
- grid.508487.60000 0004 7885 7602Plateforme Bio-informatique, Université Paris Descartes, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Vahid Asnafi
- grid.412134.10000 0004 0593 9113Laboratory of Onco-Hematology, AP-HP, Hôpital Necker-Enfants Malades., Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM UMR 1151, Paris, France
| | - Antonio Rausell
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Clinical Bioinformatics, INSERM UMR 1163, Paris, France
| | - Laura Simons
- grid.412134.10000 0004 0593 9113Department of Biotherapy Clinical Investigation Center, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Julien Zuber
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France ,grid.412134.10000 0004 0593 9113Department of Adult Kidney Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Frank J. T. Staal
- grid.10419.3d0000000089452978Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Pflumio
- grid.7429.80000000121866389Team Niche and Cancer in Hematopoiesis, Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Emmanuelle Six
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France ,grid.412134.10000 0004 0593 9113Department of Biotherapy Clinical Investigation Center, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Chantal Lagresle-Peyrou
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France ,grid.412134.10000 0004 0593 9113Department of Biotherapy Clinical Investigation Center, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Tayebeh Soheili
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Isabelle André
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| |
Collapse
|
16
|
Izotova N, Rivat C, Baricordi C, Blanco E, Pellin D, Watt E, Gkazi AS, Adams S, Gilmour K, Bayford J, Booth C, Gaspar HB, Thrasher AJ, Biasco L. Long-term lymphoid progenitors independently sustain naïve T and NK cell production in humans. Nat Commun 2021; 12:1622. [PMID: 33712608 PMCID: PMC7954865 DOI: 10.1038/s41467-021-21834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/06/2021] [Indexed: 12/01/2022] Open
Abstract
Our mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.
Collapse
Affiliation(s)
- Natalia Izotova
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK
| | - Christine Rivat
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK
- Orchard Therapeutics, University College of London (UCL), London, UK
| | - Cristina Baricordi
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Elena Blanco
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | | | - Athina S Gkazi
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK
| | | | | | | | - Claire Booth
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK
- Great Ormond Street Hospital, London, UK
| | - H Bobby Gaspar
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK
- Orchard Therapeutics, University College of London (UCL), London, UK
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK.
- Great Ormond Street Hospital, London, UK.
| | - Luca Biasco
- Great Ormond Street Institute of Child Health Faculty of Population Health Sciences, London, UK.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Lagresle-Peyrou C, Olichon A, Sadek H, Roche P, Tardy C, Da Silva C, Garrigue A, Fischer A, Moshous D, Collette Y, Picard C, Casanova JL, André I, Cavazzana M. A gain-of-function RAC2 mutation is associated with bone-marrow hypoplasia and an autosomal dominant form of severe combined immunodeficiency. Haematologica 2021; 106:404-411. [PMID: 31919089 PMCID: PMC7849581 DOI: 10.3324/haematol.2019.230250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Severe combined immunodeficiencies (SCIDs) constitute a heterogeneous group of life-threatening genetic disorders that typically present in the first year of life. They are defined by the absence of autologous T cells and the presence of an intrinsic or extrinsic defect in the B-cell compartment. In three newborns presenting with frequent infections and profound leukopenia, we identified a private, heterozygous mutation in the RAC2 gene (p.G12R). This mutation was de novo in the index case, who had been cured by hematopoietic stem cell transplantation but had transmitted the mutation to her sick daughter. Biochemical assays showed that the mutation was associated with a gain of function. The results of in vitro differentiation assays showed that RAC2 is essential for the survival and differentiation of hematopoietic stem/progenitor cells. Therefore, screening for RAC2 gain-of-function mutations should be considered in patients with a SCID phenotype and who lack a molecular diagnosis.
Collapse
Affiliation(s)
- Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Aurélien Olichon
- Cancer Research Center of Toulouse, CRCT, University of Toulouse, UPS, INSERM U1037, F-31037 Toulouse, France
| | - Hanem Sadek
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Philippe Roche
- Marseille Cancer Research Center, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, Team ISCB, F-13273 Marseille, France
| | - Claudine Tardy
- Cancer Research Center of Toulouse, CRCT, University of Toulouse, UPS, INSERM U1037, F-31037 Toulouse, France
| | - Cindy Da Silva
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Alexandrine Garrigue
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Alain Fischer
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- College de France, F-75231 Paris, France
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
| | - Yves Collette
- Marseille Cancer Research Center, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, Team ISCB, F-13273 Marseille, France
| | - Capucine Picard
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- Study Center for Primary Immunodeficiencies, Assistance Publique–Hôpitaux de Paris (AP-HP), Necker- Enfants Malades University Hospital, F-75015 Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
| | - Jean Laurent Casanova
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Isabelle André
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| |
Collapse
|
18
|
A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat Commun 2021; 12:430. [PMID: 33462228 PMCID: PMC7814014 DOI: 10.1038/s41467-020-20658-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical successes demonstrated by chimeric antigen receptor T-cell immunotherapy have facilitated further development of T-cell immunotherapy against wide variety of diseases. One approach is the development of “off-the-shelf” T-cell sources. Technologies to generate T-cells from pluripotent stem cells (PSCs) may offer platforms to produce “off-the-shelf” and synthetic allogeneic T-cells. However, low differentiation efficiency and poor scalability of current methods may compromise their utilities. Here we show improved differentiation efficiency of T-cells from induced PSCs (iPSCs) derived from an antigen-specific cytotoxic T-cell clone, or from T-cell receptor (TCR)-transduced iPSCs, as starting materials. We additionally describe feeder-free differentiation culture systems that span from iPSC maintenance to T-cell proliferation phases, enabling large-scale regenerated T-cell production. Moreover, simultaneous addition of SDF1α and a p38 inhibitor during T-cell differentiation enhances T-cell commitment. The regenerated T-cells show TCR-dependent functions in vitro and are capable of in vivo anti-tumor activity. This system provides a platform to generate a large number of regenerated T-cells for clinical application and investigate human T-cell differentiation and biology. T-cell immunotherapies, such as CAR-T immunotherapy, are being developed against a wide variety of diseases. Here the authors report the feeder-free, scalable differentiation of human induced pluripotent cells (iPSCs) to T-cells with T-cell receptor dependent anti-tumour function in vitro and in vivo.
Collapse
|
19
|
Velardi E, Clave E, Arruda LCM, Benini F, Locatelli F, Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin Immunopathol 2021; 43:101-117. [PMID: 33416938 DOI: 10.1007/s00281-020-00828-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As the thymus represents the primary site of T-cell development, optimal thymic function is of paramount importance for the successful reconstitution of the adaptive immunity after allogeneic hematopoietic stem cell transplantation. Thymus involutes as part of the aging process and several factors, including previous chemotherapy treatments, conditioning regimen used in preparation to the allograft, occurrence of graft-versus-host disease, and steroid therapy that impair the integrity of the thymus, thus affecting its role in supporting T-cell neogenesis. Although the pathways governing its regeneration are still poorly understood, the thymus has a remarkable capacity to recover its function after damage. Measurement of both recent thymic emigrants and T-cell receptor excision circles is valuable tools to assess thymic output and gain insights on its function. In this review, we will extensively discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering. Although none of them is routinely used in the clinic, these approaches have the potential to enhance thymic function and immune recovery, not only in patients given an allograft but also in other conditions characterized by immune deficiencies related to a defective function of the thymus.
Collapse
Affiliation(s)
- Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| | - Emmanuel Clave
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France.,Laboratoire d'Immunologie et d'Histocompatibilité, AP-HP, Hopital Saint-Louis, F-75010, Paris, France
| |
Collapse
|
20
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Canté-Barrett K, Staal FJT. An adequate human T cell repertoire from a single T cell progenitor: Lessons from an experiment of nature. EBioMedicine 2020; 60:103015. [PMID: 32977163 PMCID: PMC7516063 DOI: 10.1016/j.ebiom.2020.103015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
|
22
|
André I, Simons L, Ma K, Moirangthem RD, Diana JS, Magrin E, Couzin C, Magnani A, Cavazzana M. Ex vivo generated human T-lymphoid progenitors as a tool to accelerate immune reconstitution after partially HLA compatible hematopoietic stem cell transplantation or after gene therapy. Bone Marrow Transplant 2020; 54:749-755. [PMID: 31431705 DOI: 10.1038/s41409-019-0599-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged T-cell immunodeficiency following HLA- incompatible hematopoietic stem cell transplantation (HSCT) represents a major obstacle hampering the more widespread use of this approach. Strategies to fasten T-cell reconstitution in this setting are highly warranted as opportunistic infections and an increased risk of relapse account for high rates of morbidity and mortality especially during early month following this type of HSCT. We have implemented a feeder free cell system based on the use of the notch ligand DL4 and cytokines allowing for the in vitro differentiation of human T-Lymphoid Progenitor cells (HTLPs) from various sources of CD34+ hematopoietic stem and precursor cells (HSPCs). Co- transplantion of human T-lymphoid progenitors (HTLPs) and non- manipulated HSPCs into immunodeficient mice successfully accelerated the reconstitution of a polyclonal T-cell repertoire. This review summarizes preclinical data on the use of T-cell progenitors for treatment of post- transplantation immunodeficiency and gives insights into the development of GMP based protocols for potential clinical applications including gene therapy approaches. Future clinical trials implementing this protocol will aim at the acceleration of immune reconstitution in different clinical settings such as SCID and leukemia patients undergoing allogeneic transplantation. Apart from pure cell-therapy approaches, the combination of DL-4 culture with gene transduction protocols will open new perspectives in terms of gene therapy applications for primary immunodeficiencies.
Collapse
Affiliation(s)
- Isabelle André
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France. .,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France. .,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France.
| | - Laura Simons
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kuiying Ma
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Ranjita Devi Moirangthem
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jean-Sébastien Diana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elisa Magrin
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chloé Couzin
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alessandra Magnani
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University - Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
23
|
Singh J, Mohtashami M, Anderson G, Zúñiga-Pflücker JC. Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Front Immunol 2020; 11:1850. [PMID: 32973763 PMCID: PMC7462002 DOI: 10.3389/fimmu.2020.01850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells play a critical role in mediating antigen-specific and long-term immunity against viral and bacterial pathogens, and their development relies on the highly specialized thymic microenvironment. T cell immunodeficiency can be acquired in the form of inborn errors, or can result from perturbations to the thymus due to aging or irradiation/chemotherapy required for cancer treatment. Hematopoietic stem cell transplant (HSCT) from compatible donors is a cornerstone for the treatment of hematological malignancies and immunodeficiency. Although it can restore a functional immune system, profound impairments exist in recovery of the T cell compartment. T cells remain absent or low in number for many months after HSCT, depending on a variety of factors including the age of the recipient. While younger patients have a shorter refractory period, the prolonged T cell recovery observed in older patients can lead to a higher risk of opportunistic infections and increased predisposition to relapse. Thus, strategies for enhancing T cell recovery in aged individuals are needed to counter thymic damage induced by radiation and chemotherapy toxicities, in addition to naturally occurring age-related thymic involution. Preclinical results have shown that robust and rapid long-term thymic reconstitution can be achieved when progenitor T cells, generated in vitro from HSCs, are co-administered during HSCT. Progenitor T cells appear to rely on lymphostromal crosstalk via receptor activator of NF-κB (RANK) and RANK-ligand (RANKL) interactions, creating chemokine-rich niches within the cortex and medulla that likely favor the recruitment of bone marrow-derived thymus seeding progenitors. Here, we employed preclinical mouse models to demonstrate that in vitro-generated progenitor T cells can effectively engraft involuted aged thymuses, which could potentially improve T cell recovery. The utility of progenitor T cells for aged recipients positions them as a promising cellular therapy for immune recovery and intrathymic repair following irradiation and chemotherapy, even in a post-involution thymus.
Collapse
Affiliation(s)
| | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
24
|
Shin DY, Huang X, Gil CH, Aljoufi A, Ropa J, Broxmeyer HE. Physioxia enhances T-cell development ex vivo from human hematopoietic stem and progenitor cells. Stem Cells 2020; 38:1454-1466. [PMID: 32761664 DOI: 10.1002/stem.3259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Understanding physiologic T-cell development from hematopoietic stem (HSCs) and progenitor cells (HPCs) is essential for development of improved hematopoietic cell transplantation (HCT) and emerging T-cell therapies. Factors in the thymic niche, including Notch 1 receptor ligand, guide HSCs and HPCs through T-cell development in vitro. We report that physiologically relevant oxygen concentration (5% O2 , physioxia), an important environmental thymic factor, promotes differentiation of cord blood CD34+ cells into progenitor T (proT) cells in serum-free and feeder-free culture system. This effect is enhanced by a potent reducing and antioxidant agent, ascorbic acid. Human CD34+ cell-derived proT cells in suspension cultures maturate into CD3+ T cells in an artificial thymic organoid (ATO) culture system more efficiently when maintained under physioxia, compared to ambient air. Low oxygen tension acts as a positive regulator of HSC commitment and HPC differentiation toward proT cells in the feeder-free culture system and for further maturation into T cells in the ATO. Culturing HSCs/HPCs in physioxia is an enhanced method of effective progenitor T and mature T-cell production ex vivo and may be of future use for HCT and T-cell immunotherapies.
Collapse
Affiliation(s)
- Dong-Yeop Shin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Xinxin Huang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chang-Hyun Gil
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Garcia-Perez L, van Eggermond M, van Roon L, Vloemans SA, Cordes M, Schambach A, Rothe M, Berghuis D, Lagresle-Peyrou C, Cavazzana M, Zhang F, Thrasher AJ, Salvatori D, Meij P, Villa A, Van Dongen JJ, Zwaginga JJ, van der Burg M, Gaspar HB, Lankester A, Staal FJ, Pike-Overzet K. Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID. Mol Ther Methods Clin Dev 2020; 17:666-682. [PMID: 32322605 PMCID: PMC7163047 DOI: 10.1016/j.omtm.2020.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
Recombinase-activating gene-1 (RAG1)-deficient severe combined immunodeficiency (SCID) patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. Gene therapy is an alternative for those RAG1-SCID patients who lack a suitable bone marrow donor. We designed lentiviral vectors with different internal promoters driving codon-optimized RAG1 to ensure optimal expression. We used Rag1 -/- mice as a preclinical model for RAG1-SCID to assess the efficacy of the various vectors. We observed that B and T cell reconstitution directly correlated with RAG1 expression. Mice with low RAG1 expression showed poor immune reconstitution; however, higher expression resulted in phenotypic and functional lymphocyte reconstitution comparable to mice receiving wild-type stem cells. No signs of genotoxicity were found. Additionally, RAG1-SCID patient CD34+ cells transduced with our clinical RAG1 vector and transplanted into NSG mice led to improved human B and T cell development. Considering this efficacy outcome, together with favorable safety data, these results substantiate the need for a clinical trial for RAG1-SCID.
Collapse
Affiliation(s)
- Laura Garcia-Perez
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Lieke van Roon
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Sandra A. Vloemans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Martijn Cordes
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Dagmar Berghuis
- Willem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute and Paris Descartes University-Sorbonne Paris Cité, 75015 Paris, France
- Department of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute and Paris Descartes University-Sorbonne Paris Cité, 75015 Paris, France
- Department of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Daniela Salvatori
- Central Laboratory Animal Facility, Pathology Unit, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Department of Pharmacy, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Pathogenesis and Treatment of Immune and Bone Diseases Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Anatomy and Physiology Division, Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan1, 3584CL Utrecht, the Netherlands
| | - Pauline Meij
- Department of Pharmacy, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Anna Villa
- Pathogenesis and Treatment of Immune and Bone Diseases Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jacques J.M. Van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Jaap-Jan Zwaginga
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Mirjam van der Burg
- Willem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - H. Bobby Gaspar
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Arjan Lankester
- Willem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Frank J.T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| |
Collapse
|
26
|
Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv 2020; 3:461-475. [PMID: 30755435 DOI: 10.1182/bloodadvances.2018027508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/13/2019] [Indexed: 01/15/2023] Open
Abstract
T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.
Collapse
|
27
|
Scadden DT. Metcalf Lecture Award: Applying niche biology to engineer T-cell regenerative therapies. Exp Hematol 2019; 80:1-10. [PMID: 31765673 DOI: 10.1016/j.exphem.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022]
Abstract
The processes generating cells of adaptive immunity render them less amenable to the single cytokine signals used so effectively to regenerate myeloid cells. T-cell neogenesis begins in the bone marrow, where specific sets of late osteolineage cells govern the specification of hematopoietic cells capable of migrating to the thymus where differentiation is completed. Osteocalcin-expressing bone marrow stromal cells producing Dll4 serve as a progenitor niche enabling this T-competent cell production. Biocompatible alginate-based cryogels containing bone morphogenetic proteins (BMP-2) and the Notch ligand Dll4 were engineered to recapitulate the endogenous niche. These cryogels are highly pliable and can be injected under the skin of animals undergoing bone marrow transplantation. The result in mice is an ectopic niche fostering T-competent progenitor generation that results in improved T-cell numbers and receptor diversity. The recipients can generate neoantigen vaccine responses while having improved tolerance manifest by reduced graft-versus-host disease upon allogeneic transplant. Through emerging details of niches in the bone marrow, therapeutics more complex than those necessary for myeloid reconstitution are possible. Niche biology-guided bioengineered design offers the possibility of regenerative therapies for T lymphoid cells.
Collapse
Affiliation(s)
- David T Scadden
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
28
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
29
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
30
|
Singh J, Zúñiga-Pflücker JC. Producing proT cells to promote immunotherapies. Int Immunol 2019; 30:541-550. [PMID: 30102361 DOI: 10.1093/intimm/dxy051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
T lymphocytes are critical mediators of the adaptive immune system and they can be harnessed as therapeutic agents against pathogens and in cancer immunotherapy. T cells can be isolated and expanded from patients and potentially generated in vitro using clinically relevant systems. An ultimate goal for T-cell immunotherapy is to establish a safe, universal effector cell type capable of transcending allogeneic and histocompatibility barriers. To this end, human pluripotent stem cells offer an advantage in generating a boundless supply of T cells that can be readily genetically engineered. Here, we review emerging T-cell therapeutics, including tumor-infiltrating lymphocytes, chimeric antigen receptors and progenitor T cells (proT cells) as well as feeder cell-free in vitro systems for their generation. Furthermore, we explore their potential for adoption in the clinic and highlight the challenges that must be addressed to increase the therapeutic success of a universal immunotherapy.
Collapse
Affiliation(s)
- Jastaranpreet Singh
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
31
|
Simons L, Cavazzana M, André I. Concise Review: Boosting T-Cell Reconstitution Following Allogeneic Transplantation-Current Concepts and Future Perspectives. Stem Cells Transl Med 2019; 8:650-657. [PMID: 30887712 PMCID: PMC6591542 DOI: 10.1002/sctm.18-0248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for a large number of malignant and nonmalignant (inherited) diseases of the hematopoietic system. Nevertheless, non‐HLA identical transplantations are complicated by a severe T‐cell immunodeficiency associated with a high rate of infection, relapse and graft‐versus‐host disease. Initial recovery of T‐cell immunity following HSCT relies on peripheral expansion of memory T cells mostly driven by cytokines. The reconstitution of a diverse, self‐tolerant, and naive T‐cell repertoire, however, may take up to 2 years and crucially relies on the interaction of T‐cell progenitors with the host thymic epithelium, which may be altered by GvHD, age or transplant‐related toxicities. In this review, we summarize current concepts to stimulate reconstitution of a peripheral and polyclonal T‐cell compartment following allogeneic transplantation such as graft manipulation (i.e., T‐cell depletion), transfusion of ex vivo manipulated donor T cells or the exogenous administration of cytokines and growth factors to stimulate host‐thymopoiesis with emphasis on approaches which have led to clinical trials. Particular attention will be given to the development of cellular therapies such as the ex vivo generation of T‐cell precursors to fasten generation of a polyclonal and functional host‐derived T‐cell repertoire. Having been tested so far only in preclinical mouse models, clinical studies are now on the way to validate the efficacy of such T‐cell progenitors in enhancing immune reconstitution following HSCT in various clinical settings. stem cells translational medicine2019;00:1–8
Collapse
Affiliation(s)
- Laura Simons
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle André
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
32
|
Marcovecchio GE, Bortolomai I, Ferrua F, Fontana E, Imberti L, Conforti E, Amodio D, Bergante S, Macchiarulo G, D'Oria V, Conti F, Di Cesare S, Fousteri G, Carotti A, Giamberti A, Poliani PL, Notarangelo LD, Cancrini C, Villa A, Bosticardo M. Thymic Epithelium Abnormalities in DiGeorge and Down Syndrome Patients Contribute to Dysregulation in T Cell Development. Front Immunol 2019; 10:447. [PMID: 30949166 PMCID: PMC6436073 DOI: 10.3389/fimmu.2019.00447] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 01/22/2023] Open
Abstract
The thymus plays a fundamental role in establishing and maintaining central and peripheral tolerance and defects in thymic architecture or AIRE expression result in the development of autoreactive lymphocytes. Patients with partial DiGeorge Syndrome (pDGS) and Down Syndrome (DS) present alterations in size and architecture of the thymus and higher risk to develop autoimmunity. We sought to evaluate thymic architecture and thymocyte development in DGS and DS patients and to determine the extent to which thymic defects result in immune dysregulation and T cell homeostasis perturbation in these patients. Thymi from pediatric patients and age-matched controls were obtained to evaluate cortex and medullary compartments, AIRE expression and thymocyte development. In the same patients we also characterized immunophenotype of peripheral T cells. Phenotypic and functional characterization of thymic and peripheral regulatory T (Treg) cells was finally assessed. Histologic analysis revealed peculiar alterations in thymic medulla size and maturation in DGS and DS patients. Perturbed distribution of thymocytes and altered thymic output was also observed. DGS patients showed lower mature CD4+ and CD8+ T cell frequency, associated with reduced proportion and function of Tregs both in thymus and peripheral blood. DS patients showed increased frequency of single positive (SP) thymocytes and thymic Treg cells. However, Tregs isolated both from thymus and peripheral blood of DS patients showed reduced suppressive ability. Our results provide novel insights on thymic defects associated with DGS and DS and their impact on peripheral immune dysregulation. Indeed, thymic abnormalities and defect in thymocyte development, in particular in Treg cell number and function could contribute in the pathogenesis of the immunodysregulation present in pDGS and in DS patients.
Collapse
Affiliation(s)
- Genni Enza Marcovecchio
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ileana Bortolomai
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Francesca Ferrua
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luisa Imberti
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Erika Conforti
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Milan, Italy
| | - Donato Amodio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sonia Bergante
- Laboratory of Stem Cells for Tissue Engineering, Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San Donato, Milan, Italy
| | - Giulia Macchiarulo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica D'Oria
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Milan, Italy
| | - Francesca Conti
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiac Surgery, IRCCS Bambino Gesú Children's Hospital, Rome, Italy
| | - Alessandro Giamberti
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Villa
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Marita Bosticardo
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
33
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Chabannon C, Kuball J, Bondanza A, Dazzi F, Pedrazzoli P, Toubert A, Ruggeri A, Fleischhauer K, Bonini C. Hematopoietic stem cell transplantation in its 60s: A platform for cellular therapies. Sci Transl Med 2018; 10:10/436/eaap9630. [DOI: 10.1126/scitranslmed.aap9630] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Over the last 60 years, more than a million patients received hematopoietic cell transplantation. Having incorporated multiple changes in clinical practices, it remains a complex procedure facing a dual challenge: cure of the underlying disease and prevention of relapse while controlling potentially severe complications. Improved understanding of underlying biological processes resulted in the design of innovative therapies engineered from defined cell populations and testing of these therapies as addition or substitution at virtually every step of the procedure. This review provides an overview of these developments, many of them now applied outside the historical field of hematopoietic cell transplantation.
Collapse
|
35
|
Posttransplant chimeric antigen receptor therapy. Blood 2018; 131:1045-1052. [PMID: 29358181 DOI: 10.1182/blood-2017-08-752121] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD.
Collapse
|
36
|
Simons L, Ma K, de Chappedelaine C, Moiranghtem RD, Elkaim E, Olivré J, Susini S, Appourchaux K, Reimann C, Sadek H, Pellé O, Cagnard N, Magrin E, Lagresle-Peyrou C, Taghon T, Rausell A, Cavazzana M, André-Schmutz I. Generation of adult human T-cell progenitors for immunotherapeutic applications. J Allergy Clin Immunol 2017; 141:1491-1494.e4. [PMID: 29208547 PMCID: PMC5887055 DOI: 10.1016/j.jaci.2017.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/12/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Laura Simons
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Kuiying Ma
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Corinne de Chappedelaine
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Ranjita Devi Moiranghtem
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Elodie Elkaim
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Juliette Olivré
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Sandrine Susini
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Kevin Appourchaux
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Christian Reimann
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France; Department of Oncology/Hematology, Children's Hospital, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Hanem Sadek
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
| | - Olivier Pellé
- Cytometry Platform of SFR Necker, Inserm US24-CNRS UMS 3633, Paris, France
| | - Nicolas Cagnard
- Bio-informatic Plateform, University of Paris Descartes-Sorbonne Paris Cité, INSERM US24/CNRS, UMS3633, Paris, France
| | - Elisa Magrin
- Biotherapy Clinical Investigation Centre, Necker Children's Hospital, Paris, France
| | - Chantal Lagresle-Peyrou
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France; Biotherapy Clinical Investigation Centre, Necker Children's Hospital, Paris, France
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Antonio Rausell
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France; Clinical Bioinformatics Laboratory, IMAGINE Institute, Paris, France
| | - Marina Cavazzana
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France; Biotherapy Clinical Investigation Centre, Necker Children's Hospital, Paris, France
| | - Isabelle André-Schmutz
- Human Lymphohaematopoiesis Laboratory, INSERM U1163, Paris, France; University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France; Biotherapy Clinical Investigation Centre, Necker Children's Hospital, Paris, France.
| |
Collapse
|
37
|
Smith MJ, Reichenbach DK, Parker SL, Riddle MJ, Mitchell J, Osum KC, Mohtashami M, Stefanski HE, Fife BT, Bhandoola A, Hogquist KA, Holländer GA, Zúñiga-Pflücker JC, Tolar J, Blazar BR. T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2017; 2:92056. [PMID: 28515359 PMCID: PMC5436538 DOI: 10.1172/jci.insight.92056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Infusion of in vitro-derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell-deficient (Rag1-/-) marrow with WT in vitro-generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.
Collapse
Affiliation(s)
- Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Sarah L. Parker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason Mitchell
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin C. Osum
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahmood Mohtashami
- Sunnybrook Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Heather E. Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Georg A. Holländer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Paediatrics and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| |
Collapse
|
38
|
Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like-4 and VCAM-1. Nat Methods 2017; 14:531-538. [PMID: 28394335 DOI: 10.1038/nmeth.4258] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
The molecular and cellular signals that guide T-cell development from hematopoietic stem and progenitor cells (HSPCs) remain poorly understood. The thymic microenvironment integrates multiple niche molecules to potentiate T-cell development in vivo. Recapitulating these signals in vitro in a stromal cell-free system has been challenging and limits T-cell generation technologies. Here, we describe a fully defined engineered in vitro niche capable of guiding T-lineage development from HSPCs. Synergistic interactions between Notch ligand Delta-like 4 and vascular cell adhesion molecule 1 (VCAM-1) were leveraged to enhance Notch signaling and progenitor T-cell differentiation rates. The engineered thymus-like niche enables in vitro production of mouse Sca-1+cKit+ and human CD34+ HSPC-derived CD7+ progenitor T-cells capable of in vivo thymus colonization and maturation into cytokine-producing CD3+ T-cells. This engineered thymic-like niche provides a platform for in vitro analysis of human T-cell development as well as clinical-scale cell production for future development of immunotherapeutic applications.
Collapse
|
39
|
Cavazzana M, Six E, Lagresle-Peyrou C, André-Schmutz I, Hacein-Bey-Abina S. Gene Therapy for X-Linked Severe Combined Immunodeficiency: Where Do We Stand? Hum Gene Ther 2016; 27:108-16. [PMID: 26790362 DOI: 10.1089/hum.2015.137] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
More than 20 years ago, X-linked severe combined immunodeficiency (SCID-X1) appeared to be the best condition to test the feasibility of hematopoietic stem cell gene therapy. The seminal SCID-X1 clinical studies, based on first-generation gammaretroviral vectors, demonstrated good long-term immune reconstitution in most treated patients despite the occurrence of vector-related leukemia in a few of them. This gene therapy has successfully enabled correction of the T cell defect. Natural killer and B cell defects were only partially restored, most likely due to the absence of a conditioning regimen. The success of these pioneering trials paved the way for the extension of gene-based treatment to many other diseases of the hematopoietic system, but the unfortunate serious adverse events led to extensive investigations to define the retrovirus integration profiles. This review puts into perspective the clinical experience of gene therapy for SCID-X1, with the development and implementation of new generations of safer vectors such as self-inactivating gammaretroviral or lentiviral vectors as well as major advances in integrome knowledge.
Collapse
Affiliation(s)
- Marina Cavazzana
- 1 Biotherapy Department, Necker Children's Hospital , Assistance Publique-Hôpitaux de Paris, Paris.,2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Emmanuelle Six
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Chantal Lagresle-Peyrou
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Isabelle André-Schmutz
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Salima Hacein-Bey-Abina
- 1 Biotherapy Department, Necker Children's Hospital , Assistance Publique-Hôpitaux de Paris, Paris.,2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,5 UTCBS CNRS 8258-INSERM U1022, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes , Paris.,6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , AP-HP, Le-Kremlin-Bicêtre, France
| |
Collapse
|
40
|
T Cell Genesis: In Vitro Veritas Est? Trends Immunol 2016; 37:889-901. [PMID: 27789110 DOI: 10.1016/j.it.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
T cells, as orchestrators of the adaptive immune response, serve important physiological and potentially therapeutic roles, for example in cancer immunotherapy. T cells are readily isolated from patients; however, the yield of antigen-specific T cells is limited, thus making their clinical use challenging. Therefore, the generation of T lymphocytes from hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (PSCs) in vitro provides an attractive method for the large-scale production and genetic manipulation of T cells. In this review, we discuss recent strategies for the generation of T cells from human HSPCs and PSCs in vitro. Continued advancement in the generation of human T cells in vitro will expand their benefits and therapeutic potential in the clinic.
Collapse
|
41
|
Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol 2016; 28:35-44. [DOI: 10.1016/j.smim.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
42
|
Lucarelli B, Merli P, Bertaina V, Locatelli F. Strategies to accelerate immune recovery after allogeneic hematopoietic stem cell transplantation. Expert Rev Clin Immunol 2015; 12:343-58. [PMID: 26588325 DOI: 10.1586/1744666x.2016.1123091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interplay existing between immune reconstitution and patient outcome has been extensively demonstrated in allogeneic hematopoietic stem cell transplantation. One of the leading causes of infection-related mortality is the slow recovery of T-cell immunity due to the conditioning regimen and/or age-related thymus damage, poor naïve T-cell output, and restricted T-cell receptor (TCR) repertoires. With the aim of improving posttransplantation immune reconstitution, several immunotherapy approaches have been explored. Donor leukocyte infusions are widely used to accelerate immune recovery, but they carry the risk of provoking graft-versus-host disease. This review will focus on sophisticated strategies of thymus function-recovery, adoptive infusion of donor-derived, allodepleted T cells, T-cell lines/clones specific for life-threatening pathogens, regulatory T cells, and of T cells transduced with suicide genes.
Collapse
Affiliation(s)
- Barbarella Lucarelli
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy
| | - Pietro Merli
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy
| | - Valentina Bertaina
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy
| | - Franco Locatelli
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy.,b Department of Pediatrics , University of Pavia , Pavia , Italy
| |
Collapse
|
43
|
Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 2015; 1:15061. [PMID: 27189259 DOI: 10.1038/nrdp.2015.61] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe combined immunodeficiencies (SCIDs) comprise a group of rare, monogenic diseases that are characterized by an early onset and a profound block in the development of T lymphocytes. Given that adaptive immunity is abrogated, patients with SCID are prone to recurrent infections caused by both non-opportunistic and opportunistic pathogens, leading to early death unless immunity can be restored. Several molecular defects causing SCIDs have been identified, along with many other defects causing profound, albeit incomplete, T cell immunodeficiencies; the latter are referred to as atypical SCIDs or combined immunodeficiencies. The pathophysiology of many of these conditions has now been characterized. Early, accurate and precise diagnosis combined with the ongoing implementation of newborn screening have enabled major advances in the care of infants with SCID, including better outcomes of allogeneic haematopoietic stem cell transplantation. Gene therapy is also becoming an effective option. Further advances and a progressive extension of the indications for gene therapy can be expected in the future. The assessment of long-term outcomes of patients with SCID is now a major challenge, with a view to evaluating the quality and sustainability of immune restoration, the risks of sequelae and the ability to relieve the non-haematopoietic syndromic manifestations that accompany some of these conditions.
Collapse
Affiliation(s)
- Alain Fischer
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bénédicte Neven
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,INSERM UMR 1163, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Jennifer M Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
44
|
Cellular engineering and therapy in combination with cord blood allografting in pediatric recipients. Bone Marrow Transplant 2015; 51:27-33. [PMID: 26367220 DOI: 10.1038/bmt.2015.196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/01/2015] [Accepted: 07/08/2015] [Indexed: 11/08/2022]
Abstract
Cord blood (CB) transplantation is an alternate source of human hematopoietic progenitor cells for allogeneic stem cell transplantation in children and adolescents with both malignant and nonmalignant diseases. Current limitations included delay in hematopoietic reconstitution, increased incidence of primary graft failure and slow cellular immunoreconstitution. These limitations lead to a significant increase in primary graft failure, infectious complications and increased transplant-related mortality. There is a number of experimental approaches currently under investigation including cellular engineering to circumvent these limitations. In this review, we summarize the recent findings of utilizing ex vivo CB expansion with Notch1 ligand Delta 1, mesenchymal progenitor cells, the use of human placenta-derived stem cells and CB-derived natural killer cells. Early and preliminary results suggest some of these experimental cellular strategies may in part ameliorate the incidence of primary graft failure, delays in hematopoietic reconstitution and/or slowness in cellular immune reconstitution following unrelated CB transplantation.
Collapse
|
45
|
Rahman SH, Kuehle J, Reimann C, Mlambo T, Alzubi J, Maeder ML, Riedel H, Fisch P, Cantz T, Rudolph C, Mussolino C, Joung JK, Schambach A, Cathomen T. Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genet 2015; 11:e1005239. [PMID: 26000857 PMCID: PMC4441453 DOI: 10.1371/journal.pgen.1005239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
In vitro disease modeling based on induced pluripotent stem cells (iPSCs) provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID), a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK) activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity. Furthermore, in vitro T-cell differentiation from iPSCs was employed to model the stage-specific T-cell maturation block induced by the disease causing mutation. Genetic correction of the RS-SCID iPSCs restored T-lymphocyte maturation, polyclonal V(D)J recombination of the T-cell receptor followed by successful beta-selection. In conclusion, we provide proof that iPSC-based in vitro T-cell differentiation is a valuable paradigm for SCID disease modeling, which can be utilized to investigate disorders of T-cell development and to validate gene therapy strategies for T-cell deficiencies. Moreover, this study emphasizes the significance of designer nucleases as a tool for generating isogenic disease models and their future role in producing autologous, genetically corrected transplants for various clinical applications. Due to the limited availability and lifespan of some primary cells, in vitro disease modeling with induced pluripotent stem cells (iPSCs) offers a valuable complementation to in vivo studies. The goal of our study was to establish an in vitro disease model for severe combined immunodeficiency (SCID), a group of inherited disorders of the immune system characterized by the lack of T-lymphocytes. To this end, we generated iPSCs from fibroblasts of a radiosensitive SCID (RS-SCID) mouse model and established a protocol to recapitulate T-lymphopoiesis from iPSCs in vitro. We used designer nucleases to edit the underlying mutation in prkdc, the gene encoding DNA-PKcs, and demonstrated that genetic correction of the disease locus rescued DNA-PK dependent signaling, restored normal radiosensitivity, and enabled T-cell maturation and polyclonal T-cell receptor recombination. We hence provide proof that the combination of two promising technology platforms, iPSCs and designer nucleases, with a protocol to generate T-cells in vitro, represents a powerful paradigm for SCID disease modeling and the evaluation of therapeutic gene editing strategies. Furthermore, our system provides a basis for further development of iPSC-derived cell products with the potential for various clinical applications, including infusions of in vitro derived autologous T-cells to stabilize patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Shamim H. Rahman
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Christian Reimann
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Tafadzwa Mlambo
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Morgan L. Maeder
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heimo Riedel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Biochemistry and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH cluster of excellence, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- Institute for Cellular and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Claudio Mussolino
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| |
Collapse
|
46
|
Gu A, Torres-Coronado M, Tran CA, Vu H, Epps EW, Chung J, Gonzalez N, Blanchard S, DiGiusto DL. Engraftment and lineage potential of adult hematopoietic stem and progenitor cells is compromised following short-term culture in the presence of an aryl hydrocarbon receptor antagonist. Hum Gene Ther Methods 2015; 25:221-31. [PMID: 25003230 DOI: 10.1089/hgtb.2014.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting.
Collapse
Affiliation(s)
- Angel Gu
- 1 Laboratory for Cellular Medicine, Beckman Research Institute , City of Hope, CA 91010
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Huijskens MJAJ, Walczak M, Koller N, Briedé JJ, Senden-Gijsbers BLMG, Schnijderberg MC, Bos GMJ, Germeraad WTV. Technical advance: ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells. J Leukoc Biol 2014; 96:1165-75. [PMID: 25157026 DOI: 10.1189/jlb.1ta0214-121rr] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The efficacy of donor HSCT is partly reduced as a result of slow post-transplantation immune recovery. In particular, T cell regeneration is generally delayed, resulting in high infection-related mortality in the first years post-transplantation. Adoptive transfer of in vitro-generated human T cell progenitors seems a promising approach to accelerate T cell recovery in immunocompromised patients. AA may enhance T cell proliferation and differentiation in a controlled, feeder-free environment containing Notch ligands and defined growth factors. Our experiments show a pivotal role for AA during human in vitro T cell development. The blocking of NOS diminished this effect, indicating a role for the citrulline/NO cycle. AA promotes the transition of proT1 to proT2 cells and of preT to DP T cells. Furthermore, the addition of AA to feeder cocultures resulted in development of DP and SP T cells, whereas without AA, a preT cell-stage arrest occurred. We conclude that neither DLL4-expressing feeder cells nor feeder cell conditioned media are required for generating DP T cells from CB and G-CSF-mobilized HSCs and that generation and proliferation of proT and DP T cells are greatly improved by AA. This technology could potentially be used to generate T cell progenitors for adoptive therapy.
Collapse
Affiliation(s)
- Mirelle J A J Huijskens
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Mateusz Walczak
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Nicole Koller
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Jacob J Briedé
- Department of Toxicogenomics, School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | - Melanie C Schnijderberg
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Wilfred T V Germeraad
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| |
Collapse
|
49
|
Khoo MLM, Carlin SM, Lutherborrow MA, Jayaswal V, Ma DDF, Moore JJ. Gene profiling reveals association between altered Wnt signaling and loss of T-cell potential with age in human hematopoietic stem cells. Aging Cell 2014; 13:744-54. [PMID: 24889652 PMCID: PMC4326953 DOI: 10.1111/acel.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Functional decline of the hematopoietic system occurs during aging and contributes to clinical consequences, including reduced competence of adaptive immunity and increased incidence of myeloid diseases. This has been linked to aging of the hematopoietic stem cell (HSC) compartment and has implications for clinical hematopoietic cell transplantation as prolonged periods of T-cell deficiency follow transplantation of adult mobilized peripheral blood (PB), the primary transplant source. Here, we examined the gene expression profiles of young and aged HSCs from human cord blood and adult mobilized PB, respectively, and found that Wnt signaling genes are differentially expressed between young and aged human HSCs, with less activation of Wnt signaling in aged HSCs. Utilizing the OP9-DL1 in vitro co-culture system to promote T-cell development under stable Notch signaling conditions, we found that Wnt signaling activity is important for T-lineage differentiation. Examination of Wnt signaling components and target gene activation in young and aged human HSCs during T-lineage differentiation revealed an association between reduced Wnt signal transduction, increasing age, and impaired or delayed T-cell differentiation. This defect in Wnt signal activation of aged HSCs appeared to occur in the early T-progenitor cell subset derived during in vitro T-lineage differentiation. Our results reveal that reduced Wnt signaling activity may play a role in the age-related intrinsic defects of aged HSCs and early hematopoietic progenitors and suggest that manipulation of this pathway could contribute to the end goal of improving T-cell generation and immune reconstitution following clinical transplantation.
Collapse
Affiliation(s)
- Melissa L. M. Khoo
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - Stephen M. Carlin
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - Mark A. Lutherborrow
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - Vivek Jayaswal
- Centre for Mathematical Biology; School of Mathematics and Statistics; University of Sydney; Sydney NSW 2006 Australia
| | - David D. F. Ma
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - John J. Moore
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| |
Collapse
|
50
|
Advanced cell-based therapies for the treatment of primary immunodeficiency (Cell-PID). HUM GENE THER CL DEV 2014; 25:54-6. [PMID: 24933560 DOI: 10.1089/humc.2014.2503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|