1
|
p107 mediated mitochondrial function controls muscle stem cell proliferative fates. Nat Commun 2021; 12:5977. [PMID: 34645816 PMCID: PMC8514468 DOI: 10.1038/s41467-021-26176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Muscle diseases and aging are associated with impaired myogenic stem cell self-renewal and fewer proliferating progenitors (MPs). Importantly, distinct metabolic states induced by glycolysis or oxidative phosphorylation have been connected to MP proliferation and differentiation. However, how these energy-provisioning mechanisms cooperate remain obscure. Herein, we describe a mechanism by which mitochondrial-localized transcriptional co-repressor p107 regulates MP proliferation. We show p107 directly interacts with the mitochondrial DNA, repressing mitochondrial-encoded gene transcription. This reduces ATP production by limiting electron transport chain complex formation. ATP output, controlled by the mitochondrial function of p107, is directly associated with the cell cycle rate. Sirt1 activity, dependent on the cytoplasmic glycolysis product NAD+, directly interacts with p107, impeding its mitochondrial localization. The metabolic control of MP proliferation, driven by p107 mitochondrial function, establishes a cell cycle paradigm that might extend to other dividing cell types. The connection between cell cycle, metabolic state and mitochondrial activity is unclear. Here, the authors show that p107 represses mitochondrial transcription and ATP output in response to glycolytic byproducts, causing metabolic control of the cell cycle rate in myogenic progenitors.
Collapse
|
2
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
3
|
Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ, El Khouli RH, Johnson ZR, Westgate PM, Chen J, Morris AJ, Sullivan PG, Dupont-Versteegden EE, Kern PA. Pioglitazone does not synergize with mirabegron to increase beige fat or further improve glucose metabolism. JCI Insight 2021; 6:143650. [PMID: 33571166 PMCID: PMC8026187 DOI: 10.1172/jci.insight.143650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Beige and brown adipose tissue (BAT) are associated with improved metabolic homeostasis. We recently reported that the β3-adrenergic receptor agonist mirabegron induced beige adipose tissue in obese insulin-resistant subjects, and this was accompanied by improved glucose metabolism. Here we evaluated pioglitazone treatment with a combination pioglitazone and mirabegron treatment and compared these with previously published data evaluating mirabegron treatment alone. Both drugs were used at FDA-approved dosages. METHODS We measured BAT by PET CT scans, measured beige adipose tissue by immunohistochemistry, and comprehensively characterized glucose and lipid homeostasis and insulin sensitivity by euglycemic clamp and oral glucose tolerance tests. Subcutaneous white adipose tissue, muscle fiber type composition and capillary density, lipotoxicity, and systemic inflammation were evaluated by immunohistochemistry, gene expression profiling, mass spectroscopy, and ELISAs. RESULTS Treatment with pioglitazone or the combination of pioglitazone and mirabegron increased beige adipose tissue protein marker expression and improved insulin sensitivity and glucose homeostasis, but neither treatment induced BAT in these obese subjects. When the magnitude of the responses to the treatments was evaluated, mirabegron was found to be the most effective at inducing beige adipose tissue. Although monotherapy with either mirabegron or pioglitazone induced adipose beiging, combination treatment resulted in less beiging than either alone. The 3 treatments also had different effects on muscle fiber type switching and capillary density. CONCLUSION The addition of pioglitazone to mirabegron treatment does not enhance beiging or increase BAT in obese insulin-resistant research participants. TRIAL REGISTRATION ClinicalTrials.gov NCT02919176. FUNDING NIH DK112282 and P20GM103527 and Clinical and Translational Science Awards grant UL1TR001998.
Collapse
Affiliation(s)
- Brian S Finlin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Hasiyet Memetimin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Beibei Zhu
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Amy L Confides
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences
| | | | | | - Zachary R Johnson
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | | | - Jianzhong Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | | | | | - Philip A Kern
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| |
Collapse
|
4
|
Chen Y, Li K, Zhang X, Chen J, Li M, Liu L. The novel long noncoding RNA lncRNA-Adi regulates adipogenesis. Stem Cells Transl Med 2020; 9:1053-1067. [PMID: 32356938 PMCID: PMC7445023 DOI: 10.1002/sctm.19-0438] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/05/2023] Open
Abstract
Adipogenesis participates in many physiological and pathological processes, such as obesity and diabetes, and is regulated by a series of precise molecular events. However, the molecules involved in this regulation have not been fully characterized. In this study, we identified a long noncoding (lnc)RNA, lncRNA-Adi, which is highly expressed in adipose tissue-derived stromal cells (ADSCs) that are differentiating into adipocytes. Knockdown of lncRNA-Adi impaired the adipogenic differentiation ability of ADSCs. Moreover, lncRNA-Adi was found to interact with microRNA (miR)-449a to enhance the expression of cyclin-dependent kinase (CDK)6 during adipogenesis. The mechanism by which lncRNA-Adi regulates adipogenesis was determined to involve an lncRNA-Adi-miR-449a interaction that competes with the CDK6 3' untranslated region to increase CDK6 translation and activate the pRb-E2F1 pathway to promote adipogenesis. These findings provide valuable information and a new study angle to search for therapeutic targets against metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Yuanwei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
- Department of Oral & Maxillofacial SurgerySchool of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiPeople's Republic of China
| | - Kaide Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Jinlong Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Meisheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
5
|
Cantini G, Di Franco A, Mannelli M, Scimè A, Maggi M, Luconi M. The Role of Metabolic Changes in Shaping the Fate of Cancer-Associated Adipose Stem Cells. Front Cell Dev Biol 2020; 8:332. [PMID: 32478073 PMCID: PMC7242628 DOI: 10.3389/fcell.2020.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue in physiological and in metabolically altered conditions (obesity, diabetes, metabolic syndrome) strictly interacts with the developing tumors both systemically and locally. In addition to the cancer-associated fibroblasts, adipose cells have also recently been described among the pivotal actors of the tumor microenvironment responsible for sustaining tumor development and progression. In particular, emerging evidence suggests that not only the mature adipocytes but also the adipose stem cells (ASCs) are able to establish a strict crosstalk with the tumour cells, thus resulting in a reciprocal reprogramming of both the tumor and adipose components. This review will focus on the metabolic changes induced by this interaction as a driver of fate determination occurring in cancer-associated ASCs (CA-ASCs) to support the tumor metabolic requirements. We will showcase the major role played by the metabolic changes occurring in the adipose tumor microenvironment that regulates ASC fate and consequently cancer progression. Our new results will also highlight the CA-ASC response in vitro by using a coculture system of primary ASCs grown with cancer cells originating from two different types of adrenal cancers [adrenocortical carcinoma (ACC) and pheochromocytoma]. In conclusion, the different factors involved in this crosstalk process will be analyzed and their effects on the adipocyte differentiation potential and functions of CA-ASCs will be discussed.
Collapse
Affiliation(s)
- Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Alessandra Di Franco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
6
|
Lizcano F. The Beige Adipocyte as a Therapy for Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20205058. [PMID: 31614705 PMCID: PMC6834159 DOI: 10.3390/ijms20205058] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia.
| |
Collapse
|
7
|
Sarigil O, Anil-Inevi M, Yilmaz E, Mese G, Tekin HC, Ozcivici E. Label-free density-based detection of adipocytes of bone marrow origin using magnetic levitation. Analyst 2019; 144:2942-2953. [DOI: 10.1039/c8an02503g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first report on application of magnetic levitation technology for detection of adipogenic cells based on single cell density measurement.
Collapse
Affiliation(s)
- Oyku Sarigil
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Muge Anil-Inevi
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Esra Yilmaz
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics
- Izmir Institute of Technology
- Urla
- Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| | - Engin Ozcivici
- Department of Bioengineering
- Izmir Institute of Technology
- Urla
- Turkey
| |
Collapse
|
8
|
Cunarro J, Buque X, Casado S, Lugilde J, Vidal A, Mora A, Sabio G, Nogueiras R, Aspichueta P, Diéguez C, Tovar S. p107 Deficiency Increases Energy Expenditure by Inducing Brown-Fat Thermogenesis and Browning of White Adipose Tissue. Mol Nutr Food Res 2018; 63:e1801096. [PMID: 30383332 DOI: 10.1002/mnfr.201801096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Indexed: 11/07/2022]
Abstract
SCOPE The tumor suppressor p107, a pocket protein member of the retinoblastoma susceptibility protein family, plays an important role in the cell cycle and cellular adipocyte differentiation. Nonetheless, the mechanism by which it influences whole body Energy homeostasis is unknown. METHODS AND RESULTS The phenotype of p107 knockout (KO) mixed-background C57BL6/129 mice phenotype is studied by focusing on the involvement of white and brown adipose tissue (WAT and BAT) in energy metabolism. It is shown that p107 KO mice are leaner and have high-fat diet resistence. This phenomenon is explained by an increase of energy expenditure. The higher energy expenditure is caused by the activation of thermogenesis and may be mediated by both BAT and the browning of WAT. Consequently, it leads to the resistance of p107 KO mice to high-fat diet effects, prevention of liver steatosis, and improvement of the lipid profile and glucose homeostasis. CONCLUSION These data allowed the unmasking of a mechanism by which a KO of p107 prevents diet-induced obesity by increasing energy expenditure via increased thermogenesis in BAT and browning of WAT, indicating the relevance of p107 as a modulator of metabolic activity of both brown and white adipocytes. Therefore, it can be targeted for the development of new therapies to ameliorate the metabolic syndrome.
Collapse
Affiliation(s)
- Juan Cunarro
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Xabier Buque
- Department of Physiology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
- Biocruces Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Sabela Casado
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Javier Lugilde
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Anxo Vidal
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Alfonso Mora
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Guadalupe Sabio
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Rubén Nogueiras
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
- Biocruces Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Carlos Diéguez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Sulay Tovar
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
9
|
ZHANG J, WU H, MA S, JING F, YU C, GAO L, ZHAO J. Transcription Regulators and Hormones Involved in the Development of Brown Fat and White Fat Browning: Transcriptional and Hormonal Control of Brown/Beige Fat Development. Physiol Res 2018. [DOI: 10.33549/physiolres.933650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The high prevalence of obesity and related metabolic complications has inspired research on adipose tissues. Three kinds of adipose tissues are identified in mammals: brown adipose tissue (BAT), beige or brite adipose tissue and white adipose tissue (WAT). Beige adipocytes share some characteristics with brown adipocytes such as the expression of UCP1. Beige adipocytes can be activated by environmental stimuli or pharmacological treatment, and this change is accompanied by an increase in energy consumption. This process is called white browning, and it facilitates the maintenance of a lean and healthy phenotype. Thus, promoting beige adipocyte development in WAT shows promise as a new strategy in treating obesity and related metabolic consequences. In this review, we summarized the current understanding of the regulators and hormones that participate in the development of brown fat and white fat browning.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J. ZHAO
- Department of Endocrinology, Shandong Provincial Hospital affiliated with Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Lodhi IJ, Dean JM, He A, Park H, Tan M, Feng C, Song H, Hsu FF, Semenkovich CF. PexRAP Inhibits PRDM16-Mediated Thermogenic Gene Expression. Cell Rep 2018; 20:2766-2774. [PMID: 28930673 DOI: 10.1016/j.celrep.2017.08.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/14/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
Abstract
How the nuclear receptor PPARγ regulates the development of two functionally distinct types of adipose tissue, brown and white fat, as well as the browning of white fat, remains unclear. Our previous studies suggest that PexRAP, a peroxisomal lipid synthetic enzyme, regulates PPARγ signaling and white adipogenesis. Here, we show that PexRAP is an inhibitor of brown adipocyte gene expression. PexRAP inactivation promoted adipocyte browning, increased energy expenditure, and decreased adiposity. Identification of PexRAP-interacting proteins suggests that PexRAP function extends beyond its role as a lipid synthetic enzyme. Notably, PexRAP interacts with importin-β1, a nuclear import factor, and knockdown of PexRAP in adipocytes reduced the levels of nuclear phospholipids. PexRAP also interacts with PPARγ, as well as PRDM16, a critical transcriptional regulator of thermogenesis, and disrupts the PRDM16-PPARγ complex, providing a potential mechanism for PexRAP-mediated inhibition of adipocyte browning. These results identify PexRAP as an important regulator of adipose tissue remodeling.
Collapse
Affiliation(s)
- Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - John M Dean
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hongsuk Park
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Min Tan
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Haowei Song
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
11
|
Shao M, Gupta RK. Transcriptional brakes on the road to adipocyte thermogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:20-28. [PMID: 29800720 DOI: 10.1016/j.bbalip.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
White adipocytes represent the principle site for energy storage whereas brown/beige adipocytes emerge from seemingly distinct cellular lineages and burn chemical energy to produce heat. Thermogenic adipocytes utilize cell-type selective master regulatory transcription factors to drive the expression of their adipocyte thermogenic gene program. White adipocytes harbor transcriptional mechanisms to suppress the thermogenic gene program and maintain an energy-storing function. Here, we summarize some of the key developmental and transcriptional mechanisms leading to the postnatal recruitment of thermogenic adipocytes under physiological conditions, with a particular emphasis on the transcriptional "brakes" on the thermogenic gene program. We highlight a number of recent studies, including our own work on the transcription factor, ZFP423, that illustrate the potential to engineer the subcutaneous and visceral white fat lineages to adopt a thermogenic fat cell fate by releasing the inhibition of the adipocyte thermogenic gene program. These transcriptional brakes on adipocyte thermogenesis may represent potential targets of therapeutic interventions designed to combat obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Bhattacharya D, Ydfors M, Hughes MC, Norrbom J, Perry CGR, Scimè A. Decreased transcriptional corepressor p107 is associated with exercise-induced mitochondrial biogenesis in human skeletal muscle. Physiol Rep 2017; 5:5/5/e13155. [PMID: 28270591 PMCID: PMC5350169 DOI: 10.14814/phy2.13155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/24/2022] Open
Abstract
Increased mitochondrial content is a hallmark of exercise-induced skeletal muscle remodeling. For this process, considerable evidence underscores the involvement of transcriptional coactivators in mediating mitochondrial biogenesis. However, our knowledge regarding the role of transcriptional corepressors is lacking. In this study, we assessed the association of the transcriptional corepressor Rb family proteins, Rb and p107, with endurance exercise-induced mitochondrial adaptation in human skeletal muscle. We showed that p107, but not Rb, protein levels decrease by 3 weeks of high-intensity interval training. This is associated with significant inverse association between p107 and exercise-induced improved mitochondrial oxidative phosphorylation. Indeed, p107 showed significant reciprocal correlations with the protein contents of representative markers of mitochondrial electron transport chain complexes. These findings in human skeletal muscle suggest that attenuated transcriptional repression through p107 may be a novel mechanism by which exercise stimulates mitochondrial biogenesis following exercise.
Collapse
Affiliation(s)
- Debasmita Bhattacharya
- Stem Cell Research Group, Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| | - Mia Ydfors
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meghan C Hughes
- Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher G R Perry
- Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| | - Anthony Scimè
- Stem Cell Research Group, Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada .,Molecular, Cellular and Integrative Physiology, Faculty of Health York University, Toronto, Canada
| |
Collapse
|
13
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Bou M, Montfort J, Le Cam A, Rallière C, Lebret V, Gabillard JC, Weil C, Gutiérrez J, Rescan PY, Capilla E, Navarro I. Gene expression profile during proliferation and differentiation of rainbow trout adipocyte precursor cells. BMC Genomics 2017; 18:347. [PMID: 28472935 PMCID: PMC5418865 DOI: 10.1186/s12864-017-3728-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Excessive accumulation of adipose tissue in cultured fish is an outstanding problem in aquaculture. To understand the development of adiposity, it is crucial to identify the genes which expression is associated with adipogenic differentiation. Therefore, the transcriptomic profile at different time points (days 3, 8, 15 and 21) along primary culture development of rainbow trout preadipocytes has been investigated using an Agilent trout oligo microarray. RESULTS Our analysis identified 4026 genes differentially expressed (fold-change >3) that were divided into two major clusters corresponding to the main phases observed during the preadipocyte culture: proliferation and differentiation. Proliferation cluster comprised 1028 genes up-regulated from days 3 to 8 of culture meanwhile the differentiation cluster was characterized by 2140 induced genes from days 15 to 21. Proliferation was characterized by enrichment in genes involved in basic cellular and metabolic processes (transcription, ribosome biogenesis, translation and protein folding), cellular remodelling and autophagy. In addition, the implication of the eicosanoid signalling pathway was highlighted during this phase. On the other hand, the terminal differentiation phase was enriched with genes involved in energy production, lipid and carbohydrate metabolism. Moreover, during this phase an enrichment in genes involved in the formation of the lipid droplets was evidenced as well as the activation of the thyroid-receptor/retinoic X receptor (TR/RXR) and the peroxisome proliferator activated receptors (PPARs) signalling pathways. The whole adipogenic process was driven by a coordinated activation of transcription factors and epigenetic modulators. CONCLUSIONS Overall, our study demonstrates the coordinated expression of functionally related genes during proliferation and differentiation of rainbow trout adipocyte cells. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of fish adipogenesis.
Collapse
Affiliation(s)
- Marta Bou
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,Present address: Nofima (Norwegian Institute of Food, Fisheries, and Aquaculture Research), P.O. Box 210, N-1432, Ås, Norway
| | - Jerôme Montfort
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Aurélie Le Cam
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Cécile Rallière
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Véronique Lebret
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Jean-Charles Gabillard
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Claudine Weil
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Pierre-Yves Rescan
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Porras DP, Abbaszadeh M, Bhattacharya D, D'Souza NC, Edjiu NR, Perry CGR, Scimè A. p107 Determines a Metabolic Checkpoint Required for Adipocyte Lineage Fates. Stem Cells 2017; 35:1378-1391. [PMID: 28233396 DOI: 10.1002/stem.2576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022]
Abstract
We show that the transcriptional corepressor p107 orchestrates a metabolic checkpoint that determines adipocyte lineage fates for non-committed progenitors. p107 accomplishes this when stem cell commitment would normally occur in growth arrested cells. p107-deficient embryonic progenitors are characterized by a metabolic state resembling aerobic glycolysis that is necessary for their pro-thermogenic fate. Indeed, during growth arrest they have a reduced capacity for NADH partitioning between the cytoplasm and mitochondria. Intriguingly, this occurred despite an increase in the capacity for mitochondrial oxidation of non-glucose substrates. The significance of metabolic reprogramming is underscored by the disruption of glycolytic capacities in p107-depleted progenitors that reverted their fates from pro-thermogenic to white adipocytes. Moreover, the manipulation of glycolytic capacity on nonspecified embryonic and adult progenitors forced their beige fat commitment. These innovative findings introduce a new approach to increase pro-thermogenic adipocytes based on simply promoting aerobic glycolysis to manipulate nonspecified progenitor fate decisions. Stem Cells 2017;35:1378-1391.
Collapse
Affiliation(s)
- Deanna P Porras
- Stem Cell Research Group, York University, Toronto, Ontario, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Maryam Abbaszadeh
- Stem Cell Research Group, York University, Toronto, Ontario, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Debasmita Bhattacharya
- Stem Cell Research Group, York University, Toronto, Ontario, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Ninoschka C D'Souza
- Stem Cell Research Group, York University, Toronto, Ontario, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Nareh R Edjiu
- Stem Cell Research Group, York University, Toronto, Ontario, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Anthony Scimè
- Stem Cell Research Group, York University, Toronto, Ontario, Canada.,Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Loft A, Forss I, Mandrup S. Genome-Wide Insights into the Development and Function of Thermogenic Adipocytes. Trends Endocrinol Metab 2017; 28:104-120. [PMID: 27979331 DOI: 10.1016/j.tem.2016.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
Brown and brown-like adipocytes are specialized adipocytes with a high capacity to convert metabolic energy to heat. This function is not only eminent in supporting organismal thermogenesis, but may also have potential in the fight against obesity. The latter has spurred a massive interest in understanding the development and regulation of these thermogenic adipocytes. Here, we review how genome-wide studies based on next-generation sequencing have provided insight into how the chromatin and transcriptional landscapes are established in thermogenic adipocytes and how thermogenic signals can change the genomic programming of white adipocytes. Furthermore, we discuss how the integration of genomic data can be used to discover novel transcriptional pathways that may be modulated as part of therapeutic strategies for the treatment of obesity.
Collapse
Affiliation(s)
- Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Isabel Forss
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
17
|
Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM. Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in Old Mice and Humans. Cell Metab 2017; 25:166-181. [PMID: 27889388 PMCID: PMC5226893 DOI: 10.1016/j.cmet.2016.10.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Cold temperatures induce progenitor cells within white adipose tissue to form beige adipocytes that burn energy and generate heat; this is a potential anti-diabesity therapy. However, the potential to form cold-induced beige adipocytes declines with age. This creates a clinical roadblock to potential therapeutic use in older individuals, who constitute a large percentage of the obesity epidemic. Here we show that aging murine and human beige progenitor cells display a cellular aging, senescence-like phenotype that accounts for their age-dependent failure. Activating the senescence pathway, either genetically or pharmacologically, in young beige progenitors induces premature cellular senescence and blocks their potential to form cold-induced beige adipocytes. Conversely, genetically or pharmacologically reversing cellular aging by targeting the p38/MAPK-p16Ink4a pathway in aged mouse or human beige progenitor cells rejuvenates cold-induced beiging. This in turn increases glucose sensitivity. Collectively, these data indicate that anti-aging or senescence modalities could be a strategy to induce beiging, thereby improving metabolic health in aging humans.
Collapse
Affiliation(s)
- Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, University Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L Close
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aki Uchida
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Reading
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric D Berglund
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Kyba
- Lillehei Heart Institute, University Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Shao M, Ishibashi J, Kusminski CM, Wang QA, Hepler C, Vishvanath L, MacPherson KA, Spurgin SB, Sun K, Holland WL, Seale P, Gupta RK. Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metab 2016; 23:1167-1184. [PMID: 27238639 PMCID: PMC5091077 DOI: 10.1016/j.cmet.2016.04.023] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/29/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
The transcriptional regulators Ebf2 and Prdm16 establish and maintain the brown and/or beige fat cell identity. However, the mechanisms operating in white adipocytes to suppress the thermogenic gene program and maintain an energy-storing phenotype are less understood. Here, we report that the transcriptional regulator Zfp423 is critical for maintaining white adipocyte identity through suppression of the thermogenic gene program. Zfp423 expression is enriched in white versus brown adipocytes and suppressed upon cold exposure. Doxycycline-inducible inactivation of Zfp423 in mature adipocytes, combined with β-adrenergic stimulation, triggers a conversion of differentiated adiponectin-expressing inguinal and gonadal adipocytes into beige-like adipocytes; this reprogramming event is sufficient to prevent and reverse diet-induced obesity and insulin resistance. Mechanistically, Zfp423 acts in adipocytes to inhibit the activity of Ebf2 and suppress Prdm16 activation. These data identify Zfp423 as a molecular brake on adipocyte thermogenesis and suggest a therapeutic strategy to unlock the thermogenic potential of white adipocytes in obesity.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity and Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiong A Wang
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea Hepler
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karen A MacPherson
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen B Spurgin
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kai Sun
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William L Holland
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rana K Gupta
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Mueller E. Browning and Graying: Novel Transcriptional Regulators of Brown and Beige Fat Tissues and Aging. Front Endocrinol (Lausanne) 2016; 7:19. [PMID: 26973598 PMCID: PMC4773441 DOI: 10.3389/fendo.2016.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Obesity represents a major risk factor for the development of a number of metabolic disorders, including cardiovascular disease and type 2 diabetes. Since the discovery that brown and beige fat cells exist in adult humans and contribute to energy expenditure, increasing interest has been devoted to the understanding of the molecular switches turning on calorie utilization. It has been reported that the ability of thermogenic tissues to burn energy declines during aging, possibly contributing to the development of metabolic dysfunction late in life. This review will focus on the recently identified transcriptional modulators of brown and beige cells and will discuss the potential impact of some of these thermogenic factors on age-associated metabolic disorders.
Collapse
Affiliation(s)
- Elisabetta Mueller
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: Elisabetta Mueller,
| |
Collapse
|
20
|
Lizcano F, Vargas D. Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity. Int J Endocrinol 2016; 2016:9542061. [PMID: 27528872 PMCID: PMC4977401 DOI: 10.1155/2016/9542061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/12/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022] Open
Abstract
All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat depots and their mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate itself from white adipocytes. Importantly, adult human brown adipocyte appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases. Because many epigenetic changes can affect beige adipocyte differentiation, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important for therapeutic strategies. In this review we discuss some recent observations arising from the great physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Research (CIBUS), Universidad de La Sabana, Chia, Colombia
- Fundacion Cardioinfantil IC, Bogota, Colombia
- *Fernando Lizcano:
| | - Diana Vargas
- Center of Biomedical Research (CIBUS), Universidad de La Sabana, Chia, Colombia
| |
Collapse
|
21
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
22
|
Downey J, Lauzier D, Kloen P, Klarskov K, Richter M, Hamdy R, Faucheux N, Scimè A, Balg F, Grenier G. Prospective heterotopic ossification progenitors in adult human skeletal muscle. Bone 2015; 71:164-70. [PMID: 25445454 DOI: 10.1016/j.bone.2014.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/11/2014] [Accepted: 10/25/2014] [Indexed: 11/16/2022]
Abstract
Skeletal muscle has strong regenerative capabilities. However, failed regeneration can lead to complications where aberrant tissue forms as is the case with heterotopic ossification (HO), in which chondrocytes, osteoblasts and white and brown adipocytes can arise following severe trauma. In humans, the various HO cell types likely originate from multipotent mesenchymal stromal cells (MSCs) in skeletal muscle, which have not been identified in humans until now. In the present study, adherent cells from freshly digested skeletal muscle tissue were expanded in defined culture medium and were FACS-enriched for the CD73(+)CD105(+)CD90(-) population, which displayed robust multilineage potential. Clonal differentiation assays confirmed that all three lineages originated from a single multipotent progenitor. In addition to differentiating into typical HO lineages, human muscle resident MSCs (hmrMSCs) also differentiated into brown adipocytes expressing uncoupling protein 1 (UCP1). Characterizing this novel multipotent hmrMSC population with a brown adipocyte differentiation capacity has enhanced our understanding of the contribution of non-myogenic progenitor cells to regeneration and aberrant tissue formation in human skeletal muscle.
Collapse
Affiliation(s)
- Jennifer Downey
- CHUS Clinical Research Centre, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Peter Kloen
- Department of Orthopedic Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - Klaus Klarskov
- CHUS Clinical Research Centre, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Richter
- CHUS Clinical Research Centre, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Reggie Hamdy
- Shriners Hospital for Children, Montreal, QC, Canada; Department of Surgery, Orthopedic Surgery Division, McGill University, Montreal, QC, Canada
| | - Nathalie Faucheux
- CHUS Clinical Research Centre, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Scimè
- Stem Cell Research Group, Faculty of Health, York University, Toronto, ON, Canada
| | - Frédéric Balg
- CHUS Clinical Research Centre, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Grenier
- CHUS Clinical Research Centre, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
23
|
Park JH, Hur W, Lee SB. Intricate Transcriptional Networks of Classical Brown and Beige Fat Cells. Front Endocrinol (Lausanne) 2015; 6:124. [PMID: 26322018 PMCID: PMC4533000 DOI: 10.3389/fendo.2015.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/24/2015] [Indexed: 02/05/2023] Open
Abstract
Brown adipocytes are a specialized cell type that is critical for adaptive thermogenesis, energy homeostasis, and metabolism. In response to cold, both classical brown fat and the newly identified "beige" or "brite" cells are activated by β-adrenergic signaling and catabolize stored lipids and carbohydrates to produce heat via UCP1. Once thought to be non-existent in adults, recent studies have discovered active classical brown and beige fat cells in humans, thus reinvigorating interest in brown and beige adipocytes. This review will focus on the newly discovered transcription factors and microRNAs that specify and orchestrate the classical brown and beige fat cell development.
Collapse
Affiliation(s)
- Jun Hong Park
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wonhee Hur
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sean Bong Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- *Correspondence: Sean Bong Lee, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1700 Tulane Avenue Room 808, New Orleans, LA 70112, USA,
| |
Collapse
|
24
|
Flowers S, Patel PJ, Gleicher S, Amer K, Himelman E, Goel S, Moran E. p107-Dependent recruitment of SWI/SNF to the alkaline phosphatase promoter during osteoblast differentiation. Bone 2014; 69:47-54. [PMID: 25182511 PMCID: PMC5222550 DOI: 10.1016/j.bone.2014.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/11/2014] [Accepted: 08/16/2014] [Indexed: 12/28/2022]
Abstract
The retinoblastoma protein family is intimately involved in the regulation of tissue specific gene expression during mesenchymal stem cell differentiation. The role of the following proteins, pRB, p107 and p130, is particularly significant in differentiation to the osteoblast lineage, as human germ-line mutations of RB1 greatly increase susceptibility to osteosarcoma. During differentiation, pRB directly targets certain osteogenic genes for activation, including the alkaline phosphatase-encoding gene Alpl. Chromatin immunoprecipitation (ChIP) assays indicate that Alpl is targeted by p107 in differentiating osteoblasts selectively during activation with the same dynamics as pRB, which suggests that p107 helps promote Alpl activation. Mouse models indicate overlapping roles for pRB and p107 in bone and cartilage formation, but very little is known about direct tissue-specific gene targets of p107, or the consequences of targeting by p107. Here, the roles of p107 and pRB were compared using shRNA-mediated knockdown genetics in an osteoblast progenitor model, MC3T3-E1 cells. The results show that p107 has a distinct role along with pRB in induction of Alpl. Deficiency of p107 does not impede recruitment of transcription factors recognized as pRB co-activation partners at the promoter; however, p107 is required for the efficient recruitment of an activating SWI/SNF chromatin-remodeling complex, an essential event in Alpl induction.
Collapse
Affiliation(s)
- Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Parth J Patel
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Stephanie Gleicher
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Kamal Amer
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Eric Himelman
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Shruti Goel
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Elizabeth Moran
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|