1
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Shan Y, Hou B, Wang J, Chen A, Liu S. Exploring the role of exosomal MicroRNAs as potential biomarkers in preeclampsia. Front Immunol 2024; 15:1385950. [PMID: 38566996 PMCID: PMC10985148 DOI: 10.3389/fimmu.2024.1385950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Hou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Toljic M, Nikolic N, Joksic I, Carkic J, Munjas J, Karadzov Orlic N, Milasin J. Expression of miRNAs and proinflammatory cytokines in pregnant women with gestational diabetes mellitus. J Reprod Immunol 2024; 162:104211. [PMID: 38342070 DOI: 10.1016/j.jri.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Altered microRNAs (miRNAs1) and cytokines expression levels are associated with several pregnancy-induced complications. We evaluated the profile of circulating miRNAs (miR-17, miR-29a and miR-181a) and proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-17) in women with gestational diabetes mellitus (GDM2), as well as their potential use as GDM biomarkers. The case-control study included 65 pregnant women divided into 2 groups - GDM and control. Expression levels of miRNAs in plasma samples and cytokines mRNA isolated from peripheral blood buffy coat were analyzed by quantitative real-time PCR (qPCR3). Significant miR-29a downregulation was found in GDM compared to the control group, and was even more significant after adjustments for covariates. miR-17 and miR-181a expression levels did not differ between the examined groups. Expression levels of IL-1β were significantly higher in GDM group compared to controls, while TNF-α, IL-6 and IL-17 did not show significant changes in expression between the two groups. As jugded from the ROC curve analysis, miR-29a and IL-1β had a significant capacity to discriminate between CG and GDM. Additionally, a positive correlation was established between IL-1β and TNF-α in the GDM group. GDM appeared to be associated with altered levels of miR-29a and IL-1β making them markers of this condition.
Collapse
Affiliation(s)
- Mina Toljic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Ivana Joksic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia.
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Natasa Karadzov Orlic
- High-Risk Pregnancy Department, Obstetrics and Gynecology Clinic "Narodni Front", School of Medicine, University of Belgrade, Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Tian CM, Zhang Y, Yang MF, Xu HM, Zhu MZ, Yao J, Wang LS, Liang YJ, Li DF. Stem Cell Therapy in Inflammatory Bowel Disease: A Review of Achievements and Challenges. J Inflamm Res 2023; 16:2089-2119. [PMID: 37215379 PMCID: PMC10199681 DOI: 10.2147/jir.s400447] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory diseases of the gastrointestinal tract. Repeated inflammation can lead to complications, such as intestinal fistula, obstruction, perforation, and bleeding. Unfortunately, achieving durable remission and mucosal healing (MH) with current treatments is difficult. Stem cells (SCs) have the potential to modulate immunity, suppress inflammation, and have anti-apoptotic and pro-angiogenic effects, making them an ideal therapeutic strategy to target chronic inflammation and intestinal damage in IBD. In recent years, hematopoietic stem cells (HSCs) and adult mesenchymal stem cells (MSCs) have shown efficacy in treating IBD. In addition, numerous clinical trials have evaluated the efficiency of MSCs in treating the disease. This review summarizes the current research progress on the safety and efficacy of SC-based therapy for IBD in both preclinical models and clinical trials. We discuss potential mechanisms of SC therapy, including tissue repair, paracrine effects, and the promotion of angiogenesis, immune regulation, and anti-inflammatory effects. We also summarize current SC engineering strategies aimed at enhancing the immunosuppressive and regenerative capabilities of SCs for treating intestinal diseases. Additionally, we highlight current limitations and future perspectives of SC-related therapy for IBD.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Li J, Pan Y, Yang J, Wang J, Jiang Q, Dou H, Hou Y. Tumor necrosis factor-α-primed mesenchymal stem cell-derived exosomes promote M2 macrophage polarization via Galectin-1 and modify intrauterine adhesion on a novel murine model. Front Immunol 2022; 13:945234. [PMID: 36591221 PMCID: PMC9800892 DOI: 10.3389/fimmu.2022.945234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Intrauterine adhesion (IUA) is a condition caused due to damage or infection of the endometrium. It is characterized by continuous inflammation and following fibrosis and dysfunction. However, the current animal IUA models have several disadvantages, including complex operation, high mortality, and many extra distractions owing to opening of the abdominal cavity to expose the uterus. Mesenchymal stem cells (MSCs), which have been used in treatment of IUA, are heterogeneous and immunosuppressive. However, their therapeutic effect is not as good as expected. Methods Here, we successfully built a new murine IUA model, called electric tool-scratching IUA model, and applied it in our experiments to investigate the efficacy of tumor necrosis factor-α (TNF-α) primed MSCs (T-MSCs). In the new model, we used a self-made electric tool that can cause mechanical damage to the endometrium without opening the abdominal cavity. ELISA and histological staining analysis were performed to evaluate pathological features of IUA. qRT-PCR, flow cytometry and immunofluoresence staining were performed to detect the phenotypes of macrophages. TMT proteomics quantification and western blotting assay were performed to analyze the differentially expressed proteins of MSC exosomes. Results Based on the new IUA model, we found TNF-α pretreatment could enhance the ability of MSCs to relieve inflammation and reduce endometrium fibrosis. Mechanistically, T-MSC promoted macrophage polarization to M2 phenotype through exosomes. Subsequently, we found the expression of Galectin-1 was increased in T-MSC exosomes. Finally, we analyzed the gene expression pattern of Galectin-1 treated macrophages and found Galectin-1 promoted macrophage polarization to M2 phenotype mainly through the Jak-STAT signaling pathway. Conclusions Our studies proposed an innovative mouse model and a better MSC treatment strategy for IUA.
Collapse
Affiliation(s)
- Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China,Jiangsu International Laboratory of Immunity and Metabolism, The Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jingjing Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Qi Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China,*Correspondence: Yayi Hou, ; Huan Dou,
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China,*Correspondence: Yayi Hou, ; Huan Dou,
| |
Collapse
|
6
|
Ashraf UM, Hall DL, Campbell N, Waller JP, Rawls AZ, Solise D, Cockrell K, Bidwell GL, Romero DG, Ojeda NB, LaMarca B, Alexander BT. Inhibition of the AT 1R agonistic autoantibody in a rat model of preeclampsia improves fetal growth in late gestation. Am J Physiol Regul Integr Comp Physiol 2022; 323:R670-R681. [PMID: 36121142 PMCID: PMC9602704 DOI: 10.1152/ajpregu.00122.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023]
Abstract
Placenta ischemia, the initiating event in preeclampsia (PE), is associated with fetal growth restriction. Inhibition of the agonistic autoantibody against the angiotensin type 1 receptor AT1-AA, using an epitope-binding inhibitory peptide ('n7AAc') attenuates increased blood pressure at gestational day (G)19 in the clinically relevant reduced uterine perfusion pressure (RUPP) model of PE. Thus we tested the hypothesis that maternal administration of 'n7AAc' does not transfer to the fetus, improves uterine blood flow and fetal growth, and attenuates elevated placental expression of miRNAs implicated in PE and FGR. Sham or RUPP surgery was performed at G14 with vehicle or 'n7AAc' (144 µg/day) administered via an osmotic pump from G14 to G20. Maternal plasma levels of the peptide on G20 were 16.28 ± 4.4 nM, and fetal plasma levels were significantly lower at 1.15 ± 1.7 nM (P = 0.0007). The uterine artery resistance index was significantly elevated in RUPP (P < 0.0001) but was not increased in 'n7AAc'-RUPP or 'n7AAc'-Sham versus Sham. A significant reduction in fetal weight at G20 in RUPP (P = 0.003) was not observed in 'n7AAc'-RUPP. Yet, percent survival was reduced in RUPP (P = 0.0007) and 'n7AAc'-RUPP (P < 0.0002). Correlation analysis indicated the reduction in percent survival during gestation was specific to the RUPP (r = 0.5342, P = 0.043) and independent of 'n7AAc'. Placental miR-155 (P = 0.0091) and miR-181a (P = 0.0384) expression was upregulated in RUPP at G20 but was not elevated in 'n7AAc'-RUPP. Collectively, our results suggest that maternal administration of 'n7AAc' does not alter fetal growth in the RUPP implicating its potential as a therapeutic for the treatment of PE.NEW & NOTEWORTHY The seven amino acid inhibitory peptide to the AT1-AA ('n7AAc') has limited transfer to the fetus at gestational day 20, improves uterine blood flow and fetal growth in the reduced uterine perfusion pressure model of preeclampsia (PE), and does not impair fetal survival during gestation in sham-operated or placental ischemic rats. Collectively, these findings suggest that maternal administration of 'n7AAc' as an effective strategy for the treatment of PE is associated with improved outcomes in the fetus.
Collapse
Affiliation(s)
- Usman M Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jamarius P Waller
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Z Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dylan Solise
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kathy Cockrell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
7
|
Jin S, Wu C, Chen M, Sun D, Zhang H. The pathological and therapeutic roles of mesenchymal stem cells in preeclampsia. Front Med (Lausanne) 2022; 9:923334. [PMID: 35966876 PMCID: PMC9370554 DOI: 10.3389/fmed.2022.923334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have made progress in the treatment of ischemic and inflammatory diseases. Preeclampsia (PE) is characterized by placenta ischemic and inflammatory injury. Our paper summarized the new role of MSCs in PE pathology and its potency in PE therapy and analyzed its current limitations. Intravenously administered MSCs dominantly distributed in perinatal tissues. There may be additional advantages to using MSCs-based therapies for reproductive disorders. It will provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Sanshan Jin
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Canrong Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Chen
- Department of Rehabilitation Physiotherapy, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Dongyan Sun
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Hua Zhang
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
- *Correspondence: Hua Zhang,
| |
Collapse
|
8
|
Zhang Y, Zhong Y, Zou L, Liu X. Significance of Placental Mesenchymal Stem Cell in Placenta Development and Implications for Preeclampsia. Front Pharmacol 2022; 13:896531. [PMID: 35721156 PMCID: PMC9198303 DOI: 10.3389/fphar.2022.896531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
The well-developed placentation is fundamental for the reproductive pregnancy while the defective placental development is the pathogenetic basis of preeclampsia (PE), a dangerous complication of pregnancy comprising the leading causes of maternal and perinatal morbidity and mortality. Placenta-derived mesenchymal stem cells (PMSCs) are a group of multipotent stem cells that own a potent capacity of differentiating into constitutive cells of vessel walls. Additionally, with the paracrine secretion of various factors, PMSCs inextricably link and interact with other component cells in the placenta, collectively improving the placental vasculature, uterine spiral artery remolding, and uteroplacental interface immunoregulation. Recent studies have further indicated that preeclamptic PMSCs, closely implicated in the abnormal crosstalk between other ambient cells, disturb the homeostasis and development in the placenta. Nevertheless, PMSCs transplantation or PMSCs exosome therapies tend to improve the placental vascular network and trophoblastic functions in the PE model, suggesting PMSCs may be a novel and putative therapeutic strategy for PE. Herein, we provide an overview of the multifaceted contributions of PMSCs in early placental development. Thereinto, the intensive interactions between PMSCs and other component cells in the placenta were particularly highlighted and further extended to the implications in the pathogenesis and therapeutic strategies of PE.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Wang Y, Chen A. Mast cell-derived exosomal miR-181a-5p modulated trophoblast cell viability, migration, and invasion via YY1/MMP-9 axis. J Clin Lab Anal 2022; 36:e24549. [PMID: 35698293 PMCID: PMC9280008 DOI: 10.1002/jcla.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mast cells regulate the process of preeclampsia (PE). Since we previously identified mast cells specifically expressing miR‐181a‐5p in the placenta of PE patients, it is plausible to examine the effect and mechanism of mast cell‐derived exosomal miR‐181a‐5p on trophoblast cells. Methods The miR‐181a‐5p and YY1 levels were determined by quantitative real‐time reverse transcription‐polymerase chain reaction. Exosomes were identified by transmission electron microscopy, Western blot, and PKH‐26 labeling. Mast cells or trophoblast cell malignant phenotype were detected using 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide, wound healing, and Transwell assays. Quantification of YY1 and metastasis‐related proteins was performed using Western blot. TargetScan, JASPAR, dual‐luciferase reporter genes, and chromatin immunoprecipitation were exploited to verify the relationship between miR‐181a‐5p, YY1, and MMP‐9. Results MiR‐181a‐5p was overexpressed in mast cells of PE patients. Overexpressed miR‐181a‐5p restrained mast cell viability. Mast cell exosomes were successfully isolated, containing high expressions of CD63 and HSP70 and low expression of Calnexin and could be transported to the cytoplasm of trophoblast cells. Mast cell exosomes attenuated the viability, migration, and invasion of HTR‐8/SVneo cells, inhibited YY1, N‐cadherin, Vimentin, and MMP‐9 protein expressions, and promoted E‐cadherin protein expression. The effect of exosomes was enhanced by miR‐181a‐5p mimic but was reversed by miR‐181a‐5p inhibitor. MiR‐181a‐5p targeted YY1 which bound to the MMP‐9 promoter. Overexpressed YY1 in HTR‐8/SVneo cells accelerated the malignant phenotype of the cells and reversed the regulatory effects of exosomal miR‐181a‐5p. Conclusion Mast cell‐derived exosomal miR‐181a‐5p modulates HTR‐8/SVneo cell viability, migration, and invasion via YY1/MMP‐9.
Collapse
Affiliation(s)
- Yinfen Wang
- Maternity Department, Ningbo Women & Children's Hospital, Ningbo City, Zhejiang Province, China
| | - Aner Chen
- Maternity Department, Ningbo Women & Children's Hospital, Ningbo City, Zhejiang Province, China
| |
Collapse
|
10
|
Kusuma GD, Georgiou HM, Perkins AV, Abumaree MH, Brennecke SP, Kalionis B. Mesenchymal Stem/Stromal Cells and Their Role in Oxidative Stress Associated with Preeclampsia. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:115-127. [PMID: 35370491 PMCID: PMC8961706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Preeclampsia (PE) is a serious medically important disorder of human pregnancy, which features de novo pregnancy-induced hypertension and proteinuria. The severe form of PE can progress to eclampsia, a convulsive, life-threatening condition. When placental growth and perfusion are abnormal, the placenta experiences oxidative stress and subsequently secretes abnormal amounts of certain pro-angiogenic factors (eg, PlGF) as well as anti-angiogenic factors (eg, sFlt-1) that enter the maternal circulation. The net effect is damage to the maternal vascular endothelium, which subsequently manifests as the clinical features of PE. Other than delivery of the fetus and placenta, curative treatments for PE have not yet been forthcoming, which reflects the complexity of the clinical syndrome. A major source of reactive oxygen species that contributes to the widespread maternal vascular endothelium damage is the PE-affected decidua. The role of decidua-derived mesenchymal stem/stromal cells (MSC) in normotensive and pathological placenta development is poorly understood. The ability to respond to an environment of oxidative damage is a "universal property" of MSC but the biological mechanisms that MSC employ in response to oxidative stress are compromised in PE. In this review, we discuss how MSC respond to oxidative stress in normotensive and pathological conditions. We also consider the possibility of manipulating the oxidative stress response of abnormal MSC as a therapeutic strategy to treat preeclampsia.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Harry M. Georgiou
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Anthony V. Perkins
- School of Medical Science, Menzies Health Institute
Queensland, Griffith University, Southport, Queensland, Australia
| | - Mohamed H. Abumaree
- Stem Cells and Regenerative Medicine Department, King
Abdullah International Medical Research Center, King Abdulaziz Medical City,
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia,King Saud Bin Abdulaziz University for Health Sciences,
College of Science and Health Professions, King Abdulaziz Medical City, Ministry
of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shaun P. Brennecke
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Bill Kalionis
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia,To whom all correspondence should be addressed:
Dr. Bill Kalionis, Department of Maternal-Fetal Medicine Pregnancy Research
Centre Royal Women’s Hospital, Parkville, Victoria, Australia;
; ORCID iD:
https://orcid.org/0000-0002-0132-9858
| |
Collapse
|
11
|
Tan L, Liu X, Dou H, Hou Y. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes Dis 2022; 9:296-309. [PMID: 35224147 PMCID: PMC8843883 DOI: 10.1016/j.gendis.2020.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs), multipotent stromal cells, have attracted extensive attention in the field of regenerative medicine and cell therapy due to the capacity of self-renewal, multilineage differentiation, and immune regulation. MSCs have different cellular effects in different diseases, and even have markedly different curative effects with different tissue sources, indicating the plasticity of MSCs. The phenotypes, secreted factors, and proliferative, migratory, differentiating, and immunomodulatory effects of MSCs depend on certain mediators present in their microenvironment. Understanding microenvironmental factors and their internal mechanisms in MSC responses may help in subsequent prediction and improvement of clinical benefits. This review highlighted the recent advances in MSC plasticity in the physiological and pathological microenvironment and multiple microenvironmental factors regulating MSC plasticity. It also highlighted some progress in the underlying molecular mechanisms of MSC remodeling in the microenvironment. It might provide references for the improvement in vitro culture of MSCs, clinical application, and in vivo induction.
Collapse
|
12
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Montaldo C, Terri M, Riccioni V, Battistelli C, Bordoni V, D'Offizi G, Prado MG, Trionfetti F, Vescovo T, Tartaglia E, Strippoli R, Agrati C, Tripodi M. Fibrogenic signals persist in DAA-treated HCV patients after sustained virological response. J Hepatol 2021; 75:1301-1311. [PMID: 34271004 DOI: 10.1016/j.jhep.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Patients with HCV who achieve a sustained virological response (SVR) on direct-acting antiviral (DAA) therapy still need to be monitored for signs of liver disease progression. To this end, the identification of both disease biomarkers and therapeutic targets is necessary. METHODS Extracellular vesicles (EVs) purified from plasma of 15 healthy donors (HDs), and 16 HCV-infected patients before (T0) and after (T6) DAA treatment were utilized for functional and miRNA cargo analysis. EVs purified from plasma of 17 HDs and 23 HCV-infected patients (T0 and T6) were employed for proteomic and western blot analyses. Functional analysis in LX2 cells measured fibrotic markers (mRNAs and proteins) in response to EVs. Structural analysis was performed by qPCR, label-free liquid chromatography-mass spectrometry and western blot. RESULTS On the basis of observations indicating functional differences (i.e. modulation of FN-1, ACTA2, Smad2/3 phosphorylation, collagen deposition) of plasma-derived EVs from HDs, T0 and T6, we performed structural analysis of EVs. We found consistent differences in terms of both miRNA and protein cargos: (i) antifibrogenic miR204-5p, miR181a-5p, miR143-3p, miR93-5p and miR122-5p were statistically underrepresented in T0 EVs compared to HD EVs, while miR204-5p and miR143-3p were statistically underrepresented in T6 EVs compared to HD EVs (p <0.05); (ii) proteomic analysis highlighted, in both T0 and T6, the modulation of several proteins with respect to HDs; among them, the fibrogenic protein DIAPH1 was upregulated (Log2 fold change of 4.4). CONCLUSIONS Taken together, these results highlight structural EV modifications that are conceivably causal for long-term liver disease progression in patients with HCV despite DAA-mediated SVR. LAY SUMMARY Direct-acting antivirals lead to virological cure in the majority of patients with chronic hepatitis C virus infection. However, the risk of liver disease progression or complications in patients with fibrosis and cirrhosis remains in some patients even after virological cure. Herein, we show that extracellular vesicle modifications could be linked to long-term liver disease progression in patients who have achieved virological cure; these modifications could potentially be used as biomarkers or treatment targets in such patients.
Collapse
Affiliation(s)
- Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy
| | - Michela Terri
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy; Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Riccioni
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Bordoni
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy
| | | | - Maria Giulia Prado
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Flavia Trionfetti
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy; Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Vescovo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy
| | | | - Raffaele Strippoli
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy; Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Italy; Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
14
|
Improving the Efficacy of Mesenchymal Stem/Stromal-Based Therapy for Treatment of Inflammatory Bowel Diseases. Biomedicines 2021; 9:biomedicines9111507. [PMID: 34829736 PMCID: PMC8615066 DOI: 10.3390/biomedicines9111507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) consisting of persistent and relapsing inflammatory processes of the intestinal mucosa are caused by genetic, environmental, and commensal microbiota factors. Despite recent advances in clinical treatments aiming to decrease inflammation, nearly 30% of patients treated with biologicals experienced drawbacks including loss of response, while others can develop severe side effects. Hence, novel effective treatments are highly needed. Mesenchymal stem/stromal cell (MSCs) therapy is an innovative therapeutic alternative currently under investigation for IBD. MSCs have the inherent capacity of modulating inflammatory immune responses as well as regenerating damaged tissues and are therefore a prime candidate to use as cell therapy in patients with IBD. At present, MSC-based therapy has been shown preclinically to modulate intestinal inflammation, whilst the safety of MSC-based therapy has been demonstrated in clinical trials. However, the successful results in preclinical studies have not been replicated in clinical trials. In this review, we will summarize the protocols used in preclinical and clinical trials and the novel approaches currently under investigation which aim to increase the beneficial effects of MSC-based therapy for IBD.
Collapse
|
15
|
Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond) 2021; 135:2307-2327. [PMID: 34643675 DOI: 10.1042/cs20190070] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.
Collapse
|
16
|
Microrna analysis of human decidua mesenchymal stromal cells from preeclampsia patients. Placenta 2021; 115:12-19. [PMID: 34534911 DOI: 10.1016/j.placenta.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION In preeclampsia (PE), human decidua mesenchymal stromal cells (hDMSCs) are exposed to abnormally high levels of oxidative stress and inflammatory factors circulating in the maternal blood. MicroRNAs (miRNAs) have been shown to have a significant impact on the differentiation, maturation and function of mesenchymal stromal cells (MSCs). Our aim in the present study is firstly to investigate differentially expressed miRNA levels to be used as a biomarker in the early detection of PE and secondly to investigate whether those differentially expressed miRNAs in hDMSCs have an effect on the pathogenesis of PE. METHODS This study covers miRNA expression analysis of hDMSCs from 7 PE patient and 7 healthy pregnant women and is a preliminary study to investigate putative biomarkers. After cell culture and cell sorting, total RNA including miRNAs were isolated from hDMSCs. Let-7b-3p, let-7f-1-3p, miR-191-3p, miR-550a-5p, miR-33b-3p and miR-425-3p were used for miRNA analysis and U6 snRNA was used for normalization of the samples. MiRNA analysis was performed by droplet digital polymerase chain reaction (ddPCR) method and obtained results were evaluated statistically. RESULTS As a result of the analysis, it was observed that the levels of hsa-miR-33b-3p significantly (AUC: 0.93, p = 0.04, fold change: 4.5) increased in hDMSC of PE patients compared to healthy controls. However, let-7b-3p, let-7f-1-3p, miR-191-3p, miR-550a-5p, and miR-425-3p were not considered as significant because they did not meet the p < 0,05 requirement. DISCUSSION Within the scope of the study, it is predicted that miR-33b-3p (p = 0.004, AUC = 0.93) can be used as a biomarker in detecting PE.
Collapse
|
17
|
Chen A, Yu R, Jiang S, Xia Y, Chen Y. Recent Advances of MicroRNAs, Long Non-coding RNAs, and Circular RNAs in Preeclampsia. Front Physiol 2021; 12:659638. [PMID: 33995125 PMCID: PMC8121253 DOI: 10.3389/fphys.2021.659638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Preeclampsia is a clinical syndrome characterized by multiple-organ dysfunction, such as maternal hypertension and proteinuria, after 20 weeks of gestation. It is a common cause of fetal growth restriction, fetal malformation, and maternal death. At present, termination of pregnancy is the only way to prevent the development of the disease. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are involved in important pathological and physiological functions in life cycle activities including ontogeny, reproduction, apoptosis, and cell reprogramming, and are closely associated with human diseases. Accumulating evidence suggests that non-coding RNAs are involved in the pathogenesis of preeclampsia through regulation of various physiological functions. In this review, we discuss the current evidence of the pathogenesis of preeclampsia, introduce the types and biological functions of non-coding RNA, and summarize the roles of non-coding RNA in the pathophysiological development of preeclampsia from the perspectives of oxidative stress, hypoxia, angiogenesis, decidualization, trophoblast invasion and proliferation, immune regulation, and inflammation. Finally, we briefly discuss the potential clinical application and future prospects of non-coding RNA as a biomarker for the diagnosis of preeclampsia.
Collapse
Affiliation(s)
- Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Shiwen Jiang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
18
|
Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci 2021; 22:ijms22083904. [PMID: 33918880 PMCID: PMC8068855 DOI: 10.3390/ijms22083904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
Collapse
|
19
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
20
|
Distinct microRNA profiles for complete hydatidiform moles at risk of malignant progression. Am J Obstet Gynecol 2021; 224:372.e1-372.e30. [PMID: 33031755 DOI: 10.1016/j.ajog.2020.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND MicroRNAs are small noncoding RNAs with important regulatory functions. Although well-studied in cancer, little is known about the role of microRNAs in premalignant disease. Complete hydatidiform moles are benign forms of gestational trophoblastic disease that progress to gestational trophoblastic neoplasia in up to 20% of cases; however, there is no well-established biomarker that can predict the development of gestational trophoblastic neoplasia. OBJECTIVE This study aimed to investigate possible differences in microRNA expression between complete moles progressing to gestational trophoblastic neoplasia and those regressing after surgical evacuation. STUDY DESIGN Total RNA was extracted from fresh frozen tissues from 39 complete moles collected at the time of uterine evacuation in Brazil. In the study, 39 cases achieved human chorionic gonadotropin normalization without further therapy, and 9 cases developed gestational trophoblastic neoplasia requiring chemotherapy. Total RNA was also extracted from 2 choriocarcinoma cell lines, JEG-3 and JAR, and an immortalized normal placenta cell line, 3A-subE. MicroRNA expression in all samples was quantified using microRNA sequencing. Hits from the sequencing data were validated using a quantitative probe-based assay. Significantly altered microRNAs were then subjected to target prediction and gene ontology analyses to search for alterations in key signaling pathways. Expression of potential microRNA targets was assessed by quantitative real-time polymerase chain reaction and western blot. Finally, potential prognostic protein biomarkers were validated in an independent set of formalin-fixed paraffin-embedded patient samples from the United States (15 complete moles progressing to gestational trophoblastic neoplasia and 12 that spontaneously regressed) using quantitative immunohistochemistry. RESULTS In total, 462 microRNAs were identified in all samples at a threshold of <1 tag per million. MicroRNA sequencing revealed a distinct set of microRNAs associated with gestational trophoblastic neoplasia. Gene ontology analysis of the most altered transcripts showed that the leading pathway was related to response to ischemia (P<.001). Here, 2 of the top 3 most significantly altered microRNAs were mir-181b-5p (1.65-fold; adjusted P=.014) and mir-181d-5p (1.85-fold; adjusted P=.014), both of which have been shown to regulate expression of BCL2. By quantitative real-time polymerase chain reaction, BCL2 messenger RNA expression was significantly lower in the complete moles progressing to gestational trophoblastic neoplasia than the regressing complete moles (-4.69-fold; P=.018). Reduced expression of BCL2 was confirmed in tissue samples by western blot. Immunohistochemistry in the independent patient samples revealed significantly lower cytoplasmic expression of BCL2 in the villous trophoblasts from cases destined for progression to gestational trophoblastic neoplasia compared with those that regressed, both with respect to staining intensity (optic density 0.110±0.102 vs 0.212±0.036; P<.001) and to the percentage of positive cells (16%±28% vs 49.4%±28.05%; P=.003). CONCLUSION Complete moles progressing to gestational trophoblastic neoplasia are associated with a distinct microRNA profile. miR-181 family members and BCL2 may be prognostic biomarkers for predicting gestational trophoblastic neoplasia risk.
Collapse
|
21
|
Nuh AM, You Y, Ma M. Information on dysregulation of microRNA in placenta linked to preeclampsia. Bioinformation 2021; 17:240-248. [PMID: 34393443 PMCID: PMC8340720 DOI: 10.6026/97320630017240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are single-stranded, non-coding RNA molecules, regulate gene expression at the post-transcriptional level. They are expressed in the human body and have a significant impact on the different processes of pathological illness. A developing placenta undergoes a series of stages after successful fertilization, such as cell division, migration, adhesion, apoptosis, and angiogenesis. MicroRNAs dysregulation in placenta has been linked to pregnancy-related complications such as preeclampsia. Therefore, it is of interest to document known information (list of microRNA) on this issue in the development of biological tools for diagnosis, treatment and prevention of the disease.
Collapse
Affiliation(s)
- Abdifatah Mohamed Nuh
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Yan You
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Min Ma
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| |
Collapse
|
22
|
Wang Z, Lu L, Gu T, Hou L, Du L, Zhang Y, Zhang Y, Xu Q, Chen G. The effects of FAR1 and TGFBRAP1 on the proliferation and apoptosis of follicular granulosa cells in goose (Anser cygnoides). Gene 2020; 769:145194. [PMID: 33007376 DOI: 10.1016/j.gene.2020.145194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
The low laying performance of geese seriously damages the growth of the poultry industry, and is related to the development of pre- hierarchical follicles. Our previous studies have revealed that FAR1 and TGFBRAP1 were involved in follicular development, but the exact regulation mechanism still kept unclear. In recent studies, the expression of FAR1 and TGFBRAP1 mRNA were detected, and we found that their expression levels were relatively higher in hierarchical follicles than in pre-hierarchical follicles (P < 0.05). Moreover, generally the level of FAR1 and TGFBRAP1 mRNA gradually increased in hierarchical follicles. In addition, the proliferation and apoptosis of granulosa cells were assayed with overexpression or knockdown technology. The results showed that by the knockdown of FAR1 mRNA level, the proliferation rate of follicular granulosa cells increased significantly, the apoptosis rate decreased (P < 0.05), and the apoptosis rate also reduced obviously by transfecting TGFBRAP1-siRNA (P < 0.05). Finally, the overexpression of FAR1 or TGFBRAP1 resulted in the inhabitation to the secretion of E2 and P4 in granulosa cells, while the knockdown of FAR1 or TGFBRAP1 enhanced the secretion of E2 and P4. In conclusion, the results indicated that FAR1 and TGFBRAP1 regulated the apoptosis of follicular granulosa cells and cut the secretion of E2 and P4 in geese, which provided basic data for the understanding of the regulating process of goose reproduction.
Collapse
Affiliation(s)
- Zhixiu Wang
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Lu Lu
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Tiantian Gu
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Li'e Hou
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Lei Du
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Xu W, Zhao M, Lin Z, Liu H, Ma H, Hong Q, Gui D, Feng J, Liu Y, Zhou W, Liu H. Increased expression of plasma hsa-miR-181a in male patients with heroin addiction use disorder. J Clin Lab Anal 2020; 34:e23486. [PMID: 32748469 PMCID: PMC7676194 DOI: 10.1002/jcla.23486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Drug addiction is an uncontrolled, chronic, and recurrent encephalopathy that presently lacks specific and characteristic biomarkers for diagnosis and treatment. As regulators of gene expression, microRNAs (miRNAs) are increasingly used for diagnostic and prognostic purposes in various disease states. Previous studies indicated that miRNAs play important roles in the development and progression of drug addictions, including addiction to methamphetamine, cocaine, alcohol, and heroin. METHODS We identified significant miRNAs using the microarray method and then validated the hsa-miR-181a expression levels in 53 heroin addiction patients and 49 normal controls using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential associations between transcriptional levels in heroin addiction patients and their clinicopathological features were analyzed. RESULTS A total of 2006 miRNAs were differentially expressed between heroin addiction patients and normal controls. The top 10 up-regulated miRNAs in patients were hsa-miR-21a, hsa-miR-181a, hsa-miR-4459, hsa-miR-4430, hsa-miR-4306, hsa-miR-22-3P, hsa-miR-486-5P, hsa-miR-371b-5P, hsa-miR-92a-3P, and hsa-miR-5001-5P. The top 10 down-regulated miRNAs in patients were hsa-miR-3195, hsa-miR-4767, hsa-miR-3135b, hsa-miR-6087, hsa-miR-1181, hsa-miR-4785, hsa-miR-718, hsa-miR-3141, hsa-miR-652-5P, and hsa-miR-6126. The expression level of hsa-miR-181a in heroin addiction patients was significantly increased compared with that in normal controls (P < .001). The area under the receiver operating characteristic curve of hsa-miR-181a was 0.783, the sensitivity was 0.867, and the specificity was 0.551. CONCLUSIONS The increased expression of hsa-miR-181a in the plasma of heroin patients may be a consequence of the pathological process of heroin abuse. This study highlights the potential of hsa-miR-181a as a novel biomarker for the diagnosis of heroin addiction.
Collapse
Affiliation(s)
- Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Ming Zhao
- Department of Medical Services, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Haixiong Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Hong Ma
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Donghui Gui
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Jiying Feng
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Yue Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| |
Collapse
|
24
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|
25
|
Arthurs AL, Lumbers ER, Pringle KG. MicroRNA mimics that target the placental renin-angiotensin system inhibit trophoblast proliferation. Mol Hum Reprod 2020; 25:218-227. [PMID: 30869150 DOI: 10.1093/molehr/gaz010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022] Open
Abstract
In early gestation, the human placental renin-angiotensin system (RAS) is upregulated and plays a role in placental development. Among other functions, signalling through the angiotensin II type 1 receptor (AT1R) initiates proliferation. Many microRNAs (miRNAs) targeting placental RAS mRNAs are downregulated at this time. We propose that in early gestation miRNAs that target the placental RAS are downregulated, allowing for the increased RAS expression and proliferation required for adequate placentation. HTR-8/SVneo cells (an immortalized human trophoblast cell line) were used to assess the effect of nine miRNA mimics (at 0.08, 0.16, 0.32 and 0.64 ng/μL) on trophoblast cell proliferation and predicted RAS target mRNAs. The effect of the miRNA mimics on the rate of cell proliferation was assessed using the xCELLigence real-time cell analysis system over 48 h. Levels of miRNAs and predicted RAS target mRNAs were determined by RT-PCR (qPCR, n = 9/group). Statistically different levels of expression were determined (P < 0.05). All nine miRNA mimics significantly affected the proliferation rates of HTR-8/SVneo cells. Five of the miRNA mimics (miR-181a-5p (predicted to target: renin (REN), angiotensin converting enzyme (ACE)), miR-378 (REN, ACE), miR-663 (REN), miR-483-3p (ACE, ACE2, angiotensinogen (AGT), angiotensin II type 1 receptor (AGTR1)) and miR-514 (AGT)) were associated with a dose-dependent reduction in cell proliferation. Seven of the mimics significantly decreased expression of at least one of their predicted target RAS mRNAs. Our study shows that miRNAs targeting placental RAS mRNAs play a role in controlling trophoblast proliferation. As placentation is largely a process of proliferation, changes in expression of these miRNAs may be partly responsible for the expression of the placental RAS, proliferation and placentation.
Collapse
Affiliation(s)
- Anya L Arthurs
- Priority Research Centre for Reproductive Sciences, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Eugenie R Lumbers
- Priority Research Centre for Reproductive Sciences, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kirsty G Pringle
- Priority Research Centre for Reproductive Sciences, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
26
|
Rezaei T, Amini M, Hashemi ZS, Mansoori B, Rezaei S, Karami H, Mosafer J, Mokhtarzadeh A, Baradaran B. microRNA-181 serves as a dual-role regulator in the development of human cancers. Free Radic Biol Med 2020; 152:432-454. [PMID: 31899343 DOI: 10.1016/j.freeradbiomed.2019.12.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) as the regulatory short noncoding RNAs are involved in a wide array of cellular and molecular processes. They negatively regulate gene expression and their dysfunction is correlated with cancer development through modulation of multiple signaling pathways. Therefore, these molecules could be considered as novel biomarkers and therapeutic targets for more effective management of human cancers. Recent studies have demonstrated that the miR-181 family is dysregulated in various tumor tissues and plays a pivotal role in carcinogenesis. They have been shown to act as oncomirs or tumor suppressors considering their mRNA targets and to be involved in cell proliferation, apoptosis, autophagy, angiogenesis and drug resistance. Additionally, these miRNAs have been demonstrated to exert their regulatory effects through modulating multiple signaling pathways including PI3K/AKT, MAPK, TGF-b, Wnt, NF-κB, Notch pathways. Given that, in this review, we briefly summarise the recent studies that have focused on the roles of miRNA-181 family as the multifunctional miRNAs in tumorigenesis and cancer development. These miRNAs may serve as diagnostic and prognostic biomarkers or therapeutic targets in human cancer gene therapy.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sadat Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
| | - Sarah Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Li HY, He HC, Song JF, Du YF, Guan M, Wu CY. Bone marrow-derived mesenchymal stem cells repair severe acute pancreatitis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Cell Signal 2020; 66:109436. [DOI: 10.1016/j.cellsig.2019.109436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
|
28
|
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are excellent candidates for different cellular therapies due to their physiological properties such as immunoregulatory function. whetheare currently utilized for regenerative medication and treatment of a number of inflammatory illnesses given their ability to considerably impact tissue microenvironments via extracellular vesicles or toll-like receptor pathway modulation. MicroRNAs (miRNAs) are small noncoding RNAs that target the messenger RNA and play a critical role in different biological procedures, such as the development and reaction of the immune system. Moreover, miRNAs have recently been revealed to have serious functions in MSCs to regulate immunomodulatory properties. In this review, we study how the miRNAs pathway can modulate the immunoregulatory activity of MSCs by counting their interactions with immune cells and also discuss the possibility of using miRNA-based implications for MSC-based therapies.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Medical Biotechnology (PhD), Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
29
|
Hemmatzadeh M, Shomali N, Yousefzadeh Y, Mohammadi H, Ghasemzadeh A, Yousefi M. MicroRNAs: Small molecules with a large impact on pre-eclampsia. J Cell Physiol 2019; 235:3235-3248. [PMID: 31595979 DOI: 10.1002/jcp.29286] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As critical mediators in biological processes, microRNAs (miRNAs) which are small and endogenous noncoding RNAs have been associated with disease progression, cell proliferation, and development. Pre-eclampsia (PE), a pregnancy-related disorder with no early markers or symptoms is recognized as the main reason for fetal and maternal mortality and morbidity in the initial steps or even during pregnancy, worldwide. Clinical symptoms usually appear in the third trimester of the pregnancy. Although numerous research have unraveled several aspects of placenta development abnormalities associated with abnormal trophoblastic invasion and angiogenesis modification, many questions about the PE pathogenesis remains unanswered. A large number of studies have shown the important role of miRNAs as potential biomarkers in the PE prognosis and diagnosis. Here, the latest investigations about the PE and placental miRNAs expression, as well as, the crucial role of miRNA molecules including miR-210 and miR-155 which are deregulated in patients with PE, will be argued.
Collapse
Affiliation(s)
- Maryam Hemmatzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, Nihoyannopoulos P, Tousoulis D, Makris T. MicroRNAs in Preeclampsia. Microrna 2019; 8:28-35. [PMID: 30101723 DOI: 10.2174/2211536607666180813123303] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) continues to represent a worldwide problem and challenge for both clinicians and laboratory-based doctors. Despite many efforts, the knowledge acquired regarding its pathogenesis and pathophysiology does not allow us to treat it efficiently. It is not possible to arrest its progressive nature, and the available therapies are limited to symptomatic treatment. Furthermore, both the diagnosis and prognosis are frequently uncertain, whilst the ability to predict its occurrence is very limited. MicroRNAs are small non-coding RNAs discovered two decades ago, and present great interest given their ability to regulate almost every aspect of the cell function. A lot of evidence regarding the role of miRNAs in pre-eclampsia has been accumulated in the last 10 years. Differentially expressed miRNAs are characteristic of both mild and severe PE. In many cases they target signaling pathway-related genes that result in altered processes which are directly involved in PE. Immune system, angiogenesis and trophoblast proliferation and invasion, all fundamental aspects of placentation, are controlled in various degrees by miRNAs which are up- or downregulated. Finally, miRNAs represent a potential therapeutic target and a diagnostic tool.
Collapse
Affiliation(s)
- Georgios Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Vasiliki Katsi
- Cardiology Department, Hippokration Hospital, National Health System, Athens, Greece
| | - Antigoni Miliou
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - Georgia Vamvakou
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| |
Collapse
|
31
|
miR-181a modulates circadian rhythm in immortalized bone marrow and adipose derived stromal cells and promotes differentiation through the regulation of PER3. Sci Rep 2019; 9:307. [PMID: 30670712 PMCID: PMC6343011 DOI: 10.1038/s41598-018-36425-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
miRNAs are important regulators of diverse cellular processes including proliferation, apoptosis, and differentiation. In the context of bone marrow derived stromal cell and adipose derived stromal cell differentiation, miRNAs are established regulators of both differentiation or stemness depending on their target. Furthermore, miRNA dysregulation can play a key role in various disease states. Here we show that miR-181a is regulated in a circadian manner and is induced during both immortalized bone marrow derived stromal cell (iBMSC) as well as primary patient adipose derived stromal cell (PASC) adipogenesis. Enhanced expression of miR-181a in iBMSCs and PASCs produced a robust increase in adipogenesis through the direct targeting of the circadian factor period circadian regulator 3 (PER3). Furthermore, we show that knocking down endogenous miR-181a expression in iBMSC has a profound inhibitory effect on iBMSC adipogenesis through its regulation of PER3. Additionally, we found that miR-181a regulates the circadian dependency of the adipogenesis master regulator PPARγ. Taken together, our data identify a previously unknown functional link between miR-181a and the circadian machinery in immortalized bone marrow stromal cells and adipose derived stromal cells highlighting its importance in iBMSC and ASC adipogenesis and circadian biology.
Collapse
|
32
|
Zhang Z, Gao Y, Xu MQ, Wang CJ, Fu XH, Liu JB, Han DX, Jiang H, Yuan B, Zhang JB. miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene 2019; 681:45-51. [DOI: 10.1016/j.gene.2018.09.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
|
33
|
Aslani S, Abhari A, Sakhinia E, Sanajou D, Rajabi H, Rahimzadeh S. Interplay between microRNAs and Wnt, transforming growth factor-β, and bone morphogenic protein signaling pathways promote osteoblastic differentiation of mesenchymal stem cells. J Cell Physiol 2018; 234:8082-8093. [PMID: 30548580 DOI: 10.1002/jcp.27582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
Abstract
Osteoblasts are terminally differentiated cells with mesenchymal origins, known to possess pivotal roles in sustaining bone microstructure and homeostasis. These cells are implicated in the pathophysiology of various bone disorders, especially osteoporosis. Over the last few decades, strategies to impede bone resorption, principally by bisphosphonates, have been mainstay of treatment of osteoporosis; however, in recent years more attention has been drawn on bone-forming approaches for managing osteoporosis. MicroRNAs (miRNAs) are a broad category of noncoding short sequence RNA fragments that posttranscriptionally regulate the expression of diverse functional and structural genes in a negative manner. An accumulating body of evidence signifies that miRNAs direct mesenchymal stem cells toward osteoblast differentiation and bone formation through bone morphogenic protein, transforming growth factor-β, and Wnt signaling pathways. MiRNAs are regarded as excellent future therapeutic candidates because of their small size and ease of delivery into the cells. Considering their novel therapeutic significance, this review discusses the main miRNAs contributing to the anabolic aspects of bone formation and illustrates their interactions with corresponding signaling pathways involved in osteoblastic differentiation.
Collapse
Affiliation(s)
- Somayeh Aslani
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Deparment of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells. Biochimie 2018; 155:109-118. [DOI: 10.1016/j.biochi.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
35
|
Upregulated TSG-6 Expression in ADSCs Inhibits the BV2 Microglia-Mediated Inflammatory Response. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7239181. [PMID: 30584538 PMCID: PMC6280241 DOI: 10.1155/2018/7239181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
Objectives The microglial cells are immune surveillance cells in the central nervous system and can be activated during neurological disorders. Adipose-derived stem cells (ADSCs) were reported to inhibit the inflammatory response in microglia by secreting proteins like tumor necrosis factor-inducible gene 6 protein (TSG-6). We aim to explore the mechanisms and the associated microRNAs. Methods ADSCs were cultured and TSG-6 expression was evaluated. ADSCs were cocultured with lipopolysaccharide- (LPS-) induced BV2 microglia and the supernatant was harvested for detecting cytokines. The total RNA was extracted and sequenced by high-throughput sequencing. MicroRNA profiles were compared between two treatment groups of ADSCs. A comprehensive bioinformatics analysis and confirmation experiments were performed to identify the microRNAs targeting at TSG-6. Results We found that ADSCs could secrete TSG-6 to inhibit the proinflammatory cytokines, including interleukin-1 beta and interleukin-6, and tumor necrosis factor alpha (TNFα), produced by LPS-induced microglia-mediated inflammatory response. Bioinformatics analysis showed a total of 35 microRNAs differentially expressed between the two groups of ADSCs, and miR-214-5p was identified as a regulator of TSG-6 mRNA. Conclusion Following a treatment with TNFα, ADSCs can regulate the inflammatory response in LPS-activated BV2 microglia by upregulating TSG-6 expression, which itself is under the negative control of miR-214-5p.
Collapse
|
36
|
Huang X, Wu L, Zhang G, Tang R, Zhou X. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod Sci 2018; 26:1121-1129. [PMID: 30376765 DOI: 10.1177/1933719118808916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE It has been demonstrated that preeclampsia is associated with alterations in placental microRNA expression. Previous reports have shown that hsa-miR-181a-5p is overexpressed in human preeclamptic placenta compared with normotensive placenta. The purpose of this study was to explore whether upregulated hsa-miR-181a-5p expression is involved in the ontogenesis of preeclampsia. METHODS Twenty preeclamptic placentas and 20 normotensive placentas were obtained from nulliparous women by cesarean section. Expression of hsa-miR-181a-5p in placenta tissues and human trophoblast cell lines was analyzed by reverse transcription polymerase chain reaction. The trophoblast cell lines (HTR-8/SVneo and JAR) were transfected with specific oligonucleotides to upregulate miR-181a-5p expression. The effect of miR-181a-5p expression on proliferation, cell cycle, apoptosis, and invasion in HTR-8/SVneo and JAR cells was then investigated. RESULT It was demonstrated that hsa-miR-181a-5p expression was upregulated in preeclamptic placentas and that it may trigger antiproliferation and inhibition of cell cycle progression, induce apoptosis, and suppress invasion in HTR-8/SVneo and JAR cells. CONCLUSION Anomalously upregulated hsa-miR-181a-5p expression could contribute to trophoblast dysfunction and may be a crucial factor in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Xiaohao Huang
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,These authors contributed equally to this article
| | - Lan Wu
- 2 Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,These authors contributed equally to this article
| | - Guoying Zhang
- 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Tang
- 2 Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,Ranran Tang and Xue Zhou are joint corresponding authors to this paper
| | - Xue Zhou
- 2 Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,Ranran Tang and Xue Zhou are joint corresponding authors to this paper
| |
Collapse
|
37
|
Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, Lv M. Roles of microRNAs in preeclampsia. J Cell Physiol 2018; 234:1052-1061. [PMID: 30256424 DOI: 10.1002/jcp.27291] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a complex disorder that is characterized by hypertension and proteinuria after the 20th week of pregnancy, and it causes most neonatal morbidity and perinatal mortality. Most studies suggest that placental dysfunction is the main cause of PE. However, genetic factors, immune factors, and systemic inflammation are also related to the pathophysiology of this syndrome. Thus far, the exact pathogenesis of PE is not yet fully understood, and intense research efforts are focused on PE to elucidate the pathophysiological mechanisms. MicroRNAs (miRNAs) refer to small single-stranded and noncoding molecules that can negatively regulate gene expression, and miRNA regulatory networks play an important role in diverse pathological processes. Many studies have confirmed deregulated miRNA in pregnant patients with PE, and the function and mechanism of these differentially expressed miRNA are gradually being revealed. In this review, we summarize the current research about miRNA involved in PE, including placenta-specific miRNA, their predictive value, and their function in the development of PE. This review will provide fundamental evidence of miRNA in PE, and further studies are necessary to explore the roles of miRNA in the early diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Yan Lv
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Cheng Lu
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xiaohong Ji
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Zhijing Miao
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wei Long
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mingming Lv
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.,Nanjing Maternal and Child Health Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
38
|
Watanabe K, Ikuno Y, Kakeya Y, Kito H, Matsubara A, Kaneda M, Katsuyama Y, Naka-Kaneda H. Functional similarities of microRNAs across different types of tissue stem cells in aging. Inflamm Regen 2018; 38:9. [PMID: 29991971 PMCID: PMC5989452 DOI: 10.1186/s41232-018-0066-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023] Open
Abstract
Restoration of tissue homeostasis by controlling stem cell aging is a promising therapeutic approach for geriatric disorders. The molecular mechanisms underlying age-related dysfunctions of specific types of adult tissue stem cells (TSCs) have been studied, and various microRNAs were recently reported to be involved. However, the central roles of microRNAs in stem cell aging remain unclear. Interest in this area was sparked by murine heterochronic parabiosis experiments, which demonstrated that systemic factors can restore the functions of TSCs. Age-related changes in secretion profiles, termed the senescence-associated secretory phenotype, have attracted attention, and several pro- and anti-aging factors have been identified. On the other hand, many microRNAs are linked with the age-dependent dysregulations of various physiological processes, including “stem cell aging.” This review summarizes microRNAs that appear to play common roles in stem cell aging.
Collapse
Affiliation(s)
- Koichiro Watanabe
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Yasuaki Ikuno
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Yumi Kakeya
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Hirotaka Kito
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Aoi Matsubara
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Mizuki Kaneda
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Hayato Naka-Kaneda
- Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
39
|
Park J, Jeong S, Park K, Yang K, Shin S. Expression profile of microRNAs following bone marrow-derived mesenchymal stem cell treatment in lipopolysaccharide-induced acute lung injury. Exp Ther Med 2018; 15:5495-5502. [PMID: 29904430 DOI: 10.3892/etm.2018.6118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
Immunomodulatory or immunosuppressive properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) facilitate the treatment of acute respiratory distress syndrome and acute lung injury (ALI). Dysregulated miRNA (miRNA or miR) expression associated with the effects of BM-MSCs was assessed in a rat model of lipopolysaccharide (LPS)-induced ALI. The present study performed biochemical tests to assess five analytes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate, blood urea nitrogen (BUN), and creatinine (CREA). Total cell count was assessed and the percentage of bronchoalveolar lavage neutrophil content was also examined. The results Histopathological examination of rat upper lobe lung tissue was then used to estimate lung injury score (LIS). The levels of AST, lactate, BUN and creatinine (excluding ALT), released into the circulation upon injury, were significantly lower in ALI rats treated with BM-MSCs than in ALI rats alone (P<0.05). BM-MSC rats exhibited a significantly decreased bronchoalveolar lavage neutrophil percentage and LIS compared with that of LPS treated rats alone (P<0.05). In addition, the miRNA expression profile was determined following treatment with BM-MSCs via microarray analysis. A total of 95/690 miRNAs were differentially expressed following the treatment of BM-MSCs in rats with ALI. Among the 95 miRNAs, 66 were upregulated and 29 were downregulated; 9 miRNAs were significantly upregulated (miR-1843-3p, miR-323-3p, miR-183-5p, miR-182 and miR-196b-3p) or downregulated (miR-547-3p, miR-301b-5p, miR-503-3p and miR-142-3p). A total of 3 miRNAs were inversely expressed in ALI treated with BM-MSCs compared with untreated ALI. Of these 3 miRNAs, the expression of miR-142-3p and miR-503-3p was upregulated in the LPS groups and downregulated in the BM-MSC groups. miR-196b-3p was downregulated in the LPS group and upregulated in the BM-MSC groups. miRNAs have a role in cell proliferation, immune response, inflammation and apoptosis, which may be associated with the therapeutic effects of BM-MSCs in ALI. In summary, BM-MSCs improved multi-organ damage and attenuated lung injury. Different miRNA profiles were expressed following BM-MSC treatment of ALI. These dysregulated miRNAs participated in BM-MSC-mediated immunomodulation of ALI.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sikyoung Jeong
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kicheol Park
- Clinical Research Institute, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon 34943, Republic of Korea
| | - Keumjin Yang
- Clinical Research Institute, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon 34943, Republic of Korea
| | - Soyoung Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
40
|
Zeng YL, Zheng H, Chen QR, Yuan XH, Ren JH, Luo XF, Chen P, Lin ZY, Chen SZ, Wu XQ, Xiao M, Chen YQ, Chen ZZ, Hu JD, Yang T. Bone marrow-derived mesenchymal stem cells overexpressing MiR-21 efficiently repair myocardial damage in rats. Oncotarget 2018; 8:29161-29173. [PMID: 28418864 PMCID: PMC5438721 DOI: 10.18632/oncotarget.16254] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
Objective We investigated the ability of bone marrow derived mesenchymal stem cells (BMSCs) overexpressing microRNA-21 (miR-21) to repair cardiac damage induced by anthracyclines in rats. Methods Sprague-Dawley (SD) rats of 2~3 weeks old were selected to isolate and culture BMSCs. A lentivirus harboring pLVX-miR-21 was generated and transfected into rat BMSCs. The rats were assigned into an untreated negative control group, and groups injected with adriamycin alone or with adriamycin followed by BMSCs, pLVX-BMSCs or pLVX-miR-21-BMSCs (n = 10 each). Proliferation and migration of cells were detected by cholecystokinin-8 (CCK- 8) and transwell. MiR-21 expression, mRNA expressions of B cell lymphoma 2 (Bcl2), BAX (BCL-2-associated X protein) and vascular endothelial growth factor (VEGF) were tested by qRT-PCR. Western blotting was applied to detect protein expressions of Bcl-2, Bax and VEGF. Results Using CCK- 8 and transwell assays, we found that pLVX-miR-21-BMSCs, which overexpressed miR-21, exhibited greater proliferation and migration than untransfected BMSCs or pLVX-BMSCs. Ultrasonic cardiograms and immunohistochemical analysis demonstrated that among the five groups, the pLVX-miR-21-BMSC group exhibited the most improved heart function and enhanced angiogenesis. Moreover, the pLVX-miR-21-BMSC group showed enhanced expression of Bcl-2, VEGF and Cx43 and reduced expression of Bax, BNP and troponin T. Conclusion These findings suggest miR-21 overexpression enhanced the proliferation, invasiveness and differentiation of BMSCs as well as expression of key factors (Bcl-2, VEGF and Bax) essential for repairing the cardiac damage induced by anthracyclines and restoring heart function.
Collapse
Affiliation(s)
- Yan-Ling Zeng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China.,Department of Hematology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping 353000, P. R. China
| | - Hao Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Qiu-Ru Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xiao-Hong Yuan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Jin-Hua Ren
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xiao-Feng Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Ping Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Zhe-Yao Lin
- Department of Hematology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping 353000, P. R. China
| | - Shao-Zhen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xue-Qiong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Min Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Yong-Quan Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Zhi-Zhe Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Jian-Da Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| |
Collapse
|
41
|
Huan T, Chen G, Liu C, Bhattacharya A, Rong J, Chen BH, Seshadri S, Tanriverdi K, Freedman JE, Larson MG, Murabito JM, Levy D. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell 2018; 17. [PMID: 29044988 PMCID: PMC5770777 DOI: 10.1111/acel.12687] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 01/11/2023] Open
Abstract
Recent studies provide evidence of correlations of DNA methylation and expression of protein‐coding genes with human aging. The relations of microRNA expression with age and age‐related clinical outcomes have not been characterized thoroughly. We explored associations of age with whole‐blood microRNA expression in 5221 adults and identified 127 microRNAs that were differentially expressed by age at P < 3.3 × 10−4 (Bonferroni‐corrected). Most microRNAs were underexpressed in older individuals. Integrative analysis of microRNA and mRNA expression revealed changes in age‐associated mRNA expression possibly driven by age‐associated microRNAs in pathways that involve RNA processing, translation, and immune function. We fitted a linear model to predict ‘microRNA age’ that incorporated expression levels of 80 microRNAs. MicroRNA age correlated modestly with predicted age from DNA methylation (r = 0.3) and mRNA expression (r = 0.2), suggesting that microRNA age may complement mRNA and epigenetic age prediction models. We used the difference between microRNA age and chronological age as a biomarker of accelerated aging (Δage) and found that Δage was associated with all‐cause mortality (hazards ratio 1.1 per year difference, P = 4.2 × 10−5 adjusted for sex and chronological age). Additionally, Δage was associated with coronary heart disease, hypertension, blood pressure, and glucose levels. In conclusion, we constructed a microRNA age prediction model based on whole‐blood microRNA expression profiling. Age‐associated microRNAs and their targets have potential utility to detect accelerated aging and to predict risks for age‐related diseases.
Collapse
Affiliation(s)
- Tianxiao Huan
- The Framingham Heart Study; Framingham MA USA
- The Population Sciences Branch; Division of Intramural Research; National Heart, Lung and Blood Institute; National Institutes of Health; Bethesda MD USA
| | - George Chen
- The Framingham Heart Study; Framingham MA USA
- The Population Sciences Branch; Division of Intramural Research; National Heart, Lung and Blood Institute; National Institutes of Health; Bethesda MD USA
| | - Chunyu Liu
- The Framingham Heart Study; Framingham MA USA
- The Population Sciences Branch; Division of Intramural Research; National Heart, Lung and Blood Institute; National Institutes of Health; Bethesda MD USA
| | - Anindya Bhattacharya
- Department of Computer Science and Engineering; University of California; San Diego CA USA
| | - Jian Rong
- Department of Biostatistics; Boston University School of Public Health; Boston MA USA
| | - Brian H. Chen
- Longitudinal Studies Section; Translational Gerontology Branch; Intramural Research Program; National Institute on Aging; National Institutes of Health; Bethesda MD USA
| | - Sudha Seshadri
- Department of Medicine; Section of General Internal Medicine; Boston University School of Medicine; Boston MA USA
| | - Kahraman Tanriverdi
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Jane E. Freedman
- Department of Medicine; University of Massachusetts Medical School; Worcester MA USA
| | - Martin G. Larson
- The Framingham Heart Study; Framingham MA USA
- Department of Biostatistics; Boston University School of Public Health; Boston MA USA
| | - Joanne M. Murabito
- The Framingham Heart Study; Framingham MA USA
- Department of Medicine; Section of General Internal Medicine; Boston University School of Medicine; Boston MA USA
| | - Daniel Levy
- The Framingham Heart Study; Framingham MA USA
- The Population Sciences Branch; Division of Intramural Research; National Heart, Lung and Blood Institute; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
42
|
Expansion induced microRNA changes in bone marrow mesenchymal stromal cells reveals interplay between immune regulation and cell cycle. Aging (Albany NY) 2017; 8:2799-2813. [PMID: 27852979 PMCID: PMC5191871 DOI: 10.18632/aging.101088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
Abstract
Mesenchymal stromal cells (MSC) are currently used in many cell based therapies. Prior to use in therapy, extensive expansion is required. We used microarray profiling to investigate expansion induced miRNA and mRNA expression changes of bone marrow MSCs (BM-MSCs) derived from old and young donors. The expression levels of 36 miRNAs were altered in cells derived from the old and respectively 39 miRNAs were altered in cells derived from young donors. Of these, only 12 were differentially expressed in both young and old donor BM-MSCs, and their predicted target mRNAs, were mainly linked to cell proliferation and senescence. Further qPCR verification showed that the expression of miR-1915-3p, miR-1207, miR-3665, and miR-762 correlated with the expansion time at passage 8. Previously described BM-MSC-specific miRNA fingerprints were also detected but these remained unchanged during expansion. Interestingly, members of well-studied miR-17/92 cluster, involved in cell cycle regulation, aging and also development of immune system, were down-regulated specifically in cells from old donors. The role of this cluster in MSC functionality is worth future studies since it links expansion, aging and immune system together.
Collapse
|
43
|
Pereira TDSF, Brito JAR, Guimarães ALS, Gomes CC, de Lacerda JCT, de Castro WH, Coimbra RS, Diniz MG, Gomez RS. MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma. J Oral Pathol Med 2017; 47:78-85. [PMID: 29032608 DOI: 10.1111/jop.12650] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cemento-ossifying fibroma (COF) is a benign fibro-osseous neoplasm of uncertain pathogenesis, and its treatment results in morbidity. MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression and may represent therapeutic targets. The purpose of the study was to generate a comprehensive miRNA profile of COF compared to normal bone. Additionally, the most relevant pathways and target genes of differentially expressed miRNA were investigated by in silico analysis. METHODS Nine COF and ten normal bone samples were included in the study. miRNA profiling was carried out by using TaqMan® OpenArray® Human microRNA panel containing 754 validated human miRNAs. We identified the most relevant miRNAs target genes through the leader gene approach, using STRING and Cytoscape software. Pathways enrichment analysis was performed using DIANA-miRPath. RESULTS Eleven miRNAs were downregulated (hsa-miR-95-3p, hsa-miR-141-3p, hsa-miR-205-5p, hsa-miR-223-3p, hsa-miR-31-5p, hsa-miR-944, hsa-miR-200b-3p, hsa-miR-135b-5p, hsa-miR-31-3p, hsa-miR-223-5p and hsa-miR-200c-3p), and five were upregulated (hsa-miR-181a-5p, hsa-miR-181c-5p, hsa-miR-149-5p, hsa-miR-138-5p and hsa-miR-199a-3p) in COF compared to normal bone. Eighteen common target genes were predicted, and the leader genes approach identified the following genes involved in human COF: EZH2, XIAP, MET and TGFBR1. According to the biology of bone and COF, the most relevant KEGG pathways revealed by enrichment analysis were proteoglycans in cancer, miRNAs in cancer, pathways in cancer, p53-, PI3K-Akt-, FoxO- and TGF-beta signalling pathways, which were previously found to be differentially regulated in bone neoplasms, odontogenic tumours and osteogenesis. CONCLUSION miRNA dysregulation occurs in COF, and EZH2, XIAP, MET and TGFBR1 are potential targets for functional analysis validation.
Collapse
Affiliation(s)
- Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - João Artur Ricieri Brito
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Wagner Henriques de Castro
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Marina Gonçalves Diniz
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
44
|
miRNAs: Important Targets for Oral Cancer Pain Research. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4043516. [PMID: 29214166 PMCID: PMC5682905 DOI: 10.1155/2017/4043516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Pain is a symptom shared by an incredible number of diseases. It is also one of the primary conditions that prompt individuals to seek medical treatment. Head and neck squamous cell carcinoma (HNSCC) corresponds to a heterogeneous disease that may arise from many distinct structures of a large, highly complex, and intricate region. HNSCC affects a great number of patients worldwide and is directly associated with chronic pain, which is especially prominent during the advanced stages of oral squamous cell carcinoma (OSCC), an anatomical and clinical subtype that corresponds to the great majority oral cancers. Although the cellular and molecular bases of oral cancer pain have not been fully established yet, the results of recent studies suggest that different epigenetic mechanisms may contribute to this process. For instance, there is strong scientific evidence that microRNAs (miRNAs), small RNA molecules that do not encode proteins, might act by regulating the mechanisms underlying cancer-related pain. Among the miRNAs that could possibly interfere in pain-signaling pathways, miR-125b, miR-181, and miR-339 emerge as some of the most promising candidates. In fact, such molecules apparently contribute to inflammatory pain. Moreover, these molecules possibly influence the activity of endogenous pain control systems (e.g., opioidergic and serotonergic systems), which could ultimately result in peripheral and central sensitization, central nervous system (CNS) phenomena innately associated with chronic pain. This review paper focuses on the current scientific knowledge regarding the involvement of miRNAs in cancer pain, with special attention dedicated to OSCC-related pain.
Collapse
|
45
|
Fayyad-Kazan H, Fayyad-Kazan M, Merimi M, Meuleman N, Bron D, Lagneaux L, Najar M. The micronome of mesenchymal stromal cells is partially responsive to inflammation. Cell Biol Int 2017; 42:254-260. [PMID: 29064609 DOI: 10.1002/cbin.10897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/22/2017] [Indexed: 11/09/2022]
Abstract
Mesenchymal stromal cells (MSCs) display a special immunological profile that allows their potential use as immunotherapeutic cells. Nowadays, foreskin (FSK) represents a valuable reservoir of MSCs with International Society for Cellular Therapy (ISCT) compliant criteria and relevant functional properties. However, their mode of action is poorly understood and needs to be more elucidated to optimize their therapeutic use. Because microRNAs (miRNAs) act as key regulators in a wide variety of biological processes, we decided to establish the micronome of FSK-MSCs, the influence of inflammation and the predicted target pathways. Here, we provide the full list of unchanged and additional four differentially expressed miRNAs, miR-199b, -296-3p and -589-5p being downregulated whilst miR-146-3p being upregulated, in MSCs following their exposure to a cocktail of proinflammatory cytokines. MicroRNA target prediction in addition to Pathway enrichment analysis performed using miRNet, showed that miR-296-3p is linked to antigen processing and presentation pathway. Collectively, our data indicate that the micronome of FSK-MSCs is partially responsive to inflammation. Differentially expressed miRNAs are subsequently modulated by inflammation and seem to be involved in regulating the immunological fate of FSK-MSCs. These miRNAs deserve more attention in order to optimize MSC-based therapy and achieve the appropriate therapeutic effect.
Collapse
Affiliation(s)
- Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Makram Merimi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Nathalie Meuleman
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.,Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Dominique Bron
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.,Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
46
|
Bounds KR, Chiasson VL, Pan LJ, Gupta S, Chatterjee P. MicroRNAs: New Players in the Pathobiology of Preeclampsia. Front Cardiovasc Med 2017; 4:60. [PMID: 28993808 PMCID: PMC5622156 DOI: 10.3389/fcvm.2017.00060] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
Our understanding of how microRNAs (miRNAs) regulate gene networks and affect different molecular pathways leading to various human pathologies has significantly improved over the years. In contrary, the role of miRNAs in pregnancy-related hypertensive disorders such as preeclampsia (PE) is only beginning to emerge. Recent papers highlight that adverse pregnancy outcomes are associated with aberrant expression of several miRNAs. Presently, efforts are underway to determine the biologic function of these placental miRNAs which can shed light on their contribution to these pregnancy-related disease conditions. The discovery that miRNAs are stable in circulation coupled with the fact that the placenta is capable of releasing them to the circulation in exosomes generates a lot of enthusiasm to use them as biomarkers. In this review, we will summarize the recent findings of our understanding of miRNA regulation in relation to PE, a hypertensive disorder of pregnancy. Particular emphasis will be given to the role of key miRNA molecules such as miR-210 and miR-155 that are known to be consistently dysregulated in women with PE.
Collapse
Affiliation(s)
- Kelsey R Bounds
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Valorie L Chiasson
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Lu J Pan
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Sudhiranjan Gupta
- Department of Medical Physiology, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Piyali Chatterjee
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| |
Collapse
|
47
|
Cai M, Kolluru GK, Ahmed A. Small Molecule, Big Prospects: MicroRNA in Pregnancy and Its Complications. J Pregnancy 2017; 2017:6972732. [PMID: 28713594 PMCID: PMC5496128 DOI: 10.1155/2017/6972732] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs are small, noncoding RNA molecules that regulate target gene expression in the posttranscriptional level. Unlike siRNA, microRNAs are "fine-tuners" rather than "switches" in the regulation of gene expression; thus they play key roles in maintaining tissue homeostasis. The aberrant microRNA expression is implicated in the disease process. To date, numerous studies have demonstrated the regulatory roles of microRNAs in various pathophysiological conditions. In contrast, the study of microRNA in pregnancy and its associated complications, such as preeclampsia (PE), fetal growth restriction (FGR), and preterm labor, is a young field. Over the last decade, the knowledge of pregnancy-related microRNAs has increased and the molecular mechanisms by which microRNAs regulate pregnancy or its associated complications are emerging. In this review, we focus on the recent advances in the research of pregnancy-related microRNAs, especially their function in pregnancy-associated complications and the potential clinical applications. Here microRNAs that associate with pregnancy are classified as placenta-specific, placenta-associated, placenta-derived circulating, and uterine microRNA according to their localization and origin. MicroRNAs offer a great potential for developing diagnostic and therapeutic targets in pregnancy-related disorders.
Collapse
Affiliation(s)
- Meng Cai
- Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Gopi K. Kolluru
- Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Asif Ahmed
- Aston Medical Research Institute, Aston Medical School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
48
|
Zhang Y, Huang G, Zhang Y, Yang H, Long Y, Liang Q, Zheng Z. MiR-942 decreased before 20 weeks gestation in women with preeclampsia and was associated with the pathophysiology of preeclampsia in vitro. Clin Exp Hypertens 2017; 39:108-113. [PMID: 28287888 DOI: 10.1080/10641963.2016.1210619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To investigate the possible relationship between miR-942 levels and the pathogenesis of preeclampsia using in vitro assays and to investigate circulating miR-942 levels in the early phase of mid-of pregnancy in women who later developed preeclampsia and in women with uncomplicated pregnancies. METHODS Plasma samples were collected from pregnant women between 12 and 20 weeks of gestation. MiR-942 levels were determined by stem-loop real-time PCR for 26 cases who subsequently developed preeclampsia as well as for 52 controls. Bioinformatics software was used to predict the target genes of miR-942, and a dual-luciferase reporter system was utilized to validate target gene regulation. Finally, MTT proliferation assays, transwell invasion assays, and endothelial cell tube formation assays were performed to further explore the function of miR-942 using a human extravillous trophoblast cell line (TEV-1). RESULT Circulating miR-942 levels were significantly lower in mid-pregnancy (12-20 weeks gestation) in women who later developed preeclampsia compared with those with an uncomplicated pregnancy (p < 0.05). Endoglin (ENG) is an miR-942 target gene. MiR-942 had a sensitivity of 0.673, a specificity of 0.875, and an area under the receiver operating characteristic curve (AUC) of 0.718 [95% CI, 0.594-0.822] for the possible screening of preeclampsia. In vitro, decreased miR-942 expression decreased the invasive ability of TEV-1 cells, and inhibited the HUVEC angiogenesis assay, both effects that are similar to what is observed in preeclampsia (both p <0.05). CONCLUSION MiR-942 may be involved in the pathogenesis of preeclampsia via the regulation of its target gene ENG. Multicenter studies must be performed and a greater number of samples must be analyzed to ascertain whether circulating miR-942 levels can serve as a novel early diagnostic marker for preeclampsia.
Collapse
Affiliation(s)
- Yonggang Zhang
- a Department of Clinical Laboratory , Central Hospital of Longhua New District , Shenzhen , China
| | - Guoqing Huang
- a Department of Clinical Laboratory , Central Hospital of Longhua New District , Shenzhen , China
| | - Yipeng Zhang
- a Department of Clinical Laboratory , Central Hospital of Longhua New District , Shenzhen , China
| | - Hongling Yang
- b Department of Clinical Laboratory , Guangzhou Women & Children Medical Center, Guangzhou Medical University , Guangzhou , China
| | - Yan Long
- b Department of Clinical Laboratory , Guangzhou Women & Children Medical Center, Guangzhou Medical University , Guangzhou , China
| | - Qihua Liang
- b Department of Clinical Laboratory , Guangzhou Women & Children Medical Center, Guangzhou Medical University , Guangzhou , China
| | - Zaoxiong Zheng
- c Department of Clinical Laboratory , Xiangzhou District People's Hospital , Zhuhai , China
| |
Collapse
|
49
|
Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:268-280. [PMID: 27846781 DOI: 10.1089/ten.teb.2016.0454] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.
Collapse
Affiliation(s)
- Harry C Blair
- 1 Veteran's Affairs Medical Center , Pittsburgh, Pennsylvania.,2 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | - Yanan Li
- 3 Department of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Hang Lin
- 4 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Donna Beer-Stoltz
- 2 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Li Liu
- 2 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 4 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lisa J Robinson
- 5 Department of Pathology, West Virginia University School of Medicine , Morgantown, West Virginia.,6 Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Paul H Schlesinger
- 7 Department of Cell Biology, Washington University , Saint Louis, Missouri
| | - Deborah J Nelson
- 8 Department of Neurobiology, Pharmacology & Physiology, University of Chicago , Chicago, Illinois
| |
Collapse
|
50
|
Liu M, Zhou J, Chen Z, Cheng ASL. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol 2016; 241:10-24. [PMID: 27770445 DOI: 10.1002/path.4832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
The tumour microenvironment plays an instrumental role in cancer development, progression and treatment response/resistance. Accumulating evidence is underscoring the fundamental importance of epigenetic regulation in tumour immune evasion. Following many pioneering discoveries demonstrating malignant transformation through epigenetic anomalies ('epimutations'), there is also a growing emphasis on elucidating aberrant epigenetic mechanisms that reprogramme the milieu of tumour-associated immune and stromal cells towards an immunosuppressive state. Pharmacological inhibition of DNA methylation and histone modifications can augment the efficiency of immune checkpoint blockage, and unleash anti-tumour T-cell responses. However, these non-specific agents also represent a 'double-edged sword', as they can also reactivate gene transcription of checkpoint molecules, interrupting immune surveillance programmes. By understanding the impact of epigenetic control on the tumour microenvironment, rational combinatorial epigenetic and checkpoint blockage therapies have the potential to harness the immune system for the treatment of cancer. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Man Liu
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Jingying Zhou
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|